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Abstract

In this paper, we report on some new numerical results regarding the solutions of a singularly
perturbed sine-Gordon equation, modeling magnetic flux quanta (fluxons) in long Josephson
tunnel junctions with non-zero surface impedance. Previous authors have conjectured that the
fluxon branch of solitary wave sclutions terminates at a critical value of the bias current. In the
present paper, we show that the conjecture is incorrect, and that the fluxon branch of solutions
may be continued. Using two different path-following bifurcation codes, we show that the critical
value of the bias current corresponds not to a termination point, but to a turning point in the
bifurcation diagram. Plotting a suitable norm of the solution against the bias current, we find
that the solution curve turns back at the critical value and then oscillates about a limit value
near the critical value while the norm of the solution increases monotonically. A careful stability
analysis of these solutions shows that none of the solutions past the first turning point is stable,
and that the solution acquires one additional instability per turning point. We also studied
multiple fluxon solutions, i.e. solitary wave solutions which connect fixed points separated by
more than 27. The solution curves for the multipie fluxons exhibit the same qualitative behavior
as those for the single fluxon case. However, the first turning point occurs at a value of the bias
current which is less than the critical value. Hence, there are no solitary wave solutions when
the bias current exceeds its critical value.
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1 Introduction.

The existence of solitary wave solutions of the perturbed sine-Gordon equation,
(@m‘:“(btt_Sinq):a(I)t_ﬁq)mm_’Yaa>0)ﬁ>097>0} (1)

is studied numerically in Forest et. al. [5]. This equation models propagation of magnetic flux
quanta (fluxons) in long Josephson tunnel junctions. For the Josephson junction fluxon problem,
the term in « represents shunt loss due to quasiparticle tunneling, the term in B represents
dissipation due to the surface impedance of the superconducting films comprising the junction
electrodes, and -y is the spatially uniform bias current normalized to the maximum zero-voltage
Josephson current. Assuming a traveling wave solution of the form

(I)(xyt) = ¢(T’ - Ct) = ¢(€)> (2)

where ¢ is the (unknown) propagation velocity of the fluxon, a nonlinear ODE for the fluxon
shape follows, with ()’ denoting the derivative with respect to £:

Bed™(€) = (1= )" () — aed (£) + sin $(€) — 7 = . (3)

Considering (3) in (¢, @',¢")* phase space, the problem of computing solitary wave profiles and
speeds for (1) is equivalent to finding heteroclinic orbits connecting two of the fixed points of the
ODE (3). For v < 1, {3) has two classes of fixed points:

g5 = arcsin(y) + 24, (4)

and )
Bajs =7 — arcein(7) + 24, (5)

where 7 =0,%1,%2,...and —7/2 < arcsin(y) < #/2. For 7 > 1 there are no real-valued fixed
points. By linearizing (3) around a fixed point and solving the resulting ODE analytically, we
get 3

$(€) = de + AN 4 Ayt 4 Agett, (6)

where the eigenvalues are determined by the zeroes of the polynomial
Pi(A) = Bed® — (1 — M)A — aed £ /1 — 742 ("N

The plus sign before the last term holds for the fixed points of (4) and the minus sign for those
of (5). For negative ¢, elementary analysis shows that P, ()) has one positive real zero and either
two negative real zeroes or two complex conjugate zeroes with negative real part; P_(A) has
one negative real zero and either two positive real zeroes or two complex conjugate zeroes with
positive real part. In the following, we Wlli only consider orbits connecting the fixed points of
(4).

Forest et. al. [5] computed fluxon profiles and the corresponding speeds ¢ using a numerical
shooting method. They found that for each v < 7,4, there is locally unique ¢(v) and ()
that connects the fixed points ¢, and ¢,. Numerical simulations of (1) reported by Pagano et.
al. {12] showed that these single-fluxon solutions are stable. For the particular values o = 0.18
and F = 0.10, the critical bias current is found numerically to be 7y, = 0.8877. The authors
of [6] were not able to compute trajectories connecting these fixed points for values v > v,
and the authors of [12] reported that the stable fluxon solution ceased to exist near the same



critical value of . For values of ¥ > 7,.; the solution of (1) switches from the fluxon state to
the “running mode” state. Based on their results and the consistency of these results with those
reported in [12], Forest et, al. conjectured that at the value v = 7,4, 4 global bifurcation occurs,
and traveling wave sclutions cease o exist.

In the present paper, we report on new numerical studies that show that the conjecture in
[5} is incorrect, and that the fluxon branch of solutions may be continued. Using two different
path-following bifurcation codes, we show that ¢ = ,,;; corresponds not to a global bifurcation
point, but to a turning point in the bifurcation diagram for the problem (3). Plotting a suitable
norm [|@| of the solution against v, we find that the solution curve turns back at v = 7,4
and then oscillates about a limit value 7 = 7y, near 7, while {|¢|l increases monotonically.
An important observation is that the turning points for 4 coincide with turning points for the
speed ¢. Furthermore, ¢ tends to the limit value ¢, = —1. A careful stability analysis of these
solutions shows that none of the solutions past the first turning point is stable, and that the
solution acquires one additional instability per turning point. We will also study multiple fluxon
solutions of (1), i.e. solitary wave solutions which connect the fixed points q@o and qﬂﬁzj, i > 1
The solution curves for the multiple fluxons exhibit the same qualitative behavior as those for
the single Aluxon case. However, the first furning point occurs at a v < 7,,.4. Hence, there are
no solitary wave solutions of (1) of the form (2) for v > ¥,

The failure of the shooting method in [5] to find fluxon solutions past the first turning point
can be traced to the extreme sensitivity of the solution to small changesin ¢ near 7y,,.;;. The failure
of the dynamical simulation in [12] to find these solutions relates simply to their instability.

