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1. Introduction. Generation of action potentials in nerve cells by random synaptic

inputs in the dendrites can be modelled as a first-exit time problem. The case of inputs

by Stein [16] and studied by Tuckwell [17], [18] and by Wilbur and Rinzel [20]. If, in addi-
tion, there are inputs which can be modelled as a Wiener process with variance parameter
o and drift parameter p, then the problem for the expected first-exit time, y, given the
initial membrane potential, z € (z1,22), can be formulated as a general boundary-value

problem (BVP) for the linear second-order differential-difference equation (DDE)

2

(1.1) 02 y'(2) + (g — )y (2) + Apy(z + ag) + Myl —a7) — (Mg + Ar)y(z) = -1,

where the values r = z; and « = z9 correspond to the inhibitory reversal potential and
to the threshold value of membrane potential for action potential generation. The first-
derivative term —zy' corresponds to exponential decay between synaptic inputs. The
undifferentiated terms correspond to excitatory and inhibitory synaptic inputs modelled
as Polsson processes with mean rates Ag and Ay, respectively, and produce jumps in the
membrane potential of amounts ag and —ay, respectively, which are small quantities and

could depend on voltage. The boundary condition is

(1.2) y(z) =0, z¢&(z1,29).

In this paper we initiate an investigation of BVPs for DDEs with small shifts. Our
long range goal is to analyze problems associated with the BVP (1.1)-(1.2) for expected
first-exit times of the membrane potential in models of neurons. Qur previous studies

of boundary-value problems for singularly perturbed differential-difference equations have
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always considered shifts of fixed length (negative or both negative and positive) ({7]-[10),
[12]). Solutions of such BVPs for DDEs exhibit a variety of interesting pﬁenomena in-
cluding boundary and interior layers, rapid oscillations, resonance, turning point behavior,
and nonuniqueness and/or nonexistence for nonlinear DDEs. We are carrying out these
studies of BVPs for singularly perturbed DDEs to encourage the use of DDE models in
the physical and biological sciences.

One method for solving BVPs for second-order linear DDEs is to use the method
of steps, i.e., sequentially solve problems on successive intervals explicitly and evaluate
constants of integration by matching boundary conditions and imposing continuity of the
solution and its derivative at interior points. However, with small shifts on a unit interval,
the method of steps is impractical for DDEs involving only negative {or only positive) shift
terms, and impossible for DDEs of mixed type, i.e., with both negative and positive shift
terms. As pointed out by O’Malley [14] and as we demonstrate here, the naive approach
of simply expanding the shift terms in Taylor series and truncating ean lead to misleading
results. Even the numerical solution of these BVPs is no longer straightforward. Instead
perturbation methods are more appropriate and some of these have been given by Vasil’eva
(19], Cooke and Meyer [4], and O'Malley [13].

Specifically, here we analyze modified versions of classical singularly perturbed ODEs
(3], 5], [15]. In particular, the method of matched asymptotic expansions [6], developed
for ODEs, is extended to the study on 0 < z < 1 of BVPs for linear DDEs with small
shifts which have solutions that exhibit layer behavior. The studies here using singular

perturbation methods coupled with numerical computations are not meant to be exhaustive



and the most general cases are not examined. Rather we focus on two representative model
problems to illustrate the ideas and make them as transparent as possible. Solutions of
these model problems contain the features of solutions of more general equations.

There are novel results in analyzing BVPs for singularly perturbed ODEs with small
shifts with solutions exhibiting layer behavior. The most important findings are: 1) even if
the shifts are small, their effects may contribute to the leading-order approximate solutions;
2) the layer behavior can change its character and even be destroyed as the shifts increase
but remain small; and 3) for some problems, the Laplace transform method used to analyze
the boundary-layer solutions is applicable even when there are poles in the right-half s-
plane going off to infinity.

For layer problems, the shift affects the layer solution to leading order only if the
magnitude of the shift is at least as large as the layer thickness which is small. Thus
small shifts also could play an important role for partial differential equations with layer
solutions. In contrast, for rapidly oscillating problenis (cf. the companion paper [11]), the
shift affects the solution to leading order even when the shift is small compared to the
scale of the oscillations.

Statements of the BVPs for DDEs to be investigated in this paper are given in Section
2. Problems with solutions exhibiting layer behavior at the left end or the right end and at
both ends are analyzed in Sections 3 and 4, respectively, using a combination of singular
perturbation methods, Laplace transforms, and numerical computations. When the shifts

-are O(e) with coeflicients of O(1) the layer structures of the solutions discussed here are

no longer preserved. Oscillations previously confined to the layer regions can extend into



the outer region and the solution method presented here fails to give the correct inner and
outer solutions. These solutions for the DDE problems as well as others exhibiting rapid
oscillations are treated in the com

2. Statements of the problems. In this section, we state the BVPs for the two
classes of singularly perturbed DDEs to be studied in this paper. When the shift is zero,
the solutions of the BVPs for the corresponding ODEs exhibit layer behavior. Here we
will examine questions on the effects of small shifts on this behavior as well as construct
leading-order approximate solutions. In particular, when can the shifts be ignored to
leading order and when do they modify the qualitative beiiavior of the layers? In the outer
regions we find that it is appropriate to expand the shifted terms. However, the shifts
affect the layer solutions when the shifts are of the same order of magnitude (in ¢) as the
layer width and we cannot expand the shifted term.

Specifically BVPs for two general classes of DDEs are investigated. The BVP for the

first class of DDEs is

(2.1) ey (z1€) + ale)y'(z — 8(e);€) + ba)ylase) = f(z),

on 0 <z <1,0<e<1,and 0 € §(e) <« 1, subject to the interval and boundary

conditions
(2.2) y(zie) = ¢{z) on —d(e) <2 <0, y(lye) =9,

respectively, where a(z), b(z), f(z), é(¢), and ¢(z) are smooth functions and v is a constant.
This will be referred to as Model Problem 1. For a function y(z; ) to constitute a “smooth”
solution of Model Problem 1, it must satisfy (2.1)-(2.2), be continuous on [0,1], and be

continuously differentiable on (0,1).



