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§1 Introduction.

An n-by-n matrix T}, is said to be Toeplitz if it has constant diagonals, L.e. [T,];x =
tj—x for all 0 < 7,k < n. It is said to be circulant if we further have [T,]; n—1 = [Thli+1,0
forall 0 € 7 < n — 1. In this paper, we consider the convergence rate of the precon-
ditioned conjugate gradient method for solving Toeplitz systems T,x = b with circulant
matrices as preconditioners. Strang in [13} showed that for such method the cost per
iteration is of O(nlogn) operations. In contrast, super-fast direct Toeplitz solvers require
O(nlog2 n) operations, see for instance Ammar and Gragg [1]. Thus one has to analyze

the convergence rate of the iterative method in order to compare it with direct methods.

To analyze the convergence rate, which is a function of the matrix size n, we assume
that the given Toeplitz matrix T, is the n-by-n principal submatrix of a semi-infinite

of T' as Fourier

e OO

Toeplitz matrix 7. The function f which has the diagomals {#;}%2
coefficients is called the generating funciion of the sequence of Toeplitz matrices {T5,}52,.
Under the assumption, Chan and Strang [5] proved that if the Strang preconditioner 5,
[13] is used, the method will converge superlinearly whenever f is a positive function in the
Wiener class, 1.e. when the sequence {tj}j"';_ o 18 absolutely summable. The superlinear
result is established by first showing that the spectra of the preconditioned matrices S, 17T,

are clustered around 1.

Since then several other circulant preconditioners have been proposed and analyzed
under the same assumption that T, are generated by a fixed function f, see T. Chan [9],
Huckle {10], Ku and Kuo [11], Tismenetsky [14], Trefethen [15] and Tyrtyshnikov [16].
The most noticeable one is the T. Chan preconditioner ', [9} which is defined to be the
minimizer ||B, — T ||r over all circulant matrices By,. Here || - || denotes the Frobenius
norm. The preconditioner ¢, has a distinct advantage over 5, in that ), is always
positive definite whenever 7}, is, see Tyrtyshnikov [16]. Chan [2] proved that under the
Wiener class assumption, the spectra of C; 1T, and 5,17, will be the same as n tends to

infinity and hence for sufficiently large n, the preconditioned system C;'T, converges as



the same rate as the system S, 17T, provided that f is in the Wiener class.

However, in our recent papers, we have shown that the two preconditioners are funda-
mentally different. By using Weierstrass theorem, we showed in {6] that if the underlying
generating function f is a positive 2r-periodic continuous function, then the T. Chan
preconditioned systems C 17T, have clustered spectrum around 1 and hence the systems
converge superlinearly if conjugate gradient method is employed. But the proof used there
does not work for Strang’s preconditioner, Tn [7], we resorted to a stronger form of Weier-
strass theorem, namely the Jackson theorem in approximation theory and we are able to
show that the Strang preconditioned systems S 17, have clustered spectrum around 1
and hence converge superlinearly whenever f is a positive 2r-periodic Lipschitz continuous
function. One explanation of this fundamental difference, though not a formal mathemat-
ical proof, is that we can associate the Strang preconditioner S, with the Dirichlet kernel
whereas the T'. Chan preconditioner €, can be associated with the Fejér kernel, see Chan
and Yeung {8]. It is well-known in Fourier analysis that if f is 2m-periodic continuous (or
respectively Lipschitz continuous), then the convolution product of f with the Fejér kernel
(or respectively the Dirichlet kernel) will converge to f uniformly, see for instance, Walker

[18, p.59, p.79].

In this paper, we will consider f that are not positive 2m-periodic continuous but
only nonnegative piecewise continuous. We will show that for these generating functions,
the spectra of €T, will no longer clustered around 1. More precisely, we show that
for all sufficiently small ¢ > 0, the number of eigenvalues of C;17T), that lie outside (1 —
€,1+ ¢) will be at least of order O{logn). If moreover f is strictly positive, then we can
show further that the number of outlying eigenvalues is exactly of O(log n_). Numerical
examples are then given to demonstrate that for the preconditioned systems, the numbers
of iterations required for convergence do increase like O(logn) and hence the convergence
rate of the method cannot be superlinearly in general. Recalling the explanation made

in the preceding paragraph, it is interesting to note that for piecewise continuous f, its



convolufion product with the Fejér kernel will no longer converge to f uniformly.

