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Abstract

We devise a class of fast wavelet based algorithms for linear evolution equations whose
coefficients are time independent. The method draws on the work of Beylkin, Coifman,
and Rokhlin {1] which they applied to general Calderon-Zygmund type integral operators.
We apply a modification of their idea to linear hyperbolic and parabolic equations, with
spatially varying coefficients. A reduction of asymptotic complexity over standard methods
is obtained when applied to hyperbolic equations in one space dimension and parabolic
equations in multidimensions.
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1. Introduction. During the last few years a number of fast computational algorithms
have been developed for elliptic problems. These are techniques for which the number of
arithmetic operations needed are close to linear as a function of the number of unknowns.
Examples of algorithms of such complexity are multigrid methods and the so-called fast
Poisson solvers. The fast multipole method and wavelet based methods for elliptic problems
formulated as integral equations also belong to this category [8], [1].

There has not been the same progress for hyperbolic and parabolic methods. In general
classical numerical techniques for these problems are already optimal.

(1)Research supported by ONR Grant #N00014-91-J-1034.



Consider a system of evolution equations.

O+ Lz, 0. )u = f(z), zeQCRY t>0,

1.1
u{z,0) = up(z), (2-1)

with boundary conditions, where L is a differential operator.

An explicit discretization of this problem typically takes the form,

u; 2 u(zj,tn), t, = nAt,

J
T; = (lemh- .- 'deA-Td)
u"t! = Ay™ + F, (1.2)

'U.O = Uq,

u,F € RNd, At = const. |Az|".

The vector 4™ contains all the unknowns uy at time level ¢,,. For simplicity we shall assume
J»=1,2,... ,N in all dimensions v =1,... ,d.

The matrix 4 is (N? x N¢) with the number of elements # 0 in each row and each
column bounded by a constant. Every time step requires O(N?) arithmetic operations

and the overall complexity for a time interval of @(1) is of the same order as the number
of unknowns, O(N4+7).

There are, however, some fast methods based on the analytic form of the solution op-
erator. In [3] the multidimensional heat operator, with uy and f both zero, but with
inhomogeneous boundary data given at M points for N time levels, was treated. There
the closed form of the solution evaluated at M points at each time level N was obtained
in O(NM) rather than O(N?M?) operations. Also, in [4], the same authors obtained an
algorithm for evaluating the sum of N Gaussians at M arbitrarily distributed points in
O(N + M) operations. So far, their interesting method appears to need an explicit analytic
representation of the heat kernel, effectively ruling out variable coefficient problems.

The formula (1.2) has a simple closed form solution
n—1
u™ = A%y + Z A'F. (1.3)
' v=0
This form can be used to compute the solution A%ug, for F = 0, in log n steps, (n=2™ m

integer; here and throughout, logn = log, n) by repeated squaring of A : A, A2, A%, A8, ... K A%",
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Unfortunately the later squarings involve almost dense matrices and the overall com-
plexity is O(N3?log N) which is larger than that using (1.2) directly.

For an appropriate representation of A in a wavelet basis all of the powers A may be
approximated by sparse mairices and the algorithm using repeated squaring should then
be advantageous.

We shall consider the following algorithms for the computation of the closed form solution
(1.3) of the inhomogeneous problem in m = logn steps,

B :=SAS™!
Ci=1T

C := TRUNC(C + BC,¢)
B :=TRUNC(BB,¢)

u™ 1= §7Y(BSu® + CSF)

(1.4)
(iterate m steps)

The matrix S corresponds to a fast transform of wavelet type and the truncation operator

sets elements in a matrix to zero if their absolute value is below a given threshold.

. Gij =aij |aij|2¢ ‘
A=TRUNC(A,e) : (1.5)
a;; =0 |a,,-j! <€

It is easy to see that algorithm (1.4) is equivalent to {1.3) for ¢ = 0. This is not so for
£ > 0. We shall however show that it is possible to choose ¢ small enough for the result of
(1.4) to be arbitrarily close to (1.3) but still with very few arithmetic operations.

‘For a fixed predetermined accuracy level the computational complexity to calculate a one
dimensional hyperbolic equation can be reduced from the standard O(N?) to O(N(log N)?).
The extra cost per time step is minimal. This also makes it possible, as a curiosity, to use
algorithms which are unstable in the traditional sense,

Our technique is more favorable for parabolic problems. A d-dimensional explicit calcu-
lation with standard complexity O(N%*%) may be reduced to O(N*(log N)?).

The algorithm (1.4) can be extended to some problems with time dependent data. In
this case, we clearly need to compress the information in the data such that not all the
O(N®*7) values in, e.g. the inhomogeneous term f(z;,t,) are needed.

