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Abstract.

In this paper we consider a situation where we are given a finite number of values
which represent sampling of weighted-averages of a function f(z) corresponding
to a uniform grid. We show that if the weight function ¢(x) satisfies a dilation
equation, there is a discrete multi-resolution analysis of these values corresponding
to a diadic coarsening of the grid. We introduce a reconstruction procedure R which
predicts f(z) from its discrete weighted-averages to any desired order of accuracy
and is conservative in the sense that weighted?averaging of R reproduces the given
input data. Our formulation allows for adaptive data-dependent reconstruction
techniques in which R is a nonlinear functional of the input data.

At each level of resolution k& we use the reconstruction R to predict f(z) and its
weighted-averages at the (b — 1) level, which is the next finer level of resolution.
We define Qr(z; f), the k-th scale component of f(z) to be the difference between
the reconstruction of f(z) at level (k — 1) to that of level & and {d;‘ }, the k-th
scale coeflicients of f(x) to be the weighted-averages of @y on the finer grid. We
show that the given input data can be reconstructed from knowledge of the scale
coefficients {d}} for all k and the weighted averages of f(z) at the coarsest grid.
This observation leads to an efficient data-compression technique.

On the functional side, f(z) can be reconstructed to the accuracy of the finest grid
from knowledge of the scale components Q(x; f) for all k£ and the reconstruction of
f(z) from the coarsest grid. When R is data-independent we show that each scale-
component {Jx can be represented in a basis of linearly independent generalized
wavelets. This leads to representation of f(z) in a multi-resolution basis which is

the union of these generalized wavelets for all levels of resolution.

In this framework the original wavelets are obtained from a particular choice of
reconstruction technique, namely taking R to be the projection of f into the linear
span of all dilates and translates of ¢(z). This is a restrictive coupling between the
approximation technique R and the sense of averaging , which is unnecessary from

the point of view of numerical analysis.
Introduction and Overview.

In this paper we consider a situation where we are given a finite number of values
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otherwise specified) corresponding to & uniform partition of {0, 1], i.e.
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Here ( , ) denotes the Euclidean inner product and o{x) is the weight function.
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we say that
FRyNy L
{5 H2o k=0
constitute a discrete multi-resolution analysis if knowledge of the discrete values at

level £ determines the corresponding values at level £ + 1. Assuming linearity of
this relation we show in section 1 that ¢(x) has to satisfy a dilation equation

plz) = 22 app(2z —£).
£

We refer the reader to [1] and [8] for review of the history of this fleld and its

terminology.

This definition of discrete multi-resolution analysis implies that the values at level
k includes all larger scales. How can we get information about the scale present in
f{z) at each locality? In section 2 we introduce a reconstruction procedure R(z; f*)
which predicts f(z) from knowedge of { f;’-’}ﬁ_fl to any desired order of accuracy, and
1s conservative in the sense that weighted averaging of R reproduces the given input

data, i.e.
(R(F*), ofy =FF, 1< < Ny



At each level of resolution k we use the reconstruction R to predict f(z) and its
weighted averages at the next finer level of resolution (k — 1) and define Qi(z; f),
the k-th scale component of f(z), to be

Qr(z; f) = R(z; f*71) — R(z; /%)

and {df}, the k-th scale coefficients of f(z), to be the weighted-averages of Q; on
the finer grid. Thus

I
R(z; f°) = R(z; ")+ > Qula; f)
k=1

di = (Qu(3f), ©71) = i = (ARG ), )7

d;‘-‘ so defined measures our ability to predict ff“l from our knowledge of f*, When
we fail, 1.e. df 1s large, this could be either because of inadequacy of the approxi-
mation scheme or because there is a new scale of f(z) at level (k — 1) which is not
predictable by any approximation method. In order to reduce the approximation
error component in df we have to allow the use of adaptive (data-dependent) ap-
proximation schemes which are nonlinear functionals of the input data. We show

in section 2 that the input data f° can be reconstructed exactly from knowledge of

{fL?(dL)"‘ ?dl)}'

Once we remove the redundancy which is inherent to this representation, we get

efficient data-compression algorithms in which adaptive approximations can be used.

In section 3 we examine the compactly supported orthonormal wavelet bases of
Daubechies [1] and the assoclated data-compression algorithm of Mallat [7]. We
show that in the context of this paper, wavelets correspond to a particular method
of reconstruction R, namely taking R {o be the orthogonal projection into the linear

span of {gof}, le.
Ny
R(z; F*) = > flok(2).
=1
In this paper we assume that the choice of ¢(z) is dictated by the nature of

the computational problem and therefore it is considered to be given. From this
point of view the choice of “reconstruction via projection” which is associated with
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wavelets is not necessarily the best method of approximation. In sections 4 and 5
we consider multi-resolution analysis of pointvalues and cell-averages corresponding
to ¢(«) being Dirac’s-§ and the box function, respectively. In section 6 we return to
the general case and show that if the reconstruction procedure is data-independent

and projective in the sense that

R(z; f*71) = R(z; %),
where

V=BG, of ™), 15 < N,

then R(z, f°) can be represented in a multi-resolution basis of “generalized wavelets”

N
{{1/)}}141 i:]
I N

R(a; f°) = R(z; F1) 4+ 0 dS(F)wf(2),
k=1 j=1
where a?;‘ (f) are the k-th scale coefficients of f(z) corresponding to grid points with
odd indeces. This grouping of terms in the representation of the approximation
scheme enables us to intelligently reduce its dimesnionality by dropping terms with
negligible coefficients cf;‘(f ).

Finally in section 7 we present a modified data-dependent encoding procedure
which keeps track of this truncation procedure and generates modified coefficients
J;‘( f). Using these modified coefficients in the expansion above or in the decod-
ing procedure, yields a finest-grid approximation (level 0} which is accurate to an

arbitrarily specified tolerance.

1. Multi-Resolution Analysis

In this section we review the concept of multi-resolution analysis due to Meyer and
Mallat, except that here we consider the discrete case in a finite domain. Therefore
we associate the various levels of resolution to grids rather than to function spaces

as was done in the original development.

We consider the interval 0 < x <1 and its partition into N = 2” intervals of size

=1/N=2""byzj=j5-h, j=0,...,N. Tosimplify our presentation let us
consider a periodic function f(z) with period of 1, f € L?[0,1], and assume that f
18 discretized on this grid by

x

(11) fi={fhpeG = i=L....N
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where ( , ) is the Euclidean inner product and ¢(z) is a function of compact support

satisfying

o f
(1.2} j p(z)de = 1.

Thus {f;} are “averages” of f(z) over support of size h around z ; with the “weight

HON LI T—%;
function h(p( T

We construct a set of nested (L + 1) grids 0 < k < L of size by = 2Fh with

Ni = ﬁ intervals by

(1.3a) zh=j-hg,  §=0,...,Np
Thus £ = 0 is the original grid, which is the finest in the hierarchy, and
(1.3b) zf = a5

Thus the (k—1)-th grid is formed from the k-th grid by dividing each of its intervals
into two; this is done by adding a partition point 7:5;_11 in the middle of the interval
{xéf—-l ) 37_?] ‘

With each of the grids we associate a discretization { ff}ﬁvm_fl of the function f(z)

. 1 : , . .
(1.4a) =gl =i = (heh), d=1,.. N,

Each k represents a different level of resolution of the function f(z), which is deter-
mined by two factors: (1) f is averages over support of size hg. (2) f* is sampled

with a spacing of hy, 1.e.

(14b) Ff =7 h)
where
(1.40) PHw) = e,

is the “sliding average” of f(y) with size hy. It seems to us that it is the frequency
of the sampling which is the dominant factor in determining the level of resolution

of f(z).



e N L
The set of values {{ f Jk ) } .
each &k the knowledge of { f}};\f_fl determines the values of the next level { f;-""l}
This means that the k-th level of resolution contains the information of all larger

is called multi-resolution analysis of f(z), if for
0

Neya
=1 -

scales of variation in the levels f =k +1,... , L.

Let us assume that the relation between f* and f**7 is linear, t.e.

(1.5) ff“ = Zafﬁj—}f'

2
It follows from (1.5) and the definition (1.4a) that

{f, ‘P?H - ZO&(P%';'H) =0

4
for all f € Ly[0,1], and therefore
et ()~ Do (-2 -1),

taking y = == — ;7 in the above identity we get for all y
BY =g~ g

(1.6) ply) =2 arp(2y —0).
£

Hence for relation (1.5) to hold, ¢(y) has to satisfy the dilation equation (1.6). At
this point we refer the reader to the excellent review paper [8] by G. Strang. Let
us assume that ¢(y) has a Fourier transform $(¢). We note that (1.2} implies

(1.7a) $(0) =1

and that the dilation equation (1.6) implies

(L.7b) P& =M @ ¢ @



(Note that M(0) = > a, = 1).