The outline of the paper is as follows. In §2, we list some of the useful lemmas that will
be used in later sections. In §3, we show that for piecewise continuous generating functions
f, the number of cutlying ecigenvalues of the matrix T, — Cy is at least of order O(logn)
and hence the spectra.of T, — C, cannot be clustered around zero. Using this resnlt, we
prove in §4 that the spectra of €717, cannot be clustered around 1 for any nonnegative
piecewise continuous function f. We then prove in §5 that if f is strictly positive, then
the number of outlying eigenvalues of C; 17T, is exactly of O(logn). Numerical results
are given in §6 to illustrate how the discontinuities in f affect the rate of convergence,
They show that the convergence rate is 1o longer superlinear and in general the number
of iterations required for convergence increases at least like O(logn) when n increases.

Concluding remarks are finally given in §7.

82 Preliminary Lemmas.
Let L3 be the space of all 2r-periodic Lebesgue integrable real-valued functions

defined on the real line R, For f € Ly, its Fourier coefficients are defined as,

el f] = 5% F()e e, k=0,+1,42,...

Let 7,,[f] be the n-by-n Toeplitz matrix with the (4, k)th entry given by ¢;_4[f], 0 £ 5,k <
n and Cp[f] be the n-by-n cireulant matrix that minimizes [{Cy — To[fll 7 over all n-by-n
circulant matrices (. The matrix C,[f] 1s called the T. Chan circulant preconditioner
and its (7, I}th entry is given by ¢;_;[f] where

(n = k)telf] + ktg—nlf]
cxlf] = { n

Cn~|~k[f] 0< —k<n,

0<k<m,

see T. Chan [9]. In this paper, we will consider the spectrum of C; [f]7.[f] as n goes to
infinity for piecewise continuous functions f € Ly,. Since f are real-valued, t_i[f] = #x[f]
and hence 7,[f] and C,[f] are Hermitian matrices for all n. For f € Lay, let finax and

Sfmin be its essential supremum and infimum respectively.




Lemma 1. Let f € Lo7 With finax # fmin. Then foralln > 1,

fmin < Amin(ﬂ[.f]) S Al!]il](c?l[f]) S ’\ma.x(cn[f]) S Amax(g;t[f]) < fmax,

where Apmax a0d Amin denote the maximum and minimum eigenvalues respectively.

Proof. For the two strict inequalities, see Chan {3, Lemma 1]. For the other inner inequal-

ities, see Tyrtyshnikov [16, Theorem 3.1). —

Notice that if finax = fiin, then 7o[f] = Cul[f1 = fumin - In where I, is the n-by-n identity
matrix, Thus in the following, we assume for simplicity that f is non-constant.

Given a Hermitian matrix A, N (€ A) will be used to denote the number of eigenvalues
of A with absolute values exceeding e. A sequence of Hermitian matrices {An}n=12,.. is
said to have clustered spectre around « if for any € > 0, there exists a ¢ > 0 such that for

all n > 1, N(¢g; A, — ) <e. If =0, we simply say {Ay}n=12,. has clustered spectra.

Lemma 2. Let A, and B, be n-by-n Hermitian matrices and A and u be any positive
numbers. Then

, A

(1) N(X£pda) = N(E; An),

(i) N(A+ p, An + Bn) < N(A, Ap) + N{t, Br).

Proof. (i} is trivial and (ii) can be proved by Cauchy’s interlace theorem, see Wilkinson

[20, p.103} or Widom [19, p.11].

It follows immediately from Lemma 2 that if {A4,} and {B,} are two sequences of Her-
mitian matrices with clustered spectra, then {ad, + AB,} also has clustered spectra for

any real numbers o and 3.

Lemma 3. Let {A,}n=1,2,.. be a sequence of Hermitian matrices, If sup |An||lFr < o0,
n

then {A,} has clustered spectra.

Proof. Since ||4,||% is equal to the sum of the square of the eigenvalues of 4,, it follows

that for any given € > 0, N{e; A,) < sup [|4.]%/€%.




Lemma 4. (Chan and Yeung [6, Theorem 1]) Let f € Ly, be continuous. Then the

sequence of matrices

Adlfl= Talf) = Calf], n=12,...
has clustered spectra.