2 Computing the solitary wave.

The previous study of the perturbed sine-Gordon equation reported in [5] used a shooting method
to compute the heteroclinic connection between the fixed points. While this method is concep-
tually pleasing to the dynamical systems expert, it turns out not to be the ideal way to study
such problems numerically, since it is difficult to pass turning points in the solution curve such
as occur in this problem. Numerical methods based on the solution of the boundary value prob-
lem (BVP) for (3) are much more robust. In this section we will discuss a new BVP method
developed for this problem, and also review some of the BVP methods proposed in the literature.

Numerically, we cannot solve the problem on the infinite interval; the standard approach is
to truncate the interval to, say, a < £ < b, with ¢ < 0 < b, and impose asymptotic boundary
conditions at { = a and & = b, cf. [10]. We seek solutions of (1) on the interval —co < £ < oo
that leave the fixed point ¢ = qgo along the one-dimensional unstable manifold and arrive at ~
the fixed point ¢ = qggj, 7=1,2,3,..., along the two-dimensional stable manifold. Number the
eigenvalues such that () > 0 > R(A,) > R(}A3) and consider the solution of the linearized
ODE (6). To get a solution that is bounded at infinity, the boundary conditions should enforce
Ay =0at & =band A, = Ay = 0 at £ = o. We must therefore prescribe one boundary condition
at £ = b and two at £ = a. Straightforward algebra yields that the requirements on A; are
satisfied if and only if the following relations are fulfilled:

b~ M(p—do) =0, &= (8)
Pee ~Mge = 0, £ = (9)
& (Az + /\3)¢£ + Ao As(@ — ¢y;) = 0, { = b (10)

These relations will be used as boundary conditions for (3). We remark that from a practical



point of view, the simpler boundary conditions

¢_§BU$O)§:G; (11)
(}55 = O, 6 - a, (12)
@’5—(52;' =0, (= b. {13)

can be used if the computational domain is sufficiently large, since the solutions decay exponen-
tially onto the fixed point values as |£] - 0.

A solution of (3) at fixed ¢ and 7 is not isolated. This is due to the Galilean invariance in
the £-direction. Let L], ¢,v] be the operator described by (3). Expanding £ around a solution
™ yields
The Galilean invariance corresponds to one zero eigenvalue of Ly, Tt is easy to see that the
corresponding eigenfunction is the derivative of the present solution, i.e. (1) = qbgn). Because of
the Galilean invariance property, the solution of the problem is not completely specified by the
ODE (3) and the boundary conditions (8,9,10) or (11,12,13), respectively. There are two ways
to specify the solution. The first and most commonly used approach is to add one additional
equation, usually called a phase constraint, to explicitly fix the phase of the solution. The
second possibility, which we pursue in the present method, is to only compute the solution in
the subspace which is orthogonal to the eigenfunction connected to the zero eigenvalue. Hence,
we remove from the solution a one dimensional degree of freedom. By viewing the (alilean
invariance in either way, it is clear that the number of free parameters is reduced from two (7, ¢)
to one, which we take to be v. Thus, the velocity, ¢, is determined as part of the solution.

2.1 Previous methods.

The BVP-based procedures suggested by [2], [6], [9] and [11] are all based on a few simple
elements. The governing solitary wave ODE is solved subject to asymptotic boundary conditions,
and an additional phase constraint is imposed that fixes the location of the wave in space and
also results in the unknown velocity being determined as part of the procedure. Points along the
solution curve are computed using a pseudo-arclength continuation procedure. The only major
difference in these methods are in the specification of the phase constraint.

In his study of solitary waves in the Fitzhugh-Nagumo equations, Miura [11] suggests a
method whereby the phase is constrained by adding an additional boundary condition near
the most rapidly varying part of the solitary wave profile. Since this increases the mumber of
constraints to one more than is appropriate for a conventional BVP solver, an additional free
parameter must be added. In this case it is the velocity, ¢. Miura implemented the method using
the version of the COLSYS [1] BVP solver package available at the time. In order to arrange for
an additional free parameter in that package, it was necessary to let ¢ be a dependent variable
that varied along the whole computational interval, but was constrained to be constant by adding
the differential equation

¢(£) = 0. (15)

In this approach, the solitary wave profile is the solution of the ODEs (3) and (15), subject to
the boundary conditions {8,9,10) and the phase constraint

b No ~2j
Yy = oty (16)




Observe that no boundary condition is necessary for ¢.

Kreiss [9] suggested a simplification of Miura’s method in which the same phase constraint
(16) is used, but the velocity c is simply allowed to be a free parameter.

The methods by Miura and Kreiss both use a point phase constraint and are therefore problem
dependent, since a point on the solution profile must be chosen to be fixed. A more general
approach was used by Friedman et. al. [6] and Beyn [2], who also studied the Fitzhugh-Nagumo
equations. Here, the point constraint (16) is replaced by an integral constraint.

A subject which is often neglected in papers on continuation methods is how to choose a
starting point. Typically, one tries to start the continuation procedure at a point where the
solution can be easily computed or is known analytically. In the case of the perturbed sine-
Gordon equation (3), an exact solution which connects dp and @, is given by

¢(&) = 4arctan (eg) , (17)

with v = 0. The velocity, ¢, is also zero at this point, and (3) reduces to a second-order ODE. This
is not an ideal starting point for the continuation procedure, because (3) is singularly perturbed
for small values of ¢. It is our experience that this causes problems for all of the three methods
discussed above.

