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Preconditioned Toeplitz Least Squares Iterations*

Raymond H. Chan' James G. Nagy? and Robert J. Plemmons$

Abstract

We consider the solution of least squares problems min ||b — T'g|l; by the preconditioned conjugate
gradient method, for m-by-n complex Toeplitz matrices T of rank n. We use a circulant preconditioner C .
derived using the T. Chan optimal preconditioner on #-by-n row blocks of T, such that C*C approximates
T*T. For Toeplitz T that are generated by 2r-periodic continnous complex-valued functions without any
zeros, we prove that the singular values of the preconditioned matrix TC'~? are clustered around 1, We
show that if the condition number of T is of O(n®), @ > 0, then the least squares conjugate gradient
method converges in at most O log n+-1) steps. Since each iteration requires only O(mlog n) operations
using the FFT, it follows that the total complexity of the algorithm is then only O(amlog® n 4 mlogn).
Conditions for superlinear convergence are given and numerical examples are provided illustrating the
effectiveness of our methods.

1 Introduction

The conjugate gradient (CG) method is an iterative method for solving Hermitian posttive definite systems
Az = b, see for instance Golub and van Loan {13]. When 4 is a rectangular m-by-n matrix of rank n, one
can still use the CG algorithm to find the solution to the least squares problem

min||b — Az||s. (1)
This can be done by applying the algorithm to the normal equations in factored form,
A¥(b— Am) =90, (2)

which can be solved by conjugate gradients without explicitly forming the matrix A* A, see Bjorck [2].

The convergence of the conjugate gradient algorithm and its variations depends on the the singular values
of the data matrix A, see Axelsson [1]. If the singular values cluster around a fixed point, convergence will
be rapid. Thus, to make the algorithm a useful iterative method, one usually preconditions the system. The
preconditioned conjugate gradient (PCG) algorithm then solves (1) by transforming the problem with a pre-
conditioner M, applying the conjugate gradient method to the transformed problem, and then transforming
back. More precisely, one can use the conjugate gradient method to solve min |lb—AM—1z}|5, and then solve
Ma = y.

In this paper we consider the least squares problem (1), with the data mafirix 4 = T, where 7" is a
rectangular m-by-n Toeplitz matrix of rank n. The matrix 7' = (¢;;) is said to be Toeplitz if tip = tj_p,
t.e., I" is constant along its diagonals. An n-by-n matrix C is said to be circulant if it is Toeplitz and its
diagonals ¢; satisfy ¢,j =c_j for 0 <j<n—1.
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matrix 7" and padding zeros to the bottom rows, we may assume without loss of generality that m = kn for
some positive integer k. This padding is only for convenience in constructing the preconditioner and does
not alter the original least squares problem. In the material to follow, we consider the case where k ic &
constant independent of n.

Recall that the solution to the least squares problem

minf|b — Tz|le (3)

can be found by the preconditioned conjugate gradient method by applying the method to the normal
equations (2) in factored form, that is, using T and T* without forming T*T. The preconditioner M
considered in this paper is given by an n-by-n circulant matrix M = C, where C*C is then a circulant
matrix that approximates T*T",

The version of the PCG algorithm we use is given in [2, p.102] and will be called Algorithm PCG for
Least Squares.

The idea of using the preconditioned conjugate gradient method with circulant preconditioners for solv-
ing square positive definite Toeplitz systems was first proposed by Strang [19], although the application of
circulant approximations to Toeplitz matrices has been used for some time in image processing. The conver-
gence rate of the method was analyzed in R. Chan and Strang [3] for Toeplitz matrices that are generated
by positive Wiener class functions. Since then, considerable research have been done in finding other good
circulant preconditioners or extending the class of generating functions for which the method is effective, see
T. Chan [10], R. Chan [4], Tyrtyshnikov [21], Tismenetsky [20], Huckle [14], Ku and Kuo [15], R. Chan and
Yeung [7], T. Chan and Olkin [11}, R. Chan, Jin and Yeung [6] and R. Chan and Yeung [8].