It follows therefore that formally

(1.7) a(6) = [ Mg/,

m=1

and thus ¢(z) is determined uniquely by the dilation equation and the requirement
(1.2). However, as pointed out by Daubechies (1], the “function” ¢(z) defined by
(1.7) tends to have a fractal nature and in order to ensure some smoothness we have

to impose additional conditions on M(£) (1.7¢).

Many of the functions ¢(z) that are used in numerical analysis automatically
satisfy a dilation equation. For example ¢ = §{z), where § is the Dirac distribution,

satisfies
(1.8a) olaz) = 29(2z) = ap = 1;
1 -1<z<0
the box function plz) =
0 otherwise
satisfies
1
(1.8b) olz) =)+ e - 1) =2 ap=ag = 3
l4+z —-1<z<0
the hat function plr)=< 1—a 0<z<1
0 otherwise
satisfies
1 1 1
(18c)  pl2) = gle(2e — 1) +20(20) + o2z + D] = a1 = oy = 00 = 3
the quadratic spline function
(z +2)? —2<z< -1
272 -2z 4+1 —-1<z2<0
pla) =
(z — 1) 0<z<1
0 otherwise

~J



satisfies

ole) = 7l ~ 1) + 3p(20) + 3p(20 + 1) + p(2z +2)

1

8)

(1.8d)

Coj o

All the functions ¢(z) in (1.8) form a hierarchy of function »™(z) which is obtained

by repeated convolutions with a characteristic function

m—- m 1 ¢ m
(198') ¥ = ¥ F X—14sm,8m)y Sm T —2-[1 - (""""1) ]1
with
(1.95) @’ = 8().

Let af" denote the coefficients of the dilation equation (1.6) which is satisfied by
w™. It is easy to see that

| -~ 1
(1.9¢) ap Tl = 5(@2” +agi(-nm):

The shift between x[_; o] and xjo,1) keeps the coefficients a]* as centered as possible

around £ = 0, which is convenient for formulating boundary conditions.
2. Data Compression and Scale Analysis

In this section we use the multi-resolution analysis of f(z) in order to decompose
it into scales and to design data compression algorithms. To accomplish that we
use a IBCOHStIuCtiOH procedure R(z; f¥) which approximates f(z) from the discrete
values {f" 2 ie
(2.1a) R(z; f*) = f(z) + O((h)") wherever f(z) is smooth,
and is conservative in the sense that for all k

(Q'Ib) (R(a fk)z (pj) = f_:;uk

We note that by (1.5) - (1.6)
(B(5 fk) ‘Pk+1 {R(+ f Z CVE‘PQJ-H

= Zaz(R('; )> <sz+£ = Zaffsz = -]FJH-]
I}

£



and therefore by induction

(2.2) (B(5 %), @T) = 7 form > k.

We decompose f(z) into scales by

L
(2.3) R(z; ) = R(z; )+ 3 Qulas )
k=1

where the k-th scale component of f(z) is

(2.3b) Qw(z; f) = R(z; f*7') — R(z; F*).
We observe from (2.2) that

(2.4a) (Qie(5 f), w7y =0form >k,

and for m =k — 1 we get the k-th scale coefficients
(2.4b) B = Qi ), @) =TT (B, ).

Observe that d;‘f”l measures our success in using the reconstruction procedure R to
predict f;"“l from our knowledge of f*. The scale coefficients d;?_l are defined for
J = 1,..., Ny—1 but only half of these values are independent. This can be seen
form the fact that for j = 1,... , Ny

Do ardiile = ar@uls ) )
¢ £

{2.4¢)
= {Qx(+; f), Zawg;&e) = (Qr(;; ), 5y =0
7

The relevant ¢(z) for multi-resolution analysis is a function of compact support
for which 4 (%) converges weakly to §(z), Dirac’s distribution. Consequently aq
1s expected to be significantly larger then wsp, £ # 0. We assume now that the
coeflicients of {1.6) actually satisfy

(2.5a) ag > Z |eee.

££0
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This is certainly true for the family ™ (z} in (1.9) and for the compactly supported
“orthonormal” ¢"(z) of Daubechies (to be described in the next section). In this
case 1t 1s possible to store the values of df ~! with odd indices

(2.5b) C=dbh, 1< < Ny
and use relations {2.4c) in order to formulate a system of equations

(2.5¢) D s diia =~y aze-rdiy, 1<j <N
£

for the unknowns (dé-“], d:f”]) ces ,dﬁ,‘;l). Condition (2.5a) implies that the coeffi-
cient matrix of the system (2.5¢) is diagonally dominant and hence invertible, for

the periodic as well as for the free boundary case.

Let us denote the 2N, x Ny matrix that transfers {dk} 2, into {dk 1}N" ' by D,

ie.
(2.5d) a1 =D . d*.
For example, when ¢ is the box function (1.8b) we get from (2.5b)
(2.62) d57t +d5t =0

and thus ¢*=1 = D . d* is expressed algorithmically by

{ 4 =4

(2.6b) .
by =]

1<7< Ny

when @ is the hat function (1.8¢) we get from (2.5b)
(2.7a) d5l +2ds 4 dhTl =0, 1<j< N

Therefore we can compute d¥~! = D - d* by

did = dk
(2.7h) { ;1 J% ) 1<j< N,
) d2; = 5( j+dj+1)

10



Note that for j = N; we need to know a?]’t\,k 4+1- Yor periodic boundary conditions
(2.7¢) diy 41 = di;

otherwise we compute a??\;k 41 by extrapolation from the stored ar.

. : N
We turn now to discuss data compression of a sequence of numbers {c; s=1- Let

f(z) be the smoothest function for which

(fie5) =¢j,  1<i<N,.
The data compression algorithm corresponds to the decomposition (2.3) for such a
function f(z), and its rate of compression depends strongly on the smoothness of
f(z). First we compute the multi-resolution analysis (1.4a) of f(z), {f°, /',..., %}
by (1.5), L.e.

(1) set
(2.8a) fl=cj, 1£j<Ng=N
(ii) calculate

DO k=1L

JFJ"C = Zafﬂ;rlf
£
Next we calculate the scale coeflicients by (2.4b)

DO k=1L
(2.8¢) DO j=1,Ny

CE? = —2163211 - (R(';Jfk):‘zogj_—lﬁ-

At the end of this stage we have obtained ¢™ £, the multi-resolution representation

of ¢,

(2.9a) ME = (FE(dE, ..., dY).

11



From these data we can recover the exact values of ¢ by reversing the operation
(2.8¢), i.e.

DO k=1L,1

d*1 = Dig*

DO j=1,Nk-y

=BRGP, o)+

Note that the ¥ — DO loop is done in reverse: k = L, L —1,...,1 and that D is
the matrix (2.5d),

The multi-resolution representation ¢™# (2.9a) has exactly the same number of

elements N as the original sequence ¢, since
(2.10) N+ (Np+-+N)=N2F b4 127 =N,

Data compression can be achieved due to the possible smallness of elements in
(d%,...,d"). We recall that cfj‘ (2.5b), (2.4b) is the error committed at 1:;_';_11 in
attempting to predict mg‘;"_ll from f*, the discretization of f on the k-th grid. There-
fore if f is properly resolved on the k-th grid at a certain locality, the coeficients

dt, ¢ =k — 1,...,0 corresponding to this locality will be small in absolute value,

Remark 2.1. Note that we have not assumed linearity of the reconstruction
R(+; f*), and therefore we ean use adaptive (= data dependent = nonlinear) tech-
niques. Furthermore, for each k we can use a different reconstruction method
Ri{z; fF). Defining in (2.3b)

Qr(z; £ = Ri—1(z; F71) — Rulz; )

it is easy to see that the fundamental property (2.4) still holds.

Remark 2.2. The compression algorithm of this section enables us to specify the
compression factor, but does not allow for a direct control over the quality of the
decompressed data, i.e. the cumulative error at the finest grid. In section 7 we shall
present a modification of this algorithm which will allow us to specify the quality
of the decompressed data, but at the cost of losing direct control over the rate of

compression.

12



Remark 2.3. When df,? 1s unacceptably large, this can be either due to the inad-
equacy of the reconstruction method or due to the fact that there is a truly new
scale in this locality which is not predictable by any approximation method. In
order to reduce the component of approximation error in the compressed data let

us consider an invertible representation

Ny
(2.11a) df = > vhps(asil), 1<5< N
m=1

which we denote by G, i.e.