Lemma & (Widom [19, p.30]) Let i, be the n-by-n Hilbert matrix

- 1 1 1 -
1 2 3 7
1 1 -
2 3 n+1
- 1
Hy =13
1 1 1
~n n+1 27l -

Then for any 0 < € < x, we have
2 1 €
N{e,Hp) = p logn - sech = (1 + o(1))

where o(1) tends to zero as n increases,

Lemma 6. Let f € £, be bounded. Define H,[f] to be the n-by-n Hankel matrix with

entries given by

[Hn[f]]ﬂs"\v:(t.?'?k[f]) ’ j,k:O)la"-,n_l'
Then [[Ha[f]ll2 < [|Flleo.

Proof. By Nehari’s theorem [12, Theorem 1], the infinite Hankel matrix H[f] satisfies
IHLANE = max {="HAHfle} <171
Hence for any n-vector y with [lzl]2 = 1, we have
112 > Gy () ) 2 0ol el o

In particular, [|Ha(f]ll2 £ [|flle. O



§3 Spectra of A,[f].

In this section, we prove that if f € Ly, is piecewise continuous, the spectrum of
AR = TLlf1 — Cu[f] cannot be clustered around zero. More precisely, we show that
N{e; Anlf]) 2 O(logn). For simplicity, we will present the proof for the case n = 2m.
When n is 0dd, the proof can be modified accordingly.

Before we start, let us give a brief motivation of our proof. Suppose we have an
f € L2, which has only one jump discontinuity at £ € (—=,#]. Then by adding multiple
of the function g(#) defined in Lemma 8 below, the sum of the functions will be a 27-
periodic continuous function. In view of Lemmas 2 and 4, we then only have to consider
N(e; Aglg]). In Lemma 8, we will show that the spectram of A, [g] is basically the same
as the spectrum of the Hilbert matrix H,, with only small norm perturbation. Hence by
Lemma 5, we get the result, The proof helow however will be more complicated because
we need to show further that if f has multiple jumps, then the outlying eigenvalues derived
from one jump will not be canceled out by the outlying eigenvalues from the other jumps
and thus leave us with a clustered spectram.

Let f € Lyr be a plecewise continuouns function with points of discontinuity in (—x, 7]
at —r < 6y < --- < 0, <7 and jumps

Iim f(6), k=1,---,r

ap = lim f(8)—
987 gy

Let the biggest jump be at &, i.e.
|y | = o |k
Insert arbitrary v points ¢1,¢2,..., ¢, into {81,82,...,8,} such that
— T L P <O <y < By << P, < B, <

Define the functions
471 -0k, —-m<8< by,
9—7?—9;;0 9k0<95ﬂ'=

go(8) = {

7



(0 -7 < 0 < ¢g,
0 —
R ol < 8 <8y,
o o0 ¢ <8
Gl
— T G, < B < Py
2(¢k-{-1 _ 9}.) k = ¢L+1,
) ¢k+1<95ﬂ-7
fork=1,2,...,v~1and
0 - < 0 < ¢y,
0 — ¢y
ara 4N u<9.§9?
o0)=1 W, -6y * g
G —m
- <
Tr = 0,) 6, <8<,
if4, <mor 6o
— 1
e < gy,
A my ol
a{f) =10 1 <0< ¢y,
9_¢V
e o <#<m,
2(?{'—¢u) (bU Pied

if 8, = 7. Al functions gp(#), £ = 0,1,---, v are to be extended into functipns in Log.
Now we write f as
ay - o -
— %0 . ——0
f=54—"g+ kgzlakékﬂk 90 kgzlakékgk

where

{—1 k= ko,
8 =
L k.

Then we have
o “ « ~
s '
A?.m[f] = AZm[f -+ ""'““”9"9'0 + Z akékgk] - '"““"'O“A2m[9'0] - AZm I:Z akékgk:l . (1)
T T
k=1 k=1
In the next three leinmas, we consider the limiting behavior, as m tends to infinity, of the

eigenvalues of the three terms in the right hand side of (1) respectively.

Lemma 7. The sequence of matrices

v
(282
{Dam[f + —;0 do + E apbrgr]tm=12,...
[N

has clustered specira.



