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Abstract

This is the first paper in a series in which we construct and analyze
a class of nonoscillatory high order accurate self-similar local maximum
principle satisfying shock capturing schemes for solving multidimen-
sional systems of conservation laws. In this paper we present a scheme
which is of 3rd order of accuracy in the sense of flux approximation,
using scalar one-dimensional initial value problems as a model. For
this model, we make the schemes satisfy a local maximum principle
and a nonoscillatory property. The method uses a simple centered
stencil with quadratic reconstruction followed by twe modifications,
imposed as needed. The first enforces a local maximum principle, the
second guarantees that no new extrema develop. The schemes are
self-similar in the sense that the numerical flux does not depend ex-
plicitly on the grid size, i.e., there are no grid size dependent limits
involving free parameters as in, e.g., [12],{13],[14],[15]. Combining the
nonoscillatory property and the local maximum principle we achieve
TVB ( Total Variation Boundedness ). Hence we obtain convergence
of a subsequence of the numerical solutions as the step size approaches
zero, Numerical results are encouraging. Extensions to systems and/or
higher dimensions will appear in future papers, as well as extensions
to higher orders of accuracy.



1 Introduction
- We consider numerical solutions of the hyperbolic conservation law:

Us + f(u):c =0
w(2,0) = o(x), (1.1)

where ug(x) is assumed to be a bounded variation function. The main dif-
ficulty in solving (1.1) is that the solution may contain discontinuities even
if the initial condition is smooth. Among the successful numerical schemes
for solving (1.1) we mention the modern nonoscillatory conservative schemes
such as TVD { Total Variation Diminishing }, UNO ( Uniformly High Order
Nonoscillatory ), ENO ( Essentially Nonoscillatory ) and TVB ( Total Vari-
ation Boundedness ) schemes ( see e.g. [1],[2], [3] and the references listed
therein ). These schemes are usually total variation stable for one dimension
scalar nonlinear problems and are formally higher than first order accurate,
hence they can capture sharp shocks without introducing oscillations. These
schemes are very successful in numerical experiments. Recently a SNO (
Strictly Nonoscillatory ) scheme was introduced by Tong in [11], which is of
arbitrarily high order of accuracy. We would also like to mention the TVD
scheme introduced by Sanders ( see [10] ). His scheme is TVD in the sense
of reconstruction and 3rd order of accuracy except for a degeneracy to sec-
ond order at isolated extrema. His method involves advancing in time the
cell-average and at least one additional quantity, while ours uses only the
cell-average. There are, however, similarities in the way in which we enforce
a local maximum principle as described below.

The schemes we introduce here are 3rd order accurate, conservative, lo-
cal maximum principle satisfying, nonoscillatory, and hence TVB schemes.
The 3rd order of accuracy is achieved with the usual degeneracy to second
order at certain isolated extrema. The TVB property follows from a local
maximum principle and a nonoscillatory property. Extensions to multidi-
mensional systems are straightforward and will be performed in the future.

In this paper we use a uniform grid ( for simplicity only ). Extending
the schemes to unstructured grids is not difficult. We define a partition
{I; x [tnatn-i-l]}? of Rx Rt, where I; = [a:j__%,mﬂé] is the j-th cell, z; = 7 - &,
t,=n-7, h=3:j+_21_ — 1, T =l — iy, and A = 7/h.

Now we briefly outline the construction of the schemes.



Foliowing the framework of the original ENO schemes constructed in [2],
our scheme is of the form

@+t = A- E(r)- R(z, @), (1.3)

where " = {u} = {} f u(z,t,) dz} are cell-averages of the solution u(z,t,)
7
at time ¢ = t,. R(z,%") is a reconstruction procedure used to produce

a high order accurate global approximation to u({z,t,) from its given cell-
averages U". lere we also denote R(z,@") to be the global approximation
to u(z,t,) and consider R(z, ") = {R.,(z,%")} to be a piecewise polynomial
and R;(x, ") to be a polynomial in j-th cell I;. E(r) is the evolution operator
of the PDE, and A is the cell-averaging operator, see [2]. We represent the
schemes as following: For time t = ¢,,, we follow a reconstruction procedure
R(z,@") to reconstruct the solution to obtain the R(z,#") from the given
cell-averages 4™ at time ¢ = 1, and perform the evolution operator E(7)
of the PDE on the R(z,4") to obtain an approximation solution at time
t = 1,41 which is the true solution of following hyperbolic conservation law

U+ flu), =0
u(m,o>(=) R(z,an), (14)

at time ¢ = 7, and then compute the sliding averages of the approximation
solution to obtain the cell-averages unt! at time t = ¢,,,,.

To explain how we get the local maximum principle, the nonoscillatory
property, and the resulting TVB property, we rewrite (1.3) as

R(z,a™t'} = Rz, A E(7) - R(z,u?)). (1.5)

From the reconstructed solution R(z,#”) at time ¢t = t,, we perform the
evolution operator E(r) to obtain the solution at time ¢ = t,,,, and the
averaging operator A to obtain the cell-averages @*t! of the solution, and
then use the reconstruction procedure to obtain the reconstructed solution
Rz, unt1) at time ¢ = ¢, 4.

According to (1.5), we define the TVB ( Total Variation Bounded ) prop-
erty of the schemes to be

TV(R(z,a)) < O, (1.6)



i.e. we measure the variation of the reconstructed piecewise polynomial func-
tion. This was done earlier by Sanders in [10]. Here the constant C is inde-
pendent of the step size h and the time level n.

The strategy to achieve the TVB property of the scheme is thus simply:
we construct the reconstruction solution to satisfy a local maximum principle
and a nonoscillatory property.

Our local maximum principle means that for each cell, the reconstructed
piecewise polynomial R(x, @) satisfies, Vo € I,

m; < Ri(z,um+t) < M;, (1.7)
where m; = min  R(z,u") and M; = max  R(z,u%"). This is

sel; 1UULi4 wel; 1ULUL 4
reasonable under following CFL condition

fsup | fu) <1,

where the supreme is evaluated over [inf(uo(z)), sup(uo(z))]. This condition

is optimal.

Our nonoscillatory property means that the number of extrema of the
reconstructed piecewise polynomial R(wz,©"t!) is equal to the number of ex-
trema of the u»*!. Here and below we denote the number of extrema by
N(-). Thus the nonoscillatory property means

N(R(z,unt1)) = N(a»t). (1.8)
Because of the local maximum principle, for Yz, n,

inf(uo(2)) < Rz, u+) < sup(uo(z)).

