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Abstract

We develop an efficient iterative method for computing the steady linearized
potential flow around a submerged body moving in a liquid of finite constant
depth. In this paper we restrict us to the two-dimensional problem, but the
method is readily generalizable to the three-dimensional case, i.e. the flow in a
canal. The problem is indefinite, which makes the convergence of most iterative
methods unstable. To circumvent this difficulty, we decompose the problem into
two more easily solvable subproblems and form a Schwarz—type iteration to solve
the original problem. The first subproblem is definite and can therefore be solved
by standard iterative methods. The second subproblem is indefinite but has no
body. It is therefore casily and efficiently solvable by separation of variables.
We prove that the iteration converges for sufficiently small Froude numbers. In
addition, we present numerical results for a second order accurate discretization
of the problem. We demonstrate that the iterative method converges rapidly,
and that the convergence rate improves when the Froude number decreases. We

also verify numerically that the convergence rate is essentially independent of
the grid size,

AMS Subject classifications: 65N12, 76B20.

Keywords: Schwarz iteration, Finite difference approximation, Composite
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Figure 1: The linearized problem.

1 Introduction

The subject of this paper is an efficient, Schwartz—type, iterative method for
computing the steady linearized potential flow around a submerged body moving
in a liquid of finite constant depth. Let the depth of the liquid be d, the speed
of the body be U/ and the acceleration of gravity be g. After scaling the physical
quantities by the length d and the velocity 1/gd, we get the problem depicted
in figure 1. The total velocity potential is split into the sum of a free stream
potential and a perturbation potential; ®(z, z) = pr+¢(x, z), where u = U/+/gd
is the Froude number. The perturbation potential is governed by, cf. [8]

3
Ag=0, —co< <o, —1<2<0, (1)

together with the boundary conditions

1 bos + ¢, =0, ~co< 2 <o, z=0,
z:O,"‘“OO'(fB(OO,Z:—I, (2)
O¢/0n + pcosd = 0, on the body.

Here, 3/0n denotes the outward normal derivative and @ is the angle between

the normal and the z-axis. We are looking for a solution where the perturbation

potential tends to zero at large distances in front of the body. This condition is
called the upstream condition,

Jim =0, ~1<5 <0 ®

The most straight forward solution approach is probably a direct method,

cf. [7]. However, due to memory and work requirements, the direct method is not
feasible for the three-dimensional counterpart of the present problem, i.e. the



flow in a canal. The problem (1-3) is indefinite, which makes the convergence of
most iterative methods unstable. To circumvent this difficulty, we decompose
the problem into two more easily solvable subproblems and form a Schwarz—
type iteration to solve the original problem. We expound the method for the
two-dimensional case, but the technique is readily generalizable to the three-
dimenstonal problem.

"The first subproblem, which will be referred to as the definite subproblem,
is defined by

AgT =0, —o <z <00, =1 <2 <0, (4)
together with the boundary conditions
¢l =0, —co<z <00, 2=0, (5)
¢l = 0, —co< 2 < 00, z=—1, (6)
8¢' /8n = h, on the body. (7)

To fix the undetermined constant in this Neumann problem we enforce

mngxmqs‘:o, -1 < z<0. (8)
The second subproblem, which will be called the indefinite subproblem, does
not have a submerged body in the interior of the domain. It is governed by

AT =0, —w <2< 00, ~1<2<0, (9)
subject to the boundary conditions

WL+ 8 =1, o0 <z <00, 220, (10
10, o<z <o r=-1 ()

In order to make the solution unique, we enforce the upstream condition,

lim ¢ =0, ~1<z<0. (12)
T— — 00
The first subproblem is definite and can therefore be solved by standard
iterative methods. The second subproblem is indefinite but has no body. It is
therefore easily and efficiently solvable by separation of variables. That solution
method will be described in §2.
The solutions of the subproblems are well defined once the forcing functions
h and t are determined. It is clear that ¢f + ¢If will solve (1-3) if we can
find functions ¢ and % that simultaneously satisfy t(z) = —u2¢f (z,0) and
h(s) = —pcosb(s) — O™ /On(2s(s), z;(s)), where the boundary of the body is
described by & = z3(s), 2 = 2,(s), 0 < s < 1. We compute ¢ and h by iteration.
We take the initial guess to be ¢'7(®)(x, 2) = 0 and iterate according to



