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Abstract

In this paper, the equations of motion for curves flowing with cur-
vature dependent speed in 2-dimensional Fuclidean space, are extended
to geodesic curvature flow on 2-dimensional manifolds. The equations of
motion are based on a technique of locally embedding 2 curve v on a
manifold M as a level set of a function ¢ : M — R. The velocity of
7 is computed or fixed coordinate patches of M. Several examples of
manifolds and initial curves are computed.

1 Introduction

In this paper, the flow of curves on two-dimensional manifolds moving with
speed dependent on the geodesic curvature is studied. The equations of motion
are a generalization of the Buclidean version introduced by Osher and Sethian
in [3]. In this context, a curve is locally represented as a level set of a real valued
function defined on the manifold.

All computing is done on simply connected coordinate patches of the man-
ifold projected into R%. By restricting the level set function ¢ to coordinate
patches, it is possible to study single curves on non-simply connected manifolds
{e.g. a torus). The function ¢ is constructed on each local patch so that the
flow in overlap regions between patches is consistent.

Similar to the minimal surface calculations by the author and Sethian in 1,
2], boundary conditions can be added to the motion of the curve. In this case,
if the curve moves with speed equal to the geodesic curvature, a curve with
fixed endpoints would flow towards a geodesic of the manifold (i.e. a curve with
constant geodesic curvature zero).

*Supported by the National Science Foundation under grant CTS-9021021.



2 Eguations of Motion

Consider a 2-dimensional manifold M ¢ R3. Let v(t) C M, for ¢ € [0,00), be
a family of closed curves moving with speed F(x,) in the direction normal to
itself on M. Here, kg is the geodesic curvature of y(f) on M. Let g:(s) be the
parameterization of 4(t) by arc length.

First assuine that M is orientable. In this case, the unit normal map N is
continuous on M. At every point gi(s), & natural coordinate system for Thr
is given by the vectors g{(s), N x gi(s). Thus, for any point z(t) € (¢}, the
velocity under this flow is given by

& (N x gi) = Fr,).
Following a derivation in [5], the expression for geodesic curvature is
g = (N xgi) g (1)

Note that a change in sign of the unit normal N results in a corresponding
change in sign of x,. If F' is an odd function, then 2 is independent of the
choice of N. However, if £ is not an odd function, then the choice of the
normal changes the flow. Therefore, f M is not orientable, then only odd speed
functions I are allowed. The algorithm presented here also requires that F be
an odd function when M is not simply connected.

2.1 Level Set Representation

It was demonstrated in [4], that using a marker particle method to model cur-
vature flow can lead to instability during computation. For that reason, an
alternative representation of a curve in R? was given in [3]. In this context,
given a curve y(t) on M we define a real valued function ¢(z,t) such that
$1(0,4) = v(t). Each level set of ¢ becomes a different initial curve moving
with the same speed function, The equation of motion is then rewritten as an
evolution equation for ¢.

As noted in [3}, the level set representation enables the flow to change topol-
ogy naturally, without stability problems or ad hoc user intervention.

2.2  Generalized Equations of Motion

Assume the manifold M is given by M = f~1(0), where f : R® — R. We break
the manifold into a collection of coordinate maps, {(U;, m;)} such that M = UU;,
each set U; is simply connected, and 7; : U; — Vi C R? is a bijection.
The computing is done on the collection of sets V; = m;(U;). We define the
function ®; : V; — Rby &;(z,1) = ¢(x; 1(2),1), so that ¢(z, )|p, = ®i(m(x),?).
In order to write the equations of motion in the level set representation,
we must compute a velocity field on the entire manifold M. We compute the



velocity field on each coordinate patch and then see that it is consistent in
regions of overlap. For this section, assume ¢ = ¢|y,. At any point z € U;, the
velocity vector will be normal to the level set of ¢ containing z, in the tangent
space Tas(z), and have length F(x,).

First, we compute the geodesic curvature of the curve ¢71(C) in terms of ¢,
and then in terms of the ¢;. Assume the set ¢~*{(C) is given by the curve g(s)
parameterized by arc length. According to equation (1), to compute x, we need
the normal to M, and the velocity and acceleration vectors for g(s). The unit
normal N to M is given by N = V f/||Vf||. Since g(s) is parameterized by arc
length, we have ||¢’(s)]| = 1, ¢'(s) .L V, and ¢'(s) L Vf. Thus, the velocity
vector 7 of g(s) is given by

. N Vix V¢
T S vl

The choice of 1 is not arbitrary, but is chosen with respect to the unit normal
of the curve in Thy so that the sign of the geodesic curvature agrees witht the
usual formula for curvature in the plane. We also have ¢"(s) L ¢'(s), so