This class of DDEs, (2.1}, contains a negative shift only in the first-order derivative

term. For é(¢) = 0, the corresponding ODE has solutions with a layer on the left or on

the right z < 1, respectively. The layer is maintained for

I/

for a{z) > Qora{z) <0on
é(¢} not zero but sufficiently small. These problems, a(z) > 0 or a(z) < 0, are analyzed
in Sections 3.1 and 3.2, respectively. If a(z) changes sign in 0 < & < 1, then the solution
can exhibit more complicated turning point behavior. Such problems are not analyzed in
this paper.

The second class of DDEs is given by
(2.3) ey (a;6) + a(a)y(z — 6(e);€) + w(@)y(zse) + Blz)y(z + ne)ie) = f(2),

(note the coefficient of ¥ ise? and not casin (2.1))onl0 <z < 1,0 < £ € 1,0 < éle) < 1,

and 0 < n(e) << 1, subject to the interval conditions

y(rie) =¢{z) on —8e) <z <0,
(2.4)
y{r;e) =¥(z) on 1<z <14 5(e),

where a(x), w(z), B(z), f(x), &(e}, nle), $(=), and ¥(z) are smooth functions. This problem
will be referred to as Model Problem 2. A function y(z;¢) is a smooth solution of Model
Problem 2, if it satisfies (2.3)-(2.4), is continuous on [0,1}, and is continuously differentiable
on (0,1). For convenience, it is assumed that ¢(z} = 1 and 1(z) = constant. Also, since
f(z) contributes only a constant forcing term in the layer regions, it is convenient to assume
that f(z) =1 in the example problems.

In Section 4, BVPs of the DDEs, (2.3}, of mixed type (i.e., containing a term with
a negative shift and a term with a positive shift) with solutions having boundary layers
at both ends of the interval are studied, i.e., with a(z) + w(z)+ f(z) <0on 0 < z < 1.
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If the shifts, 8(¢) and 5(¢), are both zero, and a{z) + w(z) + f(z) < 0on 0 < z < 1,
then the solution of the corresponding ODE has layers at both the left and right ends.
Since DDEs of mixed type are difficult to solve, first the problem with 8(z) = 0 is treated
separately and incorporates much of the information already derived in Sections 3.1 and
3.2. Then DDEs of mixed type, i.e., with 8(z) # 0, with layers at both sides are examined.
The novelty of this class of equations is that the negative and positive shifts need not be
the same. The investigations here examine the solutions when the shifts are not zero and
determine when the shifts can be ignored to leading order and what are their sizes when
they begin to influence the qualitative features of the solutions. {If a{z)+w(z)}+ B(z) >0
on 0 < z < 1, then the solution of the corresponding ODE has oscillatory solutions all
across the interval, cf. the companion paper [11].].

To determine when the shift becomes important to leading order, expand the shifted
terms in (2.1) and (2.3) in Taylor series for small shifts. In (2.1), to leading order, the
effects of the shift may be ignored if () = o{¢). Thus it will be assumed that (¢} = ¢
with 7 = O(1). On the other hand, in {2.3), to leading order, the effects of the shift only
may be ignored if é(¢) and n(e) are both o(e). For the analysis here it is assumed that
6(e) = 7e and n(e) = pe with 7 and g both of O(1).

The results presented here can be extended in a variety of directions. Problems with
several shifts can be treated with the Laplace transform method used here. The added
complexity would be translated into the investigation of more complicated exponential
polynomials, cf. Bellman and Cooke [2]. Addition of terms such as y(z — 6(¢);€) in (2.1)

and first-order derivative terms to {2.3) could be handled using similar techniques. The



essential features of the methods are illustrated in the examples chosen below. Other
extensions, e.g., nonlinearity, are more difficult to treat.

Since the singular perturbation techniques developed here are formal, 1t is essential to
test their validity using other results. In lieu of exact solutions which are unobtainable in
general, accurate numerically computed solutions are compared to the asymptotic results.
Previously [7]-[10], BVPs for DDEs with a shift of one were solved numerically using COL-
SYS {1] on intervals of length 1.5 or 2 by collapsing the interval into a shorter subinterval,
see [1] and [7] for details. In the problems treated here with small shifts on a unit interval,
it is impractical if not impossible to collapse the interval into a smaller subinterval and a
new method for obtaining numerical solutions is required. The numerical treatment of the
problems studied here is sketched in Appendix 1.

3. Layer behavior for Model Problem 1. In this section, different versions of
Model Problem 1 are studied for which the solutions to the BVPs of the corresponding
ODEs, i.e., with zero shifts, exhibit layer behavior. In particular, the analysis includes
determination of leading-order outer solutions and Laplace transform analyses of the layer
solutions. In Sections 3.1 and 3.2, the DDE (2.1) is examined where it is convenient to
set f(z) equal to zero (it can be included without any difficulty to leading order). This
class of DDEs has the shift in a first-order derivative term where the shift has its most
significant effects. If the shift, 8(¢), is zero, then there is a layer at z = Q or at z = 1 for
a(z} > 0or a(z) < 0on 0 < z < 1, respectively., The study here focuses on the effects of
é(e) on this layer behavior. Adding a term y(z — §(¢); ) would not alter the leading-order

solution in the layer or outer regions. To illustrate the general technique, in Section 3.1



the problem with a{x) > 0 having solutions with a boundary layer only at z = 0 will be
solved to leading order. The same general class of DDEs except with a(z) < 0 is treated in
Section 3.2. Use of the Laplace transform in this case introduces several novel difficulties.

3.1. Layer on the left. Consider the class of DDEs given by (2.1) (f(z) = 0)
with a(z) > 0 on 0 < z < 1. Since the crucial order of é(¢) is O{e) for its effect to
appear at leading order, we set §(¢) = r¢ with 7 = O(1). Provided 7 is not too large,
the layer structure is modified but maintained, so there is a boundary layer at z = 0. For
convenience, it 1s assumed that ¢(z) = 1. Also it is convenient to assume f(z) = 0 since its
effect is of higher order in the layer solutions. Numerical solutions for the case a{z) = 1,
blr)y=1, f(z) =0,¢{x) =1,v=1, and € = 0.01 with + = 0,0.7, 1.5, and 2.5 are shown in
Figures 1a, b, ¢, and d, respectively. Note that for 7 = 0.7, the solution shown in Figure
1b is still of layer type but oscillations have developed within the layer. For 7 = 1.5, the
oscillations shown in Figure le spread into the outer solution region and the layer structure
1s destroyed. For r = 2.5, the osallations shown in Figure 1d grow exponentially across
the interval reaching an amplitude of approximately 14,700 near z = 1. A WKB method
is developed in [11] to solve these cases.

