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Abstract. This paper continues our study of boundary-value problems for singularly
perturbed linear second-order differential-difference equations with small shifts. This study
was initiated in the companion paper,“Singular perturbation analysis of boundary-value
problems for differential-difference equations. V. Small shifts with layer behavior,” this
journal, this issue, pp. . Here we extend that study to problems which have solutions that
exhibit rapid oscillations. We find restrictions on the sizes of the shifts in terms of the small
parameter such that, in general, one cannot replace the shifted terms with truncated Taylor
series. In particular, it is shown that even when the shifts are small relative to the width
of an oscillation they can affect the solution to leading order. We conclude that oscillatory
solutions are more sensitive to small delays than are layer solutions. We show that a
suitably modified version of the standard WKB method can be used to obtain leading-
order oscillatory solutions of these differential-difference equations. These preliminary
studies of differential-difference equations with small shifts provide techniques for treating
expected first-exit time problems associated with the membrane potential of neurons for
generation of action potentials,
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1. Introduction. This paper continues our studies of boundary-value problems
(BVPs} for singularly perturbed differential-difference equations (DDEs) using singular
perturbation analyses coupled with numerical computations {[3)-[6], 8]). In the companion
paper [7], we initiated an investigation of BVPs on 0 < z < 1 for DDEs with small shifts
for which the solutions exhibited layer behavior. Here we extend that study to BVPs
for DDEs with small shifts for which the solutions exhibit rapid oscillations. Problems
with small shifts arise in determination of the expected first-exit times of the membrane
potential through threshold for generation of action potentials in models of neurons (73,
[9]-[11]. These preliminary studies develop some of the tools for treating such problems.

In this paper, we address two separate questions. The first concerns the size of the
shifts which affect the solution to leading order, and the second concerns whether the
oscillatory solutions can be obtained by simple Taylor series expansions of the shifted
terms or require the use of a WKB method. For rapidly oscillating problems, the shift
affects the solution to leading order even when the shift is small compared to the scale
of the oscillations. Specifically, solutions with oscillations of width O(¢) are affected even
when the shift is O(£2). This suggests that small shifts also could play an important role
for partial differential equations with rapidly oscillating solutions. On the other hand, for
layer problems, the magnitude of the shift must be at least as large as the layer thickness
before the shift affects the layer solution to leading order, cf. the companion paper [7]. We
conclude that while small shifts affect both layer and oscillatory problems, the effects are
more pronounced for oscillatory problems.

The BVPs for the DDEs to be studied in this paper are stated briefly in Section 2. In



Section 3, we analyze both the question of when the size of the shifts affect the solutions
to leading order and which dependencies of the shifts on the small parameter, €, require an
analysis where the shifted terms cannot be expanded in Taylor series. There are BVPs for
DDE:s exhibiting solutions with rapid oscillations all across the interval for shifts which are
sufficiently small. Also, theré are BVPs with solutions in which oscillations were previously
confined to layer regions when the shifts are sufficiently small but where the oscillations can
extend into the outer region when the shifts are increased. In this case the layer solution
method developed in {7] fails to give the correct inner and outer solutions. In Section 4,
these oscillatory solutions which cannot be analyzed by simple Taylor series of the shifted
terms are treated using a WIKB method [2] which accounts for the small shifts.

2. Statements of the problems. In this paper we study the same classes of
model problems investigated in [7] except in parameter ranges where the solutions exhibit
oscillatory behavior rather than layer behavior. We refer the reader to [7] for complete
details of the BVPs and simply state the DDEs and associated side conditions to establish
the notation.

When the shifts are zero, the solutions of the BVPs for the corresponding ODEs
exhibit layer behavior, oscillatory behavior, or some combination of these depending on
the coefficients. The investigations here will examine questions on the effects of the nonzero

shifts on oscillatory behavior and construct leading-order oscillatory solutions using a WKB

method. One class of BVPs is given by

(2.1) ey’ (z1€) + alz)y'(z — 8(e)i€) + ba)y(z;€) = f(z),

on0<r<1,0<e<l, and 0 < §e) < 1, subject to the interval and boundary
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conditions
(2.2) y(zse) =@(z) on —6(e) <2 <0, y(le)=1m,

respectively.

