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Abstract

In this paper, we consider the problem of finding the steady-state
probability distribution for Markovian queueing networks with over-
flow capacity. Our emphasis is on networks with non-rectangular state-
spaces. The problem is solved by the preconditioned conjugate gradi-
ent method with preconditioners that can be inverted easily by using
separation of variables. By relating the queueing problems with ellip-
tic problems, and making use of results from domain decomposition
for elliptic problems on irregular domains, we derive three different
kinds of such separable preconditioners. Numerical results show that
for these preconditioners, the numbers of iterations required for con-
vergence increase very slowly with increasing queue size.
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1 Introduction

In this paper, we are interested in finding the steady-state probability dis-
tribution for Markovian queueing networks with overflow capacity. From
the steady-state probability distribution, we can compute for examples, the
blocking probability of the network, the probability of overflow from one
queue to another and the waiting time for customers in various queues.

In matrix terms, finding the steady-state probability distribution is equiv-
alent to finding a right null-vector p of a matrix A, called the generating
matriz of the network. The null-vector p = (p;, -+, px)t that satisfies the
probability constraints

N —
Zj:l P = 1: (1)
Pj 2 07

will be the required probability distribution vector for the network. The
problem is challenging because conventional methods for finding eigenvectors
will not be cost effective for such problem as the size N of the matrix A is
usually very large. Typically, we have

g
N = Hﬂi )
t=1

where ¢ is the number of queues in the network and n; is the number of
buffers in the sth queue, 1 < 7 < ¢. However, A possesses rich algebraic
structures that one can exploit in finding p.

For the networks that we will discuss in this paper, the matrix A is
irreducible, has zero column sum, positive diagonal entries and non-positive
off-diagonal entries. Thus (I — Adiag(A)~1) is a stochastic matrix. From
Perron and Frobenius theory, we then know that A has a one-dimensional
null-space with a positive null-vector p, sec for instance Varga [16]. Another
important feature of A is that it is sparse. Its matrix graph is the same as
that of the ¢g-dimensional discrete Laplacian. Thus each row of A has at most
2q + 1 non-zero entries.

One usual approach to the problem is to consider the partition
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and solve the reduced (/V - 1)-by-(IV — 1) nonsinguiar system
Bf =-d (2)

by direct or iterative methods, see Funderlic and Mankin [6], Kaufman [9],
O’Leary [10]} and Plemmons {12]. Sparsity of the matrix B is usually exploited
in these methods.

However, from numerical pde’s, we know that with suitable domain of
definition and compatible boundary conditions, the ¢-dimensional discrete
Laplacian matrix can be inverted efliciently by using the separability of the
Laplacian operator; and this approach will not work on any reduced system of
size (N —1)-by-(N —1). Thus in this paper, instead of reducing the size of the
matrix by one, we consider N-by-N singular matrices as preconditioners for
the system Ap = 0. These preconditioners will cancel the singularity of A in
the sense that the resulting preconditioned systems are N-by-N nonsingular
systems. By working on matrices of size N-by-N, we can exploit the fast
inversion of separable components in A and these separable components will
be used as building blocks for constructing preconditioners for A.

The outline of the paper is as follows. In §2, to consolidate the idea, we
introduce our method for queueing networks with rectangular state-spaces
first. We will illustrate the idea of using separable components in the gen-
erating matrix A in constructing preconditioners for A. We will also point
out the relationship between queueing networks and elliptic problems which
will be useful later in designing preconditioners for queueing problems with
irregular state-spaces. Convergence analysis for 2-queue single-server net-
works with rectangular state-spaces is also given. In §3, we consider queneing
networks with irregular state-spaces. We will illustrate how the results from
domain decomposition can be used to construct separable preconditioners for
these queueing problems. In particular, we will make use of the ideas from
the substructuring method, the capacitance matrix method and the additive
Schwarz method to derive three different preconditioners for these queueing
problems. We remark that domain decomposition methods are most well-
suited for these large queueing problems because they can be made parallel
easily. Numerical results are given in §4. They show that our preconditioners
work very well for the test problems. The numbers of iterations required for
convergence increase very slowly as the queue size increases.



2 Networks with Rectanguiar State-spaces

Let us first introduce the notations that we will be using. Assume that
the network has ¢ queues receiving customers from ¢ independent Poisson
sources. In the ith queue, 1 <7 < ¢, there are s; parallel servers and n;~s;~1
spaces for customers. Arrival of customers is assumed to be Poisson dis-
tributed with rate A; and the service time of each server is exponential with
mean 1/p;. To illustrate our method and what we mean by separable com-
ponents in a generating matrix, we restrict ourselves to queueing networks
with rectangular state-spaces in this section.