L. Set h{D(s) = ~p cos 8(s)— B¢ E=1) /8n(z4(s), 25(s)) and solve the definite
subproblem for ¢f(},

2. Set t(¥(z) = mpzqﬁi(j)(m, 0), and solve the indefinite subproblem for ¢/7(),

The main result of this paper, which is proven in §3, is that the iteration
converges for sufficiently small Froude numbers. In order to demonstrate the
convergence nimerically, we truncate the infinite domain and introduce farfield
boundary conditions in §4 to carry out the practical computation. In §5 we
~ present numerical results for a second order accurate discretization of (1-3).
We show that the iterative method converges rapidly, and that the convergence
rate improves when the Froude number decreases. We also verify numerically
that the convergence rate is essentially independent of the grid size. Perhaps
more surprising is that the iterative method requires less cpu-time than the
direct solver described in [7] already for two-dimensional problems.

2 The indefinite subproblem

To solve the indefinite subproblem, we split the solution according to ¢7f =
3% + ¢°. The idea is to use ¢° to move the inhomogenity from the surface
boundary condition to an inhomogenity for the Laplace equation and then solve
the resulting problem for ¢* by separation of variables. Henceforth, we assume
that (9) is satisfied on the boundary z = 0 and make the substitution ¢II =
—¢Il in (10). The auxiliary function ¢* must satisfy

~2Pt gt =1, —c0 < 2 < 0, 2=0, (13)
¢5 =0, ~c0 <z <00, z=~1.
In the interior, ¢ is only required to be smooth. We will use the following
simple solution:
#(2,2) = (14 )2, (14)
’ 2(1 - p#)
In order to make ¢° + ¢* satisfy (9-12), we must have
Ad* = f, —co< 2z <00, =l <2<, (15)
where f(z,2) = —A¢*(z, #), together with the boundary conditions

—p?gs + 42 =0, —0o < & < oo, z =0,

.- (16)
¢ =0, ~co<x <00, 7=—1.
To separate variables we make the ansatz
#(@2)= ) ROE)SE(), (17)

k=0



where

S(ﬂ)(z) =1,
SMW(z) = coshv/A(L + 2), (18)
SNz} = cos/Rr(1+2), k=2,3,....

By studying dS™*)/dz, cf. [6], it is easy to see that {S™)} form a complete set
in £4[—1,0]. Furthermore, they are orthogonal in the sense

0 qsie) ggla)
]1 =0, p#0 (19)

The eigenvalues are given by the relations
#2VX = tanh VX, p2/Ry = tan /kg, k=2,3,... (20)
Henceforth, we assume that 0 < g < 1. This implies a real v/X. The functions

cosh z and cos z are symmetric in z; we will therefore only consider positive v/A
and /Kr.

If we enter the ansatz (17) into (15) and expand the right hand side according

to
oQ
Hz,2) = FB(2)s®)(2), (21)
k=0
we arrive at, the following system of ordinary differential equations:
42 R N
= F(0)
= o), (22)
d2 RV N
(1) w §(1)
737 + AR @), (23)
d2R*) N
di —wpRE) = fB(g), k=2,3,.... (24)

Next, we express the functions f(k)(a:) in terms of t(x). To clarify the no-
tation, we define ((®) =: d3(®)/dz & = 1,2,3,... We also define the inner
product and norm in the z-direction, :

0
(a,8), = / abdz, |Ja? = (a,a),. (25)
-1
By differentiating (21) in the z-direction we get
Fe,2) = > fB ()W) (26)
k=1



The orthogonality relation {19) yields

{fal, 1), C(k))z
ll¢®]12
By inserting (14) into f,(, 2) = —A¢%(z, z) and evaluating the scalar products
and norms analytically, we get
—4i”(z) sinhv/X — v/Xcosh /X
T—p 233/2 ~ Xginh 2/
_ —2t" czsh VA , (28)
A(p? cosh® v — 1)
f(k)(a:) _ —41"(x) ' Sin /Ky — /Ky cos /Ky
1 p? 2&2/2 — K §in 2. /Ky
_ 2t" cos /Ky
K (1l ~ p? cos? | /Ry)
We cannot use the same technique to evaluate f(°) becaunse dS(® Jdz = 0.
Instead we use (21) and compute f® once the other coefficients are known, i.e.