Recently, the idea of using circulant preconditioners has been extended to non-Hermitian square Toeplitz
systems by R. Chan and Yeung [8] and to Toeplitz least squares problems by Nagy [16] and Nagy and
Plermmons [17]. The main aimn of this paper is to formalize and establish convergence results, and to provide
applications, in the case where T is a rectangular (block) Toeplitz matrix. More precisely, we consider in
this paper, kn-by-n matrices T of the form

77 = [17,1F,--- 7171, (4)

where each square block T; is a Toeplitz matrix. Notice that if 7" itself is a rectangular Toeplitz matrix, then
each block T is necessarily Toeplitz.

Following [16, 17], for each block T}, we construct a circulant approximation C}. Then our preconditioner
is defined as a square cirenlant matrix C, such that

k
Cc*C =) C}C;.
j=t

Notice that each Cj is an n-by-n circulant matrix. Hence they can all be diagonalized by the Fourier matrix
F,ie C; = FA;F* where A; is diagonal, see Davis [12]. Therefore the spectrum of Ci,i=1,---k, can he
computed in O(nlogn) operations by using the Fast Fourier Transform (FFT). Since

k
C*C =FY (AJA;)F*,
j=1

C*C is also circulant and its spectrum can be computed in O(knlogn) operations. Here we choose, as in

[16, 17],

N
C=F( AA P~ (5)

i=1



The number of operations per iteration in Algorithm PCG for Least Squares depends mainly on the
work of computing the matrix-vector multiplications. In our case, this amounts to computing products:
Ty, T* 2,01y, C~*y for some n-vectors y and m-vectors z. Since (' is circulant the products O~ 1ty and
C~*y can be found efficiently by using the FFT in O(nlogn) operations, For the products Ty and T™z,
with T in block form with k n-by-n blocks T}, we have to compute n products of the form Tjw where T
is an n-by-n Toeplitz matrix and w is an n-vector. However the product Tjw can be computed using the
FFT by first embedding 7} into a 2n-by-2n circulant matrix. The multiplication thus requires O(2nlog(2n))
operations. It follows that the operations for computing Ty and T%z are of the order O(mlogn), where
m = nk. Thus we conclude that the cost per iteration in the preconditioned conjugate gradient method is
of the order O(mlogn).

As already mentioned in the beginning, the convergence rate of the method depends on the distribution
of the singular values of the matrix TC~! which are the same as the square roots of the eigenvalues of the
matrix (C*C)~N(T*T). We will show, then, that if the generating functions of the blocks 7} are 27-periodic
continuous functions and if one of these functions has no zeros, then the spectrum of (C*C)~(T*T") will be
clustered around 1. We remark that the class of 27-periodic continuous functions contains the Wiener class
of functions which in turn contains the class of rational functions considered in Ku and Kuo [15].

By using a standard error analysis of the conjugate gradient method, we then show that if the condition
number (1) of T'is of O(n®), then the number of iterations required for convergence is at most O(e:logn+1)
where @ > 0. Since the number of operations per iteration in the conjugate gradient method is of O(mlogn),
the total complexity of the algorithm is therefore of O(amlog?® n + mlog n}. In the case when a =0, ie. T
1s well-conditioned, the method converges in O(1) steps. Hence the complexity is reduced to just O(mlog n)
operations.