(2.11D) v =adf, dF =Gy

As an example let us consider a signal ¢ which is a combination of a discontinuous
piecewise-polynomial function and a high frequency sine wave. Taking R to be
ENO reconstruction with subcell-resolution {5] we’ll do the piecewise-polynomial
part perfectly and d* in this case will be the error of the ENO reconstruction in
approximating the high frequency sine wave. Taking the RHS of (2.11a) to be
Fourier collocation will result in a representation by ~* which is more economical
than the original d.

Finally we truncate and quantize 4* by some procedure H and denote its result

by %% ie.
(2.11¢) h = HAR
Thus the encoding part of the compression algorithm is performed by (2.8) and
(2.12a) (dr, .., d Syt Bt A
The compessed data to be stored or transmitted is ¢%,

(2.12b) CC = {fLa(;?L?' .- 3;‘)"1)}‘

The decoding part of the compression algorithm is then:

13



Set
(2.13a) ft =t

Calculate

DO k=11
Jk—l — D(Gml;);k}
(2.13b) g
DO j — ].,.N-kml

| 757 = (RO ), b+

Although it seems at first glance that the decompression procedure (2.9b), (2.13b)
requires Np_; = 2N operations of reconstruction, we can combine the multi-
resolution relation (1.5) with the conservation property (2.1b) in order to perform
this calculation with only Ny operations of reconstruction. This will become obvious

from the specific examples in this paper.
3. Compactly Supported Orthonormal Wavelets.

In this section we examine Mallat’s multi-resolution analysis [7] with the com-
pactly supported orthonormal wavelets of Daubechies [1} in the framework of section

2. Daubechies considers functions {z) satisfying a dilation equation

)
(3.1} @(x)mQZastp(Qrv~s)

for which {¢}(z)} in (1.4a) is an orthonormal set

(3.2) (ot 0f) = 6i;
here 6;; is the Kronicker-6. In terms of the Fourier symbol (1.7¢)
S 3
(3.3) ME) =) a i
5=0
the orthogonality (3.2) can be expressed by the following condition on M(&)
(3.4a) | M + M +m)? =1

14



or equivalently as a condition on the coefficients {a,}

5
(3.4b) 4N i, _gm = 6
A\ / Ly es—am i,
s=0
(see (1], [8]).

In the context of this paper Mallat’s multi-resolution algorithm can be described
by (2.3) - (2.4) with the particular choice of reconstruction (2.1)

N
(3.5) R(z; f*) = (Pef)(z) = Z Frok(2).

Here f;‘" = (f, cpf) (1.4a) and Py is the orthogonal projection into the set V3 which
is the linear span of {pf(z)}, 1 <j < Ny

The conservation property (2.1b) of the reconstruction (3.5)
(3.62) (R(5 f*), by = FF

is a direct consequence of the orthonormality (3.2).

Strang [8] observes that the reconstruction (3.5) falls into the category of approx-
imation by translates; based on this theory he shows that the accuracy requirement

(2.52),
(3.6b) R(z; f*) = f(z) + O((he)")

can be expressed by the requirement that M(€} (3.3) has a zero of order r at £ = 7,

l.e.

dm
(3.7a) df—nM(ﬁ)ig:w =0, 0<m<r—1

or equivalently in terms of the coefficients {ay },

S
(3.7b) S (-1)smay =0, 0<m<r—1
8=0

15



We recall from section 1 that (1.2) implies

g
(3.8) : MO)=> o, =1

]
o

and that specifying the coeflicients {«,} determines ¢(z). In order to construct y(z}
which satisfies the requirments (1.2), (3.2) and (3.6b) we have to find «yg, . . . a; which
satisfy equations (3.8), (3.7b) and (3.4b). Daubechies [1] has shown that given any
7, there is a unique solution for § = 2r — 1 and actually calculated these sets of 2r
coefficients for r < 10; let us denote the corresponding ¢(z) by »”". These " (z)
have an inherent fractal nature, but their smoothness increases almost linearly with

T?
(3.9) o € Orlu=e)

with g~ 0.3 for large r; e.g. @2 € CV57¢ ot € C1215 10 2 C2902 Fory > 2
1s not symmetric, has an oscillatory tail and r roots. These are interesting but
certainly weird functions. Another unusual situation (from the point of view of
numerical analysis) is that we get r-th order of accuracy with functions " which

have degree of smoothness much smaller than r.

We turn now to examine the scale analysis and data compression which is associ-
ated with this particular choice of reconstruction (3.5), i.e. R = Pr. We recall from
section 2 that Qr(z; f) (2.3h), (2.14) satisfies

{(3.10a) (Qr(5f)y ') =0form > k.

This property holds for any conservative reconstruction, including nonlinear ones.

In terms of the function spaces Vi, (3.10a) can be expressed by
(3.10D) Qu(f) LV, m=>k

Since the reconstruction (3.5) is a linear operator, so is Qr(z; f) in (2.3); we denote

it here by (@ f)(z),

(3.11a) Gr = Pr1 — Py

16



Clearly
(3.11b) Qrf € Vi1 D Vi,
Let us denote the orthogonal complement of Vj in Vi by W, i.e.
(3.12) Vi1 =V @ Wy,

Relation (3.10b) for m = k together with (3.11b) shows that @ f is the orthogonal
projection of f into Wy,

Let us define the wavelets {7,’)3’?} by

5-1
(3.13a) P() =2 Y (=1)*asr19(22 + 5)

gm=—1

1 &
131 ) = b [ = — 3 < 7 < Np.
(3.130) Ho = (L-5), 155

It is easy to verify that due to the orthogonality (3.2), (3.4b} we get from (3.13)
that

(3.14a) (1,[);-“, wky =0 for all m,j
(3.14b) (b5, ¥5) = &5,

which shows that the wavelets {@bf}, 1 < j £ Ny, form an orthonormal basis of W,
and consequently

Ny
(3.14c) Quf =D Thn(@)s vh = (Quf,95).

m=1
Using (3.10b) and (3.12) it follows that

(3.144d) W5, ey =0, m>k,
(3.14¢) (¥ 11);5’) = b5+ Opp

i

17



The scale coefficients df‘l, 1<y < Nig_yq,in (2.4b) are

(3.152) A7t = (Qrf, 0t = T FE ok, b,

In section 2 we have shown that always
s
(3.15D) > adbl =0, 0<7 <N,

and that for any decent ¢(z) (i.e. one which is a “good” approximation to the Dirac-
é 1n the sense of (2.15a)) we can store {dk .}, 1 €5 < Ny, and use the relations
(3.15b) to get {drfj"l}, 1 < 7 £ Np by solving the system of linear equations
(2.5¢). Relation (3.15b) is a direct consequence of the dilation relation and the
conservation property of the reconstruction (even nonlinear); it has nothing to do
with the orthogonality (3.2). However when there is orthogonality, we can also
remove the redundancy in d*~! by using (3.14c), i.e.

Ny

(3.15¢) & = (Qif kT = ) (wh b

m=1

This enables us to represent the Ny..; = 2N, elements of d*~! in terms of the Ny
elements of v*. In this case it is convenient to express the data compresion algorithm
(2.8) - (2.9) also in term of v*. The encoding part is obtained from (3.14c) by

Ne_

(3.16a) V= AQuf ) = (Peafily = D FE ok gk,
m=1

since

(3.16b) (o %5) = 2-1)"02jmmps

and &, # 0 only for 0 < s < .5 = 2r — 1, we can replace (2.8¢) b
DOk=1,L
(3.17) DO j=1,Ny

2r—1
22 o (—1 )Gfsf23+1 g
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The decoding part is obtained from (3.15a) and (3.15¢)

N,k Nk
o . - kok ke
(3.18a) =3 Falenei ™+ > vl et
m=1 m=1
Using (3.16b) and
(3.18b) (o 0i ) = 0 om
we can replace (2.9) by
(319&) CA’IR: {JFL:(P)’LV" :7])}
DO k=1,1
DO j=1,N;

(3.19b) " . - )
fz} 1= ZSIU a23+3~fj—1—3 ~2 Zszo X281+

fQ.jm = Es 0 Qs f;\MV + 225 4] 0!23_{\_1’}"1_{_2

Our main criticism about the compactly supported wavelets is that it leaves very
little room to fit the compression algorithm to the particular nature of the data.
Once the decision is made to use orthonormal multi-resolution basis (3.2) and to
use projection as a reconstruction technique, the only free parameter left is the
order of accuracy r. Our goal in data compression 1s to find a multi-resolution
representation (2.12b), (3.19a) in which 'y}“ is significantly different from zero only
when there is a new scale of f and not because of inadequacy of the approximation
scheme. Therefore it is important to allow for adaptive approximation methods.