2.1 A 2-Queue Overflow Network

For simplicity, we begin with a simple 2-queue overflow network discussed
in Kaufman [9]. Here customers entering the first queue can overflow to the
second queue if the first queue is full and the second queue is not yet full.
However, customers entering the second queue will be blocked and lost if the
second queue is full, see Figure 1.

Let p; ; be the steady-state probability that there are ¢ and j customers
in queues 1 and 2 respectively. The Kolmogorov balance equations, i.e. the
equations governing p; ;, are given by:

{Aa(l - 6’in1m16jn2w1) + A(1 - Sjng—-l) + pq min(i, $;) + g min(j, 32)}191:;;
= M(1— 51'0)131‘—1,3‘ A gy (1~ ‘51711,1—1) min(z + 1:31)Pi+1,j
+(A16i'ﬂ-1—1 + AZ’)(]' = 6.'f )p‘i,.:f—l + ”2(1 - 6.?'132“1) min(j + la 32)p£,j+1:

for 0 <7 < n, 0 < j < ny. Here §;; is the Kronecker delta. These equations
can be expressed as a matrix equation Ap = 0. The matrix A is called the
generating matrix of the network while the vector p, after normalization by
(1), is called the steady-state probability distribution vector of the network.
The matrix A is known to be non-separable with no closed form solution for
p. However, we will show below that A can be partitioned into the sum of a
separable matrix and a low rank matrix.

To derive the separable matrix, let us assume for the moment that over-
flow of customers from queue 1 to queue 2 is not allowed. Thus the two queues
are independent of each other. Such network is said to be free. Let Ag be
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the generating matrix for such 2-queue free network. Then A, is separable
and is given by

Ag=G 0L+ 1,8 G, (3)

where I; is the identity matrix of size n;, ® is the Kronecker tensor product
and Gj, t = 1,2, are n;-by-n; matrix given by

[N ot ]
=X Aitp 2 0
=AM+ 2 =3
G = =AM s sy
0 =X At s —sipy
—A; Sithi |

(4)
We note that G is just the generating matrix of the ith queue and (3) reflects
the fact that the queues are independent of each other.
The difference B = A — Ay, which corresponds to the addition of the
overflow queueing discipline from queue 1 to queue 2, is given by

R = (emenlt) ® /\1 ) R23 (5)

where e; is the jth unit vector and

R, = . } ) (6)

is an n,;-by-n; matrix. Clearly R is a matrix of rank n,.

2.2 Properties of the Preconditioner

Our method is based on the idea of partitioning A into 4, + R and using A,
as a preconditioner. In this subsection, we show that the generalized inverse




Ag of Ay can be obtained easily by using the separability of A, and we also
discuss some of the properties of Ag.

Since the upper and lower diagonals of the matrix G; given in (4) are
nonzero and of the same sign, there exists a diagonal matrix D; such that
D-1G;D; is symmetric. In fact D; = diag(dt,---,d’ ) with

di { : =t (1)
3‘ = : . i .
! i.;i (min(z,sg),u,;)2 1<y < n;.

As Di'G;D; is symmetric and tri-diagonal, we can find in O(n2) operations
an orthogonal matrices @; such that

QDTG DQ; = A;
is diagonal, see Golub and van Loan (7]. Thus by (3), we see that
(1 ® Q)" (D1 ®Dy) M Ap(Di @ D)@ ®Q2) =M@ L+ L © A, = A,

where A is a diagonal matrix. Therefore we can define a generalized inverse

Al of A, as
Af = (D1 @ D;)(@1 ® @2)A™(Q, ® Q2)'(Dy ® Dy) . (8)
Sinece G; has zero column sum and D7 'G;D; is symmetric, it follows that
GiDI, = DIGHL; =0, o)

where 1; is the n;-vector of all ones. From (3), we thus see that a right
null-vector of A; is given by

Po = (D7 ® D7)(1; ® 1), (10)

which after normalization by (1), will give us the steady-state probability
distribution of the free network.
Using the spectral decomposition of Ay in (8) and the fact that

Im(Ag) = Im(A$) = (1), (11)

we can easily verify the following property of A,.
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Lemma 1 (Chan [3]) Let AT be the generalized inverse of A, as defined in
(8). Then

(1) RY = (po) ® Im(Ao).

(it) For allx € Im(AY), there exists a unique'y € Im(Ay) such that Ay =
X.

(i3} For all x € Im(Ay), we have AgAix = At Agx = x.

Note that by (8), given any vector y, the matrix-vector multiplication
Ay can be computed in O(nyn,{n, +n,)) operations. Moreover, there is no
need to generate Af explicitly, all we need are storages for each individual
Qi D; and A;, i = 1,2. We emphasize that if s; = 1, then G, has constant
upper and lower diagonals and hence for any vector x, the product Q;x
can be computed by using Fast Fourier Transform in O(n, logn;) operations,
see Chan [3]. In particular, if s; = s, = 1, then AJy can be obtained in
O(nyn,log(nyn,)) operations.

