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Abstract

For the computation of nonlinear solutions of Hamilton-Jacobi scalar equations in two space
dimensions, we develop high order accurate numerical schemes that can be applied on complicated
geometries. Previously, the recently developed Essentially Non-Oscillatory (ENO) technology has
been applied in simple domains like squares or rectangles by using dimension by dimension algo-
rithms. On arbitrary two dimensional closed or multiply connected domains, first order monotone
methods were used. In this paper, we propose two different techniques to construct high order
accurate methods using the ENO philosophy. Namely, any arbitrary domain is triangulated by fi-
nite elements into which two dimensional ENO polynomials are constructed. These polynomials are
then differentiated to compute a high order accurate numerical solution. These new techniques are
shown to be very useful in the computation of numerical solutions of various applications without
significantly increasing CPU running times as compared to dimension by dimension algorithms. Fur-
thermore, these methods are stable and no spurious oscillations are detected near singular points or
curves,
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1 Introduction

During the past decades, there has been a considerable amount of work committed to constructing high
order accurate numerical methods for solving nonlinear partial differential equations whose solutions (or

their derivatives) develop steep gradients. This paper is devoted to the special case of the so-called
nonlinear scalar Hamilton-Jacobi equations. The model problem is to find a numerical solution of :

Ut+H(Um Uy,x’y) = 0 (1)
U(z,y,O)ﬂ Uo(z,y),

given some combination of Dirichlet and Neumann boundary conditions, where H{U;,U,,z,y) is a gen-
erally nonlinear Hamiltonian in two space dimensions. The domain Q is an arbitrary simply or multiply
connected domain in R? whose boundaries () are assumed to be at least either piecewise C° (Dirichlet
or periodic boundary conditions) or piecewise C* (Neumann boundary condition) so that an outward
normal can be defined except at isolated points.

Up to now, most numerical experiments have used cartesian based algorithms and regular meshes
restricting the shape of domains Q to simple configurations like squares or rectangles. Some numerical
methods using first order monotone numerical schemes can be found in [2]. Later, high order numerical
methods for solving combustion problems in two dimensions were derived in [11] and extended in [12] to
high order Essentially Non Oscillatory schemes (ENO) for rather general Hamiltonians. Other attempts
for solving hyperbolic problems on unstructured grids can been found in {4, 8, 10, 13, 17].

The domain ) is assumed to be arbitrary and may have complicated boundaries. For that reason,
we introduce new numerical methods acting on arbitrary grids that fit the boundaries by triangular
meshes. However, the interior of the domain is- discretized by square meshes and more conventional
two dimensional techniques are constructed in order to reduce significantly CPU time calculations. The
regular square triangulation is denoted by T, and the boundary fitting triangulation by T'By (refer
to figure 9 for an example). These new techniques are closely related to the ENO idea. The ENO
apparatus can be used as a preprocessing step in order to evaluate some non-oscillatory two dimensional
polynomials which are then differentiated for computing accurate pointwise value of Uy at vertices A;
and some derivatives 83 d)* of Uy at vertices Cj. The vertices A, for j = 1...NV are defined as the nodal
values of the triangulation 74, and the Cis, for k = 1...NT, are the center of gravity of each triangle X
of 7 he

The general algorithm to compute a numerical approximation of equation (1) will follow these three
steps :

e 1.) On each triangle, we construct a two dimensional ENO polynomial of degree 2,3, and up.
e 2.) The numerical solution Up{4;), j = 1...NV, is computed at each time step by using the ENO

polynomials defined in step 1) and high order non-oscillatory Runge-Kutta discretization time
schemes.

¢ 3.) We evaluate an accurate approximation of VU;(C}), for k = 1...NT, by solving local Riemann
problems along the edges of K. To do so, we approximate a numerical solution of the non-strictly
hyperbolic system obtained by differentiating (1) with respect to = and y :

ov  HV,W) _
3{"' Sz = 0, (2)
oW  H(V,W) _



where (V = §Z.W = &) is the gradient vector of U. Some boundary and initial conditions are
added to (2) and (3) according to prescribed conditions on the model problem (1).

Our goal is to compute the best possible non oscillatory polynomial (step 1 of previous algorithm) on
any K of 7, without excessively increasing CPU time calculations as compared to dimension by dimension

algorithms. In addition, we want to minimize (make as local as possible) the search for suitable ENO
polynomials with the goal of constructing a sequence of stable approximate solutions. Finally, we want

to compute a high order accurate sequence of numerical approximations U, to the exact solution U of

(1).

These results are achieved by using two dimensional numerical methods on the grids T'B,, and TI;.
The simplest calculations will be involved in T, thus reducing the computational time significantly
compared to more expensive work needed in T'B. To be more precise, we use Finite Element Techniques
(FET) in TI,. That framework simplifies the algorithms and the search for an acceptable non oscillatory
polynomial is straightforward. Note however that the final constructed ENO polynomial is not the optimal
one. Despite this fact, numerical results demonstrate that this approach is very accurate and stable even
when the solution becomes nonsmooth. In addition, this technique requires evaluations at nodal values
of U, only. Therefore, step 3 of the previous algorithm can be omitted. In the triangulation TB;, we
solve a mixed problem obtained by coupling the Hamilton-Jacobi equation (1) along with the non strictly
hyperbolic system (2,3). This technique reduces the size of the stencil and makes the construction of the
polynomial more local. However, it requires that accurate values of the gradient of U, are computed via
step 3 of previous algorithm. The degrees of freedom on each triangle of both triangulations are sketched
in figure 1.
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In the next two sections, we present a detailed description of both techniques when € is either a
regular square domain {2 or the unit disc. In section four, we investigate the interface problem when both
triangulations are matched together. Section five presents some additional numerical examples using non
convex Hamiltonians and rather general Hamiltonians of the form H(U,,U,,z,y). The last section of
this paper concludes this study and gives further comments on stability and improvements that can be
done on the interior grid for which grid refinement techniques can be implemented without too much
additional work.