F®)zy = ,k=1,2,3,.... (27)

f‘(l)(x) —

(29)

FO) = f(o,2)— 3 FO () SO (2).
k=1

This equation is valid for all values of z, but the choice z == —1 makes the
occurring expressions particularly simple. By inserting (28) and (29) we get
2 t(x)
0 —
FOa) = T 2"(2)Q, (30)

where

— cosh \/X i COS /K

= . 31
A(p2 cosh* /A — 1) + = k(1 — p? cos? \/Ry) (31)

3 Analysis of the iteration

In this section we prove convergence of the iteration for sufficiently small Froude
numbers. The proof consists of estimates of the solutions o the two subprob-
lems. In §3.1, we estimate the w—derivatives of the solution to the definite
problem at the surface in terms of the forcing h on the body. Thereafter, in
§3.2, we derive estimates for the ¢ and z-derivatives of the solution to the indef-
inite problem in terms of the forcing ¢ along the surface. These estimates will
be used to bound the normal derivative of the solution to the indefinite problem
along the fictitious boundary of the body. These two estimates are combined in
§3.3 to prove convergence of the iteration.
Henceforth, C will denote a generic constant which is independent of p.



3.1 Estimate for the definite subproblem

To begin with, we define the maximum norm along the boundary of the body
according to

[floo,boay = sup |F(za(s), 2 (s))|- (32)
0<s<1

Furthermore, we denote the maximum norm of a function of one or two inde-
pendent variables by | - |o.-

1t is well known, cf. [4], that the z-derivatives of ¢! along the surface can be
estimated in terms of the forcing h. We make this staterment more precise in

Lemana 1
P 1 (%)
dz?

(,0)’ SCpih(i)loo,body, rp=12,...,
o0

where Cp are constants independent of h{H).

In the domains ahead of and behind the body, the solution of the definite
subproblem can be found by separation of variables. Let the body be contained
in —f < ¢ < f. Expanding the solution in a Fourier series in the vertical
direction yields,

oo

q’)I(m, 2) = Zake“”"imi coswiz, wy = kT, (33)
k=0

for |z] > B. Hence, the forcing function #(z) satisfies

[ee]
tHz) = apwie < Ce ™l |55 . (34)
k=1

3.2 Estimates for the indefinite subproblem

The purpose of this section is to derive bounds for the maximum norm of the z
and z-derivatives of ¢!/ in terms of the forcing ¢. To bound ¢!7 = $% + ¢* we
bound ¢ and ¢* separately and add the results. Differentiating the solution
formula (14) yields

Lemma 2
[tloo
2(1 — p2y’
We now consider ¢*. We estimate ¢2 and ¢ in three steps. First we bound
the functions f*) in terms of the forcing t(x). Then we estimate the solution
of the ordinary differential equations (22-24) in terms of the right hand sides
f+), Finally, we bound ¢ and ¢% by summing the bounds for all the modes.

|62le0 < |62 l00 < [tloo(1 — ). (35)



Bounding f%): The ecigenvalue relation (20) implies VA < g2, In addition,
VA — p~2, when p ~ 0, We have p2 cosh? /A > 1forall 0 < p < 1. Therefore,
(28) yields

2
F(1) < _.._’_J_._ "
|f |DO = Ccosh M‘_zzt §007 (36)
where C' — 1 when g — 0. Inspection of (29) yields directly,
‘LA
" 2|.tH|
(k) e k93
|f |OO S K:k(]. _#2)1 2) H (37)

To bound f(®), we need to estimate Q in (31). For the eigenvalues /k; we
have

m(k—1) < /ep <mlk—1/2), k=2,3,... (38)
Hence,
- 1 % 2
Yorplc = (1+f k“‘zdk) == (39)
m 1 w
k=2
Therefore, (30) gives