If 6(c) = 0, then the BVP for (2.1} - (2.2), reduces to an ODE problem with a

boundary layer at = 0. The outer solution in this case is given by

(3.1) | y{z;e) = v exp [/1 % dtJ + O(e) as € — 0,

uniformly in z on 0 < 2o < z < 1 for some z5 > 0. A standard singular perturbation

analysis of the boundary layer problem in the new variables

(3.2) (Z ) = ylet;e)

=1

]
m |8

e



yields the solution
(3.3) §(#;e) = T+ {g(0) — T}e™*V* 4 O(¢)

on 0 < & < oo as € — 0, where

(3.4) T = yexp [ / I Eg dt]

This solution satisfies the left boundary condition and matches the outer solution as # — oo
and r — 0.

For é(¢} = re > 0, with 7 not too large, the method using layer regions for solving
the BVP is demonstrated and is used on most of the layer problems analyzed here. In the

outer region, 0 < z < 1, expand the shifted term as
(3.5) Yz —6(e)e) =y (aye) = 6(e)y" (1) +... as e —0,
and assume the solution has the form
m .
(3.6) ylrye) ~ E yi{r)e? as e — 0.
7=0

Thus the sequence of problems satisfied by y, is

(3.7) Lyo = a(z)yp(z) + b(z)yo(z) =0, wo(1) =1,

) T k .
(3.8) Lyjma(a:)z "“L, vt (2) =yl (2), () =0, j=1,2,.

The leading-order equation (3.7} is identical to that for the outer equation when é(¢) = 0,
and hence has the solution given by (3.1). The effects of the delay are contained in the

higher-order terms.
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For the boundary layer at z = 0, introduce a scaled independent variable and new

dependent variable by

(3.9) i= -"E §(#;¢) = y(ed;e),

so that (2.1) becomes

(3.10) §'(3;6) + a(ed)J (% — 116) + eb(ed)§(F;€) = 0
on 0 < < oo. We assumie that

{3.11) G(3,e) ~ Zgj(f".)sj as € —0

Without loss of generality in the layer solution, we assume a{0) = 1, then the leading-order

equation for g is given by
(3.12) Jo(#)+G(F~7)=0, §(0)=1,
and matching witl: the outer solution requires

(3.13) lim go(3) =T

L—00

Integrating (3.12) once and applying both the boundary condition at # = 0 and the

matching conditions {(3.13) yields
Go(#) + o(& — 7} = §(0) + 1
(3.14)
=T

This permits determination of the unknown slope, §;(0),

(3.15) | g0y =T-1.

11



To solve (3.14), use the Laplace transform Yy(s) = L{fjo(#)], with solution

~ 1 r-1
(3.16) YQ(S) = ; -+ m.

Thus the leading-order solution, g, is obtained by a straightforward inversion of (3.16)
as an infinite sum of residues, These residues are evaluated at s = 0 and at the infinite

number of roots of the exponential polynomial, ¢f. Bellman and Cooke [2],
(3.17) Pls;ty=s+e 7 =0.

Detailed information and asymptotic results for the roots, s,, of (3.17) are given in
Appendix 2.1. In particular, for each value of 7 in 0 < 7 < 1/¢, there are two distinct

negative real roots, say sy and s, located at —oo < 59 < —e and —e < 57 < —1, see

Figure 2a. For 7 = 0,8y = —oc and sy = —1. All other roots occur in complex conjugate
pairs with € 4+ Re s, << 1, n =2,3,... . For 7 = 1/e, the two negative real roots coelesce
at s1 = —¢ and as 7 is increased the roots split into a complex conjugate pair, say s; and

s1.still with e + Re s, << 1, n = 2,3,..., see Figure 2b. At 7 = n/2, Re 81 = 0 with s
and §; crossing into the right half plane for 7 > /2.

The inversion of ¥;(s) from (3.16) thus yields  in the form
o0
(3.18) Jo(#) =T +coe®® + c1e”F + 3 (cae™® 4 T,e™7) |
n=12

where bars indicate complex conjugates, and the ¢, are given by (using (3.17))

r-1

3.19 nt, T Ty
( ) ¢ sn(14 7s,)

n=0,1,2,....

The terms with coefficients ¢ and ¢; are displayed separately because, as noted above, for
0 < 1 < 1/e, the roots sy and s; are real and distinct.
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Thus when 0 < 7 < 1/e, a numerically accurate approximation of the boundary layer

solution for large Z is given by

(3.20) G(Ee) ~ Go(8) ~ T + o™ + e, o 00, €— 0.

For 0 < 7 < 1, the second term in (3.20) is exponentially small and § agrees to leading
order with (3.3). This agreement forms the basis of our observation that the order of the
shift must be of the same size as the layer for the shift to affect the solution to leading
order. If 7 > 1/e, then s¢ and s; are complex conjugates and ¢y and sg are replaced by &
and 3, respectively. Note that the leading-order layer solution does not depend on either
b or f except through the constant T,

The accuracy of the approximations in the layer and outer regions are checked by
evaluating the slope §'(0) for the examples corresponding to Figures la and b, namely
§'(0) has the numerical values 1.7008 and 1.7124 for 7 = 0 and 0.7, respectively. The
approximation (3.15) yields the value §'(0) ~ 1.7183,

[When 7 is close to /2 with Re s; = O(¢) or positive, the amplitude of the oscillation
which occurs in (3.18) does not decay sufficiently rapidly to allow matching with the
assumed outer solution (3.1) (cf. Figure lc) or may even grow across the interval (cf.
Figure 1d). Then the analysis presented here breaks down, there is no distinct layer
region, and a different approach must be used. The WKB method is appropriate for such
problems and is presented in [11].]

3.2 Layer on the right. For the class of DDEs (2.1) with a(z) < Qon 0 < z <1,
a boundary layer occurs at x = 1 for ¢ and 8(¢) sufficiently small. A fascinating feature
of this class of BVPs for DDEs with a negative shift having layer solutions on the right is

13



that the layer equation has a positive shift rather than a negative shift. This leads to a

novel Laplace transform problem. Numerical solutions for the case a(z) = —1, b(z) = ~1,

flx} = 0,¢(z) =1,7= -1, and £ = 0.01 with 7 = 0,0.7, and 1.5 are shown in Figure 3.