2.3 The Method
Let us now go back to the problem of finding the null-vector p for A. By

Lemma 1, we see that for any null-vector p of A, there exist unique real
number a, x € Im(Af) and y € Im(A,) such that
P = apg +X = apg +A6"Y-

Since 1*p # 0 and 1*x = 0, we see that o« # 0.
For the moment, let us concentrate on finding the null-vector p with
a=1,1e.

P =po+ Aly. (12)
Putting this into the expression Ap = 0, we get (4q + R)(py -+ AFy) = 0.
After simplification, we then have

AoAty + RAYy = —Rp,.

Since y € Im(Ay), by Lemma 1(iii), we have AgATy = y. Therefore the
above equation reduces to

(I+ RA*)y = —Rp,. (13)

8




Note that the equation has unique solution y in Im{4,). In particulaz,
the mapping (I + RAY) is invertible on Im(A,). In fact, we can show further
that the matrix (1 + RA{F) is indeed invertible on RV, see Chan [3]. Hence
the system (13) can be solved by iterative methods or even direct methods
without any restriction onto the subspace Im(A;). Thus we see that by
preconditioning A from the left by A, we have basically cancel the singularity
in A and reduce the singular system Ap = 0 to a nonsingular system (13).
Once we have the solution y from (13), the null-vector p can be obtained
by (12) and by using the normalization constraints in (1), we then have the
steady-state probability distribution.

Because of the sparsity of R, we see that the matrix (I + RA7) is also
sparse and has at most n, eigenvalues different from 1. Thus the matrix is an
ideal candidate for the conjugate gradient type methods whose convergence
rate depends on how clustered the spectrum of the matrix is, see Golub and
van Loan [7]. Notice that the cost of forming the matrix-vector product
(I + RAY)x, which is required in every iteration of the conjugate gradient
method, can be further reduced if sparsity of R is exploited. Since the matrix
(I + RAY}) is nonsymmetric, one can apply the conjugate gradient method
to the normal equation

(I+ RA}Y(I+ RAY)y = —(I 4+ RAY)'Rp, (14)

or apply other generalized conjugate gradient type methods, see for instance
Young and Jea [17] or Saad and Schultz [15].

2.4 Convergence Analysis

Clearly, the total cost of our method depends on its convergence rate, In this
section, we give the convergence rate of our method in the single server case,
i.e. 8y = sy = 1. Notice that in analyzing the convergence rate, which is a
function of N, we need to know the relationship between the parameters of
the queues as a function of N. To this end, let us consider a typical 1-queue,
single server, Markovian network. It can be seen from (9) that in this case,
the steady state probabilities are given by
p—1

pj:pnmlpj7 0$j<'ﬂ-,
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Figure 2: Neumann and Oblique Problems on Unit Square.

where p = A/p is the traffic density of the queue. Thus as we increase the
queue size n, in order that the probabilities p; for j & n are not exponentially
small, one possible limit to consider is p = 14 ¢n— for some constants ¢ € R
and a > 1.

We remark that we can obtain the same limit if we consider the continuous
analogue of queueing networks. We begin by noting that in the 2-queue
single-server case, when A, = g; = 1, the matrix A, is exactly equal to
the two-dimensional discrete Laplacian matrix on the unit square Q with
Neumann boundary conditions on every sides and mesh size h; = 1/(n; — 1),
see Figure 2. When A; # p;, Aj resembles the finite difference approximation
of the second order elliptic equation

(M + p1)Pez + (Mg F 142) Py
+ 2(ng — (g1 = M)pe + 2(ng — 1){py — Ay)p, =0 (15)

with the equation defined on the same unit square Q and having the same
Neumann boundary conditions on every sides. Moreover, we observe that
Ry in (6) is a first order differencing matrix. Hence the matrix R in (5)
resembles a tangential operator on the edge x = 1 where overflow occurs.
Compared to 4y, we see that the generating matrix A of the overflow problem
resembles the same second order elliptic equation on the unit square with the
Neumann boundary condition on the edge 2 = 1 being replaced by an oblique
derivative, see Figure 2.

From (15), we see that if for large n;, A; and g, are related by ;/p; =
1+ ¢n™ for some constants ¢; € R and o; > 1, then the second order
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terms in {15) are the dominant terms. In the {ollowing, we will analyze the
convergence rate of our method under such limit. We note that if o; < 1
and A; < p;, then ||Apgl|; tends to zero exponentially fast as n; increases,
see Chan [3]. In particular, py will already be a good estimate for p in such
cases.