Bounding R(*): We begin by writing down the analytical solutions of {22-24).
By integrating (22) twice we find

z 4
RO@=Ci+Cant [ [ jO)deac (41)

The upstream condition (12) implies Cy = €3 = 0. The general solution of (23)
can be written as:

R(l)(:l.‘) — Csﬁi )\w_l_cc‘le—i\/:\.w
v [ R fO ) ge

2V Jooo
T Ay )
= Foe) de. (42)

Again, (12) yields C5 = C4 = 0. Finally, the general solution of (24) can be
expressed according to

R{k)(a:) o= Cék)e‘/“_"-m—Cék)e_ R
1 / * o~ VEE(E-a) F9e de

N
| emenio e (43)

1
21 /KL




By assuming the solution to be bounded at infinity we get C'ék) = Cék} = 0.

The decay of t(z) given by (34) implies that the forcing functions f*) will
all satisfy

[F9@)] < 1/ P e, k=0,1,2,.., (44)
iniz|> g
In the following, the horizontal length of the body will be denoted I, = 25,
We bound dR(©®)/dx by differentiating (41) once. This gives,

dR(®
dz

< CL|f ¥, (45)
The solution formula (42) yields the following bounds for R() and dR(1/de:

IR < CLu?| {0,

(1) .
df:—m! < CLf V. (46)

In the same way, (43) yields the following estimates for R®*) and dR(®) Jda:
dR(E) N
o < C'Llf(k){m, (47)

oo

CL .
!R(k)loo S ﬁlf(k)looj

where k = 2,3,4,. ...

Bounding ¢;: By differentiating (17) with respect to z we find

o dRE)
=) F B gmyy, (48)
k=0
We combine (40) and (45) to get
dR(®) CL ;
| < e+ (19)
The term dR(!)/dz is bounded by using (36) and (46),
AR CLy?
(1) {a M
da 59(2) - s (1 — p?)cosh u—2 %o (50)

By entering (37) into'(47) and using the bound (39) we arrive at,

> 4R C = CL
(k) 17 -1 "
o= oo =2
Combining (49), (50) and (51) gives
Lemma 3
R CL
|¢m(: z)loo < 1— Mz(mw + |t”[oo)'



Bounding ¢}: To get an equation for ¢ we differentiate {17) once in the

z—direction,
[oo]

$3(z,2) = 3 RO ()¢ ®)(2), (52)

k=1

By combining (36) and (46) and noting that |¢(!)] < Cu?, the first term in the
sum satisfies

CLu?
(1 — p2?)cosh u—2

We get an estimate of the remaining terms by using (37) and (47). This yields,

IR ()]o < 1t"}oo. (53)

o0
CL
STREI)] < =5 [t"]eo (54)
k=2 oo H
By inserting (53) and (54) into (52) we find,
Lemma 4
CL
82, S T o

Bounding ¢;’ and ¢I7: By adding the bound for ¢* from lemma 2 and the
bound for ¢ from lemma 3, we get

CL
G Mo < (e + W+ 1¢lo) (55)
Similarly, ¢!! is estimated by adding the bounds for ¢¢ from lemma 2 and the
bound for ¢} from lemma 4,

CL
[‘ﬁg!(':z)ioo < "1‘__#2

Hence, the sum of ¢I! and #7 is bounded by

(Itloo + [t"]oo). (56)

CL

|87 2)loo + 1657, 2)loo < T oo o+ [0 + [£7]e0)- (67)
The definition of the forcing ¢(z) yields
Lemma 5
. X 2 A 1argl)
H’f(')(': )0 I‘?S?(')('rz)lm < GL1 f 2 2 ;:Scp ("0)‘
p= ol



3.3 Convergence of the iteration

To simplify the notation we introduce

\]}I("}(m, z) = q‘SI(i)(.’B, Z) - ¢I(i_l)(.’1§, Z), (58)
T0(g, 2y = $1I0) (g, ) — gHI6=1(g, 2). (59)

We can now prove

Theorem 1 For a sufficiently small y, the iterative method converges uniformly
to im;_,e0 ¢7) — @7 and limy, o0 ¢710Y — ¢77 where ¢7 + $17 is a solution of

(1-3).