Because of the nonoscillatory property,

N(R(z,urt1)) = N(a+1)
< N(R(z,u")) = N(u")
< N(R(z,a%) = N(u°)
< N(up(x)).

Here N(@n+) = N(A- E(r) - R(z,@")) < N(E(7) - R(z, 7)) < N(R(z,a")),

because the A and E(7) are both nonoscillatory operators, see [3].
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Thus

TV(R(z,um)) < N(R(z,a"+1)) - (sup(uo(2)) — inf(uo()))

<
< N(ug(z)) - (sgp(ug(a:)) — inf(ug(z)))
C,

where the constant C is independent of A and n. Hence the TVB property
(1.6) follows as soon ag we achieve the local maximum principle (1.7) and
the nonoscillatory property (1.8) in the reconstruction procedure. The TVB
property implies convergence of a subsequence in L. Convergence for nonlin-
ear problems will follow if we obtain a single entropy condition in the convex
case { see [4] ), and, more generally, if all limit solutions satisfy Kruzkov’s
entropy condition ( see [16] ).

Also we construct E(z, @"t1) so that it approximates u(z,,,,) up to 3rd
order of accuracy in regions in which u(z,?,,,) is smooth, and has conserva-
tion form } If R(z,un+1) de = @} in each cell.

Hence thia main idea of this paper is to achieve 3rd order of accuracy,
conservation form, the local maximum principle, the nonoscillatory prop-
erty, and hence the TVB property by achieving the first four of them in the
reconstruction procedure.

2 The Reconstruction Procedure

In this section we present the reconstruction procedure to obtain Rz, @r+1)
from the given cell-averages a"t!. We also know {m;} and {M;}. Here
Rz, u"*+') = {R;(z,u"t1)} is a piecewise quadratic polynomial approximat-
ing the weak solution u(z,%,4,) and R;(z,w"t?) is quadratic polynomial de-
fined on the j-th cell. According to the previous section, Rz, #"t!) should
satisfy following four properties.

(p1) Bach R;(z,u**1) has 3rd order of accuracy i.e.

Rz, uamt!) = u(z, t,,1) + O(Rh%),

in regions in which u(=z,?,,,) is smooth.
(p;) BEach R;(x,4m+!) has conservation form, i.e.

3,;! Rz, untt) de = a}t,
3



(pa) Bach R;(z,unt) satisfies a local maximum principle i.e. Yz € 1},
m; < Rj($,ﬂn+1) < Mja
where m; = min  R(z,4") and M = max  R{z,u")

wEIj_1UIJ'UIj+1 :l'.'GIj_;lUIjUIj.|_1
(ps) R(z, ™) satisfies a nonoscillatory property i.e.

N(R(z,am*1)) = N(@n+l).

In the following subsections we design the reconstruction procedure to
be two subprocedures. In the first subprocedure, by interpolating, we sim-
ply get a preliminary reconstructed quadratic polynomial in each cell I;
P;(z,ut1), and thus a preliminary reconstructed piecewise quadratic poly-
nomial Pz, @+ = {P;(z,u"t1)} satisfying properties (p;) and (p;). In the
second subprocedure we introduce a modifying operator and apply it twice
to each piece P;(z,unt') of P(z,u"t!) to obtain the desired R(z,a!) =
{R;(z,an+1)} satisfying properties (p;)-(p,)-

For simplicity, here and below we denote @ = {@;} = a~tl = {a}™},
P() = {P(e)} = P(z,@) = {Py(z,a*)} and R(z) = {Ry(z)} =
R(z,ant!) = {R;(z,unt1)}.

2.1 Preliminary Reconstruction Subprocedure

We start with some definitions and observations,

Definition 1: We call the j-th cell I; nondecreasing if #;_; < @; < @4,
nonincreasing if #;_, > U; > 44y, maximum if 4; ; < @; > @;,,, and
minimum if @;_, > @; < @;4,. We call I; monotone if it is nondecreasing or
nonincreasing, and extrema if it is maximum or minimum.

Definition 2: We say a polynomial p;(x), which is defined on I;, has the
same shape as the cell-averages @, if the nonconstant p;(z) satisfies

(i) The polynomial p;(x) has a maximum in Ir = (:nju%,mﬂ_%) ifI;is a
maximum cell and p;(«) has a minimum in /¢ if 7; is a minimum cell.

(ii) p;(z) is nondecreasing on I; if I; is a nondecreasing cell; p;(z) is
nonincreasing on [; if I; is a nonincreasing cell.

If p;(x) is a constant, we again say that it has the same shape as the
cell-averages .

We say a piecewise polynomial p(z) = {p;(#)} has the same shape as
the cell-averages @ if all of the p;(z) have this property.

8



Definition 3: We call a polynomial p;(z) defined on /[; a proper re-
constructed polynomial if

() % fpg( @) dz = u;,

(i) V:c € L, p;(z) — u(z,t,,.,) = O(h®) in regions in which u(z,?,,,) is
smooth,

(iii) p;(z) has the same shape as the cell-averages 4.

We also call a piecewise polynomial p(z) = {p;(z)} a proper recon-
structed piecewise polynomial if all of p;(z) are proper reconstructed
polynomials.

Definition 4: Suppose a proper reconstructed piecewise polyno-
mial p(z) has a extrema at z*. We say p(z) has a false extrema at z*, if
there is a neighborhood of 2* so that p(z) is monotone on both sides of z*
and of the same kind i.e both nondecreasing or both nonincreasing,

Of course a false extremaof a proper reconstructed piecewise poly-
nomial p(z) may only occur at an interface between two cells.

Observation 1:

a) For a proper reconstructed piecewise polynomial p(z), we ob-
serve that there may be four type of false extrema at an interface, say
Tipl:

false extrema type (i) @; > @;,, and p;(z J+1) < pj+1(:sj+%),

false extrema type (ii) @; = @;,; and pﬂl(mj_'_ 1) > 4 > pj(mj+%) and
at least one of these mequahtzes is strict.

false extrema type (ili) %; < @;4; and p,(= i+1) > Pigal®jp),

false extrema type (iv) @; = i;4 and p; (2 i+l 1) €4 < pj(a:”x) and
at least one of these 1nequa,11t1es is strict.

b) For a proper reconstructed piecewise polynomial p(z), if p(z)
at any interface z, 1) satisfies

(1) if 4y > gy, then ;pj,(::r:“T+ ) > pj+1(mj+%),

(i) if @; < 45y, then p;(z g-q-%) < Pj+1($j+%)5

(ifi) if @ = @45, then (pj(2;01) — %) (Pjga (Z541) —%3) > 0 or pi(z;,1) =
Pi(Z541) = 1),

then p(z) has no false extrema.