Proof. By Lemma 4, it suffices to show that the function

f

k=1
is a 2x-periodic continuous function. However, from the definitions of g, £ = 0,1, -, v,

it is clear that the function is already 2n-periodic and that the points &;, j = 1,2,.--,1,

are its only possible points of discontinuity in (—,x]. However, for 6; # 0,, we have

Jim | % g0(9) + Zakakgk(ﬁ)]
= lim_ [f(B) (0]
b1
k#J
= hm f(B) + MHJO(H + Z apby - 0+ ajé
R#J
1
g 0 - 2&363
F«#J
= glin; If ()]
k#a
At 0, , we have
hm [f(0)
kp
o 9]11;1 [f ) — g gr (0) + Z erbrgi(8)]
¥
° iyl
1
— 9 I
. O 2w g Z b -0
Py
= lim f(6)+~2(~m) w(wm)ako + Z by - 0
— k[)
k#ko
v
= B}n;n f(8) + i“" Go(0) — iy g, (6) + Z apbrgn(f)]}
k .
0 kk#_’\:ilo
v
. ay
= lim [/(6) + %go(a) + > arbegn(9) o
—t kg J—



Lemma 8, Let £ be an arbitrary point in (~m, 7). Let g € Lor be defined by

f+n—-¢ —m<O<LE,
9(8) =
f—m—€ £<B<m.
Then
ABn}[g] = A‘Em + BZm: (2)

where Ay, and By, are both Hermitian matrices with
4 1€
N{e; Aam) = —logm - sech . (14 0(1)), (3)
T

for any 0 < € < ® and

sup || Bamilr < 2+ 2v1In2 < oo. (4)

Proof. The Fourier coefficients t;[g] of g arve given by
1 g . 0 k=0,
tilgl = o7 f_,,r 9(0)e™0db = { -:;e—f‘k& k=+1,42 ...
Thus the first row of Ag,y,[g] is given by

2m —1
2m

1 g
(0, %(t_l{g} ~ tom-1{g]);- .- 1'2'“1‘?‘%'(1:—;5[9] T /) N
( ie—i(?.m—l)ﬁ ?:e—i(?.m—j)ﬁ . —‘iﬁ)
=0, ..., e
2m —~ 1 2m - g
i(e—i(2m—1)£ _ eig) i(e—i(2m—j)£ — eiji) ?:(e-ie _ ei(2m—1)£)
+10, om ER LI .

(t-2m+1[g9] — [9]))

2m 2m
Let A, and By, be the 2m-by-2m Hermitian Toeplitz matrices with their first rows

given by

. —i(2m—1)¢ jo—i(2m—J)¢ . -
o, feTCmTE  geniEmoe i (5)
2m—1 2m — j

and

(0’ i(e—iam=1)¢ _ e’f),“' i(e=ilm=¢ _ ¢ij€) i(e—i€ — ei(zm—l)g)) ©)

2m ’ 2m ’ ’ 2m

respectively. Then we have Agpm[g] = Aam + Bom. From (6), we have

2m-—-1 .
7 2 R 1 i, . |2
”BZm“F =2 ; (2m— J)‘%(e i(2m—j7)¢ _ 6”5)‘
lom—7 202m-1)
s 2 Z mE ™ <4 (7)
J=1

10



We next partition Ay as

=~ 0 Uy Ve O
A?m‘[U,; 0]+[0 Vol
By (5), we see that V;,, is a Hermitian Toeplitz matrix with its first row given by

(I Y

,‘,:e—i(Zm-'l)E ,ie—i(Zm—j)E ie——i(m-}-l)&
T ome-1 YT 2m— m+1
Hence

,iei('lm—j}ﬁ

2

Vil =Z(m 3){ }
m—1 1 2m el 1

< _ s P )

zz(mw)zmzz <2/ ~dz < 21n2

2m —j m

g_e_z(‘)‘m .7)6 ‘

2m— 3

Thus if we define

~ Vi O
B?'m:B2m+[O 1{/]’

e

then by (7) and (8), we have

1 Bamllr < U Bamlir + V2| Vinllr < 2+ 2vIn 2.

It remains to show that the matrix

i 5 g 0 Uy
Azm = Aom[g] = Bem = Aam + Bam — Bam = Aoy — [ 0 Vm] = I:U* 0
m

satisfies {3). To prove that, we first define

0 1
Jm =

P, = diag(1, ', ..., efm—2E gilm—1ey

and
Q. = diag{—ie™ ™, —jemHm—DE L e _jemH),

11

(8)



