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A QUASI-MINIMAL RESIDUAL VARIANT OF THE BI-CGSTAB ALGORITHM
FOR NONSYMMETRIC SYSTEMS

T. F. CHAN®, E. GALLOPOULOS!, V. SIMONCINT!, T. SZETO! AND C. H. TONG?

Abstract, Motivated by a recent method of Freund [3}, who introduced & quasi-minimal residual (QMR)
version of the CGS algorithm, we propose a QMR variant of the Bi-CGSTAB algorithm of Van der Vorst, which we
call QMRCGSTAB for solving nonsymmetric linear systems. The motivation for both QMR variants is to obtain
smoother convergence behavior of the underlying method. We illustrate this by numerical experiments, which
also show that for problems on which Bi-CGSTAB performs better than CGS, the same advantage camries over to
QMRCGSTAB.

AMS(MOS) subject classifications. 65F10,65Y20

1. Introduction. In this note we propose a variation of the Bi-CGSTAB algorithm of Van
der Vorst [15] for solving the linear system

(1) Az = b,

where A is a nonsymmetric sparse matrix of order n.

Various attempts have been made in the last twenty years to extend the highly successful
conjugate gradient (CG) algorithm to the nonsymmetric case. One of the most natural extension
is the Bi-Conjugate Gradient algorithm {BCG) [2] [9]. Although BCG is still quite competitive
today, it also has several well-known drawbacks. Among these are (1) the need for matrix-
vector multiplications with AT (which can be inconvenient as well as doubling the number of
matrix-vector multiplications compared to CG for each increase in the degree of the underlying
Krylov subspace), (2) the possibility of breakdowns and (3) erratic convergence behavior.

Many recently proposed methods can be viewed as improvements over some of these
drawbacks of BCG, The most notable of these is the ingenious conjugate gradients-squared
method (CGS) proposed by Sonneveld [14], which cures the first drawback mentioned above
by computing the square of the BCG polynomial without requiring AT. Hence when BCG
converges, CGS is an attractive, faster converging alternative. However, this relation between
the residual polynomials also causes CGS to behave even more erratically than BCG, particularly
in near-breakdown situations for BCG [8][15]. These observations led van der Vorst [15] to
introduce Bi-CGSTAB, a more smoothly converging variant of CGS. The main idea is to form
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a product of the BCG polynomial with another, locally defined polynomial. The Bi-CGSTAB
method was further refined by Gutknecht [7] to handle complex matrices and aiso lead to
better convergence for the case of complex eigenvalues. Nevertheless, although the Bi-CGSTAB
algorithms were found to perform very well compared to CGS in many situations, there are
cases where convergence is still quite erratic (see, for example, Section 5 and {11]).

In a recent paper [3], Freund proposed a new version of CGS, called TFQMR!, which
“quasi-minimizes” ({5]) the residual in the space spanned by the vectors generated by the
CGs iteration. Numerical experiments show that QMRCGS in most cases retains the good
convergence features of CGS while correcting its erratic behavior. The transpose free nature
of QMRCGS, its low computational cost and its smooth convergence behavior make QMRCGS
an attractive alternative to CGS. On the other hand, since the square of the residual polynomial
for BCG is still in the space being quasi-minimized, QMRCGS inherits the same asymptotic
behavior of CGS. In particular, QMRCGS breaks down whenever CGS does. Moreover, it is
well-known that the CGS residual polynomial can be quite polluted by round-off error [17];
one possible remedy would be to combine QMRCGS with a look-ahead Lanczos technique as
was done for the original QMR method [4].

In this paper, we take an alternative approach by deriving quasi-minimum residual ex-
tensions to Bi-CGSTAB, We call the basic method QMRCGSTAB and illustrate its smoothed
convergence by means of numerical experiments. We note that it may appear redundant to
combine the local minimization in Bi-CGSTAB with a global quasi-minimization. However,
our view is that the local minimization is secondary in nature and is only used as a way of
generating residual polyromials in the appropriate Krylov subspace over which the residual
is being quasi-minimized. In fact, this view allows us some flexibility in modifying the local
minimization step in Bi-CGSTAB which leads to other quasi-minimal residual variants,

2. Review of Bi-CGSTAB. In this section we review the Bi-CGSTAB algorithm on which
the method proposed in this paper is based.