We implemented the three methods by using AUTO [3]. When an initial guess sufficiently
close to a point on the soluiion curve away from y = 0 was used, all three methods functioned
properly, and reproduced the results that we obtained with our method. However, without a
good initial guess, AUTQ diverged without being able to compute an initial point on the solution
curve. Because of the singularly perturbed nature of the ODE at y = 0, the problem specification
as a first order system required by AUTO breaks down at that point, and it is necessary to start
the continuation away from v = 0. To demonstrate the sensitivity of this approach, we took
v = 0.05 together with (17) as an initial guess for the continuation. The convergence history for
the first Newton iteration in Miura’s method is shown in figure 1. Here, we used the simplified
boundary conditions (11,12,13). Although the initial guess, labeled “iteration 0” in the figure,
is very close o a solution, succeeding iterations diverge. Recall that in the pseudo-arclength
continuation process, v and ¢ are determined as part of the computation. For each iteration,
and ¢ move farther away from their correct values, and although for those values, the solution
curves are solutions of {3), they are not traveling wave profiles for the original problem (1). The
situation becomes even worse when the asymptotic boundary conditions (8,9,10) are used (cf.
fig. 2.) In this example, the initial guess

$(€) = azrcsin(y) + 4 arctan (ezf) : (18)

was used. (Observe the factor 2 in the exponent, which makes the transition layer thinner than
it is in the solution profile.) The Newton iterates diverge rapidly from the correct solution in
this example. The asymptotic boundary conditions do not constrain the boundary values to lie
near the critical points (;30 and q’ég. This allows the iterates freedom to move rapidly away from
the solution. This property of the asymptotic boundary conditions is discussed in more detail
below.

The nonconvergence demonstrated in these tests is related to the sensitivity of the phase
space topology to the value of ¢. For a given value of 4 there is (locally) only one value of ¢
for which a trajectory connecting the critical points exists. A small perturbation in ¢ can canse
the connection between the appropriate critical points to disappear. Neither the asymptotic
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Figure 1: Iteration profiles (left) and phase portrait projected onto the (¢, ¢')-plane (right) for
Miura’s method with an insufficiently accurate initial guess. The simplified boundary conditions
(11,12,13) were used for these computations. Note that although the method computes solutions
of the boundary value problem, the iterations are diverging from the desired heteroclinic orbit.

boundary conditions (8,9,10) nor the simplified boundary conditions (11,12,13) ensure that com-
puted profiles connect points that are near the actual critical points. To do this would require
six boundary conditions, and would not result in a well-posed problem. The asymptotic bound-
ary conditions, for instance, only require that the trajectories connect a point on the linearized
unstable manifold correspondmg to 450 (a straight Hne through QSO) with the linearized stable
manifold corresponding to gbzv., (a plane containing qsz) Thus, for given values of v and ¢, it
is not necessary for a trajectory connecting the critical points to exist in phase space; thele is
sufficient freedom in the boundary conditions for a solution to each linearized problem in the
Newton iteration process to exist and be computed. It is important to realize that these solu-
tions do not necessarily connect points in phase space near the critical points. In the example
shown in figure 2, one sees in the phase portrait that although the trajectories asymptote to the
appropriate linearized manifolds, they diverge from the critical points.

Ifin the iteration process, the iterations are not sufliciently close to the actual desired irajec-
tories, it will often be the case that each iteration pushes the phase space topology farther and
farther away from one in which a connection between the critical points exists. This is because
the parameter ¢ is computed as part of the iteration. The following analysis indicates how this
can occur. Integrate the solitary wave equation (3) from £ = a to £ = b. If we assume that ¢
and ¢"” vanish at least approximately at the endpoints of the interval, then the resulting relation
may be solved for the velocity ¢, giving

oo [ 066) -, (19)

for the connection between ¢, and ¢,. Thus for each solution computed, the corresponding
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Figure 2: Iteration profiles (left) and phase portrait projected onto the (¢, ¢')-plane (right) for
Miura’s method with an insufficiently accurate initial guess. The plots have been truncated
and do not show the complete extent of the trajectories. The asymptotic boundary conditions
(8,9,10) were used for these computations. The asymptotic boundary conditions only ensure
that the solutions connect points on the linearized unstable manifold through ¢ = ¢ with the
linearized stable manifold through ¢ = ¢,. As the iterations diverge, these boundary conditions
are insufficient to require that the endpoint actually be nearby the respective critical points.




velocity will depend on the area under the curve of sin{¢(£)) — v. As soon as an iterate is
computed that deviates much from the correct profile, the computed velocity can change by a
large amount, thus perturbing the phase space even further, and in general convergence cannot
be expected.

With these simple examples, we have demonstrated clearly the importance of a good initial
guess for these solitary wave computations. We conclude this section by stating that the most
reliable way to obtain a good initial guess for a solution on the solution curve is to solve the
initial value problem for (1), allowing a solitary wave profile connecting the desired critical points
to develop. We will discuss this approach in more detail in the section below on multiple fluxons.
With this approach for obtaining the initial solution point, any of the methods that use AUTO
for tracing out the solution curve will work well.

The new method we will describe below and which was used for the caleulations presented
in this paper, is less sensitive to the initial guess. We conjecture that its robustness is related to
the way the Galilean invariance is treated.

2.2 'The present method.