Again, it will be convenient to assume ¢(z) = 1 and f(z) = 0. For sufficiently small
é(e), the first-order derivative term is important near z = 0 and/or = = 1 (depending on
the sign of e(z)) and the solutions to this BVP exhibit layer behavior, cf. Figures la, 1b,
and 3 in [7]. However, as is shown here in Figures la and 1b (and in Figures 1¢ and 1d
in [7]), when é(¢) is sufficiently large, the layer structure is destroyed and the solution is
dominated by oscillations. These oscillatory solutions are analyzed in Section 4 using a
WIB method.

The second class of BVPs is given by DDEs of mixed type

(2.3) ey"(x16) + alr)yle — &(e);e) + w(x)ylz;e) + Blz)ylz + nle)se) = f(z),

(A1)

on 0 <z <1,0<e<kl,0<ée) <1, and 0 < n(s) <« 1, subject to the interval

conditions

ylrie) = ¢(x) on  =—é(e) Sx <0,

(2.4)
y(re) =¢(r) on 1<z <14 pe)

Again, for convenience, it is assumed that ¢(r) = 1 and ¥(z) = constant. Note that there
are no first-order derivative terms in (2.3).

If the shifts, 6(¢) and 5(¢), are both zero and a(z)+w(z)+#(z) > 00on 0 < z < 1, then
the solution of the corresponding ODE exhibits rapid oscillations all across the interval.
For §(c) and n(e) sufficiently small, these oscillatory solutions can be analyzed by simply
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taking Taylor series expansions of the shifted terms. This is carried out in Section 3,
cf. Figures 2a and 2b. For é(¢) and/or n(e), sufficiently large, however, a simple Taylor
series expansion of the shifted terms is not valid. Instead these oscillatory solutions can
be analyzed by using a WKB method and results are given in Section 4.

If the shifts, 6(¢) and 7(e), are both zero and a(z) + w(z) 4+ A(z) <0on 0 < z < 1,
then the solution of the corresponding ODE has layers at both the left and right ends, cf.
Figure 5a in [7]. However, for é(¢) and/or 5(¢), sufficiently large, one or both layers can be
destroyed by rapid oscillations. These oscillatory solutions can be analyzed using a WKB
method and results for this case are given by the séme formulas in Section 4 as for the
previous case.

As noted in [7]. the method of steps for solving BVPs for DDEs with small shifts on a
unit interval is impractical. When the solutions consist of rapid oscillations, we obtained
the numerical solutions of the BVPs by using the iterative numerical scheme and/or the
finite difference scheme outlined in Appendix 1 of [7]. Il some cases, the iterative scheme
using COLSYS [1] did not converge and we had to rely solely on the finite difference
solutions.

3. Rapid oscillations. As pointed out in Section 3.1 of {7], the layer region at z = 0
is no longer clearly defined if the shift, 7 in the layer variables, becomes too large. In
particular, if any complex root of the exponential polynomial associated with the Laplace
transform solution comes to within O(e) of the imaginary axis, then oscillations which are
generated in the layer can extend into the outer region, cf. Figure lc. In this case the

layer analysis developed in Section 3 of |7, is no longer completely valid and modifications



accounting for the oscillations in the outer region must be devised. The appropriate tool
for this analysis is the WKB method [2] with modifications to account for the shift terms.
This analysis is carried out in Section 4.

¥ a(z) + w(z)+ B(z) > 0 in (2.3) with small shifts, then the solutions exhibit rapid
oscillations all across the interval, In this section, the effects of nonzero shifts on these
oscillations will be examined. For this discussion, we will concentrate on equation (2.3).
Simple Taylor expansions of the shift terms through second-order derivatives in (2.3) yield

the ODE setting f(z) = 0)
33) {4 J o)+ Ba(e)] | rie) = la(a)éte) = an(e) (e

+{a(r) + wlz) + B(x)] =(r;¢) = 0,

where = replaces y. Higher-order derivative terms occur as 6"z(") and 7"2(") each multi-
phied by an O(1) coefficient. If the shifts are sufficiently small, then they can be ignored to
leading order. namely if §(¢) and 5(e) are both o{e?). However, if they cannot be ignored,
how should the BVP be analyzed to obtain a leading-order approximate solution.