All of the algorithms discussed in this paper are derived from the BCG algorithm [2),
which is a natural generalization of the classical CG algorithm for the solution of both Az = b
and AT% = . Given xp and & such that (7o, 7o) # 0, the algorithm can be written as follows:

Algorithm BCG( A, b, 5, zg, 0, €)
T = b— Amo,ﬁ)m B— AT:E(}
Po=ro, Po="o
po = (7o, o)
t= 0
while ({|r;]] > e and ||7f] > €)
t=1i+1
o; = (B, Ap:)
a; = pifo;
Tig1 = i — aiApi,  Fipr = 7 — o ATH;
Zipr = T o, Eipr = &+ o
Pi1 = (Fig1, Tiz1)
Biv1 = pis1/pi
Pit1 = Tiz1 + Bigipis P = Fipr + Bipr B
end

! In this paper we shall refer to it as QMRCGS in order to more clearly illustrate its relationship to and distinguish
it from our proposed methods, Both methods are transpose-free guasi-minimal residual methods.
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The basic idea in CGS is the following: Let r; = ;(A)ro be the residual at the i*»
iteration of BCG. The residual in CGS is expressed by ¢?(A)ro, so that AT is not involved.
The coefficient p;y1 = {(@i(AT Yo, pi{ A)ro) is calculated using:

2) pi+1 = (Fo, pF(A)ro).

Instead of squaring the polynomial «;, Algorithm Bi-CGSTAB applies a different polynomial
1i( A) to the residual r; using the formula

Yo(A) = I, $ipi(4) = (I — wir14)%i(A4),

where the parameters w; are chosen in a suitable way. Hence, during the next iteration, the
residual is given by 741 = Yit1{A)piy1(A)re. Van der Vorst [15] shows that r; can also
be updated without requiring A7, From the definition of ;;1(A), it can be shown that the
residual r; can be updated in two successive steps:

Yi(A)pi(A)ro = Di(A)pir1(Aro = Yip1(A)pir1(4)ro.

The coefficient p;4; is computed by pi41 = (Fo, Yig1{A)pis1(A)ro). It remains to explain
how to compute parameters «;, 3;, «;. The first two are related to the original BCG algorithm
and are givenin f15] as

— Pi G; = pi_ Qi

(7o, Ai( A)pi(A)ro)’ Y pic1 Wit
The factor g_:i_: is added in order for the polynomial 4;11(A) to have the same leading
coefficient as ¢Z,,(A). The parameter w;4; is calculated by the steepest descent rule to
minimize the quantity |}(7 — wiy14)%:i(A)wip1(A)rol]. This gives

ay

(ASit1,5i41)

Wil =
T (Asir, Asigr)’

where s;41 = ¥i(Alpis1(A)ro.
Using these parameters the Bi-CGSTAB algorithm is as shown below:

Algorithm Bi-CGSTAB( A4, b, zg, €)
Tg = b~ Aﬂ:‘o
choose 7g such that (7o, 7o) # 0
pp=ay=wy=1
v=pp=0
i=10
while (||| > €)
t=1+1
pi = (Fo,ri-1), Bi = (pi/pi-1)(@im1fwi1)
pi = i1 + Bi(pic1 — wic1vi1)
v = Ap;
a; = pif (o, vi)
$i = Ti—] = iV
i, = As;




w; = (ti,87)/(ti, 1)
Ty = Zi—y + oy + wisi
= 8 — wil;

end

As explained in [15], the first part of the loop corresponds to the BCG step for the matrix A4,
and s; represents an intermediate residual which could be tested for convergence. -

Since ; and v; are orthogonal for j < 4, that is (1;( AT 7o, pi( A)ro) = 0, for j < i, it
follows that in exact arithmetic Bi-CGSTAB terminates with the true solution after m < n steps
[15]. Since both CGS and Bi-CGSTAB have the BCG polynomial built-in, they break down
whenever BCG does,

3. The QMRCGSTAB Algorithm, The algorithm proposed in this paper is inspired by
QMRCGS in that the three term recurrence z; = ;1 + a;p; +w;s; Of Bi-CGSTAB is transformed
into a quasi-minimization problem. In other words, we use Bi-CGSTAB to generate the vectors
p; and s; and 10 quasi-minimize the residual over their span,

Our derivation follows closely that of QMRCGS. During each step of Bi-CGSTAB two
vector relations hold:

3 s = ri—1] — a;Ap;, = 8 — Wi Asq,

LetYi = {y1,92, .., yr}s where gy = pyfor I = 1,...,[(k+1)/2] and yy = s, for ! =
1,...,[k/2), ([k/2]is theinteger part of k/2). In the same way, let Wi,y = {wo, wy, ..., wk}
with wy = rpforl = 0,...,[k/2) and wy_y = & for I = 1,...,[(k + 1}/2]. We also
define {61,8z,...,8;}, a8 8y = wy forl = 1,...,[(k+ 1)/2] and &3y = oy forl =
1,...,[(k+ 1)/2]. In this case, for each column of W4 and Y, Eq. (3) may be written as

“) ijz(wj-l—wj)éj_lsj:15'--,]‘;3
or, using matrix notation,
AYp = Wi Ery,

where Ey1 is a (k+ 1) x kbidiagonal matrix with diagonal elements §; ! and lower diagonal
elements —§; .

It can easily be checked that the degree of the polynomials corresponding to the vectors
r¢, 8; and p; are 24, 24 — 1 and 2¢ - 2 respectively. Therefore, span(Yy) = span(Wi) = Ki-1,
where K is the Krylov subspace of degree & generated by rg. The main idea in QMRCGSTAB
is to Took for an approximation to the solution of Eq. (1), using the Krylov subspace Kj_1,
in the form

zp = o+ Yrgr, with g; € c*,
Hence, we may write the residual r, = b — Az as
Tk = 10— AYigr = ro — W1 Epy19s.
Using the fact that the first vector of Wiy is indeed ro, it follows that
r = Wigi(er — Exy19%)s
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where e, is the first vector of the canonical basis. Since the columns of Wy, are not normal-
ized, it was suggested in [3]touse a (k+ 1) x (k + 1) scaling matrix Xy =diag(o1, .., 0k+1),
with ¢; = ||w;}], in order to make the columns of Wy, to be of unit norm. Then

(53 e = Wi Sty Zrar(er — Erarge) = Wis1Zrs1 (o161 — Higrgx)

with Hk-H = Ek+1Ek+1.

The quasi-minimal residual approach consists of the minimization of ||o1e; — Hr419}|
forsome g € R*. In Section 4 we will introduce a variant of QMRCGSTAB which generates
W41 with pairwise orthogonal columns,

The least squares minimization of ||oye; — Hy419]| is solved using QR decomposition
of Hy41. This is done in an incremental manner by means of Givens rotations. Since Hyqy
is lower bidiagonal, only the rotation of the previous step is needed. We refer to {3] for a
detailed description of the QR decomposition procedure.

The pseudocode for the QMRCGSTAB algorithm is as follows, in which the Givensrotations
used in the QR decomposition are written out explicitly:

Algorithm QMRCGSTAB(A, b, zo, €)
(1) Initialization
o= b~ Afco
choose g such that (g, o) # 0
Po=vp = do =0
po=ao=wp=1,7=[lrol,00 =0, =0
(2yfork=1,2,---do
Pk = (Fo, Te-1)s Br = (prak—1)/(pr—1wir_1)
Pk = Th—1 + Br(Pr-1 — Wk—1Vk-1)
Vg = Apg
ag = pg/(Fo, vk)
Sp = T — Ok
(2.1} First quasi-minimization and update iterate

B = llskll/me=1/4/1+ 02,7 = rhyc

ik = oy
5 82 mi—
di = prp + —=—dr

oy
Ep = T + Tdk
(2.2) compute {x, wi and update 7
tr = Asy
wi = sk, )/ (tr, 1)
T = 8 — wrlk
(2.3) Second quasi-minimization and update iterate

6r = |lrell/Fie = 1/\/1 + 62,7 = Fhie
2 .

Nk = C'Wy

di = s + gfﬁ’-zigk

Tp = Tk + Nedy

If z; is accurate enough, then quit
(3) end

To check the convergence the estimate [|#1]] < vk + 1]7| was used, where #; denotes
the QMRCGSTAB residual at step k£ [3].




Note that the cost per iteration is slightly higher than for Bi-CGSTAB, since two additional
inner products are needed to compute the elements of X;;. A more detailed discussion on
computational costs is given in Section 5.