In this paper we consider the ¢(z) to be given and leave the choice of reconstruc-
tion subject only to the conservation requirement (2.1b). In the following section we
study the simplest choice of taking ¢ to be the Dirac-§; this leads us to interpola-
tory mulfi-resolution analysis. In section 5 we shall study multi-resolution analysis
of cell-averages which corresponds to the box function (1.8b) and in section 6 we

outline the general case.
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4. Interpolatory Multi-Resolution Analysis.

In this section we take ¢ = 8(z) (1.8a) for which @g = 1; this choice represents

multi-resolution analysis by interplation techniques: (1.4a) becomes

4.1 gL () - flzs)
( ' a‘) fj - <f7 hk hk )'"""' (mj
and (1.5a), the dilation relation,

(4.1b) i = gk

This means that we start with the point-values of f on the finest grid, and a
lower level of resolution (% 4 1) is obtained by eliminating the values of f on the
k-th grid which have odd indices. Thus the sense of different levels of resolution

here 15 achieved by sampling f(z) with different frequencies.

The conservation property (2.1b) in this case is

r—

. oy 1 i\ oy k. FE
(4.1c) ff:(R(-;f"),;;;é( - ))—R(rr?,f’”)-

This means that R(z; f*) interpolates f;‘" on the k-th grid. In order to stress these
points we shall use f* instead of f* and I(z; f*) instead of R(x; fr), ie.

(4.2a) R(z; fir) = Iy(z; f*)
(4.2b) Ii(zf; f*) = ff

Note that the interpolation technique need not be the same for all levels %k, and

therefore we index it with a subscript k.

We turn now to consider the data compression algorithm (2.8) - (2.9) that is
associated with this interpolation. Since @y = &po in this case, the algorithm
simplifies considerably. Given a sequence of numbers {¢;}, 0 < j < Ny, we set

(4.3a) fi=rcj, 0<5< N



and calculate

[DOkzLL

ok .. ek~1 n o~
S ; 0 <

———
H~
)
[

s

= f3;0 - =505 %), 1<) < N

At the end of this stage we have obtained ¢™#, the interpolating multi-resolution

representation of ¢

(4.3¢) MEB = (fE (dh, . dD).

Note that here we use the value of f at z§ = 0 for all levels. Thus we start with an

odd number of elements in ¢, and for all &

(4.4) Lzt [©) = f(0) = co,  In(zhy,; F5) = F(1) = eos

in the periodic case we assume ¢y = ¢p,. a?k in (4. 3b) is the error committed in
interpolating f (2) from the k-th grid at the locatlon zh i !, which is the center of
k

the interval {z% i 1’3'9}

For purposes of data compression we apply (2.12) to ¢M# (4.4a). The decoding

part of the algorithm starts therefore by inverting the compressed representation

(2.12b) to obtain {d*,...,d"}. Then we set
(4.5a) fr="

and calculate
DOk =L1
(4.5b) Bit=fF 0<i< N

fzj 1—Ik('7323 11 )-}—Jj" 1 <53 <N

AiR(

The multi-resolution representation ¢ 4.3¢) corresponds to the interpolatory

scale-decomposition (2.3)

L

(4.62) To(x; f°) = In(e; F2) + ) Qula; f)
k=1

(4.6b) Qr(z; f) = Ima(z; F571) — Iz 79,
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which by virtue of (2.4) satisfies

(4.6c) Qr(zT;f)=0 for 0<j< Ny, m>Ek,

M

andform =%k —1

{ Qiles; 1) =0, 0<j <N,
(4.6d)

Qk(ng 1,f) ' 23 1‘Ik($23 1:fk)

Note that up to this point we have not assumed linearity of the interpolation pro-
cedure and therefore the strategy of interpolation may depend on the nature of the
local data. This enables us to use adaptive procedures such as ENO interpolation

(2], [3].

In the following we consider data-independent interpolation for which Ii(:; f) is
a linear functional of f. In this case we can associate a multi-resolution basis of
functions to the representation ¢™# (4.3¢), which is somewhat analogous to that of
the wavelets (3.14c). To do so we define

(4.7a) @8(x) = Iufz;ed), 0< i<V

where ef denotes the unit vector of the k-th grid

(4.75) (e5)i = 6,33
clearly
(4.7¢) 75 (zf) = 8.

Let ¥} denote the linear span of {(,DJ} 0 < j < N, and let P be the interpolatory

projection into Vj

Ny
(48 (Pug)(e) = 3 g(ah)} (o).
Clearly for all &
(4.9) Ix(z; f*) = (Pef)(2)
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and

(4.10) P = I.

From (4.6¢) we get

(4.11) PoQr=0 for m>k

and from (4.6d)
Ny ) )
(4.122) (Pe_1Q)(z) = de o5 (x) = ) dE - l(a).
j=1

Using the notation

(4.12b) i (e) = @57 (2)
(4.12¢) Qr = Pr1Qx
we define
L _ L Nk ~ -~
(4.12d) Wi f) =D Qula;s /) =YY df - dk(a).
pz] k=1 5=1

Theorem 4.1. If the interpolation scheme satisfies

(4.13a) Pioy Iy = I
then
(413b) Io(z; f) = L(x; f) + Wiz f).

Proof. Because of our assumption (4.13a) and (4.10)

Qr=PraQr =Py (Iy1 — i) = Po_y Iy — Pr_1 I
=4 — I
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Therefore . .
W= Qi=> (Ioa—I)=L-1I
k=1 k=1

which proves (4.13b).

Let us return now to condition (4.13a). Because of linearity

Ny N
Poily =Py Z fi @5(z) = ij(Pkmlﬁaf)(w)-
3=0

§=0
Hence (4.13a) is equivalent to the requirement
(4.14a) Pp_1p5 = ¢t

in other words, &% is in Vi_1, i.e. can be expressed as a linear combination of
, B p
{1}, 0<i < Ny_y. When there is a “mother function” @ such that

hi

o ok
(4.14b) @f:@(x %)

{4.142) implies that @{z) must also satisfy a dilation equation.

We see from (4.13b) that W{z; f) is just a rearrangement of terms in Iy — 1.
While Iy(z; f) 1s represented by the basis B

(4.15a) B = {g¥(a)}i

with coefficients {f (m?)} ;-Y_EI, W (z; f) is represented by the multi-resolution basis
B.M'R

(4.15b) BME = ({951 ey = ({5 1 e,

with coefficients (ff (4.12a), {4.6d), which are the local interpolation error by I at

k—1
$2j-~1 .

We note that the dimension of the multi-resolution basis is also Ny, thus
(4.15¢) dim(B) = dim(BM#),
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Given a function f(z) on a fixed grid, we can now reduce the dimensionality of
its representation in an intelligent way by dropping terms from the RHS of (4.13b)

for which cf;‘ 15 small in absolute value.

Another point of view is that of local refinement. In this context we start with
the coarsest grid of Ny intervals for which the interpolation I1.(z; f) still makes
sense, and keep refining the grid by halving its intervals until we get an acceptable
approximation to f{z). Hence in order to get a uniform approximation to f(z),
we can monitor the coefficients cfjk (4.6d) and refine locally only when they are not

sufficiently small in absolute value.

As an example let us consider the simplest case of piecewise-linear interpolation,

where for all £ we take
(4.16a) Ip(z; f) = f(:Lj‘_l)—i-[f(m;‘)—f(m;”_l)](“c——w;‘_l )/ hy for 3;;‘-'_1 <z < :vf

In this case

(4.16b) @f(a:) = Ip{2; e?) =3 (T ;fj>

where (@) is the hat function (1.8¢), i.e.

. 1-fz| |z} <1
(4.16¢) ¢(z) = {

0 otherwise.

Since the hat function satisfles a dilation equation it follows from (4.14) that

Theorem 4.1 applies.

In the following we present the multi-resolution version in a grid-refinement mode,
i.e. starting from the coarsest grid up. Let us assume that f(z) is to be approxi-

mated on a grid with N = 2™ intervals.

The standard representation in the basis B is

VA

(4.17) Io(z; f) =Y f27™ - 5) - (2%z — j),
J=0
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while the representation in the multi-resolution basis BM# is

2.‘.:—1

(4.182)  Wi(zif) =Y > BFf) @2z —27+1),

a—
j=1

(#186)  BE(H) = (27427 - 1) — 5 [FTHG - 1)) + 1@ 5)]

o

—_

We refer the reader to Figure 1 for a graphical demonstration of the case ng = 3.