¢"(s) = aVé+ 8V f (2)

for some values o and . Furthermore, recall that ¢(g(s)) = C and f{g(s}) = 0
for all 5. Differentiating twice with respect to s, we get

T (V1) + Ve g'(s) =0 (3)
TV )+ Vg (s) =0 (4)
Substituting equation (2) into equations (3}, (4) and solving for o, we get
(V6 VNV - (V) -V)V) 7]
(V- VNV V) = (Ve Vi)

Therefore, the geodesic curvature x, is given by

Ky = g" [N x ¢']
(aV¢+ V) [N x 7]
= aV¢- [N x7]

[Nx'r]-n{ [(nN 2 1 2) }}
= et (T | e VO f — eV T
= e-me U I\ e
_where n = V¢/[|Vg|| and N = Vf/||V fll.
Next, we compute the direction of the velocity vector v, The direction of

the velocity vector is the same as the orthogonal projection of V¢ onto Thy.
Therefore,

n—{n-N)N

=T XN —m——
In—(n - N)N]|



and the velocity at = on M is described by
£ v = F(k,).

The computing is done on the images of the coordinate patches m;(07;), so the
velocity must be translated into the velocity for points on the coordinate patches.
Recall that ¢(z, )|y, = ®:{m(z),t}, hence we replace V¢ with V&; o Dm; and
V¢ with (Dm;)t o V2®; o Dy + V&; o D?x; according to the chain rule. The
map Dy @ Tar — T2 maps the velocity field given on M to the velocity field
on m;({;}. Therefore, for a point ¢ € 7;{U;), the equation of motion is described
by

i 5= F(r,)Dm(0) -

where 7 = V&;/||V®;|| is the unit normal to the level set containing ®;(z).
Let
F(kg) = F(rg)Dmi(v) - V& /|| V. ()

Assume ®;(2{t),t) = C, then differeniiating with respect to t gives

0 = &5+ VD -2

Vd; .
®;, + ||V S| (m) &

= <I’£1+F'(":g)|lv(1)i”- (6)

3 Numerical Method

The general algorithm can be stated as follows:
1. Choose coordinate patches and maps to represent the manifold M.
2. Initialize the functions ®; on each coordinate patch.

3. Compute the boundary values in each coordinate patch based upon overlap
values with neighboring patches.

4. Advance each ®; in time according to the differential equation (6).
5. Go to step 3.
At any time ¢, the curve ¥{t) can be reconstructed from
7(8) = U (8770,1)) (M)

We will now discuss the details of each of these steps.
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Figure 1: Example of coordinate patches on a torus.

3.1 Constructing the Grid

Given a manifold 3 the collection of coordinate patches {{U;, 7;)} must be cho-
sen. Define V; = m;(U;). It is important to choose simply connected coordinate
patches, so that any simple curve can be represented by a level set of a fune-
tion ¢ on [;. The equations given above are for the case when #; maps onto a
rectangular coordinate system in R?.

In the overlap sets, where U; N U; # 0, there must be at least a three grid
point overlap between the sets ¥; and ¥;. Computing the boundary conditions
for each V] is made easier if the grid points and prejection maps m; are chosen
so that if & € V; is a grid point in V; and m"(2) € U; N U;, then m (v (2)) is
also a grid point in V;.

For example, let M be a torus with large radius R and small vadius » sym-
metric about the z-axis. One choice of coordinate patches is

U = {(m,y,z):\/m2+y2>R—e,az>~—-e}

Uy = {(m,y,z):\/w2+y2<R+e,m>-—e}

Iy = {(a:,y,z):\/m2+y2<R—e,m<e}

Uy = {{m,y,z):\/a:2+y2>R—e,a:<f}
where each m; 1 Uy — Vi = (—7/2 — e,7/2 4+ ¢) x (—7/2— €,7/2 -+ ¢} in the
natural way. Then a uniform rectangular grid is placed on the closure of ¥.
A diagram of this choice of coordinate maps is given in figure 1. Notice that

the grid points at the edges of each coordinate patch match up in the overlap
reglons.



3.2 Initialization of @,

The objective when initializing the functions ®; is to satisfy equation (7). One
way to do this is to use the signed distance function. For each grid point z € ¥,
compute dist(m;*(2),7), where dist(z,y) is the distance between z and y in the
space M is embedded. Then on each ¥}, choose a reference grid point y which
has non-zero distance and assign ®;{y) to be positive. For the remaining grid
points, the sign of &;{2) is determined by the number of times a line segment
connecting ¢ and y crosses the set (), with @;(z) < 0 for an odd number and
®;(x) > 0 for an even number.