One simple but important application of this type is from optics or electro-magnetic
scattering with a time periodic source. If k points are needed to resolve one time period,
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we can group k time steps together

k-1
u"""k = AFym <+ Z Aan+k_._,‘_1 . (1.6&)
J=0
where
Frp= Atf(t,). (1.6b)

This equation is now of the type (1.2) with time step kAt and with inhomogeneous term

k—1

F=) AFuija. (1.6c)

7=0

In sections 2 and 3 we shall discuss the analytical properties of the algorithm. Numerical
examples are presented in section 4,

2. Hyperbolic Problems. Consider first the simple one dimensional scalar advection

equation,
Su+abu=0, a>0

u(z,0) = uo(x), 0<z<1.

The functions ug and thus u are assumed to be 1-periodic in z. The solution of (2.1) is

(2.1)

given by:
u(z,t) = ug(x — at). (2.2)

The different rows of A” in a numerical solution of (2.1) will represent approximations of
the Green’s function G below,

wat)= [~ 6o,y Ouo(u)d,
o (2.3)
u(z,t) = f 8z — y — at)uo(y)dy.

-0

Let @7 be a truncated wavelet expansion of a §-function with an orthonormal set of com-
pactly supported wavelets,

8(x) ~ pa(e) = Y dl2CFIG(2 Tz — k4 1) + sp(a)

The choices of 1(z) and the resulting () will be discussed below. Assume that the rows
of A¥ are discrete é-functions, i.e. just one element is nonzero and large. For each level
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j=1,2,...,J there are only a finite number of d‘,'; # 0 since the wavelets are compactly
supported. With J = m = log N there is only log N of all di # 0. Thus each row in B,
(1.4), has log N elements, b; # 0. The matrix B? is also a transform of an idealized matrix
A? and will have N log N elements different from zero. This means that each iteration
step in the algorithm (1.4) produces O(N(log N)?) flops when F = 0. We have assumed
that calculations are only carried out for those B? elements which are different from zero.
In practice a slightly larger number of elements needs to be computed and then truncated.
This corresponds to the case when the location of the §-functions is only approximately
known. Compare the wavelet technique for Burgers’ equation by Maday, Perrier, and Ravel

[6].

Each row of C, (1.4), is a transform of a step function,

const. 0 <z < at,
é(z) =

0, else

Since &) # constant only at = at, this function can also be represented by log N
wavelets and thus the overall cost is O(N(log N)*).

In numerical computations the rows of A” are only approximations of é-functions. If an
upwind scheme,
nt1
j
U

u = u;-' - /\(u;' — u;'__l),
Y =wuo(z;), J=12,...N, (2.4)
A=aAt/Az <1,

is used A will have the form,

Tl — A 0 A
A 1-A 0 0
0 A 1—-X 0 0

The matrix A” will have Toeplitz structure. Each row is still an approximation of a
d-function. The first order smoothing effect of (2.4) is given by the modified equation, {5],

dyu + abyu = (aAz/2)0u. (2.5)
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Equation (2.5) is parabolic with a fundamental solution of the form,
G(z —y,t) = (27raA:ct)”'% exp(—(z — y — at)* /(2aAzt)). (2.6)

Compare the solution formula for parabolic problems (3.2).

Each row of A" is thus a close approximation to the function G(z — y,t) above. The
computational complexity of the algorithm (1.4) depends on how many wavelets are needed
to represent G(« — y,t) as a function of z,(0 <t < T) with a given accuracy.

Higher order accurate (say order 2p-1) dissipative finite difference approximations to
(2.1) are usually modelled by the equation

2p
ug + auz = (—1)PHE(Az)?PT! (-(;%—) u. (2.7)

with k, > § > 0,4, independent of Ax.

The fundamental solution for this parabolic equation is:
1 oG
Gyleyt) = 5 [ deexplit(e — at) — kp(Ao)r=1¢270),

The key, simple estimate we shall obtain here (and which we certainly do not claim is

new) is:
g™t é— mG (z + at,t)
Oz P ’

uniformly in 0 < t and Az and for all nonnegative integers m.

<Cmp (2.8)

- Proof of 2.8. We wish to bound

_2_]_‘; foo (z'g)mwm-i-leif:l:—kp(Ax).zp‘ltEZPdE‘
—00
00

. m+1
—_ i ifx _?... m —kp(Ax)z”_lfzpt
o . °© (ag) [5 € ]df

=5 [ | (s )| [(E%)M kme_sh}] “

The result is now clear. Also, an inspection of the right hand side of the above shows that

Cm,p can be chosen to be arbitrarily small if #(Az)??~1 is large enough.
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Discrete estimates analogous to (2.8) uniform in powers of A, are needed so that the
compression method described below is valid.