2 Square grids and Finite Element Techniques (FET)

In this section, we consider the model problem (1} in which we assume periodic boundary conditions on
the unit square () = {1 1]%. The vertices A; . = (z; = j % Ar — 1, 3; = i ¥ Ay — 1) are defined uniformly
inside the domain up to the boundary 00, and the boundary set is defined by the set of points i = 0,
j=0,7= N, and j = N where N = %, The stepsizes are kept uniformly constant Az = Ay = h in
order to be able to implement finite element techniques requiring that the set of vertices defining the
stencils of larger extended (FP,, Ps, ...) triangles, still belongs to the computational grid. Moreover, the
initial triangulation is defined by cutting each square mesh into two P, triangles along the main diagonal
y —y; = ¢ — z;. Consequently, from the set of nodes (A4; ;, A j+1, Ait1,) Ais1,j+1), We define two triangles
with nodal values (A;;j, Ai j+1, Ai+1,5+1) and (A;j, Airr s Aigr1,j41)- Therefore, from (N +1)? vertices, we
define a triangulation T'I, of 2N? triangles.
The algorithm introduced in section 1 can be modified as follows :

e 1.) Preprocessing step : For all triangles of T'I;, we define second, third and higher degree ENO
polynomials by using FET.

o 2.) Time evolution scheme : We advance the solution in time by taking high order ENO multistage
Runge-Kutta time schemes {12, 16].

2.1 Preprocessing step - Construction of two dimensional ENO polyno-
mials

First of all, we review {6, 7, 12, 15, 16] some basic properties of ENO interpolating polynomials in one
dimension. To define a (m—1)* accurate approximation of (U}), at some grid point, we interpolate some
pointwise values of U, by making use of Newton’s divided differences. The final m** degree polynomial
satisfies :

k=m

Qmlz) = E Ri(z) and By = Di(z — 2icpr))e (2 — Tigsiy1), (4)
k=0

in which R; is a polynomials of degree < k, r(k) + s(k) = k — 1, r(k) = r(k — 1) (Extension of the
stencil to the right) or r(k) = r{k — 1) — 1 (Extension of the stencil to the left), and Dy is the minimum
k* divided difference corresponding to the right and left extended stencils [15, 16]. The non oscillatory
behavior of the final approximation comes from the fact that the polynomials R), minimize successive
k*h derivatives of Q,,. The initial "zero” stencil is upwinded on the direction of the characteristics and a
Lax-Friedrichs approximation is enforced at sonic points. Finally, the m** degree polynomial uses m + 1
pointwise values Up(Zi—r(m))s s Un(Zits(m)+1), Where r(m) + s(m) = m — 1; and (U;)} is simply set to
%lrr. This construction easily extends to two dimensional problems by a dimension by dimension
algorithm, and requires evaluations of ENO polynomials in each direction. Moreover, the full method is
essentially non oscillatory because the ENO interpolating polynomials stay essentially monotone within
meshes into which the approximate solution develops large step gradients.

Our method extends parts of the ENO basic properties for two dimensional polynomials. Somehow,
derivatives or linear combinations of derivatives of two dimensional ENO polynomials should be min-
imized according to some preset criterion. Similarly, the m** degree ENO polynomial must satisfy an
equation similar to (4) but extended to two dimensions. In addition, first derivatives of the interpolating
polynomials should be essentially monotone so that no significant new overshoots or undershoots are
created in singular triangles.



In the case of the regular triangulated grid T',, we use finite element techniques for defining a m*
degree polynomial that interpolates 7, (k + 2) nodal values of U, at some vertices A, for some

i-m<1<i+m, and j —m < n < j+m. The construction follows basic finite element techniques.
Ones m"red:ent ic to nee the linear fran:fnrm:\hnn I3 (‘ﬂmu‘p 2 that maps each tr:a.nﬂ'le K= fA1 A, Aa

of T1, onto the reference element K = (A3(2 = 0,§ = ) Alg=1,§= 0) and Az(-’l‘: =0,§= 1)) Then,
basis functions on appropriate finite element spaces V" = {f € C"(K )| fis a m** degree polynomial}
are used to evaluate some m* degree polynomials on K
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Figure 2.

In short, we proceed as follows : on the reference element, we start by constructing a piecewise linear
two dimensional polynomial P (z, y) by interpolating the values of U} at (A;,AZ,A;;) :

Py(#,§) = Un(As) + (Un(A1) = Un(Aa))E + (Un(Az) — Un(Aa))3, (5)

where {#,{) are the coordinates on K of any point A(z,y) located on K. They are classically obtained
via the linear transformation F':

T = (Il _ Ia)i‘ + (32 - $3)§’ + Ia = F}(Ii, g)
v o= (n1—y3)&+ (y2 — ya)§ + v = F2(2, ),
where (z;,y;), for j = 1,2,3, are the coordinates of A;, § = 1,2,3. Then, given this polynomial, we

- construct f’g(i‘, i) by extending the initial triangle K along two of its edges and by keeping fixed one of
its three vertices. Figure 3 describes this extension.
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The three extended triangles are denoted by (K3)*?? and their six vertices by (B, Bz, Ba, B12, B13, B23).
where B;; are the middle points of the edges defined from B; to B;. Note that the vertices B;, B;; still
belong to the grid TI,. Next, the second degree interpolating polynomial directly follows from basis
functions defined on P, finite element space, i.e:

=3 3
Pa(d,§) = 2 Un(BON(@A =1) +4 D0 Un(Biy)hid; (6)
=1 fr=10<)

where ;, i = 1,2, 3 are the barycentric coordinates on (K3)13, i.e My + Ao+ A3 =1, A; = £, and ), = §.
Again, as ENO polynomial, we choose the one that minimizes some "elliptic” combination of second
derivatives (the Laplacian for example). The corresponding extended triangle from K is then denoted by
S,. This triangle can be interpreted as the non oscillatory second order stencil and is the support of the
P ENO polynomial.
This procedure is used to define higher order ENO polynomials by extending S; to S3 (ten degrees of
freedom), S5 to S, (fifteen degrees), and so on. The cost for constructing these polynomials is not too high
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because only simple evaluations of basis functions on appropriate finite element spaces are required. These
ENO polynomials satisfy non oscillatory properties since successive derivatives are minimized in some
sense. Moreover, it is proved in [1] that jumps upon the highest derivatives of any approximate solutions
delermine the regions in which the solution is highly singular. Therefore, by testing the amplitude of the
highest derivatives of a given function, it is possible to determine the smoother part of that function in
a given region (in our case, the area defined by the interpolating stencil).