In order to see the effects of increasing the shift, consider the sequence of graphs in
Figure 2a,b,c for the DDE {2.3) with 8(z) = 0 (i.e., no right shift term), ¢(z) = 1, ¢(z) =
0. v =0, a(z) = =1/2, w(z) =1, f(z) =0, and §(¢) = €2, €%/?, and £ with ¢ = 0.01.
Decreasing the power éf ¢ in ¢ for fixed ¢ increases the shift without changing the coefficient
of y'. For a(r} < 0, the effect of the shift is to decrease the amplitude of the oscillation as
z increases and the decrease is sharper with increasing shift values, ¢f. (3.1). For §(¢) = ¢,
the decrease in amplitude in Figure 2¢ is so sharp that only a few “visible” oscillations

survive (actually there are oscillations all across the interval but with exponentially small
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amplitude).

When a(z) > 0 and f(z) = 0, then as seen from (3.1), the oscillations grow in
plitude. This is illustrated in Figure 2d for 2 DDE with only a left shift for afz) =
3, wz) = 1, B(z) = 0, f(z) =0, ¢(z) = 1, v = 0 (i.e., ¥(z) = 0 since f(z) = 0),
and 6§(e) = € with ¢ = 0.01. The importance of the coefficient of 2’ in (3.1) is more
clearly illustrated by comparing Figures 3a and 3b for the solution of the mixed equation
with ¢(z) = 1, ¥(z) = 0, a(z) = —1 and -2, respectively, w(z) = 4, f(z) = —2 and
—1, respectively, f(x) = 0, é(e) = €? and 2¢?, respectively, and n(e) = 2¢? and £2,
respectively, with ¢ = 0.01. The coefficient of =z in {3.1) equals ~3¢? and 3¢? leading to
amplitude increase and decrease, respectively.

The question which remains to be answered is for what dependencies of § and 7 on
¢ does z(7;¢) as a solution of (3.1) provide a leading-order approximation of the solution
y(z:¢). Although the general question is not settled here, an answer is provided for the
special case of constant coefficients and é§(¢) = 7¢?,9(2) = pe?. For this case it is convenient

to rewrite (3.1) as

(3.2) €214 P21 (11e) 2e7Q:"(w1e) + Rz(aye) = 0,
where

1, 2 2 1 .
(3.3) P= 5(&'7‘ + Bp*), Q= 5(01‘ - pu), R=a+w+4.

Then the exact solution is

(3.4) z(zie) = ¥ [ey cos(ra) + g sin(rr)]
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where ¢; and cp are constants of integration and

o2 AT PECR= g

3.5 = , =
( ) g 14 Pe2(p-1) E(I-vaez(-"_l)}

Forallp 2 1,9 = O(¢*"?) and r = O(e~"); therefore 6"2z(") and 5" 2(") are both O(en(r-1))
if ¢; and ¢ are O(1). In particular, for p = 1, all higher-order derivative terms which
have been omitted from (3.2) upon expansion of the shift terms are of the same order
of magnitude as those which have been kept. From F igures 2a and 2b, on which are
plotted both the numerical solution and the function z(xz; £) given by (3.4), the agreement
between the results is excellent. However, the numerical solution in Figure 2¢ is not well
approximated by z{r;e). On the other hand, the numerical solution in Figure 2¢ is well
approximated by the WKB analysis leading to the formulas (4.20) and (4.21).

In summary for the constant coefficient cases, if &{¢) and n(e) are o(e?) then the
reduced equation with é = 0 = 5 yields a leading-order solution. If § and n are O{e?),
then the effects of the shift terms cannot be ignored and the approximate equation (3.1)
provides a leading-order solution up to & and 4 both o(e). For § and n of O(e), however,
all derivative terms in the expansion of the shifted terms become equally important and
(3.1) no longer provides a leading-order solution. Instead, (2.3) must be used without
expanding the shifted terms. In Section 4, we develop the WKB solution method to
obtain the leading-order oscillatory solutions in this case.