Observation 2:

If a proper reconstructed piecewise polynomial p(z) has no false
extrema, then it is a nonoscillatory reconstruction i.e. N(p(z)) = N(@).



We construct the preliminary piecewise polynomial as follows: For each
cell I;, we use the centered stencil to interpolate the cell averages @;. ;, @;, ;.4
and obtain P;(z), i.e., we require

%{Pj(m)da::ﬁi, i=3—1,7,7+1.

We denote P(z) = {P;(x)} and we have

Lemma 1:

P(z) is a proper reconstructed piecewise polynomial,

Proof: Obviously this P(z) satisfies properties (p;) and (p,). For each
quadratic polynomial Pj(z), Pi(z;_1) = (&; — @;_1)/h and Pi(#jy1) =

(Ujgr — ;)] h. P;(w ‘—%) : P;(mj+%) = (@; — ;) * (844 — 6;)/P?, hence
P;(z) has the same shape as the cell-averages @. #

However P(xz) might not satisfy properties (p3) and (p,), see Figure 1.

.
Figure 1
P{x} violates the local maximum principle and has a false extrema at :r:j_%
a
<M
om g
l Wi
T,
E E I
3-1 Xj12 1 Xj+1s2 il x

We observe that some P;(z) may have overshoot which means max Pi(z)—
€l

M; > 0 and/or undershoot which means n’él}l P;(z) —m; < 0. We denote
€l

the magnitudes of overshoot and undershoot as §} = mam(meaijj(m) -
zel;
M;,0) > 0 and §; = maz(m; — f.,%ij?Pj(m)’O) > 0. Note that, for each

P;(z), max(6],6;) = O(h®) in regions in which u(z,t,,,) is smooth. We
also observe that there may also be some false extrema of P(z) = {P;(z)}.
Note that at each interface z;, 1, | Py(z;41) -Pj+l(mj+%) |= O(h3) in regions
in which wu(=,%,,) is smooth.
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Lemma 2Z:

In each cell and at each interface I; and z; +1s

maz(8f,67) = O(h3),
| Pj(%«y%) = Pj+1($j+%) = O(#?),

in regions in which u(z,,,,) is smooth.

In the following subsection, we will modify P(z) to achieve the local
maximum principle in each cell, and to remove all false extrema at each
interface, hence achieving the nonoscillatory property, while keeping it a
proper reconstructed piecewise polynomial.

2.2 Advanced Subprocedure

In this subsection we describe the 2nd subprocedure used on the recon-
struction. We first introduce an operator which can be used twice in each
cell to modify each piece P;(x) of P(z) to obtain the corresponding piece
R;(z) of R(x) satisfying our desired properties (p;)-(p,).

Here and below, we denote the modifying operator by, for each cell I,

T.?(m) - I“[pj(w)a ij') ubj]:

where r;(x) is a quadratic polynomial defined on / ;» p;(2) is a proper recon-
structed polynomial defined on I, Ib; and ub; are local lower and upper
bounds for the polynomial r;(z) on I;, We denote 6] = mam(meaix pi(z) —
wel;
ub;, 0) as magnitude of overshoot of p;(z) against ub;, and §; = maz(lb; —
Héifr-l p;(2),0) as magnitude of undershoot of p;(z) against lb;. We require
that Ib; and ub; satisfy
§F = O(h?), (2.2a)
87 = O(h?), (2.26)
in regions in which u(z,¢,,,) is smooth.
We require that the modifying operator satisfy following five properties.
(¢1) The function r;(z) again satisfies the conservation requirement. That
s,
§ i
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(ga) The function r;(z) is as accurate as p;{x). That is

| ri(2) — p;(=) |< Cymaa(6F,67),

278

where C; is a constant which only depends on the degree of p;(2) (in this
paper the degree is two ).
(¢3) The function r;(z) is bounded by Ib; and ub; in I; ie. Vz € I,

(¢4) The function r;(x) has the same shape as the function p;(z), in
fact, we have
T;(m) = ejp;(m)a
where 0 < ¢; < 1 is a constant.

(gs) The function r;(z) is uniformly closer to the cell-average ii; than
p;(z), in fact: Vo € I,

(ri(@) — 85) = €;(p;(2) — G;),

where 0 < ¢; < 1 is a constant.

Lemma 3:

As long as Ib; and ub; satisfy (2.2a,b), r;(z) is a proper reconstructed
polynomial.

Proof: This follows easily from properties (¢;),(¢;) and (g4), because
p;{2) is a proper reconstructed polynomial. #

Theorem 1 ( Modifying Operator )

At the j-th cell, we denote u,,,, = max P;(T); Uppin = rréil.t} p;(x).

T T 7

(1) H gy > ub; and t,,;, > 1b; (overshoot), we define
r;(z) = Lip;(2), Ib;, ub;] = ep;(z) — e, + ub;, (2.3a)

where 1 > el) = (ub; — 4;)/(Upnaz — %;) = 0.
(2) I thynpe < ub; and u,,;, < 1b; (undershoot), we define

r;(z) = Llp;(x), Ib;, ub;] = e@p;(2) — e, + 1b;, (2.3b)

where 1 > €2 = ({b; — %;) /(Ui — ;) > 0.
(3) If typgy > ub; and ty,;, < 1b; (both overshoot and undershoot),

12



if el) < €2, we define

ri(®) = Lip; (@), Ib;, ub;] = eWp;(z) — ey, + ubj, (2.3¢)
if €(1) > €(2), we define
ri{x) = Llp;(z), Ib;, ub;] = e@p;(x) — Dy, + 1b;. (2.3d)

4 Ifu,,,, <ub; and w,,;, > lb; (neither overshoot nor undershoot), then
max g mn 2

ri(x) = p;(2). (2.3¢)

Then L[ - -] has all of the five properties (¢;)-(gs) -
Proof:

For the first statement (1), we denote the difference between p;(z) and
r;(z) by d;(z), and have

dj(z) = pi(z)—ri(z)
= (U‘ma:t; - uaj‘)(—pmﬁ

{(#maw ;)

Because [ d;(z)dz = 0, we obtain the conservation property
i
(q1) 1.e.
I; 1
To obtain property (g¢,), we need to use a lemma which we shall prove in

the Appendix: i
max | 242 (< 3,

z€l; Umaz —Uj

We obtain from this:

| ri(z) — p(2) |< 3maz(67,67).

373

We have thus obtained property (g;).
Because of (2.3a)

ri(z) = Mpl(2). (2.4)
Hence we obtain property (g,).
It is easy to see

ri(e) — @; = eM(p;(2) — Ty), (2.5)

13



where 0 < et} = (ub; — )/ {u
property (gs).