Finally, the gradient of U), at the vertex A, ; is defined by :
an.J' _ aPm(‘T’y)

A 31‘ - a.’B (z=z;.y=1i)
oU; ; AP, (z,y

Wij =32 = —5(“'““')' )

Y ¥ (z=zjv=w)

for a (m — 1) accurate approximation of the gradient (V, W) at A; ;.

2.2 Evolution operator

For the time evolution operator, we implement any of the high order accurate ENO Runge-Kutta time
schemes derived in [16]. This is a multistage scheme that needs m steps to advance the solution from
time T to T + At, where m is the maximum order of accuracy reached by the method. The scheme has
the general form :

U.".+k/m — L(Un, o Un+(k-1}/m) = Atf;[(Un, — Un+(k-1)/m),

t

for k = 1,...m. Here, H is the numerical Hamiltonian and depends only on U™(*-1/™ for m < 3, and L
is a linear combination of U,-';""Um, for 1 =0, ...,k — 1. More details can be found in [15] and in [16].
As numerical Hamiltonian, we choose the Roe-Fix approximation defined in [12]. We recall below its
definition :
( H(V*,W™*) if Hy(V, W) and Hy(V, W)
does not change signs
inVelIV-,V*),
WelIW-,Wt},

—103(21/*, Vo)Vt —=V~);  otherwise
and if Hw(V, W)
) - does not change sign in
H{(VE,W#) =4 ALV LB,
Wel(W-,W);,
H(v, Moy
—la (WH,W-)(W* —W~); otherwise
and if Hy(V,W)
does not change sign in
ALW<LB,
Vel(V-,Vt)
| HEF(V-, VW, W) otherwise,

where (V,-ff, W,-‘_f) represents discontinuous gradient vectors of U at A;; from =+ half planes, o, and ay are

local bounded coefficients and are defined for adding enough numerical viscosity at sonic points, A and

T



B are lower and upper bounds within a given cell, and V* and W* are defined by upwinding :

ve = [V HH(V,W) <0,
= V- HHV,W)20
{w+ if Hw(V,W) <0,

W W- i Hw(V,W) >0

1l

where =+ indicates in which half plane is located the initial support of the ENO interpolating polynomial
for the z and y derivatives, respectively ; and HLF is the Lax-Friedrichs approximation of the Hamiltonian
H. Note that in the case of triangulation T, each interior vertex of the computational grid has six
neighboring triangles {figure 4).

K]

K3 K
K4

Figure 4.

Therefore, the four derivatives (V*, W#) defined in each of the four half spaces ¢ < 74,7 2 z4,,,¥ <
Ya, ¥ = Ya, can be chosen according to two criteria : 1) The z and y derivatives are computed from
the ENO polynomials whose initial supports (one among the triangles Kj, i = 1,...,6) are located in
corresponding half planes ; 2) Since three different derivatives can be computed (three possible triangles
in each half plane), we choose the one which is the least oscillatory of the three. For example, we take :

3P§:,K5J\’e Tiiy Yis
axﬂf J yJ) (7)

Vi = min
{rmt derivatives)

where the triangle indexing is the one defined in figure 4, P, is a m** degree ENO polynomial, and the
minimum is taken over the set of linear combinations of m** derivatives as explained in previous section.

2.3 Model Problem - Numerical Experiment

We investigate the model problem {1) with Hamiltonian H(V,W) = —/1 4+ V2 + W? and two sets of
initial conditions :

Ut(z,y) = +sin%(:ﬁ+y2)
Us (z,9) = —sinz (e’ +37)
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Using Uy, the solution U(z,y,t) is smooth for all time. Starting with Uy, the solution develops a
singularity point at the origin with respect to its first derivatives after some finite time ¢t > Tj from a
characteristic converging feature.

Numerically, Uy is compared to the exact solution :

U(X(r,1),8) = U (r) + t(H(DUG (r)) DU (r) — H(DU§ (),
where r = VX?7+Y?, Uf(r) = #sinZr?, and H(DUF(r)) = H(+nrcos 22%). Computed order of

accuracy for second and third order accurate methods are given in table 1.

Scheme L-norm L*®-norm

(2-2)ENO - FET | 2.00 145

(3-3)ENO - FET | 3.81 3.35
Table 1.

The kink does not influence the performance of the full scheme because it is precisely located at a
vertex of the grid T, (h = 1/10). Comparison with first order methods have been done. Important
improvements at the location of the singularity are obtained. The kink is sharper and its location very
accurate even if it is not located on a grid point. Moreover, no significant improvement on the shape
of the full solution is obtained from second to third order accurate approximations except at regions of
smoothness in which the expected overall accuracy is attained. CPU times for these two methods were
1.05s and 3.65s for a 20 = 20 grid per iteration for second and third order accurate methods on a sparc
station, respectively. The CFL coefficient was set to 0.5 with a maximum theoretical value of 715

3 General Grid - The Mixed Formulation

The domain § is now non uniformly triangulated by 7' B,. We investigate the model problem given by
the equations (1,2,3) with either Dirichlet or Neumann boundary conditions. For simplicity, we assume
that £ is the unit disc.

To compute an accurate numerical approximation of this problem, we follow the algorithm stated in
the introduction. Each step is investigated in forthcoming subsections.