4. WKB analysis. The WKB method [2] is ideally suited to obtain leading-order
oscillatory solutions to the model problems (2.1) - (2.4). In Section 3 we showed that for
(2.3). the Taylor expanded equation (3.1) was valid provided § and n were o(e). However,
there is a complication in obtaining the WKB solution through 0(1) in those cases. The
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WKB ansatz, motivated by the classical ansatz for ODEs, is that the solution can be

expressed as the superposition of functions
Sz e
(4.1) y(z1e) = A(z;€) exp [-—-(-:—Em-)—] )
£

where A(z;e) and S(z;¢) are smooth functions of z and e. Substitute (4.1) into {3.2) with
p = 1+ 1/n; then a self consistent solution requires S(z;¢) to be a power series in £!/".
Therefore at least n + 1 terms in S are required to obtain y to 0(1). This complication
makes the WKB solution through 0(1) more difficult to obtain in spite of being able to
expand the shifted terms in (2.3). Because of this complication, we focus on the case of
p = 1. 1.e., where both é and n are of 0(¢). To illustrate the ideas, the BVP for the DDE
given by (2.1} and (2.2) is analyzed in detail. Also results for (2.3) and (2.4) are presented.

For convenience, set ¢(r) = 1 and assume 6(c) = 7¢ with 7 = O(1) as ¢ — 0 and
0 < ¢ << 1. Then S(r;e) depends only on r. For the zero shift case, i.e., é(g) = 0.

S'(z) = —a(z) or §'(r) =0, thus

I b I
(4.2) ylr;e) ~ k exp {—/0 E-((%— d.t] + GE_;) exp [/; (% — ?) dt] .

where k and ¢; are arbitrary constants. The first term on the right corresponds to the
outer solution. Note that the lower limits in the integrals need not be zero.

For é(c) > 0, substituting (4.1} into (2.1) gives

(4.3) gyﬁmAm)+29@p¥u)+s%@Auq+eA%x)

S'(z — 6)A(x - 8)

+ a(z) +mm-m]mpfu“2‘swq+mﬂmﬂ=a
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where the dependencies on ¢ have been suppressed. Expand out the shifted terms as

follows:
S'(z ~ 6)A(z — &) = S'(z)A(z) — 7e [S"(r)A(z) + §'(z)A(z)] + O(?),
(4.4) Az - &) = A'(2) 4 O(e),
_6)-5

Define T(z) = S'(z) and assume

(4.5) A(z;e) ~ iAj(z)sj,
j=0

then the leading-order equation in ¢ requires either

(4.6) T(r)=0
or
(4.7) T(z) + a{x)e™ 7T = g,

where (4.6) corresponds to the outer solution.

The phase equation (4.7) can be rewritten as
(4.8) 2ay+ eV =,

where 2(z) = T(z)/a(z) and v(z) = ra(z). The phase, S(z), then is determined in the
following way: 1) specify z and compute rv(z), 2) determine the nth root of (4.8), say
zn(2}, as described in [7], Appendix 2.1, so that changing = corresponds to tracing out the

nth root curve in the complex plane, cf. Figure 2b in [7], and 3) determine T,(z) from

zp(z) and S,(z) from

(49) S,,(I) = [} a(t):,,(t)dt,
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where it is convenient to choose Sn(0) = 0. As noted earlier, the general solution is a
superposition of WKB solutions (4.1} and requires the computation of S, for a sequence
of n values.

It remains to determine the leading-order amplitude Aq(z) corresponding to each

S(z). The next higher-order equation in ¢ is obtained from (4.3) and is given by
1
(4.10) {T(z)[1+ rT(x)]} Aj(z) + { [1 + rT(z) - §T2T2(:L‘)] T'(z)+ b(z)} Ay(z) = 0,

where the approximation exp [;—TQET'(SL‘)} ~ 14 172T"(z) has been used. Solving for

Ag(r) yields

o 1 I S b(t) dt
(4.11) AU(I)_T(I)\/H——TJTJ:)QD LTT(J) /D T(z)[l-{—rT(z)}}'

Thus the leading-order WKB solution is given by

S IM e Cn
(4.12) plrie) ~ 4 ”’[ /0 a() “}*{Zrﬂu)\/urﬂ(w)

n=}

X ex SnlT) + Er Th(r) — /r bt )t + ] jugat
Xp - 57 T T+ (0] complex conjugate } ,

where k and the ¢, are arbitrary complex constants. If T, (or equivalently zn(z)) is real,
then the ¢, in (4.12) must be divided by 2 to avoid counting the same root twice (cf.
discussion of equation (3.18) in [7]). The first term on the right side with coefficient k
corresponds to the outer solution. Obviously when 7 = 0, i.e., when 6(e) = 0, this formula
reduces to the standard form in (4.2).