Proofi From lemma 1 and the definition of k%) we have

4 4 '
Bpwf(z} X i 3\111’1’(:—1)
S|P o|_selpo—nen| | o2 (60)
p=2 o0 wosy ca,body
The triangle inequality yields
STIIG) . .
i an < |‘I'£I(‘)foo,body + iwif(z)iw,body
oo, body
< OO0 + [WHO), (61)
Therefore, lemmea 5 and (60} implies
,awrf<f> < ot z‘*: o) G)!
n cobody 1—p? poact dar
2 TI(3~1)
i ow
CL 62
N 1 p?. dn o0,body ( )

By choosing g so that § = CLu?/(1 ~ p?} < 1, the contraction mapping prin-
ciple ensures uniform convergence, i.e. limy_, o, 04770 /80 = 8411 /6n. Hence,
limj, 0 B = h, 50 limy_.co ') — ¢ and therefore also limy_eo ¢110) — $17,
It follows by inspection that ¢1 + ¢11 is a solution of (1-3).

4 TFarfield boundary conditions
It is necessary to bound the computational domain and introduce artificial
boundary conditions at the farfield boundaries to carry out the practical calcu-

lation. Here, we truncate the domain to —b < 2 < b, see figure 2. In this section,
we will only present the boundary conditions. Their effect on the solution will

10



B ds; b x
|
| dS = dS,+ dS,
|

O

Figure 2: The computational domain.

not be analyzed. We will instead restrict us to numerical experiments to verify
that their influence is small if the computational domain is sufficiently large.

For the definite subproblem, we enforce the following artificial boundary
conditions

¢I(_b: z) =0, (63)
¢2(b,2) = 0. (64)

These conditions are local, which makes an iterative solver easy to apply.

In order to solve the indefinite subproblem numerically, we must replace
t(z) by a smooth function {(2) =: P(z)t(z) which has compact support in the
computational domain. In addition, P(x) must have two continuous derivatives,
so that  is well defined. A cut-off function furnished with these properties is
vielded by

0, -0 << —b,
P ((=b + o~ z)/a), —b<r< —b+a,
Plz)= ¢ 1, ~bt+a<z<b—qw, (65)
p{(-b+a+e)/a), b-a<z<b,
0, b<z< oo,

\

where o > 0 and py(€) = 1 — 1062 + 156* — 6¢5. We will denote the solution of
{22-24) corresponding to the modified forcing by R(*). In the domains where
f = 0, we can solve (22-24) analytically. These analytical solutions are used
to form relations between the solution and its normal derivative which must be
satisfied by any solution that is bounded at infinity and fulfills the radiation

11



condition (12), These relations are used as farfield boundary conditions. They
are given by

y f2(0)
R® =, di =0, z = —b, (66)
_ R1)
RW =, % =0, z = ~b, (67)
dR(k) -
. — R =0, z=—b, k=23,..., (68)
70) .
%+«/_nkR(k)z(),m:b,k:2,3,.... (69)

The boundary conditions are exact in the sense that they do not affect the
solution at all. The difference between R(*) and B*) therefore only depends on
the difference between #(z) and #z).

5 Numerical results

In this section we present numerical results for a second order accurate dis-
cretization of (1-3). In §5.1 and §5.2 we comment on the numerical methods
that were used to solve the subproblems. Thereafter, in §5.3, we study a number
of test cases. We show that the iterative method converges rapidly, and that the
convergence rate improves when the Froude number decreases. We also compare
the solution with previous results obtained with a direct method [7] to indicate
that the iteration converges to the correct solution. We verify numerically that
the convergence rate is essentially independent of the grid size. It is demon-
strated that the iterative method is efficient from a computational point of
view; it requires less runtime than the direct solver already for two-dimensional
problems. In addition, we show that the error committed by truncating the
domain and introducing farfield boundary conditions decays exponentially with
the size of the computational dornain,

5.1 Solving the definite subproblem

We discretize the definite subproblem by second order accurate finite differences
on a composite overlapping grid. To apply the method, we divide the domain
into simple overlapping subdomains and cover each subdomain with a compo-
nent grid, see figure 3. The subdomain close to the body is covered with a
curvilinear grid and the surrounding sea is covered with a Cartesian grid. The
main advantage with this method compared to discretizing the whole domain
with one single grid is that each component grid can be made logically rect-
angular and without singularities. The gridfunctions on the component grids

12



Figure 3: The composite overlapping grid.

are coupled by continuity requirements, which are enforced by applying suf-
ficiently accurate, in this case quadratic, interpolation relations between the
gridfunctions at the interior boundaries where the component grids overlap. A
comprehensive description of this approach for a similar problem is given in [7].