3.1 Preprocessing step - ENO Polynomial

This section is devoted to computing some ENO polynomials in each triangle K of T'Bs. The basic
construction is done again for simplicity in the reference element X for any K. For further simplifications,
the vertices of K are denoted as before by (A;, A3, A3), and the P; polynomial on K is simply the one
defined by equation (5). Next, we construct the P, ENO polynomial by adding second degree terms to
Py. We obtain the representation :
s . #(z-1 .n 3{(1 — ¢

B(2,9) = A(Z,9) + 01““("""'2—")" + 02y + Cl%—@“, (8)
where {a;, b;, ¢;) are free parameters. To find the unique second degree polynomial, we choose the known
values of the gradient (V, W) at the center of K, and a pointwise value of U, at a vertex B, I = 4,5,6
which is in the vicinity of either one of the three edges of K (figure 5).
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The unknown coefficients directly follows if we first write (a1,¢;,) as a function of b, :

a; = 6(Uy — Us) + 2b — 6Vk (21 — 73) — 6Wir (11 — y3)
a = 6(Uz—Us)+2b - 6Vk(zs — 3) — 6Wk(y; — y3),

where (z,y;) are the coordinates of A;, j = 1,2,3 ; and finally solve for b;. Consequently, three possible
set of coeflicients (a3, by, ¢;) can be obtained. Again, we choose as ENO polynomial the one that minimizes
some combination of second derivatives [1]. The corresponding extended ENO stencil is denoted by 5;.
Note that the stencil S; is no longer a triangle but a simply connected region with boundary points
(B, By, B3, By) (refer to figure 5 for the notations). )

To construct a third degree polynomial, we again use P; and its support S;. We require :

#2HE—1)g -2 (7 — 1 — ¢ (I - 24} 2g(g — ¢
( )("‘E I‘i) +bzy(y )(y y‘l) + ¢ ( $4)y +dgxy(y y‘i), (9)
3 3 2 2
where (ay, by, ¢z, d;) are unknown coeflicients. To define them, we use the values of the gradient in S,
(figure 6), and write two of these coeflicients with respect to the others. Finally, we finish the computations

Py(2,9) = Pa(2,9) + az
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by taking pointwise numerical values of U at two neighboring vertices to two edges of S; (figure 6). This
leads to six possible set of coefficients. Again, as third degree ENO polynomial, we take the one that
minimizes some elliptic combination of third derivatives [1]. The new extended stencil is denoted by S3
and its boundaries are defined by six vertices and four triangies.
C2
Extension (C1,C2) §3

..........

6 Possible Extensions
at (CL,Cj),

inotj.

Extension (C1,C4)

Figure 6.
This process can be repeated to construct polynomials of higher degree. Of course, the construction
of such polynomials requires more and more work. However, note that only one unknown coefficient has
to be determined to construct a fourth degree ENO polynomial.

3.2 Evolution operator

We implement the evolution operator defined in section 2.2. The main difference results in the triangle
numbering. So, if we assume that A; belongs to n(j) triangles, then the values of (V}i, Wj*) are computed
among the n(j} possible ENO polynomials whose original stencils (triangles K7, ..., Kp(;)) are located in
the appropriate half planes. This situation is briefly sketched in figure 7.
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Figure 7.

Hence, by defining the sets
Kf = {K = (A1 Az A4) € Kyy oy Kugs) 50 that 24, 245,74,(2) ()5}
Ky = {K = (A;, Az, A3) € Ky, ..., K5y 50 that ya,,¥4,.Y4,(2) (S)yj}s

we compute approximate values of the + gradient vector according to the location of A; as follows :

RF
VE = o OPn* (25, 9;)
)

(m** derivatives) Oz
oPE
Wt = min _.M
7 m** derivatives Oy

Note however that other choices for computing stable derivatives can be implemented. Again the main
ENO property is satisfied since at each time step the least oscillatory polynomial among the predefined
ENO polynomials on K%, is chosen. Moreover, the ENO polynomials ensure quasi monotone variations
within their ENO stencils as long as no jump in Uy appears along the calculations. Therefore, no spurious
oscillations should be detected.

Finally, in order to advance the solution in time, we choose the high order Runge-Kutta time dis-
cretization schemes introduced in section 2.2.

3.3 Postprocessing Step: Evolution of the gradient vector (Vi, W})

The gradient vector (V4, W) satisfies the system of non strictly hyperbolic equations (2,3) introduced
earlier. In addition, Dirichlet boundary conditions are taken if the initial Hamilton-Jacobi equation
assumes Neumann boundary conditions. Neumann boundary condition can be formulated as follows :
if Hy(0Q)N, + Hw (0N, < 0, then we must prescribe some boundary conditions. In the other case
free outflow conditions can be implemented. Here (N, N,) is the outward normal to 8. Consequently,

12



upwinding schemes should be implemented with the appropriate boundary treatment. Remark that
for consistency, we require that %—-‘5— = % strongly if U € C*({1), or weakly in the distribution sense
otherwise. Therefore, the numerical scheme used to solve the above system must define a sequence of
solutions satisfying ¢ such a consistency relation up o some arder. In next section will shall indicate that

a positive result can be obtained if the solution is smooth.
To construct a numerical approximation of (Vi, W), we integrate (2) and (3) over K and make use

of volume averages. For example, integrating (2) over K and using the divergence theorem, we obtain :
G,
= jK Vdy) = - / H(V,W).N,do

= ...5_‘,](}“) (V,W).Nide, (10)

where (E(K,1), E(K,2), E(K,3)) are the three edges of K, and N} is the z component of the outward
unit normal to the edge F(K,7). The right hand side integrals over E(XK,t) are evaluated by a quadrature
formula to the same order of accuracy as the full ENO method. Therefore, for second order accurate
approximation, we choose either the midpoint formula or the trapezoidal rule. For third order accurate
method, either a Gauss node quadrature or the so called "three eight rule” described in (12) is imple-
mented. The left hand side of (10) is the volume average of V on K and is denoted by V. Introducing
this notation, V; satisfies :