Remark R1. Let the general space dependent coefficient, one dimensional system of
hyperbolic equations

us + A(z)u, = C(z)u,

where u is an £ vector, A is a uniformly diagonalizable smooth £ x £ matrix, with all real
eigenvalues Ai(z), and C(z) is smooth, be approximated by a dissipative finite difference
scheme of order 2p — 1. Typically, its model equation is a systems version of (2.1)

us + A()u, = Clz)u + (—1)PTH(Az)*P 1 P(z, %)u

where (—1)P**P(z,-2) is a 2p order elliptic operator. A more involved argument shows
that the fundamental solution satisfies an estimate of the type (2.8) with the expression
2 + at replaced appropriately by solutions of % =Xi(Z) #0)==z, :=1,...,f and with
Cim,» possibly growing in time like Cy, pe** for k fixed.

Our numerical procedure involves the compression of the matrix 4%, which for the
purpose of analysis only, we shall view as the discretization of the fundamental solution
for either (2.5) or (2.7),

(A™")jr = G(zj,yx, ")

where the interval [0, 1} is discretized via
zj=%, j=1,...,N, N=2%

[0,1] x [0,1] is discretized via (z;, yr), and " =nAt'=nMz, n=0,1,... .

We now adapt the terminology, notation, and results of [1} to this unsteady problem
(1.1).

Finite difference schemes approximating (1.1), e.g. (2.4) are regarded as acting on a

vector {s9}&_| which is to be viewed as approximating u(z,0) on the finest scale:
sy =2% ](p(Z":r -k + Du(z,0)dz
All functions, both continuous and discrete, are extended periodically:

u(z,t) = u(z + 1,1)
Sken = 5t
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etc.,

The function ¢ satisfies
2m—1

(@) = Y hpt1(25 — p)

p=0

The function ¥(z) which will generate an orthonormal basis is obtained via

2m~—1

$(@)= D Gprrp(2—p)
p=0
with gp = (=1 hom—pt1, p=1,...,2m and [ p(z)dz = 1.

The coefficients {h,}2™) are generally chosen so that
$iu(a) = 27527z — k+ 1),

for j,k integers, form an orthonormal basis and in addition, the function ¢(z) has m

vanishing moments

/tj}(m)medx“—*(), £=0,1,... ,m—1.

Also we define
pik =27 2p(2 Iz — k +1).

Finally, we assume as in [1] that there exists a real constant (7 = 1) such that the
following conditions are satisfied:

/35’($+Tm)xedm:0 for £=1,...,m—1,

and [ (z)dr = 1.
In this case the quadrature formula becomes:

1 k1471,

T =) + o =tmiy)

0 _
Sk—-

and the initial discretization error is O(N~(m+1)) yp to uniform translation.
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The decomposition of the vector {s},...,s9.} into the basis we use to compute with

{sd) — sk} — {2} - — {sh)

NAdG YN {dR) oo\ {dgd

This is implemented in O(N) operations using:

p=im
J j=1
5= 2 : hp5p+2k—1
r=1
p=2m
J _ -1
dy = § : IpSp+2k—1
=1

and the s}, dl are viewed as periodic sequences with period 2777,

The coordinates in the orthonormal basis consist of

1 1 2 2 n n
[dl,... ,d%!_, dl,...d_jqi,...,dl, 51]-

The inverse mapping can also be done in O(N) operations.

Each of the sf; is thought of as approximating

si =20 ] f@)p(2* iz —k +1)dr =
9-(554) [f(z—"ﬂ‘(k — 14 7m))

+ O(N(—v+-j)(m+1))}
while each d;; is thought of as approximating

& =255 / f@)(2* 7z — k + 1)dz.

The numerical procedure effectively transforms the approximate discretization of the
matrix G(z;,yx,t") which is (A");z. Estimate (2.8) (corresponding to (4.5) and (4.6) of
[1], uniform in all parameters, indicates (via an argument of [1]) that truncating A™ by
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removing elements of a band of width b > 2m around a shifted diagonal (and its periodic

extension) i.e., those for which
|7 — & —aAn| > b > 2m,

which replaces A™ by A™?, leads to an estimate
4" — 4] < 52 log(N)

for €' depending only on G.

Figure 2 shows what the nonzero elements in A™® look like in the transformed basis for
the variable coefficient case when a = a(z) in (2.1).

Our examples are, of course, academic. The gain will come for highly oscillatory prob-
lems for which a large number of grid points are needed.

It also follows easily that for large N and fixed precision ¢, only O(N log N) elements
will be greater than £. Alternatively, by discarding all elements that are smaller than a
fixed threshhold we compress it to O(N log N) elements. Again following the discussion
in [1], we note that this naive approach is to construct the full matrix in the wavelet basis
and then to threshhold. Clearly this is an O(N?) operation.