To find a numerical solution of (3) in &« < £ < b subject to the boundary conditions (8,9,10)
we approximate the ODE by a finite difference scheme. For this reason, we introduce & grid
&L=a+(i—-2)h,i=1,...,N,where h = (b—a)/(N —3); we define a grid function by u; = u(§),
t=1,2,..., N, and the divided difference operators by

— 1
Dyu; = Ef’—ﬂh—ﬁ, D_u; = Dywy_yq, Dyuy = 5(1)_,_ + D_Ju;. (20)

A second order accurate approximation of (3),1.e. ¢(&) = w; + O(h?), is given by

L =:(8¢D_D_D, ~(1~¢*)D_Dy — acD. )y

+ sin (E_iz’“—“l) oy =0, (21)
for i = 3,4,..., N — 1, subject to the boundary conditions
Ly =: Dyug — Aq(ug — ﬁgo) = 0, (22)
LQ =i _D+_D___'U,2 el A]_Dguz = 0, (23)
LN = D+D__'U,N__1 — (Az "|" A3)D0’HN_1
+AAs(un_y — dy;) = 0. (24)

The discretized ODE can be viewed as a N-dimensional system of nonlinear algebraic equa-
tions. We write it in the abstract form L{u,¢,7] = 0 where u = (uy,uy,...,uy)’ and L =
(Ly, Loy .., L), i Lt X xR xR — X where X is an N-dimensional vectorspace. In the
following, a triple (u,¢,v) that satisfies L{u, ¢,v] = 0 will be called a solution point.

By counting the number of equations and dependent variables, it seems at first like both ¢
and v are free parameters. However, the Galilean invariance implies that u is only determined
up to a shift. The remaining one-dimensional subspace of u must be determined by other means.
In the previous methods, this is done by adding a phase constraint to fix the undetermined
part of the solution. From a theoretical point of view, the phase constraint is oaly required
to make the Jacobian of the extended system non-singular. However, it is well known that
some phase constraints have better numerical properties than others {7]. To avoid the somewhat



arbitrary procedure of choosing a phase constraint, we have developed a new method which avoids
adding a phase constraint. A comprehensive description of the method can be found in [13],
where it was used to compute periodic water waves. To outline the method, we introduce the
following notation. We define a scalar product and a norm for 2,4 € X by {2, y), = & Ei‘r\;l Ty
Hz||ln = V{z,z),. Corresponding to the Galilean invariance, the Jacobian matrix 8L/8u will
have one zero eigenvalue at every solution point. Let e, and e; denote the corresponding right
and left eigenvectors; let them be normalized to have ||e,||s = 1 and (e}, e,}, = 1. We define the
projection P that maps X" onto the eigenspace by Pf = (e}, f)re,, f € X. The basic idea in the
present method is to only solve L = 0 for (I — P)u, and keep Pu fixed to, say, C. Obviously, the
side-condition Pu = ( can also be viewed as a phase constraint, but this condition is derived
directly from the properties of the Jacobian matrix and is therefore guaranteed to fix the phase
of the solution. Furthermore, we remark that the additional cost of calculating the left and right
eigenvectors is very small; they can be accurately computed with one or two iterations of the
inverse power method, which is inexpensive once the Jacobian matrix has been factored.
The method can be viewed as splitting I and solving

(I"" P)L[H,C,’y] = 0, (25)
<el>L[u=C=7}>h = 87 (26)

for ({ — P)u and ¢ as functions of 7. The value of Pu will be determined during the solution
procedure. After this observation, it is clear that the number of free parameters is reduced by
one, leaving one free parameter.

2.3 Continuation in .

To avoid complications close to turning points, we follow [8] and consider the solution (u, ¢, ) to
be a function of the pseudo-arclength s, u = u(s), ¢ = ¢(s) and -y = y(s). Asswumne that a solution
point {1, ¢g,7,) 18 known, and let it have pseudo-arclength sy. We define the pseudo-arclength
relative to that point by

§ = 8+ (ilm u-— Hu)h + éu(c - Ca) + "Ya(’)’ - ’Yn), (27)

where overdots denote differentiation with respect to 8. The method can be outlined as follows.
We seek a solution of (25-26) which has pseudo-arclength s = s, + As. First, we compuie the
tangent of the solution curve at the present solation point. Thereafter, we use linear extrapolation
to get an initial guess for the solution at s, + As. Finally, we apply Newton’s method to correct
the initial guess.

The tangent (i, és,30) is the solution of

Lu[uo, co, 0] Lg[uo,co:’)’o] i = L:;[UO,CO:’}’O] (28)
- - 0 T
(efaLU[UO:CD:"YO])h (eth[UmCo:’m])h Co <81,LT[H0,CQ,’){0])},

Here we used the notation Li[uy,co,v0] = (I — Plug, ¢, 70]) L[t ¢s,7e]. The system (28) is

solved by the bordering algorithm under the side-condition Pity; = 0 and the normalization
0]I7 + 1éol* + [Fo]* = 1.