2 Properties of the Circulant Preconditioner

In this section, we consider circulant preconditioners for least square problems and study their spectral
properties. We begin by recalling some results for square Toeplitz systems.
For simplicity, we denote by Czx the Banach space of all 27-periodic continuous complex-valued functions

equipped with the supremum norm || - ||;. As already mentioned in §1, this class of functions contains the
Wiener class of functions. For all f € Car, let
1 " :
a = o F(®e *0do, k=0,41,42,--,

-7
be the Fourier coefficients of f. Let A be the n-by-n complex Toeplitz matrix with the (4, k)th entry given
by @j.3. The function f is called the generating function of the matrix A,

For a given n-by-n Toeplitz matrix A4, we let C be the n-by-n circulant preconditioner of A as defined in

T. Chan [10], i.e. C is the minimizer of F(X) = {{4 — X||# over all circulant matrices X. We note that the
{4, £)th entry of C'is given by the diagenal ¢;_; where

(n — k)o‘.]c + kagp_p,
Ch =~

n O§k<n, (6)
Cn+k 0< -k <n,

The following three Lemmas are proved in R. Chan and Yeung [8]. The first two give the bounds of || A,
and ||C||z and the last one shows that A — C has clustered spectrum.

Lemma 1 Let f & Cor. Then we have
‘|A||252”f£100<001 nxl,2,--~. (7)
If moresver f has no zeros then there exists a constant ¢ > 0 such that for all n sufficiently large, we have

[|A]lz > e. (8)



Lemma 2 Let f € Coy. Then we have
ICll2 < 2l flloo <00, n=1,2,---. (9

If moreover f has no zeros, then for all sufficiently large n, we also have
1
el < 2llleo < c0. (10)

Lemma 3 Let f € Cax. Then for alle > 0, there exist N and M > 0, such that for alln > N, A-C =U+V
where rank U < M and {V]a <«

Now let us consider the general least squares problem (3) where T' is an m-by-n matrix with m > n,
Here we assume that m = kn, without loss of generality, since otherwise the final block T} can be extended
to an n X n Toeplitz mafrix by extending the diagonals and padding the lower left part with zeros, (This
modification is only for constructing the preconditioner. The original least squares problem (3) is not
changed.) Thus we can partition T as (4}, without loss of generality. We note that the solution to the least
square problem (3) can be obtained by solving the normal equations 7*Tz = T*b, in factored form, where

k
™= 13T
j=1

Of course one can avoid actually forming T*T for implementing the conjugate gradient method for the
normal equations [2].

We will assume in the following that k is a constant independent of n and that each square block T3,
Jj=1,-++,k is generated by a generating function f; in Cor. Following Nagy [16], and Nagy and Plemmons
[17], we define a preconditioner for 7' based upon preconditioners for the blocks ;.

For each block T}, let C; be the corresponding T, Chan’s circulant preconditioner as defined in (6). Then
it is natural to consider the square circulant matrix

k
C*C=3 CiC (11)

i=1

as a circulant approximation to 7*T [17). Note, however, that  is computed (or applied) using the equation
(5). Clearly ' is invertible if one of the C; is. In fact, using Lemma 2, we have

Lemma 4 Let f; € Cor for j=1,2,- - k. Then we have

k
i=t
If moreover one of the f;, say fe, has no zeros, then for all sufficiently large n, we also have

o 1
I(E*C) M2 < 4IIEH§0 < 0. (13)
Proof: Equation (12) clearly follows from (11) and (9). To prove (13), we just note that C}C; are positive
semidefinite matrices for all j = 1, -, k, hence Amin (C*C) 2 Amin(C; Ce), where Amin(+) denotes the smallest

eigenvalue. Thus by (10), we then have

H(C*C) Ml < ICEC) Ml = HICTHE < 4[5}1;1@0- O



3 Spectrum of 7C-1

In this section, we show that the spectrum of the matrix (C*CY"WI™*T) is clustered around 1. It will
follow then, that the singular values of TC~?! are also clustered around 1, since (C*C)~1(T*T') is similar to
(TC1y(T'C1). We begin by analyzing the spectrum of each block.