Since we have, ¢ priori, the structure of the singularities of the matrix A” the relevant
coefficients can be evaluated by using the quadrature formulas. Estimate (2.8) guarantees
that this procedure requires O(N log N) operations.

Remark R2. It is interesting to note that certain so called unstable difference schemes
can-be used without any drastic loss of efficiency. If (2.1) is approximated by,

nt1
3

u?:ug(mj), j:1,2_,...,N

(2.9)

the algorithm is not stable for any fixed A > 0, see e.g. [7].

The approximation does converge if At < CAz?, (A < CAxz) with an amplification
factor 1 + O(At). The number of timesteps for £ = O(1) calculation will be large, n =
O(Az™2?) = O(N?). This is devastating for the standard explicit algorithm (1.2) but will
only affect the complexity of (1.4) by a constant factor. The number of iterations (m in
(1.4)) will increase from log(V) to log(N?),
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Our approach is in general not as favorable for multidimensional hyperbolic systems,

d
dru+ Y Aj(2)d;u= f(z), zeR,

=1
u(z,0) = uo(z).

—
[AV]
ot
[}

p—_

" When u is a scalar or if the system can be diagona,iized the algorithm (1.4) works well.
The solution is given by integration along characteristics and the support of the Green'’s
function is a small number of points (see Remark (R1) above). In the idealized case each
row of A” consists of a fixed number of é-functions. Its wavelet representation will have
log(N?) nonzero terms. The overall complexity for (1.4) is then O((log N)®N?) when the
knowledge of the location of the §-functions is used. This is better than the standard
O(N*1) estimate.

In general, however, the Green’s function for (2.6} has a support with positive volume
in R? and with a singular support of positive measure in Hausdorff dimension d — 1. The
representation of the singular support consists of O(N4~1)§-functions in each row of A.
This corresponds to O(log(N)N?~!) wavelets and the overall algorithm contains at least
(O(log N)2 N24=1) wavelets.

For general multidimensional problems and for very large time the new algorithm is still
of interest in special cases, e.g., if the solution is needed for a large number of different
data ug, f.

3. Parabolic Problems. The Green’s function for parabolic problems is smooth in
contrast to the hyperbolic case. The pure initial value problem for the heat equation,

Ou = Au, t>0, a:GRd,

3.1
u{x, 0) = up(x), (31)

has a solution of the form,
u(z, ) = (dnt)42 f exp(|z — yI? /4t)uo(y)dy. (3.2)
Re

In bounded domains the kernel has to be changed slightly depending on the boundary
conditions. For positive t(= nAt) each row in A" is always an approximation of segments

of regular functions.
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Our new technique is in general more favorable for parabolic problems than hyperbolic
ones. The structure of the matrix B in (1.4) is simpler. When t increases the kernel
becomes smoother and ;i can be truncated to zero for all k¥ when j is large enough.

Explicit methods for (3.1) also requires more operations than for hyperbolic problems
when the standard method is used. This follows from the parabolic stability requirement,

At < const. |Az]?. (3.3)

The new technique is only marginally affected by the constraint (3.3). Compare here the
discussion above for unstable hyperbolic methods.

In more general higher order multidimensional parabolic cases the fundamental solution
of, e.g.,
Uz + (—A)du =0

is

Ga(e,t) = 3= [ deexnic = — €[ )

This is merely a multidimensional and rescaled version of the fundamental solution used
in (2.8), and a simpler, but multidimensional version of (2.8) is just:

“mlm'i'lD;"Gd(w,t)l < Cha.

Moreover Cinq is arbitrarily small if ¢ is large enough (this of course requires the nonexis-
tence or other special behavior of lower order terms).

The matrix compression technique is easy here (for periodic problems without boundary -
: coﬁditions) because the significant terms of [A”] lie near the main diagonal and its periodic
extension in one dimension. In two space dimensions (as is usual for elliptic operators), we
also need to consider diagonals ¢ = j £ kN for 0 < k < d. Recall 4 is an N? x N? matrix
in 2D.

It is clear that & priori thresholding (to obtain O(e) precision) near the image of these
diagonals will give us an O(N?%(log N)®) operation for each evaluation of the solution,
where d is the number of space dimensions for the problem.

4. Numerical Experiments. The algorithm (1.4) was applied to hyperbolic problems
in one space dimensions and to one and two dimensional parabolic problems. Various
difference approximations and wavelet spaces were used. We present results concerning
the accuracy of the calculations and the sparsity of (SAS~1)",

12



4.1 Hyperbolic problems. Consider the following scalar hyperbolic problem:

4.1
alr 0 = anf{x) ( a)
\Trv7 AT
with periodic boundary conditions (0 < z < 1). We made the following choices:
a(z) = 0.5 + 0.115sin(4nz) (4.1b)
f(z) = cos(4mz) (4.1¢c)
uo(z) = sin(47z) (4.1d)

In the discretization, Az = 1/1024 and At/Az = 1. The wavelet transform operator 5
uses the Daubechies-8 wavelets, which have 8 coefficients and have 4 vanishing moments.
Finite difference schemes of order 1,2,3,4, and 5 of accuracy are tested.