- 3
Surf(h’)aég‘ = —Z|E(Ix’,i)]HfF(azP;(a;),BIP,L(U;)
=1
8, Py (a:),8, Pl (1)) Ny, (11)

where sur f{ ') is the surface of the triangle K (surf(K) = %|A1:43 A Az2A3)), |E(K,©)| is the length of
the i*" edge of K, and P3'(o;) are the ENO polynomials defined in section 3.1 taken at a quadrature
point o;, and are constructed in regions containing either the right or left triangles from each side of the
edge E(K,i), 1.e E(K,i) = E(K,,i) = E(K,,1). The reader can refer to figure 8 for the notation.
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The numerical flux HFF(V,, ¥}, W,, W) is the one defined in [16]. Here "RF” stands for the "Roe-Fix”
scheme, and "q" for the "quadrature” rule which is taken for approximating the integrals along the edges.
The numerical flux HAF uses a Local Lax-Friedrichs approximation at sonic points and a Roe upwinding
scheme otherwise. More details can be found in [16]. As example of quadrature formula, we give the
interesting fourth order three eight rule :

- 3 o i i
ECH, ) BEF(V, Vi Wo, W) = SIB(KIHT (45) + 3H7 (45,) +
3HRF(AL) + H (A1), (12)
where HRF(Ai ), for I,n = 0,1, 1 = 1,2,3, are the numerical fluxes evaluated at some vertices A}, (figure
8).
The numerical time evolution scheme is the Runge-Kutta multistage scheme defined in section 2.2.
The final time evolution operator is conservative

Y surf(K)VEr™ = 3 sur f(K)Vgt/™ for any 0 < 1< k= 1,¥n 20, (13)
K K

and the numerical approximation of V}? is "weakly” accurate of order m whenever a m* order quadrature
formula and a m** R-K multistage scheme are implemented. Finally, we notice that the derivation of the
W) approximate equation runs along the same lines by integrating (3) over K.

3.4 Consistency 8,,U =8,V = 0,W for smooth solutions U

In this section, we prove that the consistency relation between the Hamilton-Jacobi equation (1) with
the system (2) and (3) is satisfied under sufficient smoothness conditions for the exact solution U. Qur
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main result shows that lav,‘ (1) 6w"'(T)I < CThP, for some 0 < § < 1 and some h < ho small enough.
In order to obtain such a resuit we first state a few lemmas in which we assume U € C*(2). Moreover,
first order space discretizations only are investigated, and a semi discrete time appoach is used for further
bllilpliblty

Lemma 3.1 If we let Jg(t) = %ﬂ - W—B’;(ﬂ, then :

aJ,\ (t ): |E(K,3)]

N« 82 P(n? —n? 2 p_ |
ey surf(ﬁ H(N) < 8, ,P(n; ny) + (9, P Oz 2 P)nzny, 60, >, (14)

where < .,. > is the duality product, P is the interpolating polynomials defined either in K} or in K,
(ng,n,) is the unit outward normal to E(k,i) at the point o;, N* = (V*,W*)'.(nz,n,)", and the superscript
* represents either the left or right state across E(K,1).

Proof : The proof can be done within a few lines provided some preliminary assumptions are made.
First of all, we assume that the numerical Hamiltonian is simply defined by upwinding. The general case
will be handled in one of the corollaries following theorem 3.1. On the other hand, we can suppose that
[V{a;) = V'(o:)| = |8: P (o) — 0:P7(07)] < Ch? from the smoothness property of U. Finally, we assume
that H = H(V, W), so that there is no direct dependency upon the space variables. Again, the general
case is handled later.

Following these remarks, the proof merely consists in writing precisely Hy.n; — H;.n, for obtaining
(14).

Lemma 3.2 If we let I (t) = W—af"x(ﬂ - Q_V‘_;z;it_l, then the following equality holds :

BIA IE(fl O ry e 2 2

‘; ) H'(N*) < 8;0.Pnl — 8,,Pnl,é,, >. (15)
Proof : The proof is similar to the one sketched for lemma 3.1 ; and thus is not duplicated here.
The next technical lemma indicates how to pass to the limit as the triangle K shrinks to its center

o (limit as A — 0).

Lemma 3.3 Vo € C%®(B(o., k)), there exists a reqularizing sequence of functions 0.(z,y) = F0(Z,Y) so
that Ve = h'+*, 1 > o > 0, and Vh < ho small enough, we have :

3
IS < ci(h)p, 8o >— < 700,85, %0, > | < LA (16)

=1

where T,, is the translation operator of scale —o, and * is the usual convolution product.

Proof : The proof can be decomposed into three steps : First of all, we define a sequence of cut-off
functions 8, € C*®(B{a.,2h) which are equal to one if the distance from A(z,y) to either one of the three
diagonals D; of K is less than ¢, and is set to zero outside the ball B(o,, k). On the other hand, we make
a partition of unity of the diagonals D;, 1 = 1,2, 3 and denote the indicator functions of these sets by ¢;.
Finally, we can write that 8 = 30, 8c;(R)¢; = Yooy 8; where 6;, is equal to c,(h) if the distance from D;
does not exceeds €. It is then easy to finish the proof by letting £ = A'** ; @ is as defined in the lemma,
and then by taking the limit as h tends to zero. Indeed, we obtain that for some h < hy (hg small) the
left hand side of (16) is less that Lh%|¢ [ where L is a fixed constant. This concludes the proof of lemma
3.3.

The next lemma applies the result obtained in lemma 3.3 to the relations (14) and (13).
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Lemma 3.4 Vh < hg, the following inequalities hold :

lajg;(t)i < | Sy < k) for b >| < Lk T filo)| an
lth (t)l - W"J'U\)Iz:'”l < C“(h)gnga. >| < L2h1 2a| Z,...] gl(ac)!r (18)

where f; = 0gy P(n? ~ n2) 4 (8,4 P — 0,z P)nz.ny, and g; = 8;.Pnl — 8,,Pn.