Notice that because of the low rank of R, the actual number of unknowns
in the vector y in (13) is equal to n,. Let the last n,-by-n, principal submatrix
of (I + RAZ) be denoted by S. For ease of presentation, we assume in the
following Lemma and Theorem that the queueing parameters X;, u;, s; and
n; are the same for both queues with n, = n, = n. Full version and proof of
the Lemma and Theorem are given in Chan [3].

Lemma 2 Assume that for both queues, s; =1 and u;, = X; +en—2 for some
constants ¢ € R and a > 1. Then for sufficiently large n, ||S~1||, < O(n®)
and

S8 =2I+L+U,
where ||Ull; < O(n1-«/logn) and rank L = O(logn).

The Lemma states that the singular values of S are clustered around +/2
except for at most O(logn) outlying ones. Applying standard error analy-
sis of conjugate gradient method to the above results on S, we obtain the
following Theorem.

Theorem 1 Assume that for both queves, s; = 1 and p; = X, + en—= for
some constants ¢ € R and « > 1. Then for large n, the conjugate gradient
method applied to the normal equation (14) will converge within O(log®n)
steps.

The proof of the above Lemma involves purely linear algebra. However,
the same result is anticipated if we look at the continuous analogue of the
overflow problem. We recall that the matrix (I+RAJ) = AAZ represents the
mapping that maps the Neurmann boundary data to the oblique boundary
data. By using regularity theorem and trace theorem in elliptic theory, we
have the following result on this mapping.

Theorem 2 (Chan [2]) Let Q be a bounded region in R? with a smooth
boundary 02, Let

E= {g € H3(9Q) | /angd'r =0}

11



be equipped with the S (00 norm. Lei T be the Neumann-to-
oblique mapping that maps g, in E to g, where g, and g, are boundary values
of the problems

L_T...
Qoicy II

Au=0 inQ, Au=70 in Q0
. : 3
(N): %;i =g, on 8, and (0): —3—(—7—{{7) =g, on 00,

with both problems normalized by fou = 0. Here p and T are the normal and
tangential vectors respectively. Then T' is a one-one onto mapping on E and
satisfies

C”TQHH—%(aQ) = ”gllﬂ—%(an) = CHTQHH"%(BQ)
Jor some constants ¢ = ¢(}) > 0 and C = C(Q) > 0.

Thus the Neumann-to-oblique mapping T is well-conditioned. Hence, we
expect the matrix (I + RA}) to be also well-conditioned for large n and if
the conjugate gradient method is used, we expect fast convergence.

In the multi-server case, i.e. s; > 1, instead of (15), the underlying
continuous equation is of the form

(M + 81040)Po + (Ag + 52182)Pyy
+ 2(ng — 1)(s1pt1 — M)ps + 2(ng — 1)1 — A2)py =0 (16)
in the region where the states (7,7) satisfy s; < ¢ < n; and 5, < j < n,.
In other part of the rectangular state-space, the equation will be one with
variable coeflicients, with the coeflicients of the second order terms decreasing

in magnitude with decreasing ¢ and j. Hence for large n;, a reasonable limit
to consider is

Ai
=1 e 17
Sik Tan (1)
for some constants ¢; € R and o > 1. We note however that under such
limit, by Stirling’s formula, the last entry di of Dy in (7) is given

i :
' 1 A $i )\i ni—s;—1] 2 573
o[ () ] s

Thus for large s;, the matrix D; will be ill-conditioned and hence the spectral
decomposition of A¥ in (8) will be unstable. Experimental results show that
our method works very well under limit (17) for small s; but will break down
when s; becomes large, see Chan [3] and also §4.
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gular State-space

The above method for finding p in Ap = 0 can be readily generalized to
overflow queueing networks with more than two queues, provided that all
overflows occur when and only when the queue is full. In this case, the state-
space of the problem is the g-dimensional unit cube and one can automate
the whole procedure for finding p. More precisely, one can write a program
that accepts queue parameters and overflow disciplines as input and outputs
the steady-state probability distribution.

To see how this can be done automatically, we first note that the gener-
ating matrix for any ¢-queue free network is given by

A=GO0L® QL +LQG® QI+ +LOL® 0G,

where G; are given by (4). Clearly A, is still separable with a null-vector
given by
Po= (D@ ® DL, & 1,)

Any addition of overflow queueing disciplines to this free network corresponds
to addition of matrices of the form (6) to the matrix R = A — A,. With R
and Ay known, we can apply our method to obtain the system (13) which
can then be solved by conjugate gradient type methods.