As is customary in numerical analysis we have assume that Ii(z; f) (and conse-
quently 555“(:1:)) satisfy the given “boundary conditions”. When f{0) and f(1) are
specified, then Ir(z; f) in (4.13b) assumes these values and therefore

(4.19) W(0; )= W(L; f) = 0.

It 1s interesting to note that condition (4.13a) is satisfied also by spectral col-
location methods: Let {nn(z}}, 1 < n < oo, be an infinite sequence of linearly

independent functions ,and let

Ny
(4.20a) Li(z; £y =Y dinale), of =ab(f)
n=1
where {a* "3 are uniquely determined by the Ny linear equations
N
(4.20b) (5 £) =D abna(af) =ff, 1<j <N
n=l

It follows from the uniqueness of the solution for the coefficients in (4.20), that the

solution {af~ I}N'c ' to

(4.21a)

T (2h ™5 11) = Z Tn(ay ) = e TH ), 15 < Ny = 2N
is

(4.21b) af=1 =

H

{af‘; for 1 <n <N,
0, for Nk-i—]SnSNkml
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this 1mplies
(4.21c) Ip_(zy Iy = I,

which is equivalent to (4.13a) and (4.14a).

Spectral collocation methods are inherently global. The standard way to reduce
the dimensionality of spectral approximations is to eliminate components n,(z) for
which af(f) is small in absolute value. Unfortunately the size of a,(f) depends on
the global behavior of f, and its elimination affects the approxiamtion everywhere.
Rewriting the spectral approximation in its multi-resolution basis (4.15b) enables
one to reduce the dimensionality of the representaton by neglecting terms 1,[3;‘ (z)

for which a?;c, the [ocal approximation error, is small in absolute value. Note that
5
the expansion is restricted to a neighborhood of xf

gﬁj‘(w) decays away from z7; consequently the error introduced by dropping it from

Finally we remark that under most circumstances

(4.22) In(z; £) = Iz £) + W (z; f)

is a meaningful approximation to f(z) in [0,1] even when Iy(z; f) # lo{z; f). After
all, what matters is the quality of approximation which is obtained after deleting as
many components in W as possible; hence the usefulness of (4.22) should be judged

by its performance in this regard.
5. Multi-Resolution Analysis of Cell-Averages.

In this section we consider discrete multi-resolution analysis of cell-averages which
is obtained by taking ¢(z) in (1.4a) to be the box function (1.8b), i.e.

1 -1<z<0
(5.1a) o(z) = {

0 otherwise.

This function has the dilation equation

(5.1b) olz)=p2z)+ 2z - 1) a_y =ap = %

Thus the multi-resolution analysis

(5.22) )
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1s given by

zk

a2 =t (m i =t = [

=1

and the associated dilation relation {1.5a) is
- R =k
(5.2¢) fJHl = §(f2kj—1 + fzkj)-

We refer to f]" as the cell-average of f(2) in the j-th cell of the k-th grid. It is
convenient to introduce the cell-averaging operator A{J)

1
(5.3a) ADf = /I fda

and to denote

7

(Obviously a “cell” in 1D is just an interval).

Given f*, the cell-averages of f on the k-th grid we denote by R(z; f*) a recon-
struction procedure which satisfies (2.1), i.e

(5.42) R(z; 7*) = f(z) O
(5.4b) ARG YY) =

Is there more information in the cell-averages of f(x) than there is in its point-
values? To answer this question let us observe that knowing the cell-averages of f
1s equivalent to knowing the point-values F(m?) of its primitive function

(5.52) Fa) = | " Fy)dy

Given {F(a;‘)} ?_r_fl we obtain the cell-averages by

(5.5b) ¥ = [F(ah) = F(af_ )/ ke
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note that F(0) = 0. Conversely, from given cell-averages { ff ﬁ_fl, we get the point-

values of the primitive function by

(5.5¢) Fzi) =Y (hefl), 1< <N, F(z})=F(0)=0.
i=1

(see Remark 5.1).

This observation immediately suggests the following reconstruction technique:
Interpolate the point-values of the primitive-function by any interpolation technique
It(z; F*) and define

I SN R
(5.6) Ri(w; %) = —Iu(a; F7)

(this procedure was called “reconstruction via primitive function” in [3]). It is easy

to see that (5.6a) satisfies the conservation requirement (5.4b):

I
-t 1 od . 1 . L . :
A(ID)Ri(5 F*) = il @Ik(w;Fk)d-ﬂf = h—k{fk($§;F}') — Ii(zf_y; FF)]
1 3 . L
= olF @) — Flaja)] = f.

Typically if T is an interpolation method with formal order of accuracy r + 1

(5.7a) I(@; F*) = Flz) + O((hy)™| PV
then
(5.7b) Ry f*) = %Ik(m; F*) = %F(a:) +O((he )| D)

= (@) + O((ha )" ILF 7))

Assume now that f(z) has (p — 1) continuous derivatives and that f®)(z) is dis-
continuous but bounded. It is clear from relations (5.7) that the maximal accuracy
that can be achieved from either point-values or cell-averages is O(h?|| fP)): Using
cell-averages we gain one order of smoothness in the primitive function (5.5a) but
we lose it in the differentiation (5.6). Consequently there is no advantage in using
cell-averages rather than point-values of f(z) for continuous data.

There is a significant advantage however in using cell-averages rather than point-

values of f when f(z) is discontinuous in a finite number of points ([5]). To
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see that let us assume that f{z) is discontinuous at z4 € (:c;?_l,m;?) and that in

[@,24)U(2q,8], 0 <a<zqg<b<1, f has (p—1) continuous derivatives while f(#)
is discontinuous but bounded, p > 1. Let I” and I denote interpolation of either
'Ff'r-\ Ar B e oad SR | ﬁr\;nts iv’\ f Y d ($Ci7 b}, I‘CSpCCti""l AT~ o~ ) L"(E} is

f{z) or F(z) at grid points in {a, 2¢) an vely. We note that
continuous in [a, b], but has a discontinuous derivative at z4. Consequently, if F(z)
is properly resolved on the k-th grid I”(z; F*) and I®(z; F*) will intersect at some
point &4 € I;‘ Using interpolation with r > p in (5.7) we get that this point is a
good approximation to the location of the discontinuity within the cell 1 J" , l.e.

(5.8a) 4 —za = O((he | F711)).

On the other hand, having knowledge of point-values {f(2¥)} in [a,b], there is
nothing much we can say about the location of the discontinuity within the cell I ;‘

We describe now how to apply the subcell-resolution technique of [5] in order to
get an O(h?) approximation ﬁ'zkjjll to F (méjjl)

(5.8b) Fyy = Fagih) + O(()P £
recall that @57 is the center of IF. Let

(5.9a) D(z) = I*a; F) — I (2; F).
Since D(#4) = 0 we assume that

(5.9b) D(z%_1) D(z¥) <.

szjﬂ_ll is now computed as follows

(5.9¢) el { Izgioys FY) 3 D(ey;n) - D(f) <0
. rot

I R(:cgf_ll : F*)  otherwise.

It is easy to see that if f(z) is a piecewise-polynomial function

PL(.’E) a <z < ay
(5.100) f(e) = {

Prz) za<z <h
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with

then
(5.10¢) s = Flegty),

Le. the procedure (5.9) is exact (provided that f(z) is discontinuous at z4); state-
ment (5.8b) follows from this observation (see Remark 5.2).

The “reconstruction via primitive function” (5.6) is probably the most convenient
way to approximate the function from its cell-averages but there are also other useful
techniques. We refer the reader to [3], [4] where a “reconstruction via deconvolution”
is described, and to [4], [6] where we present a “reconstruction via collocation”
approach which is very general and applies even to unstructured grids in multi-

dimensions.

We turn now to examine the scale decomposition (2.3) for cell-averages, i.e.

L

(5.11a) Ro(z; /%) = Ri(a; f5) + > Qu(a; f)
k=1

with

(5.11b) Qulz; f) = Reca(z; F£71) — Ru(a; F*).

Note that we have indexed the reconstruction with a subscript & in order to allow
for different reconstruction techniques for different levels of resolution. Relations
(2.4) become

(5.12a} A7) -Qr(5f)=0 for m2>k
(5.12b) A= ALY Qe ) = FF = AUIFTY - Rals )

Since cell-averages satisfy a dilation relation, knowledge of { f—f }j\'f_fl implies knowl-
edge of the cell-averages on all coarser grids. Statement (5.12a) shows that since
the reconstruction is conservative, knowledge of Ri(z; f™) implies knowledge of
{ﬂm};\rz”i and consequently of R, (z; f™) for k <m < L. J?"l in (5.12b) mea-
sures how well can the cell-average f;-“l of the finer grid be predicted from knowl-
edge of the cell-averages of the k-th grid. Interpreted differently, this can be taken

31



to say that f(z) is already resolved (in the sense of cell-averages) on the k-th grid,
except where cff_l is unacceptably large. In [6] we show that this point of view
provides a natural setting for adaptive mesh refinement methodology for solutions
of initial-boundary value problems of hyperboelic type. In the following we outline

the basic ideas of [6].