Lemma 5 For 1 < j < k, if f; € Car, then for all € > 0, there exist N; and M; > 0, such that for all
n> N;, I7T; —C7 C5 = U+ 'V where Uy and V; are Hermitian matrices with rank U; < M; and {|Vj]|2 < e

Proof: We first note that by Lemma 3, we have for all € > 0, there exist positive integers N; and M; such
that for all n > N;, Tj — C; = U; + V; where rank I; < M; and [|¥]|2 < €. Therefore,

7Ty - C7 Gy (T = C) + (T = GGy =T (T ~ Cj) — (T; = C))(Ty — Ci) + (T - Ci)' T
T3 (Us + Vi) = (U + Viy (U + Vi) + (U5 + V)" = Ui + V.

Il

Here

Uy = 2305 + Ui Ty = U305 = U5 Vs = V05 = 03 (33 = U = Vi) + (T = V)T
and V; = 17}*1'} + I}*ﬂ; - ffj*ffj It is clear that both U; and V; are Hermitian matrices. Moreover we have
rank Uy < 2M; and ||V;|[s < 2€]|T3]lz + ¢%. By (7), we then have ||V;||2 < 4¢||fjlloo + 2¢2.

Using the facts that
k

™r—-Cc*"C = (I7 T ~ C7Cy)
i=1
and that k is independent of n, we immediately have

Lemma 6 Lel f; € Cor for j = 1,~;-k. Then for all € > 0, there exist N and M > 0, such that for all
n>N,T*"T - C*"C=U+V where U and V are Hermitian matrices with

rank U < M (14)
and

IVl < e. (15)

We now show that the spectrum of the preconditioned matrix (C*C)~*(T*T) is clustered around 1. We
note that this is equivalent to showing that the spectrum of (C*C)~1(T*T")— I, whexe I is the n-by-n identity
maftrix, is clustered around zero.

Theorem 1 Let f; € Cor forallj=1,-.. k. If one of the fi, say fe, has no zeros, then for all e > 0, there
exist N and M > 0, such that for alln > N, af most M eigenvalues of the matriz (C*CY"WT™*T) — I have
absolute values larger than e.

Proof: By Lemma 6, we have (C*C)~1(I*T) — I = (C*C)~H(I*T — C*C) = (C*C)~1(T + V). Therefore
the spectra of the matrices (C*C)" (T*T)—I and (C*C)"Y*(T +V)(C*C)~1/2 are the same. However,
by (14), we have rank {(C*C)‘l/zﬁ(C*C)_lﬂ} < M and by (15) and (13), we have
~ ~ 1
I(C*C) 2V (C* Gy 2| ls < ([P ]falI(C*C) ™l < 4f||EHgo-

Thus by applying Cauchy’s interlace theorem (see Wilkinson [22]) to the Hermitian matrix
(C*O)—1/2(}(C*O)—1/2 + (C*C)~1/29(C*C)—1/2,



we see that its spectrum is clustered around zero. Hence the spectrum of the matrix (C*C)~}H(T™*T) is
clustered around 1.

From Theorem 1, we have the desirad vlgstell 1 result; namely i f; € Cop forallj =1, .-k and if one
of the f; has no zeroes, then the singular values of the precanditioned matriz TC™Y are clustered ¢round 1.

4 Convergence Rate of the Method

In this section, we analyze the convergence rate of Algorithm PCG for Least Squares, for our circulant
preconditioned Toeplitz matrix T7C~!. We show first that the method converges in at most Ofalogn 4+ 1)
steps where O(n®) is the condition number of T . We begin by noting the following ervor estimate of the
conjugate gradient method, see [8].