The outer solution is easily found to be

(3.21) y(wie) = cexp [— /Ox 2—%% dt} +0(e) as e—0,

on 0 < z < 1 where the constant ¢ is found by matching with the solution near z = 0.
Attempting a layer solution near z = 0, the coefficient of the exponential term is ¢(0)
and corresponds to the boundary condition at r = 0. However, this outer solution is not
strictly valid near 2 = 0 because of the shifted term and the interval condition (2.2). It
can be shown that the deviation of the outer solution from the exact solution in an O(e)-
neighborhood of x = 0 is O(e). Note that this O(g) deviation does not correspond to the
O(e) correction in the outer solution (3.21).

For the boundary layer at # = 1, introduce new independent and dependent variables

. 1—=x
(3.22) b= — L g(Ee) = y(1 — efse),
where it 1s assumed that
(3.23) B(Ee) ~ Y i(2)e? as e — 0.
i=0
Thus (2.1) becomes
(3.24) §'(&e) — a(l —ed)§ (& +71¢) + eb(1 — e2)ij(&;¢) = 0,

recall 6(e) = Te. Setting € = 0 in (3.24) yields the equations for the leading-order solution

(3.25) | g0 (%) — a(L)jo(8 + 7) =0,

14



on ) < £ < oo with conditions

(3.26) Ho(0) ==, lim go(2) = exp [—— ; ) dt] = &.

&~ 00 a(t)

“ v U -

Without loss of generality, set a(1) = —1. Integrating (3.25) once yields
(3.27) o)+ 5@ +7)=8, 0<2<oo.

In contrast to (3.14), §,(0) cannot be determined here because of the positive shift term,

Apply the Laplace transform ¥5(s) = L[g0(£)] to (3.27) where

(3'28) ﬁ[gﬂ("‘% + T)} = / Holt + T)eﬁmdt = e”f/’o(g) _ 6”/ z}o(t)e‘”dt,
0 0

vielding

(3.29) Po(s) = 1 THefy Boltye s

§ 4+ TS

This does not provide an explicit representation for the Laplace transform since Yo(t) for
0 <t < 7 occurs on the right side and is not known. Such difficulties arise due to the
positive shift term in the equation, cf. (3.27), and (4.10) for a mixed equation, i.e., with
both negative and positive shift terms.

In Appendix 2.1, it is shown that for the exponential polynomial, s + €™ with 7 > 0,
there 1s always one negative real root, s¢, with —1 < sy < 0, see Figure 4a, and all other
complex conjugate roots are located in the right half s-plane for 0 < 7 < 37/2, see Figure
4b. Clearly the Laplace transform, f’b(s), of §o does not exist unless the numerator in
(3.29) is zero at each root of the exponential polynomial to the right of some vertical line

in the complex s-plane. Furthermore to match with the outer solution, there cannot be any
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growing solutions and the Laplace transform, Yp(s), must be analytic in the entire right-

half plane. Thus the numerator in (3.29) must be zero at all the roots in the right-half

(3.30) Jo(2) =@ +(y — B)e**

where sq 1s the negative real root. This ansatz satisfies the boundary condition at & = 0
and the matching condition as £ — oo. It also satisfies (3.29) which is easily verified by
direct substitution and comparing the two sides of the equation. Amazingly the numerator
on the right-side of (3.29) is zero at each complex root of P(s;~7) and hence the Laplace
transform ¥g(s) is indeed analytic for Re s > sq.

To vérify the accuracy of the layer solution (3.30), the values of §4(0) are compared
with the exact numerical slopes at © = 1 for the examples corresponding to Figure 3. The
slope is given by g,(0) = s¢(y — @®). The outer solution in Figure 3 is approximated by
ylre) ~e " s0 @ =¢ ! and §4(0) = —sp(1+¢e71). For 7 = 0.7 and 1.5, the real roots are
s = —0.639 and —0.485, respectively. Thus §3{0) = 0.874 and 0.663 for 7 = 0.7 and 1.5,
respectively. The exact numerical values are 0.869 and 0.669, respectively (cf. Figure 3).

4. Layer behavior for Model Problem 2. For the class of DDEs (2.3) with
afr) + wl{z)+ Blz) < D on 0 < z < 1, there are layers at both z = 0 and z = 1 for
£,6(¢), and n(e) sufficiently small. The BVP is analyzed by introducing boundary layers
at the ends. In particular, we carry out the analysis with the assumptions that both §
and 7 are of O(e); specifically we assume é6(¢) = 7¢ and 7(e) = ue. Because there are no
first-order derivative terms, the shifts in the undifferentiated terms have significant effects

and contribute to the leading-order solution.in the layer regions.-
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In this section, we begin with a short discussion of the outer solution and then derive
the Laplace transforms for the leading-order solutions at # = 0 and = = 1. However, it is
convenient to discuss the leadis

with only a negative shift term, and then the case of B(z) # 0, i.e., the equation of mixed
type.
An analysis of the layer equations with both § and n of O(e) indicates the solution is

a power series expansion in £, thus the outer solution is assumed to have the form

(4.1) yla,e) ~ Zyj(;z:)sj e — 0.
=0t

After expanding out the shift terms in (2.3) for small 8(c) and n{e), and then substituting

(4.1) into the result, one obtains the leading-order solution

flz)
a(z) + wlx) + B(x)

(4.2) yolx) =

and the sequence of higher-order corrections

Ta(r) — pf(r)
ofr) +w(z) + Blx

(4.3) yi{z) = ) vola)

v rale)—pplz) o1 Tla(x) 4 p2B()
W e = e MY T Tam s e 1 A )

etc.

For the boundary layer at z = 0, introduce the new variables

(4.5) z v U(EFe) = yledie)

it
m | &

so (2.3} becomes

(4.6)  §"(Fe)+ aled)i(@ — me) + wled)ilFre) + fled)i(F + pe) = feF).