We consider the initial-boundary-value problem for a one-dimensional conserva-

tion law
ur+g{u), =0, 0<z<1, t>0
{(5.13)

u(z,0) = ug{z), 0<z <1,

with appropriate boundary conditions at 2 = 0, £ = 1. The problem is discretized
on the grid (1.3) by taking cell-averages of the solution u(z,?) over the intervals
{I}' }. Let »7 denote an approximation to the cell-averages of the solution on the
0-th grid (the finest) at time t,, = nt

(5.14a) v m AN (), 1< 7 < No.

The numerical approximation v" is evolved in time by a Godunov-type scheme
(5.14b) Vit =0 — Mgy ~gi1), A=r1/he, 1<5 <N

where the numerical flux g; is given by

(5.14c) =1 / Cg(B()- Ro(5om)| )t
1] *y

T

here E(#) is the evolution operator of (5.13) (including boundary conditions) which
1s basically propagation along characteristic curves; Rg{z;v™) is the reconstruction
(5.4) applied to v™.

Given v™ on the finest grid we proceed to form its multi-resolution analysis (5.2a)
‘lk N .
(ol FIN Y EL by (5.2¢), dee.

1.4 . _
(5.152) vt = s T bl 1S5S M, 1<k<L
and define

. 1T ‘ .
(5.15b) gi = ;/ g(E(t)- Re(50™%)| )dt, 0<j< Ny, 1<k<L.
0 z;
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Here Ry is the reconstruction of the numerical approximation to u(z,t,) from the
k-th grid; note that these values are defined on the finest grid. In analogy to (5.11)

let us define

L
(5.15¢) 33 =97+ Drgs, Arg=gy'—gf, 1<j <N
k=1

To simplify our presentation let us consider now the constant coefficient case
(5.16a) g{u) = au, a = constant,

where E(t) is just propagation with the constant speed a. Thus

(5.16b) E(t)Rk('QUn’k)‘ 0 Rk(m? — at;v™*)
and
(5.16¢) Argj = “("L"/ J [Ri-1{z;v™* 1) = Ry(a; 0™ )da
T Jglegr
3
= E] ! Qk(rﬁ;v"‘}d:c
T Jzlepr

where Qr(z;v™) is (5.11Db).

Our task is to obtain an acceptable approximation to 5? with minimal computa-

tional effort. Analyzing the scale coefficients (5.12b)

n,k—1 _  mnk-1 k—1 N Y
we can estimate the size of |AFg;| and thus make an intelligent decision on the
coarsest level of resolution that will yield an acceptable approximation to g?. We
refer the reader to [6] where we show that this analysis extends also to the nonlinear

case and suggests an efficient algorithmic implementation of these ideas.

We turn now to consider the data compression algorithm that it is associated
with the multi-resolution analysis of cell-averages (5.2). Since g = a—; = % in
this case, the algorithm (2.8) - (2.9) simplifies considerably. Given a sequence of

numbers {cj};?-\'j_fl we set

(5.17a) fl=c;, 1<j< N
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and calculate

JDOk:lJ

Fe__ legk=1 , fhk=1y 1 5
lqi oy v ) 15 s

Jk fZ; 1 “4(12kj }1) R( ) 1 Sj SN}*

o
o
(I
]
-

S

At the end of this stage we obtain the multi-resolution representation of ¢ in the

sense of cell-averages (2.9a) i.e.
(5.17¢) ME = (7L (gl o dY).

For purposes of data compression we apply procedure (2.12) to ¢™ %, The decod-
ing part of the algorithm starts therefore by inverting the compressed representation
(2.12b) to obtain {d',...,d*}. Then we set

(5.18a) P

and calculate

DO k=1I1

DO j=1.N,

f?_j 1 A(Izkj“—ll) Ry( F5) + Jj‘
f; 2‘3‘_ - zﬁ’c -~ sz:]1

(5.18b)

Note that the last relation in (5.18b) is equivalent to defining
fa b= AN - R(5 Y - d
because then, due to conservation

B4 A = [ATE ) + A - RO f*y =2 AN -R(; ¥y =2 fF

How does one judge the suitability of a particular choice of a data compression
algorithm? Following Daubechies in {1} we suggest to do so by judging the suitability
of the function-space for which

(5.19) ME = {FF (0,0,...,0)}
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(provided that f¥ is meaningful), i.e. the function-space for which the algorithm
achieves absolute compression. Choosing cell-averages and ENO reconstruction
with subcell resolution {5] we can obtain absolute comrpession of piecewise-polynomials
with polynomial degree p which is smaller than the order of accuracy r of the re-

construction (5.10). Therefore this would be a suitable choice for compression of

discontinuous signals (see Remark 5.2).

Finally we consider the case of data-independent (i.e. linear) reconstruction pro-
cedures and describe their equivalent representation in a multi-resolution basis of
functions. To gain some insight let us first consider “reconstruction via primitive
function” (5.6) where the interpolation method is data-independent; thus Q in
(5.11b) 1s

(5.20a) Qi {z; f}g [IL (e F¥=1) — (2 FR)).

Using Theorem 4.1 we get that

Ny
(5.20b) Qi(x; ) = ) dj(F)P](a)
j=1
where we define
(5.20¢) BE(F) = [FET = I(akdy F9Y) hics
iy d -
(5:200) B0 = oy ool

The reason for the above scaling is that the interpolation error of the primitive
function is O((hy)™+1) while

d 1
ggfk—ﬂl‘ 32] 'y=0 (hkﬂ).

For example let us consider the case of piecewise linear interpolation (4.16) for
the primitive function. Here

1 5923 2 <x < :1:2J 1
(5.21a) D) =< —1 3,23 V< <af
0 otherwise
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and

1

(5.21b)  dS(F)= -5

(F _2F] }+F2L] 1) (f 23 l)mdk

where d?;‘ is the reconstruction error (5.12b) for piecewise-constant reconstruction.
We observe that this i1s exactly the Haar basis, which is the compactly supported

orthonormal wavelets for r = 1.

Returning now to general reconstruction via primitive function, we see from

(2.10d) that

k=1 _
(5.22a) A(If"l) : zﬁ;” = /kvl Efk_l(a;; ef;f})dm = (eé‘J 11 - eé] B,
oy T
which implies that
(5.22b) z/;j"('z:) = Rp_1(z; egj_jl - eé'j_l).

Applying A(If“}) to Qk in (5.20b) and comparing to (5.12b) we see that
(5.22c) df = d¥F).

Thus we have shown

L N
(5.23) Rolz; f°Y = Rp(z; F5) + Z Zd;‘ Ryq(x; egj__}l - efjml).

k=1 j=1

In the next section we describe multi-resolution bases in the general case.

Remark 5.1. In the periodic case it is convenient to work with functions that have
zero average in [0, 1] so that F(z) is also periodic and F(1) = 0 in (5.5). Therefore
it is helpful to define

1
(5.24a) fla)=flz) - K, K -—:/ flz)dx
0
or on the discrete level
1
(5.24D) G =c—K, K= A—%:;cj.



Remark 5.2. If we know that f{z) has ¢ — 1 continuous derivatives and a dis-
continuity of the ¢-th derivative in z4, a:;‘-'_l < zg < mjk we can extend the subcell
resolution technique of (5.8) - (5. 10) to this case as follows: —3—:— F(z) has a dis-

q
;‘JC 5 ﬁ st derl‘vatAVC at ¢ Ld. I.t ] dn:iCiC'lﬂ“ I'CSO}VCd OI1 uh(_, g 'A, wC C}Cpcct
L I(z; F) an Ii(z; F) to intersect at &4 in IF,
(5.252) Ga— 4= O(RP™T),

It follows therefore that if we replace D(z) in (5.9) by

— IR (2 F) — —d——IL(:c; F,

dzt

d9

(5.25b) D(e) = ——

we get a subcell-resolution technique which is exact for the corresponding piecewise-

polynomial problem (5.10); this implies (5.8b).

Remark 5.3. Extrapolating the analysis of the information contents in cell-
averages vs. point-values, we get that weighted-averages with respect to the hat-
function (1.8¢) contain information that will enable us to obtain subcell resolution
of é-distributions; this may be useful for compression of digital images and propa-

gation of singularities.
6. Multi-Resolution Analysis of Weighted-Averages.