As an example, consider a 3-queue network where customers from queue
2, ¢ = 1,2, can overflow to queue ¢ + 1 provided that queue % is full. Then
the matrix B = A — A, is given by

R = (enlenlt) ® /\1 : R2 ® -[3 + Il @ (enzellgt) ® /\2 N RB (19)
+(en1 enlt) ® (enzellgt) ® A] ' RS?

with R, given by (6). The last term above represents the flow from queue
1 to queue 3 when both queues 1 and 2 are full. We further note that one
does not have to generate R nor the terms in R explicitly. For in conjugate
gradient type methods, one only needs to compute the product Rx which
can be computed term-wise and the product for each term can be computed
easily without forming each individual term explicitly.

The cost per iteration of our method will mainly depend on the cost of
computing the matrix-vector multiplication AJy. However, in view of (8),

13



1 ] it E ' 1
Method | Operations | Storage |

Normal equation | O(ne*1) per iteration | O(n?)
Point SOR O(n?) per iteration O(ne)
Block SOR O(ne+1) per iteration | O(n4)
Band solver O(n31-2) O(n?-1)

Table 1: Cost Comparison.

this can be done in
O(N(Tbl "i" n2 + e + nq))

operations where N = []?_ n;. In the case of single-server, i.e. s, = s, =
+ov = g, = 1, the cost is reduced to O(N log N) by using FFT. Storage for
few N-vectors and the small dense matrices @; will be required and will be
of order O(N).

Table 1 below compares the cost of our method as applied to the normal
equation (14) with the cost of other methods as applied fo system (2). For
simplicity, we let n; =n for all ¢ = 1,... ¢. We emphasize again that FF'T
can be used to speed up the computation of A7x if any one of the s; is equal
to 1.

2.6 Some Remarks on the Method

We remark that our method is a generalization of the method in (2). In the
simplest case if we partition A = Ay + R with Ag given by

Ag = IN - eNeNt

we then have py = ey and equation (13) is reduced basically to (2). If we
choose

Ag = diag(A) ~ (ex'Aey) - exen’

then (13) is similar to the Jacobi method applied to (2). The main difference
between our method and that of (2) is that our preconditioner A, is an
N-by-N matrix and any preconditioners for (2) will be of size (N — 1)-by-
(N —1). The ability of using N-by-/N matrices as preconditioners enables us
to exploit the separable components of the original generating matrix A and
hence speed up the inversion of the preconditioners.

14



left by A}. More precisely, we expand p as p = 8pg +y where y € Im(A,).
B # 0 and by Lemma 1(iii), the system Ap = 0 is reduced to

AtAy = (I+ A} R)y = —A} Rp,. (20)

One can also prove that the matrix (14 A$ R) is nonsingular. We note further
that in view of (11), p can be expanded as p = ¥1 +x where x € Im(A4,). In
particular, we can replace the right hand side of (20) by — A} A1. However,
we note that if A, is expected to be a close approximation to A, then we also
expect py to be a better approximation to p than 1.

3 Networks with Irregular State-spaces

In this section, we consider queueing networks where the state-spaces are no
longer rectangular and we will make use of the results from elliptic solvers for
irregular domains to design preconditioners for these networks. To illustrate
the idea, we consider the 2-queue one-way overflow network in §2.1 again and
assume additionally that customers waiting for service in queue 1 must be
served at queue 2 once servers in queue 2 become available. This network
is almost the same as the one discussed in Kaufman et. al. [8], except now
that we also allow the one-way overflow of customers from queue 1 to queue
2 when queue 1 is full. The Kolmogorov equations of the network are given
in Chan [4].

According to the overflow discipline, we see that
pi; =0, sp<e<ng, 0<Lj<s,.

Hence the state-space of the network is no longer rectangular, but is given
by an L-shaped region, see Figure 3. The subregions 2, and , are defined
to be the set of states (4, f) where 0 < 1 < sy and s; < i < n, respectively.
They are separated by the interface 7 = {(s;,7)}25, .

The generating matrix A of the network is in the block form

T]. 'Dll 0
A = .D]_g O .D22
0 D21 T2

15
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Figure 3: The State-space of the Queueing Network.

where T}, k = 1,2, correspond to the interactions between the states within
the subregions 2, \ 7, C' corresponds to states in T and Dy; correspond to
the interactions between the states in the subregion 2, and the states in 7.
Notice that there is no interaction between the states in Q, \ r and states in
{1,. Since A is no longer of size nyn,y, Ay cannot be used as preconditioner.

The continuous analogue of this problem is a second order elliptic equation
on the L-shaped region with oblique derivatives on bhoundary 7, and Neu-
mann boundary conditions on 7;. There are many domain decomposition
techniques for solving elliptic equations on irregular regions. In the following
subsections, we will apply some of the ideas there to design preconditioners
for our queueing networks.