We use the program CMPGRD to construct the composite grids. Many
aspects of composite grids and how to use this program are described in [1], [2]
and {3]. We would like to point out that this program is capable of constructing
three-dimensional composite grids, so this method can also be used in three
dimensions. ‘

‘The resulfing linear system of equations is solved by the YALE sparse ma-
trix package [6]. This method requires of the order @(n?) operations where
n equals the number of gridpoinis in the composite grid. However, for two-
dimensional problems of moderate size, it turns out to be faster than multigrid
or the conjugated gradient method, which are asymptotically faster.

5.2 Solving the indefinite subproblem

The number of terms in the series expansion (17}, which equals the number of
ordinary differential equations (22-24) that must be solved, has to be limited
in order to carry out the numerical calculation. We found by numerical exper-
iments that it is sufficient to retain the first ten terms. This is related to the
fact that the solution is smooth.

We approximate the ordinary differential equations (22-24) by second or-
der accurate central differences. For simplicity, we use the same size of the
computational domain and the same grid as for the definite subproblem. The
occurring tridiagonal systems of equations are solved by the subroutine DNBSL
in the SLATEC package. The work needed to obtain a solution to the indefi-

13
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Figure 4: The test body; a circle with radius 0.1.

nite subproblem is of the order O(ny), where n; is the product of the number
of gridpoints in the diseretization of one ordinary differential equation and the
number of terms we retain in the series expansion.

5.3 Test runs

A circle with radius 0.1 was used as test body. The center of the circle was
submerged 0.5 below the free surface and located at @ = 0, see figure 4. The
Froude number was 0.4 unless otherwise stated. The cut-off function (65) had
a="T/33.

To show an example of the solution, we present the surface elevation above
the test body in figure 5. We also show the perturbation potential in the whole
_ computational domain in figure 6.

In the following, we will compare solutions in the maximum norm over the
part of the surface in the computational domain,

|f|oo,sur = Bup |f(f”:0)§ (70)
—b<a<h

To find the order of accuracy of the iterative method, we compare solutions
obtained with grid sizes 2k, +/2h and h. The cor respondmg solutions are denoted
by ¢an, ¢35, and és, respectlvely ‘The length of the computational domain is
4.5 (b = 2.25). The number of grid points in the Cartesian grids is 17 x 86,
24 x 132 and 33 x 172, respectively, and in the grid around the body 17 x G,
23 x 8 and 33 x 11, respectively. The results, which are presented in table 1,
indicate that the method 1s second order accurate,

14
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Figure 5: The surface elevation above the test body, g = 0.4.

Figure 6: The perturbation potential around the test body, u = 0.4.

|¢2h - 96?1]00,3“1" lqs\/ih - ¢h!oo,aur
1.146 % 102 4.6009 x 103

Table 1: Comparison between solutions computed with different grid sizes.

15



§‘i{’gh - ¢2h|oo,aur Iéf/ih - <b\/§h|oo,sur id)}f - ﬁbhloo,sur
4,795 % 10-3 2.497 x 103 1.343 x 102

Table 2: Comparison between solutions computed with the iterative method
and the direct method for different grid sizes.

2 | V2h |k
# of equations | 1178 | 2202 | 4390
iterative 13.1 | 2.1 | 53.9
direct 16.6 | 102.4 | 826

Table 3: Cpu-time comparison between the iterative method and the direct
method (seconds).