Lemma 7 Let G be a positive definite matriz and © be the solution to Gz = b. Let m; be the jth iterant
of the ordinary conjugate gradient method applied 1o the equation Gz = b. If the eigenvalues {8;} of G are
such that

0 < << 5;: <b < 6p+1 <.=< 5ﬂ—q < ba < 5n-q+1 <. Kby,

He — zlle (b - 1)“"? z (5 - 5k)
<2 . . 16
lealle <2 0UF1) s (TR 19)

Here b = (ba/b1)% > 1 and ||v]|g = v* Gw.

then

For the system
(C*CYy Y T*TYe = (C*C)~ 1B, (17
the iteration matrix G is given by G = (C*C)~Y2(T*T')(C*C)~/2. By Theorem 1, we can choose b; = 1 —¢
and by = 1+ €. Then p and ¢ are constants that depend only on ¢ but not on n. By choosing € < 1, we have

b—1 1—+1—¢2

b+1" € <€
In order to use (16), we need a lower bound for §;, 1 < k < p. We first note that
2
1671l = 7" Ol < Sl n(r).

If one of the f; has no zeros, then by (8), we have for n sufficiently large ||T|3 > ||T4i|2 > ¢ for some ¢ > 0
independent of n. Combining this with (12), we then see that for all n sufficiently large,

G2 < & K(T*T) < En®,

for some constant ¢ that does not depend on n. Therefore,

1
6k>m1n5g_ en™, 1<k<n.
e =
Thusfor 1< k< pand §d &€ [1—¢,1+¢], we have,
0< o= < en®
Hence (16) becomes
||z — =jlle

AT pppoi-p—g
|lz — aolle



Given arbitrary tolerance 7 > 0, an upper bound for the number of iterations required to make
|z — z;lle
liz — aolla

is therefore given by
rloge+ aplogn —logr
loge

jo=pta— = O(alogn +1).

Since by using FFTs, the matrix-vector products in Algorithm PCG for Least Squares can be done
in O{mlogn) operations for any n-vector v, the cost per iteration of the conjugate gradient method is of
O(mlogn). Thus we conclude that the work of solving (17) to a given accuracy T is O(amlog? n +mlogn)
when n > 0.

The convergence analysis given above can be further strengthened. For 7' an m-by-n matrix of the form
(4) with m = kn, let Ayin (T3 T;) = O(n™4) for j =1, . k. By Lemma 1, we already know that

Amin(TFT3) < Amax(T7 1) < 2|1F11%,

therefore a; > (. By the Cauchy inferlace theorem, we see that
k
Aoin(T*T) 2 Y Aain(T313) > O(n™),
i=1

where & = min; o; > 0. Therefore

Amax(T*T
Amin (T* T)

In the case when one of the o; = 0, i.e. the block 7} is well-conditioned independent of n, we see that
the least squares problem is also well-conditioned, so that x(7") = o(1).

When at least one a; = 0, d.e., (T} = O(1), the number of iterations required for convergence is of
O(1). Hence the complexity of the algorithm reduces to O(mlogn). We remark that in this case, one can
show further that the method converges superlinearly for the preconditioned least squares problem due to
the clustering of the singular values for sufficiently large n (See R. Chan and Strang [3] or R. Chan [5] for
details). In contrast, the method converges just linearly for the non-preconditioned case. This contrast is
illustrated very well in the section on numerical tests,

w(TT) < < 0(n®).

5 Numerical Tests

In this section we report on some numerical experiments which use the preconditioner ¢ given by equation
(6} in §1 for the conjugate gradient algorithm PCG for solving Toeplitz and block Toeplitz least squares
problems. Here the preconditioner €' is based on the T. Chan optimal preconditioner C;, for each block T}
of T, as in §2. The experiments are designed to illustrate the performance of the preconditioner on a variety
of problems, including some in which one or more Toeplitz blocks are very ill-conditioned.

For all numerical tests given in this section we use the stopping eriteria [|s()||5/1]s)l; < 10~7, where s
is the (normal equations) residual after j iterations, and the zero vector is our initial guess. {Observe that
the value |{s()||; is computed as part of the conjugate gradient algorithm.) All experiments were performed
using the Pro-Matlab software on our workstations. The machine epsilon for Pro-Matlab on this system is
approximately 2.2 x 10-16, ‘

To describe most of the Toeplitz matrices used in the examples below, we use the following notation. Let
the m-vector ¢ be the first column of 7', and the n-vector #7 be the first row of 7', Then T' = Toep(e, 7).
The right hand side vector b is generally chosen to be the vector of all ones.