DeﬂOting Pj(mmam) = Upag and pj(mmin) = Uming where Zrazy Tmin € Ij:
we know from (2.4) that z,,,, is a point in I; at which both r;(z) and p;(z)
achieve their maximum, and ,,;, is a point in I; at which both r;(z) and
p;{z) achieve their minimum. Hence

maz — %;) < 1 1s a constant. Hence we obtain

I:,fleajfrj (CL‘) - rj(mmam) = 'u’bj’

Eéi}}TJ(.Q?) = Tj(mmin) = ﬁj + 6(1)(pj($min) - ﬂ‘?) Z Umin 2 lbj

We obtain property (g;) i.e.
Ib; < rix) < ubj.

Hence r;(z) satisfies all five properties (¢, )-(¢s)-

The proof of the second statement (2) is similar.

The proof of the third statement (3) follows easily from (2.5), which
guarantees lb; < r;(z) < ub;. #

In the following, we outline how to perform the operation in each cell
twice to obtain R(z) from P(z) with those five properties (g,)-(gs)-

First we perform the operation to achieve the local maximum principle
(p3)- In each cell I}, we define the local lower and upper bounds as Ib; = m;
and ub; = M;, and m; and M; are defined as before, and it is easy to sec that
m; and M; satisfy (2.2a,b). We perform the operation on the preliminary
proper reconstructed polynomial P;(z) to obtain a quadratic polynomial
P™(z).

Remark 2.1: In each cell I;, because m; and M; satisfy (2.2a,b), from
Lemma 3, it follows that P;**(z) is a proper reconstructed polynomial.
In addition to these, P**{x) satisfies the local maximum principle, because of
property (gs). By property (gs) P;""(x) is uniformly closer to @; than P;(z).
Therefore Pm2(z) = {P[""()} satisfies properties (p;)-(ps). See Figure 2.

14



Figure 2

P™¥(x} satisfies the local maximum principle and still has false extrema at LI
3

u
oM
o
........ __b o m.i
Dﬁj
____________________ >
- T
T,
T I .
i-1 X1z J Xy i+1 =
Lemma 4:

(i) Pm?(z) is a proper reconstructed piecewise polynomial.

(il Pm»(z) satisfies the local maximum principle.

Lemma 5:

At each interface i+h

| B (5y04) = PIA(2143) 1= O,

in regions in which u(z,t,,) is smooth.

Next we perform the operation to enforce the nonoscillatory property
(P4)- The only thing left to do is to remove all false extrema of Pmo(z) =
{£*(z)}. In each monotone cell I;, we define the local lower and upper
bounds Igj and uNbJ-, which should satisfy (2.2a,b) and which we shall com-
pute later. We perform the operation in each monotone cell on P;*(z) and
we set R;(z) = P/"(z) in each exirema cell to obtain the final proper
reconstructed polynomial R,{z).

Remark 2.2: If Ib; and ub; satisfy (2.2a,b), from Lemma 3, R(z) is a
proper reconstructed polynomial. In addition to these, R;(x) satisfies
the local maximum principle, because P;"*(x) satisfies it and R;(z) is uni-
formly closer to @; than P/""(z) in monotone cells and R;{z¢) = P;""(z) in
extrema cells.

Lemma 6:

If at each monotone cell T}, sz and uzvj satisfy (2.2a,b), then

(i) R(z) is a proper reconstructed piecewise polynomial.

(ii) R(x) satisfies the local maximum principle.

15



Hence if we can prove that R(x) = {E;{z)} has no false extrema, we
will have shown that R(z) is a nonoscillatory reconstruction i.e. N(R(z)) =
N(@). Then R(z) will satisfy all four properties (p,)-(p,) which are the
3rd order of accuracy, conservation, local maximum principle satisfying and
nonoscillatory properties.

Figure 3

R{x) satisfies the local maximum principle and has no false extrema at any interface hence is a nonoscillatory reconstructisn
u

M,

o

I
31 X1 B X1z 3+l x

e

The following is the Advanced Subprocedure:
STEP 1: Achieve the local maximum principle:
(i) In each cell I}, set Ib; = m; and ub; = M,
(i1) do j=1,2,3,- - -
PP (a) = L[F)(a),mj, Mj),
end do.

Here we perform the operation from first cell to the last cell in sequential
pattern. )

STEP 2: In each monotone cell I;, define the proper local bounds H;J- and
ub;, and modify P{™(z) to obtain the nonoscillatory reconstruction R;(z) by
an odd-even pattern. In each extrema cell, set R;(#) = P;"*(z). That is

First we modify P/**(«) in the odd numbered cells:

do j=1,3,5, -

: 3+ i510), P (544)
1; = man(3(%; + @ ), P (2;1))
R;(z) = L[P["*(z), {b;, ub)]

else if (4;_y > 4; > i,,,) then

ubj = max

o
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ub; = maz(§{u; + 1), P4 (2;_1))
R;(z) = L[P™(z), Ib;, ub;]
else
Ry(2) = P (2)
end if.
end do
Next after we have obtained R;(z) in the odd numbered cells, we modify

P™(z) in the even numbered cells:

do j=2,4,6, -

if (aj——-l S ﬁj S ﬁj+1) then
ub; = maz(3(8; + U44), Rj+1($j+§))
R;(z) = L[P[™ (), (b;, ub;]

else if (@;_; > 4; > @;,4) then
ub; = maz((4; + @;_4), Ry y(z;1)
1b; = min(3(u; + @j41), Rjpa(@44)
R;(z) = L[P"(z), Ib;, ubj]

else
R (z) = P[""(x)

end if,

end do

Remark 2.3: Among monotone cells, we modify each P;"*(z) on the odd
numbered cells first, and then modify each Pj**(z) on the even numbered
cells. The reason is that this odd-even pattern may save some unnecessary
work. which can not be avoided by modifying the P"*(x) in sequence. How-
ever no matter which pattern we choose, the error propagation is very local,
because Pmr(x) = {P]"*(z)} has the same shape as the cell-averages % and
because of property (g;) of the modifying operator.

In the following Theorem, we prove that in each monotone cell T, H;J-
and ub; satisfy (2.2a,b), hence R(z) = {R;(z)} is a proper reconstructed
piecewise polynomial; () has no false extrema, hence R(z) is a nonoscil-
latory reconstruction, which means

)

N(R(z)) = N(@).
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Here R{x) will satisfy all four properties (p;)-(p,).