These finite difference schemes are obtained as follows. In each interval

v—1 = {z/(v - 1)Az <z < vAz} (4.2)
a polynomial of degree k is constructed. This polynomial interpolates the two points
(zy—1,ul_;) and (z,,ul) and k— 1 of its neighbors. If k is even these interpolation points
go from T, & 0T, k. If k is odd they go from z,_ (Etyoq PO &, 4 (ke This gives us a
reconstructxon funct:on which is a polynomial of degree k in each I, -1 and is continuous,

but generally not differentiable at the boundary pomts ZTy-y and z,. We call this function
R™k(z) '

To approximate (4.1) at the grid points (z,,t"*?) we solve (4.1) “exactly” with initial
data
'U'Aa:(m?tn) = Rn'k(w) (43)

for t* <t < t"t1, evaluate the solution at (z,,t"t!), and set 4! = up.(z,,t"t!). We
require ﬁ—%”a”w < 1, so the solution depends only on data in I,_, if a(z) > 0 and It
if a(x) < 0.

In the special case when a{z) = q, constant, then
w1 = RMk(p, — aAt)

gt 4.4
+/t flz, — a(t™! — 5))ds 44

"
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In the case when f = 0 we get some familiar schemes: For k = 1 this is just the first order
accurate upwind difference scheme (2.4). For k = 2 this is just the classical Lax-Wendroff
second order accurate three point scheme, see e.g. [7]. For k = 3,4, 5 the schemes are less
studied, but are known to be L? stable, see e.g. [9] and the references therein.

For variable coefficients the result is

uaz(Ty, t"’"H) = R"’k(m,(t")-)

Ui (4.5a)
+ fz, (11 —5))ds
t"
where x,(t) solves
d"’BV n n+1
—~=a(z,), t"<t<t (4.5b)
z,(") =z, (4.5¢)

A fourth order Runge-Kutta method is used to integrate the O.D.E. (4.5b,c) and Simpson’s
rule is used to evaluate the integral in (4.5a). The result of this approximation to the right
side of (4.5a) is defined to be 4?1,

Returning to the present case the computations ran 13 steps until ¢ = 8, that is,
13
(SAS™1)?" was computed.

At each step n the number of elements of A" and (S§AS~1)" whose absolute values are
greater than 10™* is shown in table 1. This is for methods whose order of accuracies go
from one through five. The compression ratio decreases with the order of accuracy of the
scheme, The results are also plotted on Figure 1. - '

These significant elements are located near the sub-diagonal corresponding to the char-
acteristic curve which is known a priori. The image of these locations in (SAS™1)", shown
on figure 2, has total length of O(N log N) elements where N = 1024,

In the computation of (SAS™1)", first, from the knowledge of the PDE, we figure out
the structure of the singularities of A and its image in (SAS™1)". Then we compute
(SAST1)*™ = (§AS™')" % (SAS~1)" considering only the elements in a neighborhood of
the singularities of A. In particular, we define the neighborhood of a singularity to be lo-
cations whose distance from the singularity are less than or equal to 5. If the singularities
lie on a subdiagonal and its periodic extension we take neighborhoods forming a subband
of bandwidths 11, 13, 15, and 17 (the wavelet filters have 8 elements). This bandwidth
is independent of the time ¢ (the step n) and the size of the problem. The errors due to
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the subband truncation, measured by [ju™ — @®||/|lu"||, are shown in table 2b. Table 2a
shows the relative error between the subband truncation and the exact solution. Here and
throughout, “|| - ||” denotes the ¢ norm. Table 2¢c shows the relative error between the
subband truncation and untruncated under grid refinement for the various orders, Un-
surprisingly, since the relative length of the subband which is preserved decreases linearly
with grid size, the error increases, but only slightly under this process.

We note that the compression (as seen in Figure 1 and Table 1) is better for odd order
than for even order schemes. This is perhaps not surprising since (2.7) models schemes of
odd order accuracy. Singularities behave a bit differently for even order (say order = 2p)
schemes. These are modeled by

5\ 27t
Uy + au, = £y(Az)?? (a) u

o+ (1) hp Ay ( a_am__ ) 2p+zu (4.6)

where k, > 0 and £, are nonzero constants. The odd order dispersive term above may

tend to spread singularities of the fundamental solution spuriously.

Finally table 3 shows the relative error due to truncation when the band width of the
subband is 9, 11, 13, 15 and 17 for the methods of first through fifth order. Figures 3a and
3b compare the truncated versus the approximate solutions due to truncation of bandwidth
9 for the first and second order methods (the truncated graphs are dotted). As described
in. the previous paragraph, the 1st order method has a smoother truncation error and is

hence more compressible by the wavelet representation.