4. Some Variants of QMRCGSTAB. The use of quasi-minimization in the “product
aigorithms™ (such as CGS and Bi-CGSTAB) iniroduces some flexibility. For exampile, the
underlying product algorithm need not be constrained to generate a residual polynomial that
has small norm since, presumably the quasi-minimization step will handle that, Instead, the
basic iteration can be viewed as only generating a set of vectors spanning the Krylov subspace
over which the quasi-minimization is applied. This leads us to several variants of QMRCGSTAB
which we will briefly describe. Note however that only one of these variants will be used in
the numerical experiments.

We make two observations on the QMRCGSTAB method:

1. Itis not crucial that the steepest descent step reduces the norm of the residual as long
as it increases the degree of the Krylov subspace associated with Wy 1.
2. If Wyy were orthogonal, then quasi-minimization becomes true minimization of
the residual.
Therefore, it is natural to choose w; to make Wi..1 “more orthogonal”, For example, one can
choose w; to make r; orthogonal to s; and Wy, pairwise orthogonal. This leads to the formula:

o = (si,5i)
P (s ti)

which replaces the corresponding formula in Algorithm QMRCGSTAB. We call this variant
QMRCGSTAB2. We note that since the inner-product (s;, ;) is already needed to compute b;,
we save one inner-product compared to QMRCGSTAB,

We also note that similarly to Bi-CGSTAB, both QMRCGSTAB and QMRCGSTAB2? break
down if (s;,t;) = O which is possible if A is indefinite (in fact it is always true if A is skew
symmeiric.) This is an additional breakdown condition over that 0f BCG. One possiblestrategy
to overcome this is to set a lower bound for the quantity |(s;, ¢;)]. However, for matrices
with large imaginary parts, Gutknecht {7] observed that Bi-CGSTAB does not perform well
because the steepest descent polynomials have only real roots and thus cannot be expected to
approximate the spectrum well. In principle, it is possible to derive a quasi-minimal residual
version of Gutknecht’s variant of Bi-CGSTAB, but we shall not pursue that here.

5. Numerical experiments. We next compare the performance of the QMRCGSTAB vari-
ants with that of Bi-CGSTAB, QMRCGS, and CGS.

Table 1 shows the cost per step of the methods under discussion, excluding however the
inner product which may be necessary to compute the residual norm.

The number of matrix-vector multiplications is the same for all methods. Although
the number of inner products for QMRCGSTAB and QMRCGSTAB2 is higher than that for the
corresponding quasi-minimal residual version of CGs, there are fewer floating point operations
(flops) for the vector updates,

We will also present several experiments to show that QMRCGSTAB does achieve a smooth-
ing of the residual compared to Bi-CGSTAB, Note however that, because the Bi-CGSTAB method
already improves the erratic residual convergence of BCG, the effect of QMRCGSTAB is not as
impressive as the one of QMRCGS on the residual of CGS,

Unless stated otherwise, in all examples, the right hand side b was generated as a random
vector with values distributed uniformly in (0, 1), and the starting vector zo was taken to be
zero. All matrices arising from a partial differential operator were obtained using centered,
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TABLE 1
Cost per step for each method applied on a system of ordern

inner flops for matrix-vector

products | vector updates | multiplications
Bi-CGSTAB 4 12n 2
CGS 2 13n 2
QMRCGSTAB 6 16n 2
QMRCGSTAB2 5 16n 2
QMRCGS 4 20n 2

second order finite differences. The methods were compared on the basis of the number of
iterations necessary to achieve relative residual H < 1078, Hence, the figures were built

with the abscissae representing the number of iterations and the ordinates representing %:—:‘}ﬁ
graded with a logarithmic scale. Experiments were conducted using a Beta test version of
Matlab 4.0 [6] running on a Sun Sparc workstation.

Example 1. This example was taken from [14] and corresponds to the discretization of
the convection-diffusion operator

(6) L{u) = —eAu + cos(a)ug + sin{a)uy,

on the unit square with homogeneous Dirichlet conditions on the boundary and parameters
€ = 0.1 and a = —30°, using 40 grid points per direction, yielding a matrix of order
n = 1600. Fig. 1 shows the convergence histories, from which we can see the smoothing
effect of quasi-minimization on the CGS and Bi-CGSTAB residuals. We see that Bi-CGSTAB and
its smoothed counterparts converge slightly faster than CGS and QMRCGS, with QMRCGSTAB2Z
showing the best performance by a small margin,

Example 2. This example was taken from [16] and corresponds to the discretization of