Theorem 2

Our scheme using two reconstruction subprocedures is a 3rd order accu-
rate, conservative, local maximum principle satislying, nonoscillatory, and
hence a TVB scheme under the following CFL condition

weup | fi(u) <1,

where the supremum is evaluated over [iglf(ug(a:)),sup(uo(m))]. The CFL

condition is optimal.

Proof

From the Remark 2.1 and 2.2, we only need to prove that, in each
monotone cell I, lgj and u%j satisfy (2.2a,b), and that the R(z) has no false
extrema.

We recall that the proper reconstructed piecewise polynomial Pmr(z)
may have four types of false extrema at some interfaces x i+ ie.

false extrema type (i) 4; > @4y and Pi"(z;,1) < P (2;41),

false extrema type (i) #; = %;,, and Pﬁ*{(wﬂ%) > ;> PJ?"'”(:cM%) (
at least one of the inequalities is strict ).

false extrema type (iii) @; < @;y, and ijp(a:j_f,%) >

false extrema type (iv) 4; = @;,, and P} (x; +1 ) <
at least one of the inequalities is strict ).

In the following, we shall show that there is no false extrema of R(z)
at any interface ;. L

lf ﬁ_? = ﬁj-{—l’ then (RJ(:E +%) e 'L_LJ) v (Rﬁl(:cﬁé) t ﬁj) > 0 )

i
or Bi(w;,1) = Rii(zi41) = 4.

We shall also show that in each monotone cell I}, lf:j and u'ij satisfy (2.2a,b).
Here if Pm»(z) satisfies (2.6) at some interfaces, R(z) will also satisfy
(2.6) at same interfaces, because R;(«) is uniformly closer to @; than P{"*(z)
in the monotone cells and R;(z) = P;"*(z) in the extrema cells.
Now if Pmr(z) does not satisfy (2.6) at some interfaces, we prove that
R(z) still does satisfy (2.6) at same interfaces.
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Suppose there is a type (i) faise extrema of P™?(z) at an interface, say
Tipat Uy > Uypq, P (mJ+1) < Pifi(z;41). W.L.O.G. we assume j is odd.
ase 1. If we choose in the advanced subprocedure,

+ 38541, J+1($J+1))
ﬁ +% J-i-laR (wﬂ- ))
which means @4;_y > 4; > @,y and @; > ;44 > Uy
If Ih; = §u; + §8;,0, then Rj(z;y1) > 1, ubjyy = Rj(e,y:), and
(zjp1); I 1h; = P;i’i( 1) then Rj(z;,1) 2 Pli(e i)
thus Bi(z;,1) > Ry (w4 1) because Pg+1( j+1) > Rz J+1) Hence (2. 6)

is satlsﬁed 3 ;
If 1b; > ixéiI?ijp(m) then 0 < [b; — néinP-mP(:n) = Ib; — P/ (z;,1) <

Pﬁ‘_’i(mj_l_;_) - P (z;, 1) = O(h%). And if ubiiy < Jnax P4 (z), then 0 <

Jgﬁﬁ Pi(=) — ub; i+ = ﬁtﬁ(xﬁl) — ub; 1 S _‘,‘-}»1(3:_7-{-5) P;np(‘”ﬂ%) =

O(h3). The lb and ub, ;41 satisfy (2.2a,b).
Case 2: If we choose, in the advanced subprocedure,

1b; = min(38; + 3841, P (2541)),
Rjp(z) = Pl (z),
which means #;_; 2 4; > @;,, and 4; > Uy < Bjyq
Here we claim that 1b; = P4(z;,1) ( It is easy to see Pia(zpt) =
6 (~Biaa 505, +28;) and Py (241)~5(8;48,41) < 3(—8j30+28140— 1)) <
0. We know that, 1fP+1(:cJ+ 1) < u3+1 then PV (z L) — (38; + La;,) < 0;
if not P4 (z;y )—~(2u1+2u3+1) < Pppa(wjq1) = (38, + §8541) < 0. Thus
Pii(zq) < ?uj + §8541 and 1b; = Fi¥i(244) ). Hence Rjy(z;41) =
Pﬂ’i(:}:#%) = lb; < R;(z;,1), (2.6) isﬂsa,tisﬁed.
If 1b; > mianp(:c), then 0 < Ib; — iréi}}PJmp(w) = lb; -~ P;"p(mﬁé) =
Pl (z;1) — Pgmg’( 1) = O(h?). Hence the Ib; satisfy (2.2b).
Case 3: If we choose in the advanced subprocedure,
. Rj(z) = F™ (),
ubjiy = maz(38; + 38541, By(2541)),
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which means u;_; < 4; > Uy, and #; > Uy > Uiy

Similarly we have ubJ_H = R;(x J,_{”1) = P{"(z;41). Hence Rjyy(z;41) <
ul’)j_H = Rj(wj+§), (2.6) is satisfied.

If ubsyy < Inax P (), then 0 < Inax Pii(z) — ubjya = P (2501) -
ubipy = +1(37g+ 1) — Pmp(a:3+1) = O(h3). Hence ub, ., satisfy (2.2a).

Case 4: If we choose in the advanced subprocedure,

Ry(z) = PP(z),
B;14() = P (),
which means @;_; < @; > %4, and 4; > 9,4y < Ujy,.
. dSimila,rly we have P (z;,1) 2 38, + {8541 > Pi(w;41), (2.6) is satis-
ed.
Next suppose there is type (ii} false extrema of Pm#(z) at an interface
Tjp1: B = f;y, and P +1(m3+1) >ty = @; > P p(;cH_ 1) ( two equals do

not hold at same time ). W.L. 0.G. we assume 7 is odd.
We have

ﬁ,j = min(%ﬁj + %ﬁj+1:}?ﬁ—%(m‘i+%))
f — 7L
= mm(uj, Pj.;ﬁ(ﬂ:j-[-%))

'u,bj_’_l =mam(—;— +2u‘?+1,R ( J'i'l))
= maz(i;, RJ(mJ+'2-))

m'1’.1-5;.

Because RJ_!_]_(ZBJ_%_I) < ubﬁl = #; and R; (2 J+1) >u; (P +1(mg+1) > Uy ),
we have R+1(m5,+ ) = i;; Because R; i(T541) 2 Ib; = =i, and R; (:cj_[_ 1) < @
P; p($j+2) < 4; ), we have R;(z ;1) = ;. Hence R; ( ;1) and Rg+1( i+1)
are both equal to @, (2.6) is satisfied.
If 1b; > min F}™(2), then 0 < 1, — minpm(w) = Ib; — P/ (x,,
2€lj

;=P (z;41) < P (= Tip1) = P (w01) = O(A3 ); if ubjyy < max
then 0 < nax Pl () ~ubsyy = P (= 43— < Pif(ei)— Pmp(

O(h%). Hence the lb and ub; ;41 satisfy (2.2a,b).