4.2 Unstable schemes. For theoretical interest, we apply the method to a finite difference
scheme which is unstable for % =A>0

u§ = ug(z;). (4.7b)

The amplification factor of this scheme is
1-Xi sinf =r(e'?), —mr<8<1 (4.8)

S0

Ir(e®)} = (1 + A?sin® )7,
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This means that if
At < 2¢(Ax)? (4.9)

for some ¢ > 0, then
An 2 < e'm t 4.10
L

The restriction (4.9) means that the operation count for this explicit method would be
O(N?) if we were silly enough to use it. However our compression method allows for an
operation count of O(N(log N)?) for the reasons described above.

Table 4 shows the number of elements in A® and (SAS™!)" whose absolute values are
greater than 1072, We choose a bigger threshold here since we took -(-Aéf)—g = 1 and nAt = 2,
so ||A™]|, as estimated in (4.10) grows to be roughly e when we are finished computing,

e i

The error as measured by H—IIBWH (subband truncation using bandwidth 11) was 0.0136.

We also performed convergence studies as we refined the grid for this method. Figures
(4a,b,c) compare the numerical (untruncated) using dots versus exact solution for m =
128,256,512 grid points. The result indicates a second order method, as it should, since
At = (Az)?. Figures (5a,b,c) compare the truncated bandwidth (using dots) vs the
untruncated for this method for m # 128,256, and 512 grid points.

The relative error decreases with mesh refinement. The truncation error equation as-
sociated with this scheme involves limited antidiffusion. Perhaps this accounts for this
behavior.

4.3 System of hyperbolic equations. We apply the method to solving the system of

[V B

on 0 <z <1,% > 0 with the boundary conditions and initial conditions:

hyperbolic equations:

v(0,1) = w(0,1)
w(l,t) = v(1,1)

{4.11b
v(z,0) = vo(z) = sin(4nz) (4.11b)

w(z,0) = wo(z) = cos(2wz)

the coefficient « is chosen to be constant:

a=0.115.
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The numerical method used is the first order accurate upwind method described above.
The results are similar to the scalar case, except the structure of the singularities in the
matrices is more complicated. We have to keep track of reflections of singularities at the
boundaries which is quite simple in this case. The number of elements in A™ and (SAS~1)"
whose absolute values are greater than 10™* is shown on table 5, and is plotted on figure 6.
The relative error due to the subband of width 11 truncation, measured by ||u™—a" || /||u”]|,
is 0.0149.

The structure of the elements whose absolute values are greater than 10™* of A2%4® and

(SAS71)%°48 is shown in figures (7a,c), while Figure (7b) shows the image of a subband of
bandwidth 11 in (SAS™1)?048,

4.4 Parabolic problems. We do experiments on the following parabolic problem:

Oiu = 0 (a(z)0,u) + f(z)

4,12
u(z,0) = uo(a) (#12)

with periodic boundary conditions (0 < z < 1). We made the following choices:

a(z) = 0.5 4+ 0.25sin(27z)
flz) = =72 cos(2m2)? + 72(0.5 + 0.25 sin(27z)) sin(27z)

uo(z) = sin(4nz)

The discrete setting and the wavelets are the same as in the hyperbolic problem. We
use the simple explicit central difference scheme (4.13)

1 n | A | .
L (—EQ%?A_(a(xj)AJ,uj) (4.13)
+ Atf(z;)

where

Azuj = F(ujg1 — uj)

with At/(Az)? = 0.25. The number of significant elements in A” and (SAS™!)" is shown
on table 6, and is plotted on figure 8.

For the parabolic problem, the large elements of A are in the neighborhood of the main
diagonal. Their wavelet transform image is shown in figure 9. The relative error due to
subband truncation was 0.0025.
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4.5 Two-dimensional parabolic problems. We consider the following problem:

Ou = ay10;,u + 2(1123,,3,‘& -+ azzayyu

u(z,y,0) = uo(z,y)
with periodic boundary conditions (0 <2 <1, 0 €y < 1). We choose

aii(z,y) = 0.5 + 0.25sin(27z)
a1z{z,y) = 0.115 sin(27rzj cos(27y)
az(z,y) = 0.5 + 0.25 cos(27y)
ug(z,y) = sin(4wz) + cos(87z).

We use a standard two-dimensional explicit central difference scheme, The two-dimensional
data ujk, j =1... N3, k=1...N; forms a one-dimensional vector in the following way

{'u.1,1 . -'U-l’Nz,uzll . .ug,Nw. . ,'U»Nl,l . -uNth}-

'To reduce the size of the problem, N; is much less than Ny. In particular we took N; =
128, N, = 8 that is, Az = %&" Ay = -;—.