We use the predictor n°® = ug 4 f15As, © = ¢q + éoAs and v° = v, + Y, As as initial guess for

the solution at s = s, + As. The predictor is corrected by Newton’s method on the augmented



system, where the improvements of the solution are found by solving

Lu[u*,c*, 7"] FADINCREY Li[u*, ¢, 4" Ad*
(elaLu[uk}ck:’Yth (eth[ukack,'Tk]}h (ehL-y[uk?Cka"}’k})h Ac =
.Y N O SN R b | Ar T-.& & k1 AT ..k &k k] Ak
\ Yt st 5y L¥el L7 Nyl 0571 ] / \"—‘Y /
L[, ¢, 9]
- <81’L{ukack7r}"k}>h ' (29)

N[u*,c*, 7]

The arclength equation is given by

Nu,c,7;8] = (w10, u — wa)n + €o{c — o} + Yolv — Y0) — (5 — 30)- (30)

The system (29) is solved by the bordering algorithm, under the side-condition P[u*,c*, y*]Av* =
0. The solution is then updated according to u**! = u* + Av®, ¢+ = & | Act and 4F*+! =
1* + Ay*. We iterate until ||uf+! — uf|, + |F = ¥ + |75 — 4] < €. If the iteration converges,
we may repeat the procedure. The number of iterations that was required to get convergence is
used to determine the next step-size As. However, if the iteration diverges, we halve the step-size
and try again.

2.4 Single fluxon.

In this section we will numerically compute the heteroclinic orbit between the fixed points b0
and ¢,. As initial guess for the continuation, we use the fluxon profile proposed by Ferrigno and
Pace [4],

_2N1/4
o =)

e (31)

For v = 0 and ¢ = 0, this is an exact solution of (3). As discussed in the previous section, ¢ — 0
is a singular perturbation of the ODE. We therefore need to start the continuation at non-zero
c and . In order to estimate ¢ for small v, we multiply (3) by ¢'(¢) and integrate from —o0 to
co. Integration by parts and the fact that 9323- — ¢y = 247 leads to the formula

#(&) = arcsin(y) + 4 arctan (e"f) ,

o= =2inyf (o [ @@ de+p [ (@©ra). (32)

We expect the function (31) to be the leading-order approximation for small « to the solution of
(3); evaluating {32) using (31) gives the following leading order formula for ¢

—~3ry
“F Toka + Ar38° (33)
It is desirable to measure a function ¢ which connects the fixed points ¢, and (z’gj in a way
which is independent of the size of the computational domain. We will use the £,-norm of ¢— f;,
ie.

o= £IE= [ @6~ 5o, (34)



Figure 3: ||¢ — f1|| as function of v (left) and ¢ (right), respectively. Note that the turning points
in the ||¢ — fii|-v curve coincide within graphical accuracy to the turning points in the |j¢ — fi]|-¢
curve.
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¥ c
0.887777 | -1.001666
0.882701 | -0.999885
0.883051 | -1.000007
0.883030 | -1.000000
0.883032 | -1.000000

-0.990 -0.985

Table 1: The first five turning points for the single fluxon.

where f;(£) = $o + jm(tanh(£ — &) + 1), with &, chosen such that $(&o) = o + Jm.

We present ||¢ — fi|} versus v and ¢, respectively, in figure 3. In this computation we used
o = 0.18 and B = 0.10. This choice is less restrictive than it at first might appear; a scaling
law for v and 8 can be found i [5]. The computational domain was —5 < £ < 15 and the grid
kad 600 grid points. No significant change in the solution was found by increasing the number
of grid points further, or by making the computational domain larger.

At the first turning point, v =~ 0.887777 and ¢ & —1.001666. Those values coincide closely
to the point past which Forest et. al. [5] were unable to find traveling wave solutions, and where
Pagano et. al. {12] founé that the solution of the time-dependent problem (1) sw1tches from a
traveling wave to a “running mode” state.

The solution branch has several turning points and osc1ﬂates around the Hmit values vy, =~
0.883032 and ¢, = —1.000000, as the norm increases. The locations of the first five turning
poinis are given in table 1. After the fifth turning point, the changes in v and ¢ are less than
107° along the solution curve. The solutions at the five first turning points are presented in
figure 4. The part of the solution close to ¢g gets longer as the norm increases. Eventually,
the last pass from ¢; to ¢y gets close to the end of the computational domain. Thereafter, the
numerical solution has no relevance to the physical problem.

It is interesting to study the relation between 7 and ¢ close to the turning points. Refer to
figure 5. Graphical accuracy suggests that dy/dc does not exist at the turning point, which only
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Figure 4: ¢ as function of £ at the five first turning points for the single fluxon. The
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corresponds to the first turning point.
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Pigure 5: The relation between v (vertical axis) and ¢ (horizontal axis) close to the first (left)
and the second (right) turning point for the single fluxon.
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can happen if the turning points in ¢ and - coincide. To pursue this question further, we take
j =1 and differentiate (32) with respect to arclength, i.e.

de o L ody oy Al e e s
ds (wn%ds oI5~ ds ),nqsnﬂ o', ¢) +B(8", "), (35)

where we define the inner product for functions f and ¢ in £y by (f,9) = [, fgdé. We want to
show that a turning point in - implies a furning point in ¢, i.e. that ¢ = 0 if ¥ = 0. Obviously,
this can only happen if also d||¢|i}/ds = 0 at the turning point. Differentiating ||¢|]}; with
respect to & and integrating by parts yields,

dil(ﬁ”%{ — (dgﬁ (Iv) H)
ds 2 ds , 8¢ - od’ ] . (36)
By differentiating (3) with respect to £ and substituting S¢7") — ag”, we find
dlélE 2 /dé N
T“E(:{E’(I*C)QS - ¢ 3054?5)- (37)

At the turning point, £, has two zero eigenvalues, which means that there is a nontrivial solution
Y # ¢ of

: Be” — (1 W' — ac’ +1pcosd = 0. (38)
In addition, it is easy to see that ¢ = d¢/ds at the turning point. By (38), ¢ cosp = —fFep” +
(1= )" + acy)’. Substituting this into (37) and integrating by parts yields

d|¢ll% = (¢, " — ) = 2(4, g’ — BTN (39)

ds

Adding (36) and (39) gives dl|¢||F/ds = 0, which proves the assertion.