Tt is straightforward to check that U, = P Hpdm@Q@m where H,, is the Hilbert matrix

defined in Lemma 5. Hence

A _[0 Uﬂ_{m UH 0 ffme”
Wm0 ool Lo Qi JnHn 0 11

_ 1Py 0 [Im Ln [[Hw 0 ][Inm
- 2 0 Q;k'n, Jm _Jm 0 _—Hm Im

T2 QT —Q% T 0 —-H,

Since

_}_ |:Pm JQO :'
\/5 Pm - QO

Pn 0

0 @

Im
- Jm

1[ P P Hn 0 Prn  Jn@m
P —dnlm ]’

is an orthogonal matrix for all £, As,, is orthogonally similar to

o, 0
0 ~Hpj’

By Lemma 5, (3) follows. 5

v
Lemma 9. The matrix Agp,[ > apbrgr) can be written as
k=1

12
AQm[Z akékﬂ'k} = Dap, + Egp,
k=1

where Ds,, and Fs,, are Hermitian matrices with

N(%;ng) =0

and

sup {|Fom|lFr € ¢ < 00
m.
for some ¢ independent of m.

Proof. For simplicity, let us write

I
h o= Z ake?kgk.
k=1

Define W,, to be the m-by-m Toeplitz matrix

[ [h] tm—1 [h] e B [h’]
W, = | tentldl ta[h]
tam—1 [h] tam—2 [h} tn [h']

12

S

|

|

P
0

0
Qm

|

9

(10)

(11)

(12)



It is clear that the entries of the Hankel matrix W,,J,, are just Fourier coeflicients of the

function h(@)e~*. Therefore, by Lemma 6, we have
W, T lle < sup h(0)e™ ] = |1A]lse,

where by the definitions of h and g, 1 £k < v,

Ihfloo = 1A(6k,)] = “‘*—;'

Hence if we let

0 Wy
«D?.m = {_?V:I 0 ] 3

then we have

m
1Danls = (Wil = [Wandinnll < [Pl < 121

Thus N(|ak°|/2; ng) = 0.
It remains to show that Egp = Asp,[h] — Doy, satisfies (11). To estimate || Eqp||F,

we partition the Hermitian Toeplitz matrix Ag,,[h] as

Xm Ym
. Agm[h] = |:1,”,: Xm:t .

Clearly X, is an m-by-m Hermitian Toeplitz matrix with its first row given by

(0, % (t—1[h]—tam-1[h]), %(t—z (h]—tam—2[R]);. .., —wg; : (t-m+1lh] = tma [hD) (13)

and Y, is given by the m-by-m Toeplitz matrix

Bo(tomh) = twlt]) (et [B] = s [B]) e 221 (t gy [B] — 81 [R])

DL (b_mgr ] = tmga[R])

L (toalh] =t [B]) 2 (tolh] = famealB]) e 2 (temlB] = )

(14)
Therefore
oo Xm Wt Y
PTAWEAY X

i3



and hence

1 Ezmllf = 211Xl + 20 W + Yol - (15)

By direct computations, the Fourier coefficients ¢;{l] of h are given by

r—1

1 g el ity gmiidiin _ oiif
t;ih| =—— akﬁk{%e‘”ak + : + i }
it 4rj ; (0 — &1)J (Prt1 — Ok)J
w8y {2‘8”‘@'7'9 N e—id0 _ o—ijdu N o liT _ o—iif,
-4 2ee” W _ :
i @ — 67 TN

}, j=41,42, ...

when 8, < ®, If 8, = m, then

=1 e=ii0 _ omiibe  g=iidein _ omidts }

1 g
t5[h] =—— 84 2% . .
ilh] 4mj g ok L{ - + (0 — dn)J * (Prp1 — Ox)i

Oéy(ﬁy { . idwr . i Bmijw - ewijq[a,, eqi‘wjl — Gijﬂ- }
+ ——< e eV 4 — + - j==%1,42,....
4rf (m—¢u)s (pr+m)j J° T
In either cases, there exists a constant ¢ such that
c .
R € 0y G= 1,42,
171
Hence by (13),
m~1 2
[ XmllF =2 Z(m - 7) —(f—s [A] — tam—j[h])
m~1 2
< gt 2 -S4 j)
2 m—1

_2022(2771_3)2—222(??”_])2_7”2Zj<c (16)

Moreover, by (12) and (14),

m—1 2
Wi + Yl = 3 (m = 5) g [B] + = “ (tomei[h] = tmg ]| +
=0
2
+ Z (m — 7)|tm+5[R] ”“i“ (t—m+.7 (1] =ty 51R])