3.1 Substructuring Method

For elliptic problem on an L-shaped domain as in Figure 3, the theory of
substructuring suggests the following Dirichlet-Neumann map as a precondi-
tioner:

16
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1. solve the problem defined in £, with Neuinann boundary conditions on

every side,

2. then use the value on the interface 7 to solve a Dirichlet-Neamann
problem in (25,

see for instance Bj¢rstad and Widlund [1].
In term of the matrix A, that means we write A = A, + R, where

T, Dy 0
A= Dy C 9
0 Dy T,

The matrix €' is chosen such that the submatrix

_| In Du
W“le é]

corresponds to a Neumann problem in subregion ,. In terms of the queues,
W will be the generating matrix of a 2-queue free network with s; spaces
in the first queue and n, — 1 spaces in the second queue. Hence W will be
separable and has a 1-dimensional null-space.

The submatrix T, in A, above corresponds to a Dirichlet-Neumann prob-
lem in subregion {},, with Dirichlet data being transported from 7 by D,,.
More precisely, we have

T2 - E. ® Inz—sg +In1-—31—1 ® 1/2
with
Vi = tridiag(—Xy, Ay + sqpq, —8$3441) — Ag - €81 -1€n; sy 1" (21)

and
Vo = tridiag(—Ag, A + sapta, ~safty) — safty - 181" — Ay - €ny-5,€ny-s,' e (22)

Thus T3 will also be separable but it will be nonsingular.
Since A, is in block lower-triangular form, we see that A, is singular with
a one-dimensional null-space and a null-vector

p —{ L
! _Tz—l(Q, Dy)w |’
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Figure 4: Partition into Many Subdomains.

where W is a null-vector of W. We can easily check that A, also satisfies
the properties listed in Lemma 1 for A;. Thus we can again expand p =
ap; + Ay where y € Im(A;) and reduce the homogeneous system Ap = 0
to a nonsingular system

(I + RA})y = —Rpy, (23)

where R = A — Ay, see Chan [4].

We emphasize that the matrix R is sparse. In fact, C and T, differ from
C and T, only on the rows that correspond to those states on the interface
7 and on the edges 7,; and on such rows, they can only differ by at most
three entries. The matrix-vector multiplication Afx can be done efficiently
by using the separability of W and Ty. We emphasize that for all arbitrary
values of s;, the submatrix T, can be inverted easily by using FFT, for it
corresponds to a constant-coeflicient Dirichlet-Neumann problem in Qz, see
(16). In fact, we see from (21) and (22) that both matrices V; and V, have
constant upper and lower diagonals.

The idea of using two subregions can easily be extended to many subre-
gions. Consider the domain in Figure 3 being partitioned into many subre-
gions, see Figure 4. In Ql, we solve a Neumann problem. With the values
obtained on the boundary 8¢}, we solve mixed problems in ), and {3, and
50 On.
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The preconditioner will be of the block lower-triangular form:
Day Ty
A]_ =
Dy oo Dyyyy Ty

The submatrix T}; corresponds to a Neumann problem on fll, the submatri-
ces Ty, 2 < i < £ correspond to mixed problems in €); and the off-diagonal
block matrices D;; will transport the required boundary data from one sub-’
region to another. Notice that for each i = 1,.--,4, only two D;; will be
non-zero, and for those {}; that lie inside {1;, their corresponding 7;; can be
inverted by using FFT.

3.2 Capacitance Matrix Method

Another method of solving elliptic problem on irregular domain is to embed
the whole domain into a rectangular domain and use the preconditioners
on the rectangular domain as preconditioners for the embedded system, see
Proskurowski and Widlund [13]. To illustrate the idea, let us order the states
in the L-shaped domain first and denote A, to be the generating matrix of
the 2-queue free network on the rectangular domain [0,n, — 1] % [0,n, — 1].
We then partition A, as

— All AIZ
Ao = [ Ay Ay

where A,, gives the interactions between states that are both in the region
[s34+1,1n, —1] % [0, s, —1]. We note that A,, corresponds to a mixed problem
in that region and can easily be proved to be nonsingular.