2.5 Multiple fluxons.

It is possible to construct a heteroclinic orbit between ¢, and 95% for j > 1 by using widely
separated single fluxons. For instance, a connection between ¢, and ¢, is given by

¢(¢) = lim

§o—+o0

(€ + &), £E<0 (40)
byt P(E~&), E>0 '

where 9%(€) is a single fluxon with %{0) = $o+m. In this section, we will compute another family
of solitary waves that connect ¢, and qggj for j > 1.

In contrast to the single fluxon case, initial data for the continuation is not available in the
form of analytical expressions. Instead, we will integrate the solution of (1) in time at a fixed
value of v until a solitary wave has formed, and start the continnation from that profile.

It is possible to rewrite (1) as a first order system of standard type by introducing new
dependent variables © and v by ®, = {v — w)/f and ® = u. This gives

wl (00 % -1/p 1/8 % 0
) () () (20 ) (1) e )
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Y2 C2 Ta €3
0.871963 | -1.001754 | 0.871099 | -1.001476
0.866099 | -0.999872 | 0.866173 | -0.999896
0.866524 | -1.000008 | 0.866520 | -1.000007
0.866498 | -0.999999 | 0.866499 | -1.000000
0.866500 | -1.000000 | 0.866450 | -1.000000

Table 2: The first five turning points for the cases § = 2 and § = 3. Note that the first furning
point for the single fluxon case occurs at a larger value of 4 than it does here.

which is a well-posed mixed hyperbolic-parabolic system. To avoid interactions between the
solitary wave and any boundaries, we approximate the infinite domain by a periodic domain
with large period. Iet the infinite domain be truncated to o < 2 < b, @ < 0 < b. At the
boundaries, we impose ®(b, ) = &(a,t) + 2j7 and &,{b,t) = &,(a,t), which expressed in » and
v corresponds to

u(b,1) = u(a, 1)+ 27, " (42)
- (b,1) = u(a,t), (43)
v(b, 1) = v(a,t)+ 2jn, (44)
v (b;1) = v,(a,1). (45)

This system is discretized in space with second order accurate centered finite differences, and
the resulting system of ODEs is integrated in time using a four stage, fourth order, Runge-Kutta
scheme. As initial value, we use the single kink from ¢, to ¢y; given by

w{x,0) = bo + 47 arctan{e”},
v(,0) = ¢y + 4j arctan (e*).

(46)
(47)

The profile of the solution will be translated in space as time evolves. Because of the jump
by 277 in the boundary conditions, 4 and » will increase by 277 every time the wave travels
across the boundary. The profile from the time-dependent calculation, u(z,T"), must therefore
be corrected before it becomes useful as initial guess for the continnation. We do this by shifting
the profile in & to move the kink close to z = 0 and adding a constant such that u(e,T") = o
We then start the continuation at ¢°(€) = u(€, 7). The corresponding value of ¢ is calculated by
using (32).

As in the single fluxon case, we used @ = 0,18 and # = 0.10 in the numerical calculations.
To get a starting point for the continuation, we took v = 0.75 and integrated (41) up to time
t = 30. The computational domain was between ¢ = —5.0 and b=20.0 and the grid had 750 grid
points, which corresponds to the same grid size as in the single fluxon case.

Qualitatively, the curves ||¢ — f;|| versus v and ¢, for § = 2 and § = 3, closely resemble those
for j = 1. The locations of the first five turning points are given in table 2, where +; and ¢;
correspond to the orbit between cﬁ{, and ¢2} We emphasize one important physical consequence
of table 1 and 2. The value of v at the first turning point for the multiple fluxon is smaller than
it is at the first turning point for the single fluxon, where ¥ = 7,.;;. Hence, multiple fluxons

13



14.f /\ : .

0. ] ] ] ] } i ]
-5, 0. 5. 10. 15. 20.

Figure 6: The case 7 = 2. ¢ as function of £ at the five first turning points. The solid line
corresponds to the first turning point.

do not exists for ¥ > 7, so there are no solitary wave solutions in that regime. This fact is
consistent with the dynamical studies in [12], where the solution was observed to switch to a
“running mode” state for ¢ > v,

The solutions at the five first turning points for 7 = 2 are presented in figure 6 and for j = 3
in figure 7.

3 Stability.

Pagano et. al. [12] found that the time-dependent solution of (1) switches from a solitary wave to
a “running mode” state when - exceeds a critical value close to where we found the first turning
point. This observation suggests that the sclitary wave solutions are unstable past the first
turning point. In this section, we will investigate the stability of the solitary wave by computing
the spectrum of the linearized operator.

It is convenient to consider the time dependent problem (1) wxitten as a hyperbolic-parabolic
system (41). In a reference frame where the solitary wave is steady, it becomes

u ) [ c0/OE-1/0 1/6 u 0
(v)r_( a-—1/8 ﬁ62/5§2+68/8§ﬂa+1/ﬁ) (v)+ﬁ(7msil1u)’ (48)

where { = = — ¢t and 7 = £. Let the solitary wave solution of (3) be ¢y(£). This solution is
equivalent to a steady solution of (48) with uy = ¢ and vy = ¢y — Fcdgy /I, We linearize (48)
by inserting the ansatz u(€,7) = we(€) + u1(£,7), v(€,7) = vo(€) + v;1(€,7) and neglecting terms
quadratic in u; and v;. The eigenvalue problem is found by assuming u,(€,7) = w,(£) exp(Ar)
and v;(£, ) = v5(£) exp(Ar). We arrive at
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Figure 7: The case § = 3. ¢ as function of ¢ at the five first turning points. The solid line
corresponds to the first turning point.