) ~ (Dug)s - (Duy)y = 1

on the unit square with homogeneous boundary conditions. We used a coarser grid than the
one considered in {16], that is 50 grid points per direction yielding a matrix of order n = 2500.
Parameter D takes the value D = 10°in0 < 2,y < 0.75,D = 0.1in 0.75 < z,y < 1, and
D = 1 everywhere else. Left diagonal preconditioning was applied. In [16], this matrix was
used to illustrate the better convergence of Bi-CGSTAB over CGS and we seg that this advantage
carries over to the smoothed versions (Fig. 2). This is due to the fact that, for operator (7), the
direction vectors of Conjugate Gradients methods lose orthogonality rapidly.

Example 3. This example comes from the discretization of the convection-diffusion
equation

® L(w) = —Au+ 7(ous + yu,) + fu

on the unit square where v = 100, 8 = —100, for a 63 x 63 grid, yielding a matrix of order
n = 3969. No preconditioning was used. In this example, we see the CGS-based methods
converge a little faster than Bi-CGSTAB and QMRCGSTAB, but the pairwise orthogonal variant,
QMRCGSTAB2, is the fastest. See Fig. 3.

Example 4. Figure 4 shows the results of a 3-dimensional version of Example 3 without
preconditioning:

(%) L(u) = —Au+ y(zug + yuy + 2u;) + fu
7
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FIG. 1. Example 1 : 2D conv-diff. operator(6)

on the unit cube where § = ~100, and v = 50 for a 15 x 15 x 15 grid, yielding a matrix of
order n = 3375.

We note that in this example the improvement caused by Bi-CGSTAB over CGS and QMRCGS
is impressive, Therefore it is not surprising that there is only little additional improvement
brought by the variants proposed in this paper. We note that for this operator, the use of
centered differences and large values of -y are unfavorable for Bi-CGSTAB-type methods, since
the resulting matrices would have pronounced skew-symmetric component, and eigenvalues
with large imaginary parts [7]; different discretization methods would be more attractive [13].

Example 5. The next example illustrates how all methods can be affected by the
conditioning of the generated polynomial.

€ 1
(10) A=1,/® ( _25 100 )

ie, A is an n x n block diagonal matrix with 2 x 2 blocks and n = 40. We chose
b= (1010 ---)%, and 7y = ro. For such a b the norm of the resulting BCG polynomial
satisfies [J, || = O(e™!). Thus, [J¢2]] = O(e2) in the squared methods and we can foresee
numerical problems when ¢ is small.

Each entry of Table 2 shows (i) the number d of correct digits reached in the relative
restdual while running each algorithm for a maximum of 20 matrix vector multiplications or
until the relative residual dropped below 10~%, and (ii) in parentheses, the number of matrix
vector multiplications, my, that is a number, not greater than 20, needed to reach the relative
residual 1077,

In exact arithmetic, finite termination occurs after the second BCG polynomial ¢; is

g
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F1G. 2. Example 2 : 2D discontinuous coefficients

computed in both the CGS and Bi-CGSTAB algorithms. We sce from Table 2 that all methods
behave equally well for € = 1.0. As ¢ decreases, round-off error causes CGS and QMRCGS,
which are based on squaring, to fail or not to converge within the expected time. Furthermore,
both CGS and QMRCGS lose about twice as many digits as Bi-CGSTAB and its quasi-minimal
variants. We also mark the instances of the quasi-minimal variants whose residuals stagnate
before the maximum number of iterations has been reached.

We note that although the example is contrived, it does justify the implementation of a
QMRCGSTAB-type method.

Example 6. We conclude the numerical experiments with an overall comparison of the
methods on matrices from a standard test set, namely the Harwell-Boeing collection [1]. This
experiment is conducted on a Silicon Graphics computer SGI IRIS 4D/2408S which uses 64-bit
IEEE standard floating point arithmetic, Table 3 displays the number of iterations to achieve
arelative residual %}f’i} < 1078, The right-hand side was computed in order to have a random
solution vector. We aiso include iteration counts for preconditioned versions of all algorithms.