Proof : From lemma 3.3, we construct a C* function ¢ on the ball B(c.,2}k) which is equal to f; on
K and is extended to zero outside the ball B(o., k). In order to finish the proof we just remark that
surf(K) = -lAlAa A A;As| = Ch? which is combmed to the inverse power of €2 = h*~2® in order to pass
to the limit over h.

We are now ready to state and prove our main result.

Theorem 3.1 Under the assumptions of previous lemmas, and Yh < hg, we have :
k()] < Cihi=2, (19)
where C 15 a constant, and « is the parameter defined in lemma 3.3.

Proof : From lemma 3.4, it is easy to check that these two inequalities

|5I§t )| < Coki=2 | I (1)), (20)
2] < (Gl (0] + CalIk ), (21)

are satisfied Yh < hg and for the set of positive constants Cy, C;, and Cj. The remainder of the proof
consists in using a Gronwall lemma twice (first in (20), and then in (21)) to show that :

Hx(t)] < exp (C1h' )| I (0)]
Tk (t)] € exp(Cah' =) Ik (0} 4+ Cath!~2* exp (C1 A} ~2)| Ik (0)].

Indeed, if we assume that the initial condition is consistent, i.e if |Jx(0)] £ C4h and if {Ix(0})| < Cs, for
some additional nonnegative constants C, and Cs, we prove that (19) is verified.

We now extend the result of theorem 3.1 to the Roe-Fix approximation of the numerical Hamiltonian
H. In this case, we consider the Lax-Friedrichs approximation of the Hamiltonian: H LE(Nr NT) =
H(NF+NJ) — SUPNer(NT.NY) |H’(N)[Nr;Nl, where J(N7, N') is the closed curved passing through N' and
N' (convex case).

Corollary 3.1 if HRF is taken instead of HC, then the consistency result of theorem 8.1 still holds.

Proof : The proof is obvious as long as we notice that |N"(a;) — N'(0,)] < Ch?, for i = 1,2,3.
Consequently, terms of order k must be added to the previous proofs.

The next corollary generalizes that framework to rather general Hamiltonians of the form H(V, W, z,y) =
Hy(V,W) + I{z,y)Hy(V, W), where I € C¥(Q), for k > 1.

Corollary 3.2 if the numerical Hamiltonian is defined by Hy' (K,W)+I(a,)HZRF(W,W;), where (V;, W.)
are constructed from some interpolating polynomials at points o;, 1 = 1,2,3 ; then the conclusion of
theorem 3.1 still holds.
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Proof The proof of theorem 3.1 can be successively applied to Qé%lnz in,, |1 Ic,;,(ﬁz — &Ly,

and H2| Ny 3Iny[m From the smoothness properties of U and I, three similar final results than the
one of theorem 3.1 can be respectwely obtained.

Theorem 3.1 indicates that the mixed formulation is consistent provided the solution of (1} is suffi-
ciently smooth. However, if U does not have enough smoothness properties, then all of our numerical
experiments have shown that the constructed solutions were accurate and stable. The next two sections
investigate several examples for which consistent and stable high order numerical solutions are obtained.

3.5 Numerical Application

We consider the model problem defined by (1,2,3) in which H = —v/1 + V2 4+ W? and § is the unit disc.
The domain is triangulated by NT triangles and NV vertices in an arbitrary way. An example of such
a triangulation is displayed in figure 3a. The boundary conditions are of Neumann type and for further
simplicity, we assume that (Vaq, Wan) = (0,0). As initial conditions, we use UZ (section 2.3) and run
both second and third order ENO schemes. The results are plotted in the set of figures 3b (Second Order
ENO), and 3c (Third order ENO). The location of the kink is well located and no visible improvements
can be seen from the second to the third order accurate methods. Moreover, table 2 shows that the order
of accuracy in smooth transition areas is what we have expected when 0 = [~1, 1)? is triangulated using
a uniform cartesian grid.

Scheme Li-norm L*®-norm

(22)ENO - MF | 2.00 162

(3-3)ENO - MF | 5.73 7.89
Table 2.

CPU times for second and third order accurate methods were 1.49s, and 4.95s, respectively. These
running times can be compared to those established in section 2.3. A speed up of about 1.5 to 2 is gained
by using our FET method. This result certainly agrees with the complexity of the mixed formulation.
Therefore, the mixed formulation should be used only if necessary. In the next section, we investigate the
interface problem by implementing both techniques whenever the two types of grids are mixed together.

4 Interface Problem : Q@ =TI, UTB:

As test problem, we choose to let TI; triangulate the interior part of {2 and T By, triangulate & —T'I), by
matching the interfaces of 80 and 8TI). The main algorithm runs along the lines :

1.) Construct a square or a polygonal (vertical and horizontal polygonal line only) grid T1, that
fills in partially the domain {2,

2.) Define the grid T B, whose vertices are located in between the boundaries of 2 and T'Ij,

3.) Run the code with additional care at the intersection curves of T'Ij and T B;.

Some numerical experiments have shown that the solution was stable provided that we used the mixed
formulation for all triangles having at least one vertex at the intersection of both grids. If not, some
instabilities occured at corners of the square grid if a kink developed nearby. This phenomenon can be
easily explained : at a corner of an interface, one or no extension from first to second or from second to
third order ENO stencils can be obtained in T, since vertices of T'B; do not necessarily belong to the
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preset uniform square grid. Figure 9 briefly sketches the interface problem and localizes the first "slice”
of interface triangles of T'1).

rdl

P R AV AV :
|mEoanca
THh) : 3 .4'1; "..In.’...*‘. A : TBM)

4
20

First "Stice” of Ti(h). Solid Line -
Figure 9.