The compression worked quite well. Table 7 shows the number of elements in A" on
(SAS™1)" whose absolute values are greater than 10~%. The relative error due to subband
truncation was 0.0066.
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order 3 i order 4

512 | 78586 10320 B9B38 55850 (43358 41950 66560 71408 141820 55614
1024 1113954 6836 |130366 52256 [54574 35810 89112 73374 150456 53532
2048 1155624 4640 (173238 47966 163564 30254 107704 75466 {56242 50956
4096 (211340 3126 (225458 44002 {74226 25544 1130084 75416 (62384 47858
8192 1284318 2104 (304854 40970 (84896 21204 [155688 74288 168536 43734

time | order 1 | order 2 | | oraer s
steps| A" (A4Sl AT (5A5-=)n:- A" (.S’AS‘l)": A" (SAS"‘)"i A" (SASTY
_______ [__.-___.____._..... U S SV P USRS S IPUUNNUG VRO PPN
1 | 2048 48564 | 3072 48174 | 4096 49538 | 5120 49280 | 6144 49988
2 | 3072 1172 | 5120 52916 | 7168 53394 | 9216 54260 11264 54442
4 | 5120 50258 | 9216 54404 (11264 53618 | 13588 53628 (14736 52840
8 | 9216 48830 | 13996 52734 15502 53014 | 18596 54018 (18732 54038
16 | 14886 45326 | 20822 53192 18480 52766 | 23462 55992 (21372 547738
32 | 21376 40110 | 27860 54700 121788 51988 | 28370 57582 124796 55582
64 | 29728 31538 { 37032 56650 25656 51808 | 34702 60710 {28188 56050
128 | 41190 22160 | 49420 58668 30462 51294 | 42602 63630 {32192 56458
256 | 56652 15268 | 66054 58828 36074 47750 | 52600 67522 {36344 56298
| !
|

- Table 1: Hyperbolic equation: the number of elements in A™ and (SAS™1)" whose absolute

values are greater than 107

B =11
order 1 order 2 order 3 order 4 order 5 (a)
error L1621 L0125 .0080 .012¢ L0121
order 1 order 2 order 3 order 4 order 5 (b}
erroxr L0044 .Q122 0077 0127 .0119
m ocrder 1 order 2 order 3 order 4 order 5 (c)
1024 L0044 L0122 L0077 oo.o127 .0119
512 L0030 .0081 L0062 L0079 L0073
256 L0017 L0050 L0046 L0065 .0054
128 L0006 L0040 ,0021 L0032 L0031
B = 13
order 1 order 2 order 3 order 4 prder 5 (&)
error .1602 L0079 L0056 L0125 .0082
order 1 order 2 ordexr 3 order 4 order 5 {b)
error L0025 .0075 .0055 .0124 .0081
m order 1 order 2 order 3 order 4 order 5 {c}
1024 .0025 L0075 L0055 L0124 .0081
512 .00Le .0052 .0040 L0057 .0058
256 L0013 L0032 L0031 L0047 .0039
T 128 L0005 . 0024 .0013 .0018 0019
B = 15
order 1 order 2 7order 3 order 4 order 5 {a)
errox L1604 L0068 .0045 L0080 .Q0%0
order 1 order 2 order 3 order 4 corder 5 (b}
error L0015 0064 L0042 . 0088 .0089
m order 1 order 2 order 3 order 4 arder 5 {c)
1024 .0019 L0064 L0042 .Go8s .0089
512 L0011 .0041 .003¢ . G041 L0042
256 L0008 L0025 .0018 L0032 . 0026
128 .QC03 . 0020 .0007 Q013 0012
B = 17
order 1 order 2 order 3 order 4 order % (a)
error L1600 L0034 L0024 .0Q72 .0063
order 1 order 2 order 3 order 4 order 5 (b}
arror L0008 .00z8 .@022 L0071 L0062
m order 1 order 2 order 3 order 4 grder 5 {c)
1024 .0009 ,0028 L0022 L0071 L0062
512 L0004 .0017 L0012 L0020 L0020
256 Qo002 .0009 L0005 .Q010 .0008
128 L0009 . 0005 .004Q¢0 .Goo2 L0000

n_=n

Table 2: Hyperbolic equation: (a} the error measured by Hﬁﬂ composed with the

exact solution; (b) due to the truncation only; (c) due to the truncation only under grid

refinement.



order 1 order 2 order 3 order 4 order 5

B=§ .0248 L0331 .0330 .0378 .0374
B=11 . 0044 L0122 L0077 L0127 L0118
B=13 L0025 L0075 . 0085 L0124 L0081
B=15 L0019 L0064 L0042 .0088 .008s
B=17 .0009% 0028 .0022 - .0071 L0062