Example 1: In this example we use the following three generating functions in the Wiener class to
construct a 3n x n block Toeplitz matrix.



() (i) =r) = (5~ U+ D7+ VTT(5 = U+ 171, 5=1,2,...n.

(i1) cx(i) = (li— L1+ 1)"t, §=1,2,...,n,
r(7) =v=1(li -1+ D)~H, j=1,2,..,n

(it) (1) = r3(1) = §m*
(i) = (i) = 4DVt - o) T=28,m

The matrix T' is defined as 77 = [T{, 77, 2T], where Ty =Toep(e1,1), To =Toep(cs,rs) and
T3 =Toep(cs,rs). For n x n systems R. Chan and Yeung [8] show that x2(T3) = O(n%), while 7} and
T, are well-conditioned, They also show that T. Chan’s preconditioner works well for 73 and T, but not
well for T3.

In Table 1 we show the convergence results for this example, using no preconditioner and C as a precon-
ditioner, for several values of m and n. Figure 1 shows the singular values of T and TC~! for m = 210 and
n = 70. These results illustrate the good convergence properties using the preconditioner C for this example
containing an ill-conditioned block. Moreover, our computations verify the fact that ko (T") remains almost
constant as n increases from 40 to 80.

Example 2: In this example we form a 2n x n block Toeplitz matrix using generating functions from R.
Chan and Yeung [8] which construct ill-conditioned n x n Toeplitz matrices. Here 73 = T4 and thus both
blocks of T" are ill-conditioned. The generating function, which is in the Wiener class, is:

c;(l) = ?‘1(1) =0

C]_(j) = rl(j) - (§J - 1| + 1)_1'1 + \/—_IGJ - 1[ + 1)_1'11 i=2,...,n
Using the above generating functions, we let 77 = [T}, 73)7, where Ty = T} =Toep{ey, r1).

In Table 1 we show the convergence results for this example, using no preconditioner and C as a pre-
conditioner, for several values of m and n. Figure 2 shows the singular values of T° and TC™! for m = 140
and n = 70. These results illustrate the good convergence properties of G for this example even though 1t
contains all ill-conditioned blocks.

In summary, we have shown how to construct circulant preconditioners for the efficient solution of a
wide class of Toeplitz least squares problems. The numerical experiments given collaborate our convergence
analysis. Examples 1 and 2 both illustrate superlinear convergence for the PCG algorithm preconditioned
by ', even when in Example 1 the matrix T contains an ill-conditioned block. In addition, even though the
matrix T in Example 2 contains all ill-conditioned blocks, the scheme works well for the computations we
performed.

2-dimensional signal or image restoration computations often lead to very large least squares problems
where the coefficient matrix is block Toeplitz with Toeplitz blocks. Block circulant preconditioners for this
case are considered elsewhere [9].

In this paper we have used the T. Chan [10] preconditioner for the Toeplitz blocks. Other circulant
preconditioners such as ones studied by R. Chan [5], Huckle [14], Ku and Kuo [15], Strang [19], Tismenetsky
{20], or Tyrtyshnikov [21], can be used, but the class of generating functions may need to be restricted for
the convergence analysis to hold.
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Example 1: m =210, n =70
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Figure 1. Singular values for T and TC~! in Example 1.

Example 2: m = 140, n =70
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Figure 2. Singular values for T and T'C~! in Example 2.

Example 1 (m = 3n) || Example 2 (m = 2n)
n || no prec, | with prec. || no prec. | with prec.
40 96 14 29 11
50 126 14 33 15
60 155 13 44 13
70 167 13 52 12
80 186 13 65 14

Table 1. Numbers of iterations for convergence in Examples 1 - 2.
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