The numerical experiment of section 3.5 has been implemented. § is still the unit disc and T, is the
square grid of 10 by 10 vertices in [~1/2,1/2]2. Numerical results are plotted in the set of figures 4b and
4c for the second order accurate ENO method. Note that no numerical instabilities can be detected at
the square interface. The total number of vertices (NV) and triangles (NT) of T B, were 438 and 748,
respectively. The CFL coefficient was set to % in this experiment.

5 Numerical Experiments

Now, we investigate various applications that have been studied in [11, 12]. We will particularly focus
on an optimal control-cost determination and a combustion problem with curvature dependency. In
addition, we study a shape reconstruction from shading problem introduced by P.L. Lions during his
stay at the University of California, Los Angeles in April, 1990. See [14] for the rigorous analysis of this
problem.

5.1 Optimal Control Problem

We solve the optimal control problem of example 4 in [12]. This problem is related to control-optimal
cost determination. It can be modeled by the Hamilton-Jacobi equation :

U, + sinyU, + (sin z + sign(U,)}U, — %sin2y —{l—cosz) = 0
U(:r,y,(}) = 0,

to be solved in [—7 /2,47 /2]?. We assume periodic boundary condition and stop the iterative process as
soon as the steady state solution is reached. Numerical results are displayed in figure 5a at time ¢ = 6.2
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for a CFL coefficient of 0.4. In the lower half of figure 5a, we plot the optimal solution w = sign(U,).
This numerical test has been implemented for our second order method using FET.

5.2 Combustion problem with curvature dependency

We solve the regularized Hamilton-Jacobi equation : [11]

Ui+ F(K)H{U,,U,)) = 0 (22)
U(z,y,0) = cos2rz — cos2ry,

in which F(KX) =1~¢K, K is the mean curvature, and H(U;,U,) is the Hamiltonian defined in section
3.1. As computational domain, we consider the square [0, 1]?, and use our FET method on T'I,. We
run two examples with € = 0 and € = 0.1. Numerically, we follow the framework introduced in [11] by
splitting the space differencing into two parts. Namely, by writing F(K) = Fi +eF3(K), we compute the
convective part FyH(U,,U,) as before, while the second order term eFp(K)H(U,,U,) is approximated
by centered differences.

The results for € = 0 are displayed in figure 5b using our second order ENO method. The solution has
its first derivative discontinuous along the line z = 1. Numerical experimentation gives the exact location
of the discontinuity after 100 iterations for a CFL coefficient of 0.3. Furthermore, the discontinuity is
sharply resolved, and no diffusion can be observed. No visible improvements in the shapes were obtained
by using our third order accurate ENO scheme. However, the overall accuracy is improved in smooth
regions. In figure 5¢c, we plot the results after 100 iterations for € = 0.1. The singularity is smoothed out
under the effect of curvature. We noticed that mixed second derivatives of the interpolating polynomials
were always zero in smooth transition areas. This result is in agreement with the initial condition for
which gw%{fa;’—o)— = 0. Therefore, dimension by dimension algorithms and two dimensional methods are
equivalent in this case.

5.3 Computer Vision Problems
In this section, we study the nonlinear Hamilton-Jacobi equation :
U+ Iz, T+ U2 4 U2 — (Ve + BU, +7) = O (28

Usq 0
U(z,y,0) = 0.

The problem is to find the shape of a region U(z,y,o00) lighted by a source located at infinity with
direction D = (a, 4, —v). The normal to the surface is defined by N = (U,,Uy,—1) and the intensity
function I{z,y) is defined by I(z,y) = cos (N,D). Next, if we assume that D is a unit vector, then the
intensity function can be rewritten as follows :

aU(z,y,00) + fUy(z,y,00) + v
1+ Us(,,00)2 + Uy(2,y,00)>

I(z,y) =

In the numerical experiments 1 and 2, we consider horizontal light,e.g o = # = 0,7 = 1. In experiment
three, the source of light has a direction (7 /10,7 /10) as measured from the vertical axis. Therefore, the
corresponding direction angles are defined by ¢ = cos(r/2 — 7/10) = §, and v = /I — a? — B~
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e 1.) Reconstruction of a smooth function V{z,y) = U(z,y,00) = (1 — z*)(1 — y?) : defining the

intensity function I(z,y) = TG 21)2.{.4,,2(1 ) We discovered that the solution of (23) was not
zé(l-y -z

unique. This fact can be easily explained by writing the steady state solution of (23) at the set
of points for which the intensity function is set to one. We obtain that IVU(z,y,00){ = 0 ; thus,
any constant is solution. Of course the final desired solution must be the viscosity solution. The
interesting reader can get a detailed presentation of viscosity solutions of Hamilton-Jacobi equations
in [2], [3], and [9]. The analysis of viscosity solutions for shape from shading problems appears in
[14]. Numerically, two "tricks” were investigated as suggested by Lions and by the work of Rouy and
Tourin [14] : either we prescribed the value of U(z, y,00) at the set of points for which the intensity
is one : or we multiply this intensity function by 1 —¢. In the second case, 0 < (1—-¢)J(z,¥) <1, and
the solution U.(z,y, o0) is expected to converge in some sense to U(z,y, 00). Both approaches have
been investigated and numerical results are presented in the set of figures 5d and 5e {¢ = h/5) for
our second order ENO method. We used the grid T, for A = 2/10, and the CFL coefficient was set

to 0.7 (maximum value -\}2-). The steady state solution was always reached before 800 (this number
increased drastically as € tends to zero) iterations for a CPU time of 0.6 second per iteration.