17



Assuming the layer solution at z = 0 has the expansion

(4.7) g(&,¢) ~ i i)’ ase— 0,

the leading-order equation is given by

(4.8) 70 (%) + a(0)jo(2 — 7) + w(0)§o () + B(0)io(F + 1) = £(0),

on 0 < & < oco. Since f(0) is a constant, it is convenient to eliminate it by introducing the

new variable

~ (5 Jo)
- o B0(E) ~ s
(4.9} (1) = = )f(o)( 1+A(0)
1 - oFe+5m
then #(#) satisfles the homogeneous equation
(4.10) TE) + a(0)(F — 7) + w(0)ir(F) + SO)a(F + ) =0,

on0 < <oc, 40) =1, and i“m #(#) = 0. Apply the Laplace transform U(s) = L[i(#)]

— 00

to (4.10} to obtain

s a(0) + 2= — 1y 4 Br0)ers [Fa(t)e"e dt
(4.11) U(S) - 32 i G‘(O)E_TS +w(0) + ﬂ(O}i‘”

where it is assumed that ¢(z) = 1. Again, cf. (3.29), this is not an explicit representation
for the Laplace transform since () for 0 < ¢ < u occurs on the right side and is not
known.

Before analyzing this Laplace transform solution, we carry out the Laplace transform

solution for the layer at £ = 1. Introduce the new variables

1— ) )
(4.12) =22, §(#e) = y(1—ciie)

18



so (2.3) becomes
§(#€) + a1 — e2)§(3 + mie) + w(l — ed)§(d;e)
(4.13)

AAAAA

where the main difference compared to (4.6) is that here the left shift has become a right
shift and vice versa.
Assuming that
(4.14) G(&;e) ~ Zg}j(i)sj as € — 0,
=0

the equation for the leading-order solution is
(4.15) 9o (2) + &(1)jo(& + 7) + w(1)Go(£) + B(1)go(2 — n) = f(1)

on 0 < & < oo. Again, the forcing term f(1) can be eliminated by defining

ft1)

%0(2) — s
(416) ﬁ(f') (1) 4w({1)+5(1)

, R i § )
V(1) ~ smFemTEm

where 1p(1} is the value y(1;¢) for f(z) # 0 and is set equal to v if #(z) = 0. Thus (4.15)

becomes
(4.17) a"(2) + o )a(E + 7) +w(1)i(2) + A(1)a(E —n) =0,

on 0 < & < oo, #(0) =1, and "™ @(2) = 0. Apply the Laplace transform U(s) = L[i(%)]

[»a)

to (4.17) to obtain

s+ 0'(0) + a(1)e™ [T a(t)e~todt + U (emne _ 1)
s? +afl)e™ +w(l) + B(1)e~#s

(4.18) U(s) =

where it is assumed that 4(2) = 1 for —u < & < 0. Again an integral over 4(t) for0 < ¢t < 7

occurs on the right side and is not known.
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4.1. Case of 3(x} = 0. Before considering the problem of mixed type with both
negative and positive shifts, it is simpler to treat the case with f{z) = 0. Numerical
examples are shown in Figures 5a,b,c,d with a(z) = -2,w(z) = ~1, f(z) = 1,7 = 0, and
¢ = 0.01 for 7 = 0, 1.5, 3, 5, respectively. Although Figures 5a and 5b show layer behavior,
that structure is completely destroyed in Figures 5¢ and 5d where oscillations occur all

across the interval. These latter oscillatory solutions are treated in the companion paper

{11]. For B(z) =0, (4.11) reduces to

(4.19) Uls) =

1 + 4'(0)s — o(0) — w(0)
s s[s?+a(0)e"m +w(0)]

The determination of the inversion of U requires a knowledge of the root structure of the
exponential polynomial, Q(s;7) = &% + &(0)e™ " + w(0). In Appendix 2.2, it is shown that
for the special case w(0) = —1, there is one and only one positive real root for 0 < r < oo,
say s = sg, see Figure 6a. For sufficiently small 7 (e.g., 0 < 7 <0.5044 for a(0) = —2 and
w(0) = —1), there are two negative real roots, see Figure 6a, and all complex conjugate

roots are in the left-half s-plane for 0.5044 < 7 < 7.

lim

o) = 0, there cannot be any con-

In order to satisfy the matching condition,
tribution from the real positive root, sp. Thus the numerator in the second term on the

right side of (4.19) must equal zero at s = sg which then determines @'(0), namely

(4.20) i'(0) = @iﬂ

Therefore, only the poles in the left-hand s-plane contribute to the solution (%) which

can be written in the form

o
(4.21) i(2) = o’ + 0107 £+ 3 (eue 4 TyeT),

n=2
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where the terms involving so and s; correspond to the contributions from the two real
negative roots for sufficiently small 7, As 7 is increased, sq and sy coalesce and split off

into a complex coujugate pair as 7 is increased, so let so = §; and ¢ = ¢;. Taking the

Laplace transform of (4.21) and inserting into the left side of (4.19) yields (using (4.20))

W Lo (e, & \_1, O+u@)(F-1)
(4.22) 3 _050 s — 8 + Z( + - ) =3 + s[s2 + a(0)e— ™ + w(0)] ,

so that evaluation of the residues at the roots of Q(s;7) yields

[@(0) + w(0)] ("f; - 1)

sp 28y — 747 82

(4.23) Cp = , n=0,12...

For the examples shown in Figures 52 and 5b, sp = \/5 and 1.1620 for 7 = 0 and
71.5, respectively, so that using (4.9) §'(0) ~ —2.306 and —3.4423, respectively. The cor-
responding values obtained from the numerical computations (i.e., for Figures 5a and 5b)
are (using (4.9)) §5(0) = —2.3094 and —3.4425, respectively. The leading-order results are
remarkably accurate. As noted earlier, the solutions shown in Figures 5¢ and 5d cannot
be treated using the method described here. See [11] for treatment of these cases using a
WEKB method.

For the boundary layer at = = 1 (with #(z) = 0), the exponential polynomial is given

(4.24) s° +a(l)e™ +w(1) = 0.

Results on the roots of this equation are given in Appendix 2.2 corresponding to Q(s; —7)
with 7 > 0. Thus for small 7 there is one negative real root in the left-half plane and two
positive real roots in the right-half plane, see Figure 6a (with 7 < 0). For larger values

21
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of r, all complex conjugate roots are in the right-half s-plane, see Figure 6¢ for s; and 3,
(with 7 < 0).