R cOjoE - 1/p 1/8 uz | (49)
Uy o~ 1/8~Bcosuy, PO/ +cd]IE—a+1/8 Dy

We will refer to (49) as the continuous variable coefficient eigenvalue problem.

A solution of (48) is said to be linearly stable if all eigenvalues A of the problem (49) have
non-positive real part. The eigenvalues and the eigenfunctions are continuous functions of the
arclength along the solution curve. If a solution is linearly stable at one solution point, it can only
lose stability if one or more eigenvalues crosses the imaginary axis £(A) = 0. The loss of stability
in the present problem is apparently associated with the first turning point of the solution curve
for the traveling wave problem. We will therefore study the stability of the solutions close to
that point. We will also study the stability of solutions between succeeding turning points. Our
conclusions from numerical and analytical studies of the eigenvalue problem can be summarized
as follows: For single fluxen solutions before the first turning point, all eigenvalues of (49) have
non-positive real part. Thus, those solutions are linearly stable. Loss of stability occurs at the
first turning point when one eigenvalue crosses the imaginary axis. At each succeeding turning
point, an additional eigenvalue crosses the imaginary axis; thus, stability is never regained beyond
the first turning point. The behavior of multiple fluxon solutions is similar: linear stability is lost
at the first turning point, and each succeeding turning point corresponds to another eigenvalue
crossing the imaginary axis. An important point to note is that the first turning point for each
of the multiple fluxon solutions occurs at a 4 which is always less than the critical value of v
for the single fluxon solution. Thus, there are apparently no linearly stable solutions of (48) for
values of v greater than the value at the first turning point of the single fluxon solution curve.

We demonstrate these summarized results by a careful analysis on both the discrete and the
continuous eigenvalue problems related to the continuous variable coefficient eigenvalue problem
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(49). The spectrum of a continuous operator is well-approximated by the corresponding discrete
operator only for those eigenfunctions that can be well-represented on the computational mesh
used for the discretization. Typically, these eigenfunctions correspond to eigenvalues with small
absolute value. It is necessary to use analytical arguments to describe the other parts of the
spectrum. In the following, we show that the spectrum of some related constant coefficient
operators which can be determined exactly are in a certain limit identical to parts of the spectrum
for the variable coefficient problem. The rest of the spectrum appears to consist of eigenvalues
corresponding to localized eigenfunctions that occur only in the variable coefficient problem; these
are also the eigenvalues critical to determining linearized stability. These localized eigenfunctions
are well-represented on a finite-difference mesh, and thus can be determined numerically along
with the corresponding eigenvalues.

To study the stability numerically, we truncate the infinite domain to a finite domain a < £ <
b, @ < 0 < b, and assume the perturbation {u,, v;) to be periodic in &, i.e. uy(€) = uy(€+ b~ a)
and v(§) = vy(€ + b — a). We discretize (49) on a grid & = ¢+ jh, b = (b— a)/N, where a
gridfunction is defined by (u5(¢;), vo(§;)) = (45 5,5 ;). The derivatives in (49) are approximated
by the previously introduced divided difference operators. This procedure results in the matrix
eigenvalue problem,

) ( o ) ) ( eDo 1/ 18 ) ( s, ) s
Uy a-—1/8 - Bsinug; BDyD_+cDy—a-+1/8 Vg ;
for j = 1,2,..., N, with the boundary conditions (g, vs o) = (% n, ¥y n) a0 (Uy py1, V2 1) =
(uz,1,v5,1). Henceforth, (50) will be called the discrete variable coefficient eigenvalue problem.
To better understand the behavior of the spectrum, and to check the numerical calcula-
tion, it is helpful to replace the variable coefficient sinug(€) by its value at the fixed points,
sin ¢p = sin ¢~52j, 7 > 1. Since the coefficients in the problem are constant, it is possible to solve
the eigenvalue problems (49) and (50) analytically. Those problems will be denoted the contin-
uous and the discrete constant coefficient eigenvalue problems, respectively. In both cases, the
eigenfunctions are given by exp(iwy, (2 —a)), wp = 27k/(b—a), k = 0,%£1,42,.... The eigenvalues
of the continuous constant coeflicient problem are given by

B 2 2y 2 -
- _ﬁ%@ﬁﬂwkci\/(fiéﬁ_‘”ﬁ) —w? — cos do. (51)
The eigenvalues of the discrete constant coefficient problem are given by
, 2 , 2y 2 .
iy = ﬁ%ﬂwk +ippe £ \/(ifgi) — 0} — cos ¢y, (52)

where oy = 2sin(wyh/2)/h and py = sin(w,h)/A. In the discrete case, the number of eigenfunc-
tions which are unique on the grid is equal to the number of grid points, N. For even N, we will
use —N/2+ 1 <k < N/2.

The spectra for the continuous variable and constant coefficient problems are closely related.
This will be demonstrated in the case when the variable coeflicient only varies in the interval
a; < & < by, le. cosug(w) — cos $o =0ina <z < a, by < & < b, where a; and b, are
independent of ¢ and b. However, the result can be generalized to the case where the variable
coefficient decays exponentially outside a, < ¢ < b;. We will show that for each eigenvalue X of
the constant coefficient problem, there is an eigenvalue A of the variable coefficient problem with
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Figure 8: The spectrum of the discrete variable coefficient problem (50) close to the first turning
point of the single fluxon. The real part of the eigenvalue corresponds to the horizontal axis; the
imaginary part corresponds to the vertical axis. To the left we show all eigenvalues, and to the
right we present an enlargement close to the origin.