2

= Z(m—J)‘—E”mHJ "]"' J b jih]

. 2
Bty eslh]

2m

+ Z(n - )I——Lmﬂ[m

14



m—1

< ﬁ > (m = H{(m+ Dlt—m—j[Bll + (m — )t [BI}+
J=0

m—1

D (m= i (m = Dltcm B+ (m o+ F) s R Y

+
4m? £

(..'2 m--1 cz m—1
} SN 2
S Z(m_J)-I_W Z(W—J)—C .
i=0 =1
Putting this and (16) back into (15), we have |[Fynl|lrp < 2¢. g

We now combine Lemmas 7-9 to show that the spectra of Ay, [f] cannot be clustered.

Theorem 1. Let f € Ly, be piecewise continuous with points of discontinuity in (—n, )

at —r < 6 < -+ < 8, <7 and jumps
ap= lm f(8)— bm f(#), k=1,---,n
g—at 68,

Define |, | = maxi<k<y [ax]. Then for any 0 < € < |ay,|/4, there exists a constant b,
independent of m, such that

2e
|k

N(e Damlf]) 2 %(1 + o1}}1logm - sech""l(% + y—b

“ol

where o(1) tends to zero as m increases.

Proof. Putting (2) and (9) into (1), we find

o Gl v ay,
5 Apm = {Bamlf + —2go+ S 0pbrgi] — —2 By — Bz} — Do — Daml[f]
T

w w
k=1

= GZm — Dy — Azm{.ﬂ ’

where

Qs

G2m = &2mif +

I
O
g0+ Y anbrgr] - ~ Dem — B

T k=1

We note that by (4), (11}, Lemmas 7 and 3, the sequence of matrices {Gym } has clustered

spectra. Moreover, by Lemma 2 and (10),

v (18l 4 26 20 40, ) < 6 Gam) 3 (192D ) 4 = Bl 1)

= j\T(e; GZm) + N (%‘ro_l, D?m) + N(f; ﬁl?m[f])
= N{& Gam) + N (& Agnlf])

15



for all € > 0. Thus by (3),

V(& Aamlf)) > N(%

Nfiax|+4e A V(€ Gam)
= —"Tri )
\ " 2lan,] ‘“’"') 2

+ 26 2o Agm) — N(&;Gam)

1 2e
= —(1+o(1))Io m-sech_l(-ﬁ+m~m)-—-Ne;Gm
1r( ()) g 9 Iakol ( 2 )

for all 0 < € < |ag,|/4. Finally, since {Gay} has clustered spectra, it follows that for any
0 < € < |ag,|/4, there exists a constant b such that N{e; Gom) < b for all m. Hence the

theorem is proved. O

§4 Spectrum of the Preconditioned Systems.

In this section, we consider the spectrum of the preconditioned matrices C71[F17.[f].
We note that by Lemma 1, f should be nonnegative to guarantee that 7, [f] and C,[f] are
positive definite. When C,,[f} is positive definite, Cn Y *1f] is well-defined and C[f]7.[f]
is similar to the Hermitian matrix C "/ ATl e Y *[f]. The following theorem shows

that the spectrum of

Cal AT ALIACLIAR = CTVPATILACT ] — I

cannot be clustered around zero,

Theorem 2. Let f € Lo be nonnegative and plecewise continuous. Let its points of
discontinuity in (—w, =] be at —w < 6; < -+ < 8, <« with jumps
Qg = llm f(8) - hm oy, k=1, v

'_’L

|Cl’k0|

4| flleo”

and oy, | = maxicpy |op|. Then for any § < € < there corresponds a constant b

such that

N (& Cal fI7 2 AR FIC[f]7F) 2 -(z+o(1))1og.2. sec 1-1(2 + 2Ellfllm) _b

|ak’ol
where o(1) tends to zero as n increases.
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Proof. For simplicity, we write Ap[f] and Cp[f] as A, and C,, respectively. For any nonzero