By using the distance function in the manifold space, this ensures that at
each grid point = € U; N5,

[@i(mi(2))] = 1@ (m; ().
This is important because locally, for each i such that @ € U;, we must have
¢(x) = 28 (mi(=))

to preserve consistent motion in the overlap regions.

Recall that a consistent choice of normals for both the manifold and the
curve - is necessary when F is not an odd function. Therefore, if F is not
an odd function, we must additionally require ¢(z) = ®;(m;(2)) in order to
maintain a consistent velocity field.

3.3 Connecting Multiple Patches

The motion by curvature on each patch is computed on the interior grid points of
each patch V;. The values at the boundary are taken from neighboring patches.
Let = be a grid point on the boundary of ¥;. By construction, 77! (z) is in the
interior of some other patch U;. Therefore, we have &;(z) = £&; (w;(7] }(2))),
where the sign is determined by whether ®; o m; and &; o 7; are of equal (plus)
or opposite (minus) sign in the interior of the region U; N Uj;.

Two coordinate patches may have two or more disconnected overlap regions
on M. The sign convention must be determined individually for each distinct
overlap. For example, the two outer patches on the torus example below overlap
in two distinet locations. It is possible for both patches to share the same sign
convention in one overlap while having the opposite convention in the other
overlap. This property makes it possible to model any single curve on a torus
as a level set of a function within each coordinate patch.

3.4 Calculation on a Single Patch

Following the argnment in [3], we break the function F into the constant and
non-constant parts, F(k) = Fy — Fa(x). Equation (6) then becomes,

Bic + P V8] = o) [V (®)



Figure 2: Torus Diagram

This equation can be viewed as a Hamilton-Facobi like equation with parabolic
right hand side. Upwind techniques from hyperbolic conservation laws are used
to compute the left hand side and central differences are used on the right hand
side.

4 Examples

4.1 Example Manifold Construction

To illustrate the algorithm, we will construct a representation of a torus and
flow an initial curve on the torus. First, the torus will be described as the zero
level set of f(&,y, 2} = 2%+ (ry — /2% -+ y2)? —r? (see figure 2). Let each patch
map onto the rectangular region V' = [-1 — €z, 1 + €] % [~1 - €, 1 + ¢,] with
M x N grid points. Define Aw = 2/(M — 2}, Ay = 2/(N — 2), ¢; = Az, and
ey = Ay. Next, define

THz,y) = ((r1+racos{my/2)) cos(rz/2), (11 4 o cos(ny/2))sin(nz/2),
rosin{wy/2))

m (z,y) = ((r1— rocos(my/2))cos(me/2), (r1 — rocos(ry/2))sin(rz/2),
rosin{my/2)) ,

it w,y) = (—(r1 — rp cos(my/2)) cos(ma/2), (11 — vz cos(my/2)) sin(rz/2),
rosin{ry/2))

15z, y) = (~(r1 + g cos(ry/2)) cos(ma/2), (r + rg cos(my/2)) sin(nz/2),
Ty sin(mry/2)).

Finally, the patches on the torus are defined by U; = 7 H(V) and #; = (a7 1)1,
See figure 3 for a picture of how the patches and grid points fit together.



Tigure 3: Patches and grid points on the forus

To demonstrate the initialization process, we begin with a simple loop given
by
¥(s) = (r1 + racos(s), 0, 7y + rasin(s)).

The curve passes through patches 1 and 2, but not patches 3 and 4. Note
that a single scalar function could not have (s} as its zero-level set on the
torus because an additional sign change is necessary somewhere else. However,
by using local patches, it is possible to hide the necessary sign change in the
overlap regions.

After the positive distance from each point on the forus to v is computed
(i.e. |®:{2,y)| is determined for all ¢, 2, and y), the sign at each point must be
chosen. On V; and Vy, choose ®;(z,y) < 0 for 2 < 0. On Vs and Vi, choose
@ (z,y) > 0.

Finally, we describe how to set the boundary values for V;. Let the grid
be represented by the points zij. 'The points xy; for j = 2,...,N — 1 are
determined by the overlap between U7y and Uy. The sign ¢ in the overlap is

given by

@ = 1 (xy,5)/Pa(ma(my  (22,5)))-
In this example, ¢ = —1. Therefore,

®1(z1,5) = —Pa(ma(m] (21,5))).

On the other hand, the points 25 ; for j = 2,..., N —1 are also determined by
the overlap between I7; and U/, but for these points ¢ = +1. Therefore,

®1(2ar,3) = Balma(ny (2a1,5))).