The preconditioner used is Saad’s ILUT(p, ), described in [12], with the actual subroutine
borrowed from the implementation by Freund and Nachtigal. ILUT(p, ) is based on two
parameters controlling fill-in. The first parameter allows p elements in each row of the
lower and upper triangular factors in addition to the number of nonzero elements originally
in the lower and upper triangular parts of A. All elements smaller than the threshold 7
times a normalization factor are also dropped. We used ILUT(0, O) for all problems in this
experiment. Since the factors from ILUT(0, 0) are as sparse as the problem matrix A, the
number of operations in applying ILUT(0, 0) is ordinarily not more than two matrix vector
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FiG. 3. Example 3 : 2D conv-diff. operator (8)

multiplications?. Thus ignoring the cost of the factorization, the (not surprising) observation
one can make for Table 3 is that a good preconditioner greatly improves performance of all
methods. More important for our comparison is that the Bi-CGSTAB and CGS variants give
generally comparable performance in terms of number of iterations.

6. Conclusions and future work, We have derived two QMR variants of Bi-CGSTAB,
Our motivation for these methods was to inherit any potential improvements on performance
Bi-CGSTAB offers over CGS, while at the same time provide a smoother convergence behavior.
We have shown numerically that this is indeed true for many realistic problems. Althoughin
their present form, the two proposed methods still suffer from some numerical problems, they
have many desirable properties: they are transpose-free, they use short recurrences, they make
efficient use of matrix-vector multiplications and demonstrate smooth convergence behavior.

7. Acknowledgments. We are grateful to R. Freund and N. Nachtigal for letting us use
the HLUT module from their QMR package, and to J. M. Hammond, C. Moler, and The
Mathworks Inc. for providing us with the Beta Test version of Matlab 4.0. [6]. We also thank
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TABLE 2

Correct digits and matrix vector multiplications at termination: d(mv). A max. 20 matrix vector mult. allowed.

€

Method 1.0 [107* 107t 110712
o 1AL AN SIANF [ _2aronn. | __1FANE
AR .I.T\'Y} .J\'?}+ J\LU}T l\'l’]l
QMRCGS 13(3) | 5(4)1 1 0(20) 0(20)
Bi-CGSTAB 16(3) { 12(3) | 7(3% 3(3)¢
QMRCGSTAB |1 16(3) | 12(3) | 7(3}1 3(3)%
QMRCGSTAB2 || 16(3){ 12(3) | 7(3)} 3(3)4

* Oscillatory behavior observed.
1 Residual stagnated before max. number of mv's was reached.
1 Tterations stopped when division by zero was encountered.

‘TABLE 3

Tteration Counts for Some Problems in the Harwell-Boeing Collection

| Problem || order || Bi-cosTAB || QMRCGSTAR || QMRCGSTAB2 ||

OGS

| omrcas |

foeoJoleJole Joue]ole]

orsreg-1 1030 §f 303 | 16 || 308 | 16 312 16 172 | 16 || 171 | 16
orsirr_1 BB6 § 1320 | 12 | 1437 | 12 937 12 622 | 14 || 621 | 14
orsirr_2 2205 || 834 | 12 || 882 | 12 763 12 4350 | 15 || 445 | 15
pores] 30 200 | 15 179 | 15 159 16 208 | 15 || 144 | 15
pores2 1224 ok 32 ¥k 32 *¥ 32 *k 34 ** 134
pores3 532 H 1698 4 17 §{ 1795 | 17 || 1530 | 17 1627 | 20 || 1880 | 20
sherman! || 1000 }| 383 | 18 §| 400 | 18 358 18 303 | 20§ 298 | 20
sherman2 || 1080 *ok 15 *ok 15 ok 14 * 13 ** 13
sherman3 || 5005 ** 166 ok 65 ¥ 66 *x 70 ¥* 170
shermand || 1104 || 110 | 25 110 | 25 109 25 113 1 25 §| 115 | 25
sherman5 {| 3312 || 1846 | 15 |} 1848 | 15 *¥ 15 *k 18 |} 1293 | 17
saylorl 238 *¥ 9 *¥ 9 ¥ 9 ** i1 i 11
saylor3 1000 || 336 | 1B || 345 i8 379 18 203 { 20 )] 296 | 20
saylord 3564 *¥ 32 ki 32 *k 31 * 39 ¥k 39
(U) - no preconditioning; (P) - ILUT(0, 0) preconditioning used;
** _ max, number (2000) of iterations exceeded; fy = rp Or wy = v;.

nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13 (Mar. 1992), pp. 631-644.

{16} H. A. VAN DER VORST, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of
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