Table 3: (a) Errors measured by EHE- due to truncation for varicus bandwidths and

first through fifth orders,

order 1 order 2 order 3 order 4 order 5
B=9 .1771 L0333 .0330 L0379 .6374
B=11 L1621 .0125 .0089 L0128 L0121
B=13 L1602 0079 . 0056 L0125 .0082
B=15 L1604 L0068 L0045 L0090 L0080
B=17 1600 .0034 L0024 0072 L0063

Table 3: {b) Errors measured by ﬂﬁﬁ# due to truncation for various bandwidths and
first through fifth orders,

n Ad T (SAS-

1 812 512

2] 10 512

4 10H 1336

[ 1024 1764

16 1024 2328
32 1024 3060
64 1024 4026
126 2048 5273
256 204% 6307
5)2 2560 1447
1024 3432 8360
2048 4566 9308
4036 6330 9266

8197 ] 9363 | J0557
16354 | 14332 79346
FITCE | 23872 19255
65536 | 41490 F9649
131072 | 1150 46505
363144 | 137916 B4568
524286 | 132454 | 10810
1045576 | 132308 | 130240
2007152 130163 | I1523E

Table 4+ Hyperbolic equation “unsiable scheme™: the pumber of elements in A" and
{5A5™1}" whose absolute values are greater than 1077

5] A [BAST)
I] 2048 1935}
21 W 22589
4| 3126 2837
B 6154 26440
16 ] B228 25504
32 113332 25747
&4 | 10486 22364

128 | 21692 18385
256 [ 87048 14064
512 152308 10116
102¢ 7 72814 8110
2045 | 98456 8685

Table &: Systan of byperbolic equations: The number of elements in A* and (SAS-1)"
whose absalute values are greater than 10-9.




T A7 [ (SAS-T)
1 3072 15194
7 EI30 17343
1 sieo 15136
§1 11682 19378
16| 16214 18775
39 | 21000 17622
64 | 30106 14389
1251 41438 10387
256 | 56756 7302
513 | 78008 5073
1024 | 106876 3554
2046 | 146466 7366
409G | 169678 1656
157 | 272050 1082

Table 6: Parabelic equation: the number of elements in A™ and (SAS~!}" whose sbsolute
values are greater than 14~4

n An | [EAS-1)n

1 6632 34190
"2 16612 52941
4 40210 72420

8 72360 87381
16 | 165802 84827
32 | 146292 67912
64 ;| 198480 46856
128 | 269582 31925
206 | 365456 | | 21447
512 | 491936 13653

1024 | 658800 8703
2048 | 89144 5271
4006 | 1648576 3373
8192 | 1048576 1981

Table 7: 2D-parabolic equation: the number of elements in A™ and (SAS™1)" whose
absolute values are greater than 10—+
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Figure 1: Hyperbolic equation: the number of elements in A" and (SAS™!)* = w" whose
absolute values are greater than 10~4 -

Figure 2: Hyperbolic equation: the pattern of significant elements in

(SAS-1)m.



order 1, width @
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Figure 3a: Truncation versus nontruncated approximate solution, first order method trun-
cated at bandwidih 8. (Truncated is dotted),

order 2, width 9
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Figure 3b: Truncated versus nontruncated approximate solution, second order method,
truncated at bandwidth §. (Truncated is dotted).



unstable: m = 128, error = 0.1234
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Figure 4a: Exact vs approximate solution, “unstable scheme”, m = 128

unstable: m = 256, emor = 0,0351
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Figure 4b: Exact vs approximate solution “unstable scheme”, m = 256

unstable: m = 512, ewor = 0.0114
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Figure 4c: Exact vs approximate solution “unstable scheme”, m = 512
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Figure 5a: Truncated bandwidth 11 vs untruncated for the “unstable scheme™, m = 128

unstable m= 256 arror= (.0148
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Figure 5b: Truncated bandwidth 11 vs untruncated for the “unstable scheme™, m = 236
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Figure 5c: Truncated bandwidth 11 vs untruncated for the “unstable scheme”, m
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Figure §: System of hyperbolic equations: The number.of elements in A" and (SAS~!)"
whose absolute values are greater than 1074,

Figure Ta: System of hyperbolic equations pattern of significant elements (7,107%) for
A", n = 2048

Figure Th: System of hyperbolic equations pattern of significant element for (SAS=1)", n =
2048. image of bandwidth 11 around singular support
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Figure Te: System of hyperbolic equations pattern of significant elements (> 10™4) for
(54571} n=2048
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Figure B: Parabolic equation: the number of elements in A™ and (§A571)" whose absolute )
values are greater than 10™*

Figure 9: Parabolic equation: the pattern of significant elersents in (S45-1),