'To ensure that the iteration converges to the right solution, we compare the
tterative solution with the solution computed by the direct rnethod described
in [7}. We can not expect perfect agreement, because even though both methods
are second order accurate, they correspond to different sets of discrete approxi-
mations, Furthermore, the farfield boundary conditions are not the same in the
two approaches. Hence, the difference between the solutions will only tend to
zero as h? if the computational domain is sufficiently large, so that effects from
the farfield boundaries can be neglected. We use the same grids as described
above. The solutions obtained with the direct solver are denoted qbgh,q’)fﬁh and

¢%, respectively. The results, ¢f. table 2, show that the difference between the
solutions corresponding to the two methods tends to zero approximately as 2.

The cpu-time required for solving these problems on a Sun 4/20 with 8
megabyte memory can be found in table 3.

Next, we study the convergence rate of the iterative method. In tables 4~
9 we present [qﬁ.(k) - qﬁ('“‘l)[oo,w,./|¢|m,w,. as function of k for different values
of 4 and for different grid sizes. The iteration is truncated when this quantity
becomes less than 1073, The results confirm that the convergence rate improves
when p decreases and that it is essentially independent of the grid size.

In order to examine the effect of the farfield boundary conditions in the defi-
nite subproblem and the truncation of the forcing function #(z) in the indefinite
subproblem, we study how the solution depends on the size of the computa-
tional domain. We consider the lengths 1.2, 3.2 and 5.2, i.e. b = 0.6, 1.6, 2.6,
respectively, and we denote the solutions on these grids by ¢'-2, 32 and ¢52,
respectively. The grid size in both directions of the the Cartesian grid was 1/33.
We used 33 x 11 grid points in the grid around the body. The results, given in
table 10, suggest that the influence of the farfield boundary conditions decays
exponentially with the length of the computational domain,
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iteration | ¢op b. /31, oy

1 9.336 x 10~1 | 9.264 x 10~ | 9.216 x 10~1

2 5.835 x 1072 | 6.283 x 10=2 | 7.398 x 102

3 9.789 x 1073 | 1.097 x 1072 | 4,748 x 10~3

4 9.344 < 107+ | 5.336 x 1073 | 5.336 x 10™*
Table 4: Convergence rate, ;2 = 0.8

iteration | ¢op d’ﬁh dn

1 9.502 x 10~ | 9.547 x 10~! | 9.554 x 191

2 5509 x 1072 | 5.083 x 10~2 | 4.879 x 102

3 3.756 x 1072 | 3.306 x 10™2 | 3.174 x 1073

4 3447 x 107 | 4883 x 107% § 1.207 x 103

5 * * 7.231 x 104
Table 5: Convergence rate, y = 0.7

iteration | gy b./3n ¢y,

1 9.561 x 101 | 9.619 x 10~ | 9.561 x 101

2 4.008 x 1072 | 4.361 x 102 | 4.910 x 10~2

3 2.209 x 1073 | 2.597 x 10~23 | 3.211 x 103

4 1.541 x 107* | 1.029 x 10~* | 1.462 x 10~4
Table 6: Convergence rate, it = 0.6

iteration | ¢z b./an én

1 9.468 x 1071 | 9.540 x 10~1 | 9.588 x 10!

2 4.965 x 1072 | 4,351 x 102 | 3.769 x 102

3 5.370 x 1073 | 4.544 x 10~3 | 3.860 x 10~3

4 1.810 x 10~% | 3.450 x 10~% | 6.479 x 10~*
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iteration | ¢ap /3 Pk

1 9737 x 10" | 9,764 x 107* | 9.783 x 10~
p) 2.662 x 10=2 | 2.347 x 102 | 2.164 x 10™2
3 6.189 x 104 | 3.799 x 104 | 2.982 x 10—

Table 8: Convergence rate, u = 0.4

iteration | ¢op P/ on

1 9.905 x 10~ | 9.913 x 10~ | 9.916 x 10~
2 9.861 x 1073 | 9.022 x 1073 | 8.111 x 10-3
3 6.724 x 1075 | 2.556 x 10=% | 7.020 x 10~*

Table 9: Convergence rate, yp = 0.3
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I¢5'2 - ¢1'2|oo,sur |¢5'2 - ¢3'2]oo,sur

8.455 % 10~3 5.220 x 10—

Table 10: Comparison between solutions corresponding to different lengths of
the computational domain.
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