The ansatz in this case is that the solution to the leading-order layer solution consists

(4.25) Q(E) = e*o

which satisfies the boundary condition at £ = 0 and the matching condition with the outer
solution. Thus U(s) = (s — o)~} and (4.18) becomes

afl) TS _ TS
1 s+se+ (e )

s—sg s2 4+ a(1)e™ 4+ w(1)

(4.26)

which reduces to an identity when s§ 4+ a(1)e™ +w(1) = 0 is used. Thus (4.25) is the
exact leading-order solution and therefore the residues at all poles in the right-half plane
are zero. Using (4.16), the leading-order solution is given by

e in(d) - — ) £(1) ]

a() + (D) | ["' T o)+ e(1)

For the numerical example shown iu Figures 5z and 5b, the leading-order layer solution
at = = 1is given by §o(2) = (4e*°* ~ 1) /3. Note that Q(—s;7) = Q(s; —7), therefore s¢ is
the negative of the positive real root, sg, obtained in Appendix 2.2. Thus s ~ —/3 and
—1.1620 and 74(0) >~ ~2.3094 and —1.5493 for 7 = 0 and 1.5, respectively. The numerical
results give §'(0) ~ —2.3094 and 1.5366, respectively. The result for 7 = 0 is very close but
the value for 7 = 1.5 is not as good as might have been expected considering the excellent
agreement in the layer at z = 0.

4.2, Case with B(x) # 0 - equations of mixed type. When §(z) and 5(z) are not
zero with 1 small, there are still layers at z = 0 and at 2 = 1 provided a(z)+w(z)+6(z) <
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0. Numerical examples of this type of solution are plotted in Figures 7a,b for w(z) = -1,
flz) =1, ¢(z) = 1 = ¥(z), € = 0.01 and setting o(z) = 0.25 = B(x) with 7 = 0.7 and
p=0.5, and a(z) = -2 = p(z) with 7 = 1.5 and u = 0.7, respectively.

When £(z) # 0, the functions @& and 4 occur in the integrals on the right sides of the
Laplace transform equations (4.11) and (4.18), respectively. For the layer at = = 0, the

ansatz (4.21) is assumed for @(Z). For the parameter values corresponding to the solution

plotted in Figure 7a, ¢g = 0 and s; is the negative real root of
(4.28) R(s;7ip) = s* + ae™™ 4w+ fe** = 0.

see Figure 8a. The quantities s, and ¥,, are the complex conjugate roots in the left-hand
s-plane. For the parameter values corresponding to the solution plotted in Figure 7b,
so = & and ¢g = @, see Figure 8b. The structure of the roots of R(s;7;u) = 0 is very
different from that with f{z) = 0, ¢f. Appendices 2.2 and 2.3. In particular there are
infinitely many complex roots in both the left and right halves of the complex s-plane, of.
Figures 8a and b.

Substituting (4.21) into (4.11) yields the equation

Co Ci ot Cn [
(4.29) S~_30+5_Sl+}:( +S_§n>

1 1 ., ' S
s 5[5+ w(0) + a(0)e + B(0)ers] | {“ (0)s — a(0) — w(0) — B(0)e*

Cp

+ (6#3 — 6“81) —_—
& — 8p § — 81

+ﬁ(0)8{(6‘” - eh?)

o0

+Z [(e ‘ )3“'311_*_(6 ¢ )S_E”‘]}},

=2
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where s is arbitrary. Although this equation is similar to (4.22), there are two major
differences. Firstly, #'(0) is not known and, secondly, the c|;s also occur on the right side
and cannot r individually as was the case in (.22} leading to {4.23). Thus
@'(0) and a doubly infinite set of coefficients, ¢, and ©,, are to be determined from (4.29)
which is an identity in s.

To generate a sequence of infinitely many linear equations for these unknowns, there
is, unfortunately, neither an obvious choice for the values of s nor is there an algorithm
for solving the resulting system of equations. Our procedure was to choose a sequence of
values of s and then the system of equations was truncated to a finite systexﬁ. Then the
inversion of the coefficient matrix is done carefully because it becomes ill-conditioned with
relatively few equations, e.g., n > 5 in the cases of the solutions plotted in Figures 7. With
these caveats, computations for the solutions in Figure 7 yielded the slope @' (0) and the
first four coefficients, ¢,,,n = 1,2, 3,4. The remaining ¢, s are small. Furthermore, there is

a constraint on the coeflicients which was used as a check. From (4.21), the sum of the

coefficients, i.e., at # = 0, must equal 4(0) = 1, thus

(4.30) i(c,, +Z,)=1.
n=1
For the solution plotted in Figure 7a, using four terms in (4.21), ie., n = 1,...,4,
with (4.9),the approximation for §'(0) is —2.0741 whereas the numerically computed value
using COLSYS is —2.0742. The sum of the first four coefficients on the left side of (4.30)
was equal to 0.99812. Because of the rapid decay of the exponential terms in (4.21) as ¥

1s increased, to the right of 2 = 0.01 one term suffices to give an approximation to the

solution accurate to four significant figures.
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For the solution plotted in Figure 7b, four terms in (4.21) yield the approximation
§#'(0) ~ —2.6852 whereas the COLSYS generated value is —2.6849. The sum of the first four
he left side of {4.30) was equal to §6.55306. Oue term m the approximate
solution (4.21) suffices to the right of z ~ 0.04 for five significant figures of accuracy.

Computations for the layers at = 1 can be carried out similarly.

Appendix 1. Numerical computations. In this appendix we discuss the algorithm
used to compute the numerical solutions presented in this paper. These computations
provided numerical confirmation of the accuracy of the leading-order solutions derived
here using singular perturbation methods. Our previous usage of COLSYS, see [1] and
[7], permitted us to collapse the problem on the interval 0 < z < £,£ = 1.5 or 2, to a
shorter interval either equal to the shift length or to half the shift length. With small
shifts, collapsing the interval is impractical. Instead we devised an iterative scheme using
COLSYS at each step or used a finite difference method on the full DDE.

The iteration algorithm used to solve Model Problem 1 consisted of solving a forced
ODE at each step. The ODE consists of (2.1) with the shifted derivative term replaced

by an unshifted derivative term and forced by the difference between the values of the

unshifted and shifted derivative terms at the previous step. Specifically, replace (2.1) by

(4.1.1) eyn(zie) + a(z)y,(z;e + blax)yn(z;€)

= f(z) + al@)lyn-s(zi€) —ypoa(z —b(e)ie), n=12,...