1
vector @, let y = A, Cn *2. Then

_1 ~1
*Cr PALCTIALCL T y*CTYy

If y = 0, we have
1
y*Coly = ¥y
fm&x

and if y # 0, then by Lemma 1,

-t 1

vty = Ly > hanlCY) Ty > Yy (17)
Yy Jmax

So we constantly have

y*C;1y> I vy 1 ’L*anAZCn @

2*t 7 fmax 252 fm&x z*w

-1
Let z = Cpn, *z. Notice that z 3£ 0 since 2 # 0. Therefore we have

y*C—1y> 1 z*AizH 1 _z*Aiz 2z

n
&*x T fmax @@ Jmax z*z z*

Since by Lemma 1 again,

* wr—1 .,
zz__:an:L /\-(C_l)> 1

* - ® e — “‘min\vn - E
(a TTE .fma.x

it follows that
_1 _1
2 Cn 2 ARCTTALCH B _ y*Coty S 1 Ay
¢z

o3 . 2
T T fma.x

Hence by Courant and Fischer theorem, see Wilkinson [20, p.101], we have, for any nonzero

vectors {vk} ~1in Cn,

-1 1
2*Cn 2 ALCTIALCH 22 1 z*Alz
max " > max - T
z#0 A x#£0 fma.x 7z
a:E('ul,...,v,-_l)J' mE('ul,...,u,-_l)'l'
1 Az
= max T
2#0 fmax Zz
1 1
2€{C2 v1,0 O2 o)t
i
2
2 2 "\J'(An)’
max
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where the eigenvalues A; are ordered as Ay > Ay > +++ 2> A,. Since {'vk}i;ll are arbitrary,

by Courant-Fischer theorem again, we then have

1

FZ
Jmax

MACTEALLTIALLTE) > O(A2)

.
7

oy
Therefore, for 0 < € < —l——k—°l

4fmax,
N(GCa AnCa?) = N(&5(Ca AnCa ) (i AnCa )
- _1
= ]\I(EQ;CH 2AnC;1Ancn 2)

> N(e;

Ai) = N(féxaxea;b‘i) = N(fmaxf; An)'

max

Hence by Theorem 1, we have

—dh -1 4 n 1. 2ef,
T w2)> —(: — -1f = —emax )L .
N(gCn?Anln®) > Tr(l + o(1)) log 5 sech (2 + o | ) b. O

§5 Bounds on the Number of Outlying Eigenvalues.
In this section, we show that if f is strictly positive, then the number of outlying
eigenvalues of C1[f]7.[f] cannot be more than O(logn). We begin with the following

Lemma.,

Lemma 10. Let f € Ly, be piecewise continuous with points of discontinuity in (—r, )
at - < 0y < v < 0, < m and jumps ay, k=1, - ,». Then for all sufficiently small

€ > (, there exist positive constants ¢y and ep, independent of m, such that

erlogm < N(€ Aop[f]) < cglogm .

Proof. For k=1,2,...,r, we define

f4+m~8p —-mT<OLE,
d—nm—8, 8, <b<7,

r(6) = {

and write f as
v

I L PR Y
f= {f—l—lzbz::1 ngk} — 3k -
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It is easy to check that the first term on the right side is continuous, By Lemma 8§,

Mgl fl = BamlF + 3 ok i) = S 25 Ay i)
kz=:1 2 ; 2

where Ay 2., and By, oy, satisfly the properties in (3) and (4) respectively. Hence by Lemmas
2-4, we have for any 0 < ¢ < “Fl{ay,|, (where as before |ag,| = maxi<r<y |ax|), there

exists a positive constant ¢ such that

v

s Doy [f + Z _JL Z %Bkﬂm)'l‘
"”Z I.. Zm)

<c+ZN( T % 2k Agom)

N(e Aol f]) < N(U

+N(=

_c-!-z (la |( _%1) Ak2m)

2¢
= -1 sech ™ et } . (1 1
c+§::7r ogm - sech <|ak|(v+1)) (1+0(1))

4 Y 2¢
<ec+ —logm 1+ o{1)) - sech~? (—~——————~—»~—-—)
7 logm 2 1+ of1)) ol T D)

4y 2e
=c+ —logm-(1+o(l sech—l(m).
- g ( (1) [cen [ (7 + 1)
By combining this result with Theorem 1, the Lemma follows. 5

As a corollary, we can show that the matrix C,[f]™17,[f] — I, will have at most

O(log n) outlying eigenvalues provided that fiu, > 0.
Theorem 3. Let f € Lo be piecewise continuous with fui, > 0. Then for all sufficiently
small € > 0, there exist positive constants cy and ¢y such that
n _1 -1 ”
e3 log 5 S N(&CalfIT2ARFICALF]72) € eqlog 5