In this section we revisit the framework outlined in section 2 and describe its

functional structure. We consider now general ¢(2) which satisfies:

(1). Dilation relation (1.6)

(6.1a) o(z) = 22 app(20 — £)
¢

(i1) Even diagonal dominance (2.5a)

(6.1b) Jaol > 3 Jazel,

£#£0

and assume that we are given { fU} weighted averages of f(z) with respect to

wlz), le.

J=1

(6.22) fi =1/ h—10~99 (-}% - j))



and define

. : .1 S
(6.2b) i =eis ef=gv (;—k - ) :
The set
(6.2¢) {{f;};\_]_fl}ﬁ':l

is a discrete multi-resolution analysis of f in the sense that knowledge of f* implies
knowledge of f¥*1 via relation (1.5). On the functional level we define

k}Nk

(6.3a) Vi = linear span {y]};¥,,

which forms a multi-resolution analysis in Mallat’s sense [7], i.e.

(63])) Vk 2 Vk+1.

Our prediction tool in climbing up from coarse to finer grid is a reconstruction
R{z; f¥) (2.1) which is a conservative r-th order approximation to f(z). Let ef be
the unit vector (4.7b) and denote

(6.42) PH(x) = Riz; ),
(6.4b) V* = linear span {gﬁf}ﬁ‘l

We observe that the conservation property implies that {t,of};\il and {@;‘}ﬁfl are
bi-orthonormal systems,

(6.4c) (0, 85) = (oF, R(a;ef)) = 651
Furthermore, Q¢ (z; f), the k-th scale component of f (2.3b)
(6.5a) Qx(z; f) = Ri—a(x; F1) — Ry(a; 7%)
satisfies

(6.5b) {7, Q(5 ) =0 &= LV, , m2k
(6.5¢) di = (b L Qe ) = £ = (b LR FY)) 155 < Neet
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Here {df{_l };.\21‘1, the coeficients of the k-th scale of f(z), are the local approxi-
mation error in predicting fjkq from the k-th grid. These quantities provide the

information needed for a data-compression algorithm; however only half of these

ested to store the N values of

and to use the redundancy relation (2.4c) to set up a system of Ny linear equation

for {dgj—] fifl with a RHS which depends on the known {a?f;] We showed that
condition (6.1b) implies that this system is diagonally dominant and thus solvable
for any reasonable boundary conditions. (6.1b) is a constraint on the choice of ¢(z)
which 1s satisfied anyway by the examples considered in this paper, and in fact can
be taken to be a definition of suitable ¢(z). We note however that (6.1b) is just
a sufficient condition for this strategy. We denote the result of this procedure in a

matrix form by (2.5d)
(6.6b) ' =D-d",

where D) is a rectangular Ny.1 x Ny matrix,

It is 1mportant to observe that the functional structure and the correspond-
ing data compression algorithm (2.8) - {2.9) apply also to data-dependent {non-
linear) reconstruction procedures. It is only at this point that we furn to the
data-independent case and define the projection Py into Vj by

N
(6.72) Pof =) {feh)eh @)

i=1
clearly for all &
(6.7a) Ri(a; f*) = Pif,
(6.7¢) Py - Ry = Ry.
Theorem 6.1. If
(6.8) Prot Ry=Ry, 1<k<IL,

39



then

(6.9a) Ro{z; )= Rp(z; FBY +

Trmh

where o?f i3 (6.6a) and

N1
(69b)  P5(@) = Reca(esD- )= 3 (D-eh) g5 (w), 155 <M.
Proof: First we observe that (6.8) together with (6.7) imply
Qv="Pis Qi =Py Ry — Peoy - R = Rim1 — Ry

and therefore

Rolw; /) = Ry(x fL)a-ZQA

Using the representation
¢ =D-d =D () dief) = di(D ey,
3 J

(6.5¢) and (6.9h), we get

Ny Ne_1
=P Q= 3 Qe et = 3 gt
J==1 =1

Ni_1

¥ S,

i=

N
=24 - $j(2),
j=1

Ne-a
Z(D ek) 5k— 1:'

1=1

N
—A 1 - 7k
OEDI:

i=1

which proves the theorem.

40



Condition (6.8), which can also be formulated:by
(6.10a) Poq Vi =Vi<= P10l =, 1<j<N,
implies of course that
(6.10b) Vi-1 2 Vi
Let us denote the complement of Vi in Vi_; by Wy, i.e.
(6.11a) Wi = Vi1 — Vi,

Clearly {J?}ﬁ_ﬁl is a basis of Wi and Qr(;f) (6.5a), considered as an operator
Qx - f, is the projection of f(z) into Wy. It follows from (6.5b) that

(6.11h) WilVim, m>k;
furthermore
(6.11c} Viey = Vi @ Wi,

where the direct-sum decomposition
(6.11d) Pooy - f=P - f+Qx-fi (Qr=0Qx)

corresponds to the relations

Ni—1
(6.11e) Proy-f= Y fIlef = Reos( 57,
e -
(631) P f=) Fej=R(5f)= Y (ol R~ (58,
=1 i=1
JNk A Ny
(611g)  Qu-f=) di¥;=Qu(sH =D (@ Qu(s Mgl
=1 =1
J Nig—y
=D &TE
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Theorem 6.1 can be expressed in these terms by

(6.12) Po1 Pe=P=Vo=Vi0oWr® - -0 W,.

Recalling that Vi and Vi are bi-orthonormal spaces in the sense of {6.4¢), and
observing the similarity in relations to those satisfied by the wavelets of section 3, it
seems suitable to name {{¢ } ., “generalized wavelets” or “pseudo-wavelets”.
If, as is done for wavelets in section 3, we choose the reconstruction R(z; f¥) to be

the conservative projection of f(z) into Vj, i.e.

Ny
(6.13a) R(z; [*) =) Bfk(a)

i=1

where /3 J" are determined by the conservation relations

Ny
(6.13b) FE=) Bk ef), 1<i< N,

we get that

(6.13c¢) BE = (2x) 1 F*

where $; is the symmetric N x N matrix, the elements of which are

(6.13d) (B)ij = (0f,05).

In this case

| .

(6.142) Z5(z) = > (25 ebpk(a),
3=1

(6.14b) ‘Pf(-’f Z(‘I)k@ J‘PJ

and consequently

(6.14c) Vi = Vi.



It follows then from (6.11b) that

(6.15a) {510 L {@Tim, m>h
and
(6.15b) (P, PE) =0 for k # K.

This shows that the particular choice of taking the reconstruction R to be the
conservative projection onto Vi results in bi-orthogonal wavelets. If we now limit
the choice of ¢ to those functions for which {gpf} ﬁ_ﬂ“l also forms an orthonormal set
(i.e. ®p = Iin (6.13d)), we get that in addition to (6.15b) wavelets of the same
resolution level {¢ ;‘ } ﬂ‘ are also orthogonal (Here {¢ Jk } denote a linear combination
of {1;;‘} corresponding to the relation (3.13) — see Remark 6.1). If we further restrict
the choice of ¢ to functions of compact support, we get the Daubechies’ wavelets

of section 3.

Taking the reconstruction R(z; f¥) to be a conservative projection onto Vi, (6.13)
1s a natural choice form the point of view of functional analysis, but it is much too

restrictive from the point of view of numerical analysis. We have the freedom to

choose
N

(6.16a) R(z; f*) = Zﬁjuj‘(r), uj‘(r) = Ix(x; ef)
j=1

where I; is any reasonable interpolation scheme. In this case we get from the

conservation requirement {2.1b) that
Ny

(6.16b) FE=> Al el), 1<i< Ny
j=1

If both (,0;? (z) and pf(z) are “decent” approximations to Dirac’s-6 at z% (which they
should in order to be numerically useful), then the Ny x Ni matrix B

(6.16¢) (Bi)i = (1}, ),

is expected to be diagonally dominant and therfore invertible. We get therefore
that g% = B;lfk and

(6.172) R(x; *) = 3 By *)ub(2) = Lu(a; B 1),

=1
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Observe that

N
(6.17b) @r(z) = (Byleh);jub(z) = Iu(e; Bek)

j=1

and that the reconstructed values at the grid-points are given by

(6.17¢) R(zj; f*) = (BZ' M)

It is important to notice that the “reconstruction via collocation” described above
extends immediately, just by a change of notation, to the multi-dimensional case
where € R? and (z) is an appropriate averaging function in R%. All we have
to do is to arrange the nodes of the multi-dimensional grid in a one-dimensional
array {zF}, 1 <¢ < Ny and to take I(z; f) to be a multi-dimensional interpolation
scheme. With this change of notation (6.16) - (6.17) 1s a reconstruction procedure
for the multi-dimensional case. Furthermore, this reconstruction via collocation can
be generalized to unstructured grids in R? by identifying each element of the grid
by an appropriate z¥, and taking u%(z) to be an appropriate unit interpolation
function for this element.