If the iteration converges, i.e., ¥, = ¥,—1, then this equation collapses to (2.1). For Model
Problem 2, the shifted terms are approximated by the first two terms of a Taylor series.
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Thus replace (2.3) by
(A.1.2)

1"
5271,, (Tf
Gt

E\; + Of(g‘.“w..(l--
PR Y- 4 (AN

= fz) + a(@)[yn-1(2;€) — é(e)ys 1 (7€) — yn—1(z — 6(e);€)]
+B(z)lyn-1(z;€) + n(e)yp_1 (7€) — Yu—1(z + nle);e)), n=1,2,...

Again if yn = yn_1, this equation collapses to (2.3).
For both (A.1.1) and (A.1.2), at step n, COLSYS is used to determine y,(z;¢) where

yn—1(z;€) is known, and this procedure is iterated. The initial guess yo(z;e) was taken

max

to be the solution of the problem with §(¢) = 0 (and #(e) = 0). The difference ze[0.1]

lya(z;€) — yno1(z;€)| is computed at each iteration and when this number is sufficiently
small, the computation is stopped and the numerical solution is assumed to have converged.
Typically there were of O(10) iterations for both cases when ¢ = 0.01. Tt should be noted,
however, that this iteration scheme worked well provided the shifts were not too large.

In some cases where the shift was too large or because of space and precision limi-
tations, COLSYS did not compute a stabilized solution, i.e., with |y, — y,_1| sufficiently
small. This was particularly true for solutions which contained oscillations where the iter-
ation scheme did not work when § = O(e) [also see [11]]. In these cases a finite difference
method with a standard three-point centered difference scheme having approximately 1000
uniformly distributed points was implemented using Gauss elimination. The finite differ-
ence computations also served to check the COLSYS iterations when they did converge.

However, because of the shifted derivative term in (2.1), the discontinuity in the
derivative at r = 0 induces a discontinuity in the second derivative term at x = é(¢).
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Therefore at z = 6, we impose an interface continuity condition on the one-sided derivatives

(4.1.3) y'(67) ='(67).

For example, y'(67) was given by the three-point formula (with h = Az):

3y(6) — 4y(8 — k) + y(6 — 2h)

(A.1.4) Y (67) ~ o

The error in the solution near z = 0 was significant if the presence of the jump in y"
was not accounted for in the finite difference scheme. The derivative of the solution at
x = 0 had an error of approximately 5%. No efforts were made to optimize this numerical
algorithm.

Appendix 2. Roots of exponential polynomials. Numerical evaluation of the
leading-order layer solutions obtained using the Laplace transform requires values of the
roots of several exponential polynomials, see Bellman and Cooke [2]. In this appendix, the
root structure of these exponential polynomials is examined and asymptotic formulas are
given for some of the roots.

1. Roots of P(s;7) = s + €77, The exponential polynomial

(A.2.1) Pls;r)=s+e" 7™, r7real, 0 <71 < oo,

arises in the Laplace transform solution of (2.1} in the layer region at z = 0 for a(z) > 0.
For a{z) < 0, the layer occurs at r = 1 and it sufficies to examine P(s; ~7) = s+ €™ for
0 <7 < 0o. Thus the roots of P(s;7) will be examined for ~coc < 7 < o0,

First consider the real roots of P(s;7), say s = 0. Obviously, if 7 = 0, then s = —1.

For 7 # 0, a simple analysis of P(s;7) shows that as 7 increases from zero, there are two
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real roots, one increasing from —oo and the other root starting at s = —1 and decreasing
(see Figure 2a). These roots coalesce at s = —e when 7 = 1/e. As 7 increases further, these
roots split into a complex conjugate pair and there are only complex roots for 7 > i/e
(see Figure 2b). These are discussed below. For 7 decreasing from zero, the real root at
3 = —1 increases and asymptotes to s = 0 as T — —oo. Thus for s + e*7, there is always
one negative real root for 7 > 0. (see Figure 4b).

For the complex conjugate roots of P(s; 1), let s = o +ip, 0, p real. Then P(s;7) = 0

can be rewritten as the set of coupled transcendental equations

(4.2.2) g =—e "7cos(rp),

(A.2.3) p= e "7sin(rp).

First consider the case of pure imaginary roots, i.e., ¢ = 0, with 7 > 0. From (A.2.2), this
requires

2m+1

424 =
(A4.2.4) I o

mn m=012,..., >0

It suffices to consider only p > 0 since the roots occur in complex conjugate pairs. Using
(A.2.4) in (A.2.3) yields p = %1 and p = 1 only if m is even. Thus all complex roots in

the upper half plane cross the imaginary axis at p = 1 for values of 7 given by

4n —3
2

{A.2.5) T =

T, n=1,2 ..,

where n identifies the root number. Note that the roots which were real for small 7
correspond to the complex conjugate pair for n = 1 and crosses the imaginary axis at

T=7/2.



For 7 < 0, a similar argument shows that the roots cross the imaginary axis at p = 1

for values of 7 given by

(A.2.6) T =

where n is the root number,

Graphs of the first three complex roots of s +e77® and s+ e”* in the upper half plane
are given in Figures 2b and 4b, respectively. Numerical values of 7 are indicated on each
curve. All complex roots asymptote to 0 as 7 — oo.

Equations (A.2.2) and (A.2.3) can be analyzed for large complex roots with |7| = 0(1).
All complex conjugate roots are in the left-half (right-half) plane for values of 0 < 7 < o)
(ws—} < 1 < 0). The asymptotic formulas for the nth complex root are (with m = 4n — 3

for r>0andm =4n—1for 7 <0)

2 9 ) 2
(A.2.7) Op ~ —1~fn 27| - — n -"-"'_lT_ + 2n ?.JT_| :
T mm minist mT mm

. 2 2
(4.2.8) pn ~ Ly I[’n( IT'),

2|7 mnlr mm

with n — oo through the positive integers. Although for a given 7, n must be chosen
sufficiently large so that the formulas are valid, it is surprising that the above expansions
for the complex roots are accurate to three significant figures even for r = 1 and n = 2,
sg ~ —2.062 +17.592 and the actual root 1s s = —2.062 +17.588% to four significant figures.