Proof. The proof is similar to Theorem 2 with (17} replaced by

e y*C Yy
y*Cly = %

. PN
'yyi)\max(cni)-yyﬁf ¥y,

min

where the last inequality above follows from Lemma 1.
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§6 Numerical Results,

In this section, we ilustrate by numerical examples how the discontinuities in the
generating function [ affect the convergence rate of the method. In the examples, test
functions f defined on (—w, 7] are used to generate Toeplitz matrices 7,[f] and the systems
Tn[fle = b, where b = —‘/1—;(1, 1,+-+,1,1)* are then solved by the preconditioned conjugate
gradient method with or without the preconditioner C,[f]. All computations are done by
Matlab on a Sparc II workstation at UCLA. The zero vector is used as the initial guess
and the stopping criterion is ||74]|2/||roll2 < 10~7, where r, is the residual vector after ¢
iterations. Table 1 shows the numbers of iterations required for convergence. In the table,
the first row gives the generating functions and the second row indicates the preconditioner
used, The function fp . is a piecewise linear function defined by

B="9i8 —r<o<o,

f{ﬁrf}(g) = ﬁi

——;—78%—7 0<f<m,

where 3 and v are the maximum and minimum values of fig ..} on (—7, 7] respectively.

¢ + 1 0+ +1 f{10,0.1} (6 + n)* Ffrio.0

n | None {C.{f] | None |C,[f] | None |Cn[f} || None |Cn[f] || None |Cyn[f]
16 3 8 16 9 8 7 16 10 8. 7
32 20 7 33 10 16 8 35 14 16 8
64 37 7 45 11 26 9 7 19 27 9
128 56 § 49 11 36 10 167 27 39 10
256 67 6 50 13 47 11 356 41 55 12
512 70 6 51 13 39 13 743 65 76 15
1024 71 5 51 13 68 14 1486 ¢ 107 106 18

Table 1. Number of ilerations for different generating functions,

We note that the first generating function 8! + 1 is a 2w-periodic function and the
convergence rate obtained here is typical for such class of functions, see Chan [2]. The
other four functions are all piecewise continuous. Note that the second and the third
functions are strictly positive. Therefore 7,[f], Ca[f] and hence C;2[f]7.[f] are all well-
conditioned in view of Lemma 1. In particular, the corresponding systems will converge

linearly, i.e. the method will converge in finite number of steps independent of the matrix
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size. So although the O(logn) effect can be seen for the preconditioned systems for small
n, it will level off when n gets larger. For the last two functions, since their fiia = 0,
the matrices 7,,{f] will no longer be well-conditioned. In fact, we see that for the non-
preconditioned systems, the numbers of iterations required for convergence increase like
O(n) and O(+/n) 1espectively, cf. Chan {3, p.338]. In these cases, the number of iterations
for the preconditioned systems grows even faster than O(logn).

For comparison, the spectra of the preconditioned systems for n = 64 were computed
and shown in Figure 1 with the first test function #* + 1 at the bottom (i.e. y = 1in the
figure) to the fifth one frip,0) at the top. For the last four functions, we can see that their

corresponding spectra are less clustered than the first one.

6 T T T T . T

sE o+ + +rmt + -
P} TR TN 4
) M + .
2F  + herHE— + + -
1t + o + 4
% i 2 3 4 5 6 7

Figure 1. Spectra of Preconditioned Systems for n = 64.
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§7 Concluding Remarks.

We have proved in this paper that when the T. Chan circulant preconditioner is used
to precondition Toeplitz matrices that are generated by nonnegative piecewise continu-
ous functions, the resulting matrices cannot have spectrum clustered around 1 and the
number of outlying eigenvalues grows at least like O(logn). We then show by numerical
examples that these outlying eigenvalues do affect the convergence rate of the method
and in general the convergence rate is no longer superlinear and the number of iterations
required for convergence increases at least like O{log n) too. For such systems, it is better
to use band-Toeplitz preconditioners instead of circulant preconditioners for they gnaran-
tee linear convergence rate whenever f is nonnegative piecewise continuous, see Chan and
Ng [4, Theorem 1]. We finally remark that recently, Tyrtyshnikov [17] has established a
generalized Szegd theorem and used that to prove that if f is in Ly with fyin > 0, then
the number of outlying eigenvalues grows no more than o{n). Theorem 3 in this paper

can be viewed as a stronger form of his result under a stronger assumption.

Acknowledgments: We would like to thank Dr. K.M. Tsang for the helpful discussions.
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