Similarly, ®3(2; 1) and ®1{x; n) are determined by the overlap between U} and
Usz. Finally, ®1(z1,1), ®1(2a,1), 1wy n), and &1(zprn) are determined by



the overlap between I/; and Us. The boundaries for the other patches are
determined accordingly.

In order to have a consistent flow in the overlap regions, it is necessary for
the speed function F' to be an odd function. As noted earlier, this allows for
the flow to he independent of the normal to the level set. Thus, even though
$; oy and P4 ¢ w4 have opposite sign in the region Uy N Uy, the flow is the
same because the motion of the level sets is independent of the choice of sign
{which determines the normal to the level set). This means that we should have
|@1 0 m(x)] = |®4 0 ma(a)| for all time in the overlap region.

Surfaces which are simply connected do not have the restriction that F be
odd because it is possible to ensure that even the signs agree in the overlap
regions. However, in the level set representation it is possible to gunarantee
consistent flow in the overlap regions cnly when F is odd or the manifold is
simply connected.

4.2 Sample Computations

We begin with flow on a sphere. The sphere is constructed with a single coordi-
nate patch with the projection mapping the sphere onto its spherical coordinate
system, the square [—m, 7] X [-m,7]. The gap in figures 4 and 5 shows the
boundary of the coordinate patch. Figure 4 shows an initial circle just smaller
than a great circle shrinking to a point at the top. Figure 5 shows a periodic
curve symmetric with respect to the equator collapsing to the equator.

Next, we show flow on a torus. If the torus is constructed with a single
coordinate patch, then it is not possible to model a single non-contractible
curve using a level set approach. For curves which are not too complicated, it
is possible to construct a second curve to allow for the level set formulation. In
figure 6, a single coordinate patch is nsed and the flow of two non-intersecting
curves is computed.

However, if multiple coordinate patches are used, then a required sign change
can be handled by the communications between coordinate patches. Therefore,
it is possible to model a single curve on a torus. Figure 7 shows a single curve
flowing on a torus. The coordinate patches for the torus are described in sec-
tion 4.1.

Subsets of manifolds can also be used. For example, we compute the flow
of an oval and a periodic curve on a helicoid. The boundary conditions are
periodic at the top and bottom, one sided derivatives on the sides of a single
rectangular coordinate patch. Figure 8 shows the oval as it shrinks to a point,
while figure 9 shows the periodic curve flowing towards the central axis of the
helicoid.

Another example of flow on a submanifold is when the manifold is the graph
of a function f : R* — R. In this example, we use f(z,y) = 2 cos(2:/22 + y2).
One-sided derivatives are used for all boundaries of a rectangular region of this



graph. Figure 10 shows a straight line perturbed off-center flowing away from
the center over a ridge.

Finally, we show several flows on a cube. The cube is constructed with six
coordinate patches corresponding to the faces of the cube. The first experiment
on the cube involves a comparing the flow on a cube with orthogonal edges
to the flow on a cube with constructed round edges. Figures 11-14 show the
orthogonal cube followed by three different rounded cubes with the same initial
curve. The initial curve is flatter on the front faces than on the top. We see
that the flow is similar in all cases with the curve collapsing to a point near the
corner, Two other flows on a cube are shown in figures 15 and 16.

References

[1] D. L. Chopp. Computing minimal swfaces via level set curvature flow.
Technical Report LBL-30685, Lawrence Berkeley Laboratory, May 1991.

[2] D. L. Chopp and J. A. Sethian. Flow under mean curvature: Singularity
formation and minimal surfaces. Technical Report PAM-541, Center for
Pure and Applied Mathematics, University of California, Berkeley, Novem-
ber 1991.

[3] S. Osher and J. Sethian. Fronts propagating with curvature-dependent
speed: Algorithins based on Hamilton-Jacobi formulations. Jeurnal of Com-
putational Physics, T9(1), November 1988.

[4] J. Sethian. A review of recent numerical algorithms for hy persurfaces moving
with curvature-dependent speed. Journal of Differential Geomeiry, 31:131~
161, 1989

[6] T.J. Willoze. An Introduction to Differential Geometry. Oxford University
Press, 1959.

10



Figure D: Periodic curve shrinking to a great circle
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Figure 6: Two curves flowing on a torus
Figure 7: A single curve flowing on a torus
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Figure 8: A single loop shrinking on a helicoid

Figure 9: A periodic curve on a helicoid
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Figure 10: A curve flowing on the graph of f(z,y) = 2 cos(2:/z% + 3%)
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Figure 11: A single loop flowing on a cube with orthogonal edges

Figure 12: A single loop flowing on a cube with large rounded edges
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Figure 16: A single loop pulled over alternating corners
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