In order to determine the unknown constants k and ¢,,, the WKB solution is matched
with the layer solution near r = 0. If Re z,(z) < 0 for all n with z;(z) sufficiently close to

the imaginary axis over some range of « near & = 0, then oscillations could be generated
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in the layer and could continue to oscillate in the “outer region.” For this case, the outer
solution is not simply an exponential as given by (3.1) in {7], but rather is given by the
solution, In this case the leading-order layer equation is given by the first line of
(3.14}) in [7], hence the Laplace transform is given by

50(0)

(4.13) Y@(S) = — 4 m.

The constant term, which corresponds to the residue at s = 0, matches the constant term

in the WKB solution as ¢ — 0, thus
(4.14) §o(0) +1 = k.

Hence the layer solution has the form

A“"l = k“"l - &
4‘15' 85 2 End
(4.19) +Z [L,l Ttren) T Ea+ra

n=1

and matching with the WKB solution for + — 0 and # — oc requires
(4.16) Cp = —=—==t 7",

where for convenience, it has been assumed that a{0) = 1 so that T,(0) = s, (cf. {4.8)).

Thus the WKB solution becomes

. T b >
(4.17) y(z:e) ~kexp [—fo % dt] + 2(k ~ I)Z_:Re{Tn(-’r)\/(I + isn)(l +77Th)

n=1

e, T eyt
X exp{ . T[T,,(:r) ].,‘/0 To(t)1 + 7T.()] }} '

Two concrete examples now will be described. (Note that the solutions plotted in

Figures 1c and 1d in [7] can be treated similarly.) First, consider the BVP for the DDE
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with a(z) =1, 8(z) =1, f(z) =0, ¢(z) = 1, ¥ = 1, and ¢ = 0.01. The solution is shown in
Figure la for é(¢) = 7¢ with 7 = 1.5. In this case the layer analysis described in Sectin

3.1 in [7] fails because the oscillations in the “layer” extend into the “outer” region. The

WKB solution is given by

e‘rp{ [%—L - s;(liral)] 't}
51(1 +78;) + c.c.

(4.18) y(zse) ~ ke + (k- 1)

= ke + (k- 1)[E(z) + c.c,

where in (4.17) only the first term in the sum has been retained and T} = 81, §; = s1z. The
value of k, and hence §'(0) from (4.14), is obtained by applying the boundary condition at

r = 1. Thus

e—1
14 e[lE(1)+cc]

{4.19) 7'(0)

From Appendix 2.1 in (7], s; = —0.022 + 1.03347 and from (4.19), §'(0) ~ 1.18, while the
numerical results give §'(0) = 1,25,

As a second example, the solution to the BVP for the DDE with a{z) = ¢~¥* with
v =05 ¢=00105z) =1 5 =1, and 7 = 1.5 is plotted in Figure 1b. Near z = 0,
two of the roots of the phase equation (4.7) have small real parts which explains the rapid
oscillations and the lack of a boundary layer. However, as z increases, the real parts of all
the roots of (4.7) become negative and lie outside an O(e) strip along the imaginary axis.
(This behavior occurs because a(z) is a decreasing function of z.) Thus the oscillations
die out in the middle of the interval and the solution blends into the outer solution having
F = 4. A comparison of the leading-order WKB solution with the numerical solution shows

excellent agreement with errors of O(¢), as expected.
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For the BVP, (2.3)-(2.4), the WKB analysis is similar and only the leading-order
results are recorded here. The principal differences with the BVP treated above is that
there arc no first-order derivative terms and possibly two distinct shifts. The WKB ansatz
{4.1) is substituted into (2.3) (with f(z) = 0) and expansions similar to (4.4) are carried
out. In Section 3, we have shown that if § and 5 are both o(¢), then the approximation
(3.1) is adequate. However, if § (and/or 1) is O(e), then this approximation is no longer

valid and the effects of 6 (and/or 1) are important to leading order. If § = 7¢ and n = e

where 7 and y are constants, then the leading-order equation requires
4.20) T () + a(r)e™ ™) +w(x) + Az)e T = 0

where T(x) = S'(r). This exponential polynomial in T corresponds to R(T; 7, u) studied
in Appendix 2.3 in [7]. The leading-order amplitude, 4p(z) where (4.5) is assumed, is
obtained from the next order equation in ¢ and is given by