We can prove (2. 6) and (2 2a,b) if there is type (iii) or (iv) false extrema

of Pmr(z) at an interface z,, 1.

H"B M[M

) =
+1(2),
)=

+1
+3
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Now we can say that after performing this advanced Subprocedure,
at any interface Tip1, WE have (2.6)

£

if  #@; > @;,,, then Rj(:cj_l_%) > Rj+1(mj+%)3
if @ <djyq, then  Ryzj1) < Bia(eyg),
if 4, =t then  (B(2;44) — %) (Bialey) —45) >0
or Bi(z;,1) = Ripa(ejy1) =4y
There are no false extrema of R(z). Therefore N(R(z)) = N(@). The
nonoscillatory property is achieved.

In all the cases, (2.2a,b) are satisfied or R;(z) = P"*(z). Thus for all of
Rj (:L’ )7

£

Bi(z) — u(z, tnya) = O(R3).

in regions in which u(z,1,,,) is smooth.
Thus Theorem 2 has been proven. #

3 Simple Implementation of the Schemes

In this section we follow the idea and the analysis in [4] to obtain the
explicit form of the schemes. The form (1.5) of the scheme is called the
abstract form in which we need to evaluate the exact solution in the small
for the IVP(1.1) with the initial data R(z), and then take the cell-average,
which results in conservation form:

it = ap = MG [ f(vlegag,m) dn = 2 f(o(e;ym) dn), (3.1)
where A = r/h and v(z,t) is the exact solution of the following equation
vy + f(U)w =0
o(,0) = R(z). (3:2)

To evaluate the integral in (3.1)
% g‘f(v($j+%a 77)) dn, (33)

we try to derive a simple but adequate approximation following [2]. Note
that the integrand is a smooth function of .
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The first step is to discretize the integral in (3.3) by using a numerical
quadrature such as Gauss or other quadratures with 3rd order of accuracy.
We could use 2 point Gauss or 3 point Simpson’s quadrature, i.e. in general

1
-

Oty

Foleigm) dn = & aaf (00, Bi7)). (34)

The second step is to approximate v(z,t} by its Taylor expansion which
is obtained by the following local Cauchy-Kowalewski procedure i.e.

Uy = "“f"i)m
Vgt = —[fnvz + f,'vmm] (35)
Uy = m[fuvtvm + f’th]'

Thus in (3.4) for v(z;,1,B47), if we approximate it from the left cell of
the interface ., 1, we obtain

”(ﬂ’j«p%,ﬁﬂ)“ ~j(93j+-1£1ﬂk"")

= 0(@j1,0) + 0@, 0)(Bir) + doules, (B2, OO

where ‘U(;Ej_l_%,O) = RJ-(a:j_F%), vt(a:ﬂ;z,, 0) and vﬁ(mj_f_%, 0) are obtained through
the local Cauchy-Kowalewski procedure (3.5) from v(z,0) = R;(x), and

052541, Br7) = v(@s4 1, Bir) + O(R3).

If we approximate it from the right cell of the ; +1, We obtain

U(SEH%:ﬂkT) ~ f’j+1($j+%,ﬁk’f“)

= 0(@;43,0) +vu(z;43,0(Br) + Loalwyys, 0By, &7

where v(:cH%, 0) = j+1(a:j+%), vt(;r;j_}_%,()) and vﬁ(ijr%, 0) are obtained
through the local Cauchy-Kowalewski procedure (3.5) from v(z,0) = R, (),
and

T7;‘-;-1(5"33'4.%: Br) = U(wj-;-%aﬁk"') + O(%?).
Thus

f(v(mj+%aﬁk7-)) = f(ﬁj(ijf-%, Bit)) or f(ﬁj+1(mj+%$ BiT)) (3.8)
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The last step in the derivation of the numerical flux is to approximate

F(0(w503, Bi7)) by
f(v(a:j-i-%a /BkT)) - ﬁ(ﬁj(mj-b-;-’ JBkT)a ﬁj-&-l(wj-l-%: ﬁkT))ﬁ (39)

where A(-,) is any two-point Lipschitz continuous monotone flux which is
nondecreasing for the first argument and nonincreasing for the second argu-
ment. Some possible choices are

(i) Engquist-Osher

AP0 (g, b) = Ofbmm( £(9),0)ds + fmin(7 (s),0)ds + £0); (3.0
(ii) Godunov

ar _ minagquf(u) if a S b,
he(a,b) = { MaT,5 e f(u) if @ > b; (3.11)

(iii) Lax-Triedrichs
hL¥(a,b) = 1[f(a) + f(B) — a(b — a)] a=maz | f(u) |, (3.12)

where the maximum is taken over the whole region in which a, b varies, e.g.
in [il;f (ug(x)), sup(ug(z))], where ug(z) is the initial function;

(iv) Local-Lax-Friedrichs
WP (a,0) = 3f(a) + f(B) — B(b~a)] B = max | F'(w) 1.

min(a,b)<ulmax(e,b)

(3.13)
For convex f, f“ > 0, one has 8 = maxz(| f'(a) |,i f'(b) |),
(v) Roe with entropy fix
fle) if f'(u) > 0 for v € [rmin(a,b), maz(a,b)]
hEF(a, by = { f(b) if f'(w) <0 for u € [min(a,b), maz(a,b)|
RLLE(q,b) otherwise.
(3.14)
Hence now we obtain the explicit form of the scheme, which is
Bt = - A fpa — fion)s (3.15)
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where

B K.
Fiv :kgoakh(ﬁj(ﬂ:_f+%;)Bk"‘_):?ﬂjj+1($j+§—aﬂkT))' (3.16)

[ 3 Ea

St

The flux fj +1 18 an adequate approximation to the flux LI f(w(zg, 5 7)) dn;

for details see [2].

Here we mention that, for computational reasons, in the reconstruction
procedure, we impose a requirement mn; < ﬂ?“ < M; in each cell { This,
of course, was implied for the abstract form of the scheme ). That is, if

ﬂ;—‘“ > M;, we set E?H = M, if ﬁ?“ < my, we sef "&?"‘1 = m;. Because
the true solution should satisfy the requirement, we will obtain a better

S ; Fe . . =1
approximation for the cell-average u]

We note that for linear equation, the explicit form is equivalent to the
abstract scheme if we use any of the Engquist-Osher flux (3.10), the Godunov
flux (3.11), or the Roe flux with entropy fix (3.14). All of them are just
- simple upwind differencing. Thus, in the linear case, the schemes satisfy
the maximum principle and are nonoscillatory, and thus are TVB schemes.
There is a subsequence of the numerical solutions converging to the weak
solution of (1.1) as the step size approaches zero. Of course, the solution to
the linear equation is unique, and hence the schemes are convergent, in this
simple case.