A~ Al = O¢), € = (by —a;)/(b—a). Hence, it is possible to make {A — }| as small as we please by
increasing the period, b — a. Let A% = A%, @ = (u,v)”, denote the variable coefficient eigenvalue
problem (49), and Ayi, = My denote the carresponding constant coefficient eigenvalue problem.
We assume an asymptotic expansion of the form

,\::5\4—6)\’,

= ﬁo"l‘fﬁ!.

(53)

The eigenvalue is determined by the Rayleigh quotient A\ = (%, A#),/(%, #),, where the scalar
product for functions @; = (u;,v;)" in £, is defined by (@, @)y = (uy,4) + (v1,05). By
inserting the asymptotic expansion {63) in the Rayleigh quotient, we get

kY (ﬂ'Oa 'ﬁ’)E

W, Aolp)s | (To, Avtig)e (T, AsTg)e . {Tp, Aol
—— — " — — 2A——= + Oe), h4
(’Mm?f:o)z E(“ayuu)z (’Mo:“o)z (uo;’iﬁo)z (u0=u0)2 ( ) ( )

v

where A; = A — A,;. We complete the proof by using | cos up{z) — cos $0| <2,a) <2< by, and
g ~ exp(iwa) to show |(tg, A4 )s| < Pe(fiy, Up)y. Hence, X' < C, where C' is independent of e.

In the constant coefficient problem, the distance between consecutive eigenvalues, |5\k+1 - j\k|,
decreases when the period, b — a, increases. In the limit when the period tends to infinity, those
eigenvalues form a continuous spectrum. In the same limit, |A ~ A| tends to zero. Thus, the
continuous spectra are identical for the constant and variable coefficient problems. However,
there might be additional eigenvalues in the variable coefficient problem that are not present in
the constant coefficient problem; these eigenvalues must be computed numerically.

Similar to the previous computations, we used « = 0.18, # = 0.10. The spectrum of the
discrete variable coefficient problem {50) was numerically computed with the routine RG in the
SLATEC library. That spectrum, at the first turning point for the single fluxon, is given in
figure 8. At that point, v = 0.887777 and ¢ =~ —1.001666. The computational domain was
between ¢ = —5.0 and b = 15.0; the grid had 600 grid points. We would like to know how close
the eigenvalues of the discrete variable coefficient problem are to the corresponding continuous
problem. From the previous analysis, we know that the spectrum of the continuous variable
coefficient problem is similar to that of the corresponding constant coefficient problem. We will
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Figure 10: The spectrum of the discrete constant coefficient problem (52) at the first turning
point. In this calculation, N = 600, ¢ = 5.0 and b = 15.0. To the left we show all eigenvalues,
and to the right we present an enlargement close to the origin.

therefore get a good understanding of the differences between the eigenvalues of the continuous
and discrete variable coefficient problems by studying the corresponding constant coefficient
problems. We present the spectrum of the continuous constant coefficient problem (51) at the
first turning point in figure 9. The spectrum of the discrete constant coefficient problem (52) for
the same case is depicted in figure 10. Many features of the spectrum of the continuous constant
coefficient problem are captured by the spectrum of the discrete constant coeflicient problem.
However, the discrepancies grow when the magnitudes of the real or imaginary parts increase.
There is also a line of eigenvalues with real part & —10 in the spectrum of the discrete problem
which does not exist in the continuous case. Those parts of the spectrum have large values of
wy, and correspond to spurious numerical eigenfunctions that are highly oscillatory on the grid.

The spectrum of the discrete comstant coefficient problem is very similar to that of the
discrete variable coefficient problem. The only significant differences are close to the origin, where
the variable coefficient problem has a number of eigenvalues which are absent in the constant
coefficient spectrum. For instance, there are two eigenvalues k = 0. One of them corresponds
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Figure 11: The eigenvalues of smallest magnitude of (50) just before the first turning point (left)
and just after it {right}. In this calculation, ¥ = 600, ¢ = —5.0 and b = 15.0. Note that one
eigenvalue passes the imaginary axis.

to the Gralilean invariance, and the other corresponds to the turning point itself. We conjecture
that the spectrum for the contiruous variable coefficient problem can be well approximated by
the continuous constant coefficient problem for large |A| and by the discrete variable coefficient
problem for small |A].

We now study the spectrum corresponding to the single fluxon at different locations along
the solution curve. Recall that if a solution is linearly stable at one solution point, it can only
loose stability if one or more ecigenvalues passes the imaginary axis R(x) = 0. In figure 11,
we present the spectra connected to one solution point just before the first turning point and
one just after it. One eigenvalue gets a positive real part after the turning point, which means
that the solitary wave acquires a one-dimensional instability. The eigenvector connected to that
eigenvalue is depicted in figure 12. The spectrum close to the second turning point is shown in
figure 13. Here, the real part of one more eigenvalue becomes positive. This pattern repeats at
the subsequent turning points, so that the solution never regains linear stability. Instead, the
unstable manifold grows by one dimension past each turning point along the solution curve. The
eigenvalues of the multiple fluxons behave in the same way. We conclude that the solitary wave
solutions are linearly unstable past the first turning point. This explains why these solutions
were not observed in the dynamical studies [12].
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