1
\/T(.r) — sra{r)e= T 4 1uf(7)erT(@)

o 1 /’ ra'(t)e” T — g (1)er Tl i
eXpy —— .
1 4Jo T() - ”‘ng"fT(r) + @e,ﬂ"(:)

We give two concrete examples of the formulas (4.20) and (4.21). The first example

(4.21) Ao(z) =

is the BVP (2.3) - (2.4) with 8(z} = 0 (i.e., no right shift term), ¢(z) =1, y=0, a(z) =
~1/2, w(z) =1, f(z) =0, and é(¢) = € with ¢ = 0.01. The solution is plotted in Figure
2c. Since o +w + f > 0, the solution for § = 0 is oscillatory. In this case, for § = ¢
the oscillations near = = 0 decay rapidly to the outer solution, but this solution cannot
be approximated to leading order by the solution (3.4). However, this solution is well
approximated by using the roots of (4.20} and the formula (4.21) in (4.1).

14



The second example is the BVP (2.3) - (2.4) with a(z) = —2¢77%, w(z) = -1, B(z) =
0, flz) =1, ¢(z) =1, v = 0 (i.e, ¥(z) = 0 since f(z) = 0), and 8(¢) = r¢ with r = 3.
The solution is plotted in Figure 4. The reader is reminded that for a+w+5 < 0 and 7 = 0,
there are only layers and no oscillations. This example demonstrates that small shifts can
deétroy the boundary layer at z = 0 and generate oscillations which extend beyond the
layer. Again the WKB analysis yields (4.20) and (4.21), and rapid oscillations are generated
because there are two roots of (4.20) with real part of O(e). The solution oscillates beyond
the layer region, then dies out and blends with the outer solution. However, in this case,
note that there remains a layer at 2 = 1 in which there are no oscillations. Using the
roots in (4.20) and the formula (4.21) in (4.1) gives a good approximation to the solution
in Figure 4.
Acknowledgment. We thank Mr. James Bence and Mr. Perry Pow for ably carrying
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FIGURE CAPTIONS

Figure 1. Graphs of numerical solutions of BVP (2.1) - (2.2) for b(z) = 1, f(z) =0, F{(z) =
1, y=1, € =0.01, and é(¢) = 7¢ with 7 = 1.5. Figure 1a has a(z) = 1 and Figure 1b has
a{r) = €7¥* with v = 0.5.

Figure 2. Graphs of numerical solutions of BVP (2.3) - (2.4) for w(z) = 1, f(z) = 0, f(z) =
0, ¢(z) =1, v =0 (i.e., () = 0 since f(z) = 0), and ¢ = 0.01. Figures 2a, 2b, and 2¢
correspond to a(z) = —1/2 with the shift é(c) = €2, £3/2, and ¢, respectively. Figure 2d
corresponds to a(z) = 3 with the shift §(¢) = ¢?. Both numerical solutions (solid curves)
and approximate solutions (3.4) (dashed) are plotted on Figures 2a, 2b, and 2d.

Figure 3. Graphs of numerical solutions of BVP (2.3) - (2.4) for w(z) = 4, f(z) =0, é(z) =
1, ¥(z} = 0,and £ = 0.01. Figure 3a corresponds to a(2) = —1, f(z) = -2, §(¢) = €2, and
n(e) = 2¢*. Figure 3b corresponds to a(r) = =2, f(x) = ~1, §(¢) = 2¢2, and n(c) = ¢*.

Figure 4. Graph of numerical solution of BVP (2.3) - (24) for a(z) = —2¢%, w(z) =

-1 Blr) =0, flz) =1, ¢{z) =1, 7 = 0 (i.e,, ¥(2) = 0 since f(z) = 0), and (e} = r¢
with r = 3.
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