In the next section we will test the schemes on linear and nonlinear equa-
tions with convex and nonconvex fluxes. The numerical experiments show
that the schemes are 3rd order accurate for smooth solutions, satisfy the max-
imum principle and the nonoscillatory property, and converge to the entropy
solutions.

4 Numerical Experiments

In this section we use some model problems to numerically test our
schemes. We used the Roe flux with entropy fix as numerical flux and 2
point Gauss quadrature in all of our exampies.

Example 1. We solve the model equation

u(z,0) = uy(z) ug(z) periodic with period 2. (4.1)
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Four initial data ug(2) are used. The first one is uy(z) = sin(rz) and we list
the errors at time t=10 in Table 1. The second one is uy{z) = sin*(wz) and

we list the errors at time t=10 in Table 2.
TABLE 1 { 7/h=0.9, t=10)

{ Ly error Ly order L, error L, order
20 || 5.7694407036673D-03 4.5009125264985D-03
40 || 6.9744677300436D-04 3.05 5.4686841904228D-04 3.04
80 || 8.5439845931126D-05 3.03 6.7079922749236D-05 3.03
TABLE 2 ( 7/h=0.6, t=10)

{ Ly error L, order I, error L, order
80 || 1.4690161632608D-02 2.1347851475350D-02
160 || 2.0083513922684D-03 2.87 2.8168317475599D-03 2.92
320 || 2.6268572179140D-04 2.93 3.5474728536100D-04 2.99

Here and below [ is the total number of cells and the step size A = 2/{ in all

examples.

For the first two initial data, we obtain 3rd order of accuracy in the
smooth region in both I; and L., norms. We note that standard ENO
schemes applied to the example with the second initial data experienced an
(easily fixed) loss of accuracy, see [17], [18]. No such degeneracy was found
with our present method.

The third initial function is

u(z) = {

and the fourth is

() ={ (L= (5o

1
5

1
<z <

otherwise

)t

3 3
6 S x T
otherwise.

We see the good resolution of the solutions in Figures 4-5.
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Figure 4 ( 7/h = 0.9)
The TYB solutionat T=2
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Figure 5 ( 7/h=0.9)

The TVB solution at T = (.5

0.5
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0.6

& 05k

0.3+
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0.1k

s+ + i 1 *,

-1

08 06 04 02 0 62 04 06 08

-« true solu  ++ approx. sole  1=80

Ezample 2. We solve Burgers’ equation with a periodic boundary condi-

tion

ut—l—(%u?)m:{} -1<z<1

u(z,0) = uo(z)

26

ug(z)periodic with period 2.

(4.2)



For the initial data us(z) = 1 + %sin(ﬂ'm), the exact solution is smooth up
tot = —f;, then it develops a moving shock which interacts with a rarefaction
wave.

At t = 0.3 the solution is still smooth. We list the errors in Table 3. Note
we have close to 3rd order of accuracy in I; and more than 2nd order of
accuracy in L.

TABLE 3 ( 7/h=0.6, t=0.3 )

{ L, error L, order L., error L., order

160 || 4.6548730388854D-06 1.35426186190781)-05

320 || 7.7529803426540D-07 2.59 2.8349390184257D-06 2.26

640 1 1.2524533052373D-07 2.63 5.8732024554864D-07 2.27

1280 | 1.8075141183793D-08 2.79 1.2430677109876D-07 2.24

2560 || 2.5408037626108D-09 2.83 2.65669131561516D-08 2.23

At ¢ = % the shock just begins to form, at ¢ = 1.1 the interaction be-
tween the shock and the rarefaction waves is over, and the solution becomes
monotone between shocks. In Figures 6-7 we can see the excellent behav-
iors of the schemes in both cases. The errors 0.1 away from the shock { i.e.
|  — shock location |> 0.1 } are listed in Table 4 at t = 1.1. These errors are
of even much smaller magnitude than the ones in the smooth case of Table
3 and show 3rd order of accuracy both in L, and L, in the smooth regions
0.1 away from the shock. This shows that error propagation of the scheme
is very local.

TABLE 4 ( 7/h=0.66, t=1.1)

{ L, error L, order L, error L, order

160 || 1.4188176779673D-06 3.8623190183884D-06

320 || 1.7619541036046D-07 3.01 4.5400412962415D-07 3.09

640 || 2.1941677813206D-08 3.01 5.6512083457250D-08 3.01

1280 § 2.7394705290687D-09 3.00 7.0478263225482D-09 3.00

2560 || 3.4273836711438D-10 3.00 8.8725682356738D-10 2.99
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The TVB solution at T = 1.1
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For the initial data

2 —1<z<—05
ug(e) = ¢ 1 0.5 <2 <0
0 <<l

we see one rarefaction wave, and two shocks waves which interact with each
other. Good resolution is observed in Figure 8.
Figure 8 ( 7/h =0.5)

The TVB solution at T = 0.4

A

4

18} * -+

1.2+ B

0.025

h
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0.6 1

0.4 1

021

-1 -GI,B —(;.6 —(3;_4 -C;.?. 6 0.2 O!.4— Of6 0:8 1
-- true solu -+ approx. solu (=80
Ezample 3. we use two nonconvex fluxes to test the convergence to the
physically correct solutions. The true solutions are obtained from the Lax-
Friedrichs scheme on a very fine grid.
The first one is a Riemann problem with the flux

flu) = 3(w? = 1)(u? - 4),

and the initial data

U z <0
w@ {4 s0
The two cases we test are (1) u; = 2, u, = =2, Figure 9; {(ii) u; = -3, u, = 3,

Figure 10. For more details concluding this problem see [2]

29



b b ~ 1 i1 Y Y
Figure 9 ( 7/h = 0.33 )
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The TVB sclution at T = 0.04
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The second flux is the Buckley-Leverett flux used to model oil
recovery {2],

flu) = 4u?[(40? + (1 - u)?),

with initial data u = 1 in [-1,0] and u = 0 elsewhere.
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The result is displayed in Figure 11.
Figure 11 ( 7/A=10.3)

‘The TVB solution at T=0.4
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b=0.025

0.4
03

0.2
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In this example, we observe convergence with excellent resolution to the
entropy solutions in both cases.