We now embed the generating matrix A for the L-shaped domain into
the whole rectangular domain as

Since A, is nonsingular, we see that A, has a one-dimensional null-space and
Pe = [P, 0] is a null vector to A,. Again we expand p, as p, = pg + ALy
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Figure 5: Partition into Overlapping Subdomains.

with y € Im(Ay). Then the vector y can be obtained by solving
(I + RA)y = —Fp,, (24)

where B = A, — A;. Once again the matrix (I + RAJ) can be shown to be
nongingular, see Chan [4],

3.3 Additive Schwarz Method

One of the basic ideas of the additive Schwarz method is to extract easily
invertible components from the matrix A, inverse each of them individually
and then add their inverses together to form an approximate inverse of the
mafrix A, see Dryja and Widlund [5]. To illustrate the idea, let us partition
the L-shaped domain in Figure 3 into two overlapping subdomains, see Figure
5. For ¢ = 1,2, let B; be the matrix that corresponds to the Neumann
problem in §; and zero elsewhere. Clearly, both matrices are singular and
separable. Similar to (11), we can prove that

1'Bf = 1'Bf = 1{(B} + B}) = 0,

or equivalently,
Im(B} + Bf) C (1)*. (25)

The matrix (Bf + Bf) will be used to precondition our system. Notice
that it is in general difficult to find a null-vector for the preconditioner. Thus
to find a null-vector p for A, we expand p = al + x where x € (1)+. By
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the normalization constraints on p, we see that « # 8. Therefore we can set
o = 1 and rewrite Ap = 0 as

Ax = —Al. (26)
The system is then preconditioned by (Bf" + BF) to form
(Bf + Bf)Ax = —(Bf + B})AL. (27)

Notice that unlike the methods mentioned in previous sections, the precon-
ditioned system in this case is still singular. However, because of (25), if
the above equation is solved by conjugate gradient type methods with initial
guess in (1)t, then each subsequent iterant will automatically be in (1)+
again.

Since the matrix (Bf + BF) is singular, any matrix-vector product of the
form (Bjf + Bf )x will have no component along the null vector of ( Bf +By),
which is in general difficult to find. To partially remedy this, we add to the
product a vector of the form fBqy + yq,, where q; are the normalized null-
vectors of Bj", i = 1,2 (extended by zeros outside their respective domains
of definition). By the separability of B}, q; can be obtained easily. In order
that the vector

(Bf + Bf)x + fay + 74

is still in (1)*+, we need ¥ = —B. The remaining degree of freedom can be
determined by imposing extra conditions on the vector at the intersection of
the subdomains. One successful choice is to equate the mean values of the
solutions of the subdomains at the intersection, i.e.

Z (Bf-x + By = Z (B;’x + gk (28)
keﬁlnﬁz kEfllI’IS—]z

see Mathew [11]. Our numerical results show that the addition of the vector
By + g does improve the convergence rate especially when the size of the
overlapping is small, see §4.

Obviously, because of the overlapping, the cost per iteration is higher than
that in the substructuring method, but this is usually compensated by the
advantage that Bif Ay and Bf Ay can be computed in parallel. Clearly the
idea can be generalized to the case of many subdomains if more processors are
available. However, it is already noted in domain decomposition literature
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JRPETN ] ~ . 1
[ Method ; Operalions |

Substructuring O(sn? 4 (n — s)?log(n — s)) per iteration
Capacitance Matrix O(n3) per iteration
Additive Schwarz | O{sn? + (n — s + w)2(n — 3)) per iteration
Point-SOR O(ns + (n — s)?) per iteration
Band Solver O([ns + (n — 8)?n?)

Table 2: Comparison of Cost for Different Methods.

that unless a coarse grid component is added, the additive Schwarz method
will not converge as fast as the other domain decomposition preconditioners.
This fact is also verified in the numerical results in §4 for queueing networks.
It is an interesting project to formulate and implement a suitable coarse grid
structure to the queueing problem. One possible way is to aggregate the
states together to form superstates and use the balance equations for the
superstates to derive a coarse grid formulation for the queueing problem.
Another possible approach is to use the idea of algebraic multigrid method
to construct the coarse grid matrix directly from the given generating matrix,
see for instance, Ruge and Stiiben [14].

We conclude this section by listing the costs of different methods in Table
2. For simplicity, we assume that ny = n, = n and s; = s, = 5. The variable
w in the additive Schwarz method denotes the width of the overlapping
region, see Figure 5.

4 Numerical Results

In this section, we apply our method to the queueing networks considered in
previous sections. The parameters of the queues are assumed to be the same
for all queues and are related by

Si“iz)\'i“*‘(ni_l)—as éml)za"'a‘L

with A; = 1. In the examples, the preconditioned systems were solved by
a generalized conjugate gradient method, called the Orthodir method which
does not require the formation of the normal equation, see Young and Jea
[17]. We chose zero vector to be the initial guess and the stopping criterion
to be |rglla/|lrollz < 10-8, where 7, is the residual vector after & iterations.
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87 83 [24
ng | N |ss[T[2[8 [ T]2]3|s|1]2]3
4764 [1]10[10]10][3][0]9[9][3]9]9]09
8| 512 || 1|14 14|14/ 3|14 |14 14|/ 6|13|13]13
1614096 || 1 | 18|18 |18 || 3 |18 18|18 9 [17{ 17|17

Table 3: Numbers of Iterations required for Convergence.

number of iterations time in seconds
n; |8 | N | w* | point-SOR | orthodir || point-SOR | orthodir
4 111 64 {1.700 69 10 1.176 0.461
4 131 64 {1.593 30 9 0.529 0.420
8 11]512:1.831 242 14 31.282 3.815
817|512 1.715 49 12 5.997 3.274

Table 4: Comparison with point-SOR method when a = 2.