2. Roots of Q(s;7) = s® + ae™ ™ + w. The exponential polynomial Q(s; 7) contains

three parameters, 7, o, and w, and Q(s;7) = 0 can be rewritten as

(4.2.9) ‘ 2= —ae ™ —w



First, consider the case of real roots, say s = 0. Recall that for layer behavior, « +-w <0,
thus for 7 = 0, ¢ = 2v/~a —w. For —00 < T < 0, a simple geometrical argument shows
ays one real 100t and at most three real roots, see Figure 6a for the special
case of a = —2 and w = ~1. For this special case, note that for 7 > 0, there is one and
only one positive real root. The negative real roots for 7 > 0 coalesce at 7y = 0.5044 and
then split into a complex conjugate pair for 7 > 74.

We restrict our attention to the case with w = —1 and study the complex roots of
Q(s;7), s = 0 +1p, 0 and p real. For ¢ = —2, a plot of the first three complex roots in
the upper half plane is shown in Figure 6b. Numerical values of 7 are indicated on each
curve. Note that root 1 crosses the imaginary axis for 7 = 7 and all other roots cross the
imaginary axis for larger values of 7. In Figure 6c is shown a plot of the complex conjugate
pair of roots designated sy and & for |r| > 0.5044, again with values of 7 indicated on the

curves,

Splitting Q(s;7) = 0 (with w = —1) into its real and imaginary parts gives

(A4.2.10) of —p? = 1= —ae” 7 cos{rp),

(A.2.11) 20p = ae” "% sin(7p).

A1 analysis of these equations can be carried out to determine an asymptotic approxima-
tion for the large complex conjugate roots. All large complex conjugate roots are given

asymptotically by (with m = 2n for a > 0 and m = 2n — 1 for « < 0)

(A.2.12)
) 2 2
anzen Vialir|y 4 n Vlellr| 1 9¢n Viaflr| +
T m mimeT mm mm 4
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(4.2.13) PR en(mw),

|7] ~ wm|7| mm
and by o —ip where n is the number of the complex root with n — co through the positive
integers. Note that in the formula for o, the [£,,(-)]* term is dominant inside the braces;
however, for moderate values of n the other two terms are of comparable magnitude and
hence have been kept.
3. Roots of R(s; 7, 1) = s® + ae™ ™ + w + fe#*. The exponential polynomial R(s; r; 1)

contains five parameters, 7, it, ¢, w, and 3, and R(s;7; ) can be rewritten as
(A.2.14) §f = —aeTT —w — ek,

First, consider the case of real roots, say s = . For layer behavior, o + w + f < 0, thus
forr=0=p,0=4v—a —w—F. For either 7 = 0 and > 0or7m >0, p=0,astudy
of R{s;7iu) reduces to a study of Q. If 7 > 0 and p > 0, then the study of R is more
difficult. In Figure 8a, for the case a = 0.25 = 4, 7 = 0.7, and g = 0.5, there are two real
roots, one positive and one negative. In Figures 8b, for the case « = -2 = 8, 7 = 1.5, and
jt = 0.7, there are no real roots but there is a complex conjugate pair with small negative
real parts and small imaginary parts.

For the complex roots of R, with w = —1, let s = 0 + ip, 0 and p real. Note that in
Figures 10a and 10b, the imaginary parts of the roots grow much more rapidly than the
real parts.

Splitting R into its real and imaginary parts gives

(A.2.15) o® ~ p* — 1+ ae™ "7 cos(Tp) + Be"? cos(up) = 0,

(A.2.16) 20p — ae” "7 sin(Tp) + Pe!7 sin(up) = 0.
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The asymptotic behavior of the large complex conjugate roots is obtained by reducing

the problem to (A.2.10) and (A.2.11) since either the term with =" or with e#® is

evnonentially sI -;H
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FIGURE CAPTIONS

Figure 1. Graphs of numerical solutions of BVP (2.1) - (2.2) for a(z) = 1, b(z) = 1, flz) =
0, ¢(z) =1, v =1, and € = 0.01. Figures la, 1b, lc, and 1d correspond to the shift
6(e) = Te with 7 = 0, 0.7, 1.5, 2.5, respectively.

Figure 2. Graphs of the roots of the exponential polynomial s + e™*" = 0. The real roots
for 0 < 7 < 1/e are shown in Figure 2a. Three complex roots, s = ¢ + ip, in the upper
half plane with values of 7 given along the curves are shown in Figure 2b.

Figure 3. Graphs of numerical solutions of BVP (2.1) - (2.2) for a(z) = -1, b(z) =
-1, flz) =0, ¢(z) =1, vy= -1, and € = 0.01. The three curves correspond to the shift
6() = e with 7 =0, 0.7, 1.5, respectively.

Figure 4. Graphs of the roots of the exponential polynomial s + €™ = 0. The real root for
0 < 7 < 100 is shown in Figure 4a. Three complex roots, s = ¢ + ip, in the upper half
plane with values of r given along the curves are shown in Figure 4b.

Figure 5. Graphs of numerical solutions of BVP (2.3) - (2.4) for a(z) = -2, w(z) =
-1, Blx) =0, f(z) = 1, ¢(x) =1, v = 0, and ¢ = 0.01. Figures 5a, 5b, 5c, and 5d
correspond to the shift é(¢) = 7e with 7 = 0, 1.5, 3, 5, respectively. The insert in Figure
5d shows the oscillations continue all the way to the origin.

Figure 6. Graphs of the roots of the exponential polynomial s2 — 1 — 2¢=*" = 0. The real
roots are shown in Figure 6a. Three complex roots in the upper half plane, s = o +i p, with
values of 7 given along the curves are shown in Figure 6b. Figure 6c shows one complex
root for both negative and positive values of 7 with 0.5044 < |7] < oo.

Figure 7. Graphs of numerical solutions of BVP (2.3) - (2.4) for w(z) = —1, f(z) =
L, ¢(x) = 1 = 1(z), and € = 0.01. Figure Ta corresponds to a(z) = 0.25 = () with
7= 0.7 and ¢ = 0.5, and Figure 7b corresponds to a(x) = ~2 = f(z) with r = 1.5 and
p=0.7.

Figure 8. Graphs of the complex roots, s = ¢ 4 ip, of the exponential polynomial s? +
ae™*" — 1+ ffe#* = 0. Figure 8a corresponds to a(z) = 0.25 = #(z) with r = 0.7 and
= 0.5, and Figure 8h corresponds to a(x} = ~2 = f(x) with 7 = 1.5 and p = 0.7.
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