In all the examples that we have illustrated above, we observe that the
schemes are of 3rd order of accuracy with the somewhat less than usual
degeneracy to 2nd order at certain isolated extrema, local maximum principle
satisfying and nonoscillatory properties as we proved in §2, and convergent,
with excellent resolution, to the entropy solutions.

5 Summary and Prospects

We now review the general idea of this paper. For the maximum principle,
the local bounds m = {m;} and M = {M;} are chosen from data obtained at
previous time steps. The true solution of equation u, + f(u), = 0 is bounded
by these numbers locally.

However for equations with source terms of the form u, + f(u), = é(u, 1),
the solution u(x,t,,,) at ¢ =4, should also satisfy

m;-ww < 'LL(.’L‘, tn-l»l) .-<.. M}‘Lew T € Ij’ (51)

where we set m? = v, () and v, (t) is the solution of the ODE u, = ¢(u, 1)
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with initial data v = my, and M= = vp(7) and vy, () is the solution of
the ODE u, = ¢(u,t) with initial data v = M; with m; and M; defined
as before. The condition (5.1) is reasonable to be used in solving equation
u, + fu), = ¢(u,t), because of well known comparison theorems.

For the general system case, the condition (5.1) might not be adequate
and we need to know a bit more about the structure of the solution.

However the nonoscillatory property (1.8) naturally generalizes in all
cases. llence we can achieve a generalized nonoscillatory property (1.8) in
the multidimensional and system cases up to 3rd order of accuracy. This will
be done in future work.

For higher order of accuracy, we will consider the reconstructed polyno-
mial with a corresponding higher degree, We have proved that the modifying
operator (Theorem 1) works for higher degree polynomials and shall show
this proof in future work. Our next main project is to use this operator to
modify higher degree reconstructed polynomials and we may well combine
it with the nonoscillatory ideas of Tong in [11] to achieve the TVB property
with arbitrarily high order of accuracy.

6 Appendix

Lemma 7

max | (p;(e) — %)/ (Umas — ;) [S 3 (6.1a)

7

min | (p;(2) = 8)/(Unin — %) [S 3 (6.1b)

in Theorem 1.

Proof

W.L.O.G. we only prove (6.1a).

Case 1: p;(z} is a linear function, then | (p;(z) — ©,)/(Upner — ;) |< 1
and (6.1a) is satisfied.

Now if p;(z) is not a linear function, we denote p;(z) = ay(z — 2*)? + q,
Ty =5 — h, Tipi =T; + —;—h, Tipp — T+ = éh, Tig— ot = (0 —1)h, and
z* is the extrema point of p;(z) in the interval (~co,+oc). We have

(pj(2) = )/ (Umaz — ¥;) = (aa(z — &) + ag — %))/ (Vnaw — Tg)-
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Case 2: z* ¢ I;. Thus § > 1 or & < 0. p;(z) is monotone in I,
Upnas = pj(:t:j_,_%) OF Uppy = pj(mj___) W.L.0.G. we assume u,,,, = p;(<;

then max | (p; (@)~ &)/ (U — ;) |= max(1, | (py(2;-3) ~ 8/ (e — JS

T, 1 _
Because 2a.(x — 2*)3| 7% + ayh = @, h, we have
3“2 @, % t] 277
i

(pj(mj—%) - ﬂj)/(umaw - ﬁj) =

QA

E-i
bo[s

)
1)-

( % w*)Z +a Qg — ﬂj)/(umaw - ﬁ‘j)

(ax(e; 3 — )? ~ dale — 2P

(32(3’”% — z*)? — %02(-"7 - 9«"*)3|sz_’§)

(3(0—1)2 — 63+ (0 —1)%)/(302 — 6%+ (6 — 1)3)
(30 +2)/(36 — 1),

and
max | (-30+2)/(30 -1) |=2,
and
| (p;(2) = 8;)/ (Umao — ;) 1L 2.
We obtain
max | (p;(2) ~ 8)/ (Uimaw — 85} IS 2 M Upao = pil#42)-

By the same argument we also have
Iﬂfleaj:c ] (pj(w) ..... ﬂ’j)/(umaa} - ﬂj) |S 2 if YUrnaz pj(wj—;')

Case 3: z* € I}, p;j(z*) = Eé%lpj(l), and Uy, = maz(p;(,41), pi(;_1))-
W.L.O.G. we assume pj(mj+%) = Uy aq, NENCE ;.1 —e* = 0hand T, L=
(8 — 1)h where —12- < # < 1. Because

| (pi(_1) = U5)/ (Ymaz — B5) [<] (P 142) — @)/ (Uimaw — ) |= 1,

S0 I&aji( | (p;(2) = 4;) [ (Umae — Ty} |= max(1, | (p;(2*) — 83}/ (Upmar — B;) |)-

(pj(w*) - ﬁj)/(umaw - ﬁj) = (0‘0 — ug)/(a’2(m3+1 - m*) T ag — Uj )
= (Fa(z— w*)%’*z)/
(
(

ay(z; 41— e*)2h + FLag(z -~ z*)?| ’+%)

30 30 1 1)/(—36 + 1),
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Hence, for
| (25 (2*) = )/ (tmaz ~ 8;) |< max | (307 - 36+ 1)/(=30 + 1) |= }

Hence
1m0 | (2(2) = ) (t0e — ) |< 1
Case 4: z* € I; and p;(2*) = maxpj,(:c) max| (i (2) = ;) (Uppae — ;) |=

max(' (pj(wj+%)_aj)/(umam ) l l (p_?( J—-—) .?)/( maz _') D W.L.0.G.

-
we assume | (p;(;41) ~ 45)/ (Upnae — ;) > (pslw1) — )/ (Umaw ~ T;) |.
Hence z. 4y = fh and z;_; — x* = (0 — 1)h, where 1 < # < 1. Hence

'_},
2

(P5(2j45) = 8)/ (maw = ;) = (ag(@jg — @) + Fhay(z — @741 Y
(5i 022 — 2*)?] ’*l)

(30 — 1)/(—362 1 30 — 1).

Thus | (9y(0502) — )/ (s — ) |=} (30 = 1)/(=303 +30 — 1) |< 3 for
2 <6< 1. Hence max | (pi (@) = 85}/ (Uag — ) [< 3.
Tely

In all four cases we obtain (6.1a) i.e.

max | (pj(2) = )/ (tmas — %5) [< 3.
Similarly we obtain (6.1b) i.e.
IIlaX | (p'?(ﬂ?) —u; )/(umm - ﬁj) |S 3.

The lemma is proven. #
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