Comparing the choice of general reconstruction via collocation to that of the bi-
orthogonal wavelets we see that we lose a bit in functional structure, but gain the
possibility of using the well developed machinery (including computer software) of

interpolation schemes. Using this arsenal wisely we can hopefully achieve better

compression in the representation of digital data and functions.

In the next section we suggest a modified data-compression algorithm which en-

ables us to control the error due to truncation.
7. Error Control

In this section we introduce the truncation operation

Jirs Tk, . 0 |d‘;cl < gk
(7.1) (dy); = tr(dj,é'k) =

d§ otherwise

which is to be applied to the multi-resolution representation ¢™# (2.9a) in order
to compress both the digital representation of the discrete input data (2.8a) and

44



the dimensionality of the representation of f(z) in the multi-resolution basis (6.9a).
Obviously this strategy gives us direct control over the rate of compression through
an appropriate choice of the tolerancelevels {£x}£_,. However once we use the
truncated values (7.1) in the decoding algorithm (2.9b) or the multi-resolution rep-
resentation of f(z) (6.9a) we get an error which can be estimated by analysis but
cannot be directly controlled. This strategy is therefore suitable for applications
where we are limited in capacity and we have to settle for whatever quality is
possible under this limitation.

There are other applications where quality control is of utmost importance, yet
we would like to be as economical as possible with respect to storage and speed of
computation. To accomplish this goal we present a modification of the encoding
algorithm which keeps track of the cumulative error in a predetermined decoding
procedure and truncates accordingly. This enables us to specify the desired level of
accuracy in the decompressed signal as well as in the reduced functional represen-
tation. As is to be expected (from considerations of the uncertainty principle), we

cannot specify compression rate at the same time.

First we describe this nonlinear encoding procedure in the interpolatory case of

section 4, where the predetermined decoding procedure is (4.5), i.e

(1) Set

(7.22) o=t

(i) Caleulate

DO k=1L,1
o ' = fE
(7.2b) DO j =1,N;
ot s

) ffz] 1_'Ik('1','23 11fk)+dk'

Given any tolerance-level £ for accuracy, our task is to come up with a compressed

representation

(7.32) {74 @d",...,d")}
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such that

1<i< Ny

(7.3) P = Pl = a7 f <€

for f% which is obtained by the decoding (7.2). The modified encoding procedure
is described algorithmically by the following:

(i) Set
(7.4a) fr=f=f=h, 0<j<NL
(i1) Calculate
DO k=1L,1
= fy = 1(0)
DO j =1,N;
(7.4b) f,j‘.“l = f¥

.f —“I}t(:’?")_} l)fk)
dk-tf’( 23 1 - 75 &)
fQJ ]""fPR“{"C‘Z‘?‘

Observe that unlike (4.3b), the £ — DO loop in (7.4b) is done in reverse; here “PR”
stands for “predicted”.

Let us denote the pointwise error on the k-th grid by Ef, ie.
(7.5a) EF = fF - k.

Recalling (4.1b) we get from (7.4b) that

(7.5b) B = |E’.~‘| < &y

(7.5¢) |E23 1| | 25— 1 fPR_t ( 2] 1 fPR &)l < &;
therefore

7.5d) IE* Yoo < max(Ex, Et1), 1<k <L—1, |[EYe =0,

which implies that
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(7.5¢) 15 oo < max(&x,...,EL).
We see that the best policy is to choose
(7.51) Er=E, 1<k<L

and then (7.3b) follows from (7.5¢) for k = 1.

Next we describe the modified encoding procedure for the multi-resolution anal-
ysis of cell-averages of section 5, where the predetermined decoding procedure is

(5.18b), i.e.
(1) Set

(7.6a) fE=fr

(1) Calculate

DO k=11
DO j =1, N,

i = A - Ral f*) +

f';j_l xsz_féj__}l .

Given any tolerance level € for accuracy, our task is to come up with a compressed

(7.6b)

representation

(7.7a) (FP(dx, ..., d))
so that

(7.7b) IP-ri<e

for f° obtained by (7.6); for the moment we leave the norm in (7.7b) unspecified.
The modified encoding procedure is deseribed algorithmically by the following:

(i) Compute the multi-resolution analysis of the input data by

DO k=1L
(7.8a) {DOj:LNk
J?J'-A = %( ~2kJ:11 + fGij_‘l)
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(11) Set

(7.8b) =7

(ii1) Calculate

DO k=1I,1

DO j =1,N

FPR = A(Ij) - R(5 1Y)

d = tr(f3i0 ~ FPR —(F¥ ~ iy &)
fz; | fPR +dk

fz.jm = fo - 2kj_m~11'

Let us denote the error in the computed cell-averages by

{(7.8¢) $

- Bk _ Fk Gk
and
(7.9h) EPR = fid — PR,

With this notation we get from (7.8¢) that

(7.9¢) E;{;I} = EFE —1r(EPR — E¥ &),

(7.10a) “(Ezg 1+ Eé} 1) 3

3

Subtracting (7.9¢) from (7.10a) we get
(7.10b) §(E§;1 — B =Ef - EPP 4+ r(BEPR — BN &),
Let us now examine the two possibilities in (7.10):

(7.11a) |Ef — EPR > & = (E§311+E W=0=E} Y = Ej

k-1 E—1 k _ @mPR
(7.1}]3) IE}'WEPRS_&; :>{ 2(E2j E2j 1) Ej E |

3Bt + Eyihy) = B
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From (7.11) we get the following inequalities

(7122) max(|ESLL, | BE) = 5| BE + BEL 1+ 5 iE" 71— BYTL| < B+ Ex,

3 o

(7.12b)
(B304 +1By] 7)) = max(| B3 + B2 |, |EST — B2y ) < 2max(|BS |, &),
Recalling that E* = 0 we get from (7.12a)
L
(7132) 1B o < 1Yo+ 80 <o € 3
=k
Recalling that hr—; = 35k we get from (7.12b)
Ng—1
HE* e = i Z EETY = ki Z (B3] + B3
(7.13b) Nk
<hy Y max(|E|, &).
j=1
It follows from (7.13) that
~ L
(7.142) 1B floo <> &,

and if we choose {Sg}f:l such that

L
(7.14b) &> Y &
m=k-+1

then the £;-error is
(7.14¢) IE e, < &.

Given & it makes good sense (see Remark 7.1) to choose the tolerance-levels & to
be

(7.15a) & =£&2F, 1<k<I,
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in which case we get in (7.7b)

(7.15b) 177 = FPlleo = 1B |ow < €,
(7.15¢) 12 = Fle = 1B < E/2
We turn now to examine the multi-resolution expansion (6.9a) corresponding to
the modified encoding algorithm
~ _ L Ny o
(7.16a) R(z; f) = Ro(z; F2) + > digk(a);

k-1 j=1

here we use R generically for both interpolation and reconstruction from cell-
averages. When R is a linear procedure which is projective in the sense of (6.8) we
get that

S BB = Ruca(ai ) - Rules ),
j=1
and consequently in J('F.lﬁa)
(7.16b) R(z; f) = Ro(z; f°).
We observe that although Jj‘ = () wherever the appropriate truncation criterion in

(7.4b), (7.8¢) is met, the resulting approximation satisfies the specified accuracy

requirernent, i.e. for interpolation
(7.17a) RS f) ~ f@DI < €, 0<j <N,

and for reconstruction from cell-averages

(7.17b) JA(IDY - R(5F) = fRI <€, 1< < Ny,
and also -
1 o . _
(7.17¢) 7 AT B D - FI< €2
j=1

We see that using the coefficients {cf;“} which are obtained from the modified algo-
rithm and dropping # ;‘ (z) for which cff = 0, we can get a compressed representation
of f(x) which is accurate in the sense of (7.17) to a prescribed tolerance.
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Ne
i=1
of the primitive function {F (:c?)}jv“_fo by (5.5¢) and apply the interpolatory data-

Remark 7.1. Given cell-averages { fj? } we could evaluate the point-values
compression algorithm (7.2} - (7.4) to these input data. Observe that the uniform
tolerance in (7.5) corresponds in this case to the geometric choice {7.15a) for the
cell-averages. Also observe that there is no need to prepare the multi-resolution
analysis (7.8a) in this case. Hence even if we select to use the algorithm (7.6) - (7.8)
for the cell-averages it pays to use reconstruction via primitive function (5.6).
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