Example 1 is taken from Chan [4] to illustrate the effectiveness of our method
over the point-SOR method. Computations in Example 2 were done by
Matlab on SPARC stations at UCLA,

Ezample 1: We consider the 3-queue network with overflow queueing disci-
plines ¢ — 2, g5 — ¢3 and ¢ — ¢, — g3, see (19). Table 3 shows the
number of iterations required for convergence for our preconditioned system
(13). Table 4 compares the performance of our method with that of the
point-SOR method as applied to (2) with p, as the initial guess. The opti-
mal relaxation factors w* were obtained numerically. We see that our method
performs much better than the point-SOR method especially for small s;, We
note that in the test, we have not used FFT to speed up our algorithm in
the case where all 5, = 1.

Ezample 2: We consider solving the 2-queue network with line-jumping in
§3 by the different techniques we mentioned there. For the additive Schwarz
method, two kinds of overlapping were tested: the maximum one with {, =
[0,72, ~1] % [85, 7,—1] and the minimum one with 0, = [s; 1,7, —1]x [s,, 7, —
1], see Figure 5. No coarse grid components were added however. Table 5
shows the numbers of iterations required for convergence for three different
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84 | 24 | iy ﬁ NGy DN i Cu’f { ASula f ASIIliI.l | .ASIIHI},)k i
100 211 86 43 12 | 12 16 18 19
201 4 1| 340 81 16 | 15 19 25 27
401 8 1111352 ) 153 | 18 | 18 25 35 39
80116} 1|5392 || >200| 21 | 21 31 48 56
1016 2] 80 37 11 | 10 15 16 17
200 5 |2} 330 78 16 | 15 20 24 27
40} 5 | 2 | 1430 || 161 19 | 19 25 34 38
801 5 |2|6030f| >200} 23 | 21 30 49 54
10} 4 13| 80 39 12 | 10 15 16 18
200 8 3] 312 74 14 | 14 19 23 26
40 | 16 | 3 | 1232 || 147 | 17 | 18 24 31 36
80 132| 3 [4896 || >200| 19 | 20 >60 >60 >60

Table 5: Numbers of Iterations for Convergence.

sets of queueing parameters. In the tables, N denotes the total number
of states in the L-shaped domain, the symbols No, DN, CM, ASmax and
ASmin stand for no-preconditioning (see (26)), preconditioning by Dirichlet-
Neumann preconditioner (23), capacitance matrix method (24) and additive
Schwarz method (27) with maximum and minimum overlap respectively. In
both additive Schwarz methods, we have added the null-vectors according
to (28). As a comparison, we also tested the case of minimum overlapping
without adding the null-vector components (i.e. 8 =7 = 0) and the results
are shown under the column ASmin*. To check the accuracy of our computed
solution p., we have computed ||Ap,||; and found it to be less than 10-7 in
all the cases we tested.

From the numerical results, we see that the numbers of iterations for the
non-preconditioned systems grow linearly with the queue size, a well-known
phenomenon for second order elliptic problems. However, for the Dirichlet-
Neumann preconditioner and the capacitance matrix preconditioner, the
numbers of iterations grow very slowly with increasing queue size. Notice
that when s; are smaller, the L-shaped domain is more rectangular. Thus it
is not surprising to see that the matrix capacitance method is a better choice
for networks with small s,.

For the additive Schwarz method, as already mentioned, it will not be
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as competitive as the other preconditioners if coarse grid components aie
not added. We note that adding the null-vectors q, — ¢, speeds up the
convergence rate significantly. However, the speed-ups are less significant
in the maximum overlapping case where the numbers of iterations with or
without adding the null-vectors differ by only one iteration in all the cases
we tested. Also the method shows instability in the last test problem when
8; = 32. We have tried GMRES(40), see Saad and Schultz [15], and it still
did not converge after 30 iterations. The instability may partly due to the
fact that the matrix D; in (8) is ill-conditioned with condition number about
10% in this case, see (18)., Another possible reason is that we are not able
to recover exactly the components of (Bf + Bf)x along the null vector of
(B + Bf), see §3.3. Further research will be carried out in this direction.

Acknowledgments: I would like to thank Professors Olof Widlund, Tony
Chan and Tarek Mathew for their guidance in the preparation of this paper.
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