¢ 2.) Reconstruction of the piecewise linear function U(z,y,00) = (1 — {z[)(1 — ly]) : We use the
same nurnerical method as in 1.) without particular attention to the set of points for which the

intensity function is one, i.e. I{z,y) = \/1+(1-—[z:|1)2+(1—|y|)2 =1 <=> (z,y) = (0,0). The solution
is well reconstructed and the steady state solution develops sharp discontinuous first derivatives
along the lines x = 0 and y = 0. Figures 5f and 5g display the solution after 100 and 30 iterations
for the second order accurate method using our FET method and the mixed formulation with a
CFL condition of 0.7. Next, we modify the intensity function I(z,y) by simulating noise N{z,y) =
(1 — 8W (z,y)), where W(z,y) is the highly oscillatory function 5 cos 2% cos £X. The second order
ENO method using FET was implemented and the solution after 60 iterations with 8 = 0.05 is

plotted in the figure 5h. The steady state solution is well reconstructed with the noise.

o 3.) We need reconstruct the function of example 2.) for non vertical light. Numerical results are
plotted after 200 iterations using our FET method in figure 5i for € = 0.1 and € = 0.01. Again, the
solution is well reconstructed with very sharp discontinuous first derivatives along the lines z =
and y = 0. Note that we were unable to compute the solution using the mixed formulation. This
failure can be easily explained since the numerical approximated fluxes of the non strictly hyperbolic

system have discontinuous coeflicients, e.g I(z,y) = :ﬂm%’%}g:fﬂﬂ Therefore, a
- -y

special treatment must be implemented in order to efficiently solve the Riemann problems across
the lines z =0 and y = 0.

6 Remarks and Conclusions

We have defined two new stable and computationally efficient techniques for solving non linear Hamilton-
Jacobi equations on general closed domains preserving high order accurate approximate solutions. These
techniques can be applied to problems arising in various fields of classical applied mathematics, optimal
control, computer vision, and more.

The first advantage of our techniques relies on the global two dimensional approach which extends
the supports of the ENO polynomials to a local simplex. Hence, the information taken into account to
construct the final approximation does not depend only on two directions. This leads us to more sensitive
algorithms. This result has been obtained without too much additional computational time compared to
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cartesian based algorithms, Moreover, these techniques can be easily vectorized. However, the resulting
code is of higher complexity than the "line” ENO algorithm. In addition, some additional improvements
for the resolution of large transition areas can be added to the original code. For example, it is possible
to apply grid refinement techniques since our data structure is based on finite elements. Also, a subcell
resolution algorithm can be implemented in the case of discontinuous coefficients.

To conclude, we mention that our methods are very sensitive to the "minimizing criterion” selected
during the construction of the ENO polynomials. However, this criterion can be set freely in all ma-
jor applications and may depend on some constraints imposed by the physics of the problem. In all
numerical experiments, either the Laplacian tests or a combination of discrete I* norm of derivatives
were implemented. Moreover, whatever criterion we chose, no spurious oscillations were detected. This
demonstrates that our methods are very robust even in the case of arbitrary grids showing that there is

no a-priori dependency on the triangulation.
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Figure Captions

2a) (2,2) ENO-RF (Roe Fix): Combustion Problem, Initial Condition U,
H{U,, U) = —/1+UZ+ U2, Iterations 1 and 60.

HU, U\ v Ite
2b) (3,3) ENO-RF (Roe Fix): Same as example 2a) with Initial Condition Ug.
2¢) (3,3) ENO-RF (Roe Fix): Same as example 2b) with Initial Condition Uy .
3a) Computational grid T'B, for the unit disc,

3b) (2,2) ENO-RF (Roe Fix): Combustion Problem - Mixed Formulation, Iterations 1 and 120 on
grid 3a}.

3c) (3,3) ENO-RF (Roe Fix): Combustion Problem - Mixed Formulation, Iterations 1 and 120 on
grid 3a).

4a) Computational grid T By, and T}, for the unit disc - Interface problem.

4b) (2,2) ENO-RF (Roe Fix}): Combustion Problem, Solution and contour plots at iteration 1 on

grid 4a}.

4c) (2,2) ENO-RF (Roe Fix): Combustion Problem, same as Example 4b} - Iteration 90 on grid

4a).

5a) (2,2) ENO-RF (Roe Fix): Control-Cost Problem - t=6.2, Optimal cost function w = sign{U,),
)

5b) (2,2) ENO-RF (Roe Fix): Combustion Problem with Curvature dependency, ¢ = 0, solutions
at 1 and 100 iterations.

5¢) (2,2) ENO-RF (Roe Fix): Combustion Problem with Curvature dependency, € = 0.1, solutions
at 1 and 100 iterations.

5d) (2,2) ENO-RF (Roe Fix): Vision Problem - Reconstruction of U(z,y) = (1 —2?)(1-y?*), Inside
Boundary Condition,

5¢) (2,2) ENO-RF (Roe Fix): Vision Problem - Reconstruction of U(z,y) = (1 — z*)(1 — %),
Intensity function multiply by (1 — €}, h = 0.1, = 0.02,

5f) (2,2) ENO-RF (Roe Fix): Vision Problem - Reconstruction of U(z,y) = (1 — [2})(1 — |y]}, 60

iterations,

5g) (2,2) ENO-RF (Roe Fix): Vision Problem - Reconstruction of U(z,y) = (1 — |z])(1 — [y[), 60

iterations - mixed formulation.

5h) (2,2) ENO-RF (Roe Fix): Vision Problem - Reconstruction of U{z,y) = (1 — [z|)(1 — |y|) plus
white noise of amplitude § = 0.05, 150 iterations.

5i) (2,2) ENO-RF (Roe Fix): Vision Problem - Reconstruction of U(z,y)} = (1 — |z{}(1 — [y]),
a=cosw/2— /10,8 = cos 7 /2 — 7 /10, solution after 200 iterations for ¢ = 0.1,0.01.
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Two dimensional H-J using finite elements
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Two dimensional H-J using finite elements

Third Order ENO formula.
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Two dimensional H-J using finite elements
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Two dimensional H-J using finite elements
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- Hamilton Jacobi 2D Equation Vision problem. -
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- Hamilton Jacobi 2D Equation Visiao problem. -
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Two dimensional H=J using finite alements
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- Hamilion Jacobi 2D Equation Vision problem. -
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- Hamilton Jacobi 2D Equation Vision problem. -
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