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Abstract

In this paper we present a class of multiresolution algorithms for fast application

of structured dense matrices to arbitrary vectors, which includes the fast wavelet

transform of Beylkin, Coifman and Rokhlin and the multilevel matrix multiplica-

tion of Brandf and Lubrecht. In designing these algorithms we first apply data

compression techniques to the matrix and then show how to compute the desired

matrix-vector multiplication from the compressed form of the matrix. In describing

this class we pay special attention to an algorithm which is based on discretization

by cell-averages as it seems to be suitable for discretization of integral transforms

with integrably singular kernels.
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1. Introduction.

In this paper we present a class of multiresolution algorithms for rapid apph-
cation of dense matrices to vectors. A direct application of an arbitrary N x N
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multiplication stems from a discretization of an integral transform
(1.1) u(x) = f/f((a:,y)’u(y)dy,

where the kernel K (z,y) is smooth except possibly along curves, this product can be
performed to any prescribed accuracy with only O(N) operations.

In [3] Beylkin, Coifman and Rokhlin (BCR) present a wavelet based algorithm
(referred to as the “nonstandard form”), in which the matrix-vector multiplication
is performed by successive contributions from different scales. It starts with an
initial blurred (low resolution) output vector for « in (1.1}, which is then upgraded
successively to higher and higher resolution, in much the same way as the pyramid
scheme in image comrpession. '

In [4] Brandt and Lubrecht (BL) describe a multilevel matrix-vector multipli-
cation which is viewed as performing part of the integration in (1.1) on coarser
grids. This is possible wherever the local smoothness of the kernel K(z,y) enables
the replacement of its fine grid values by sufficiently accurate interpolation from
coarser grids.

In [10] we have presented a class of multiresolution algorithms for data compres-
sion. In the present paper we apply these data compression algorithms to matrices
as a tensor product of one-dimensional oeprators to obtain a compressed multires-
olution representation of the matrix. Using this representation we derive a class of
fast matrix-vector multiplication algorithms, which includes the BCR algorithm [3]
and the BL algorithm [4] as particular cases. In describing this class we also pay
special attention to the algorithm which is based on discretization by cell-averages,
because it seems to be particularly suitable to kernels with integrable singularity.

The paper is organized as follows: In Section 2 we describe a class of discretiza-
tions of a function f(z), where the discrete values f° = {f]} are obtained by

(122 B=U= [ 1@ 86 =re(E-i).
The weight function ¢(z),
(1.2b}) f(p(:t:)d:c =1

is assumed to be of compact support and to satisfy the dilation equation

o(z) =2 arp(2z ~ £).
£
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For each diseretization we introduce a class of reconstructions R(z; f°) which ap-
proximately recover f(z) from its discrete values f°, and are required to satisfy

(1.3) (RGP0, 93y =15

In Section 3 we describe algorithms for data compression which are based on
the multiresolution representation of discrete data in [10]. Given any sequence
o= _ﬂp}f__‘fl of Ny = 2™ numbers, we consider it to be the discretization (1.2a)
with hy = 1/Np of some function f(z) which is defined in [0,1]. Next we consider
the discretizations f* = {f¥}7* of f(z)} which correspond to the sequence of diadic

coarsening

(1.4) hi=%h_y, Neoi=2Np, 1<k<IL, L <no,
and show that f° can be represented by

(1.5) MR = {f5, (a5, ., dY));

here fL is the discretization of f(z) for the lowest level of resolution in the sequence,
and ¢* = {d¥}}*, are the scale-coefficients of the k-th level of resolution, 1 < & < L.
The scale coefficients d* represent the information in f#~! which cannot be predicted
by the reconstruction R(z; f*) from the lower level of resolution. Data compression
of f° is obtained by setting to zero elements of ¢* in (1.5) which are smaller in
absolute value than some prescribed tolerance.

In Section 4 we use a tensor-product extension of the one-dimensional algorithms
in order to obtain a multiresolution representation of a matrix. Given an Np x Ny
matrix A we consider it to be the discretization of some function f(z,y) which is
defined in [0,1] x [0,1], i.e. A= A°,

(16) & = [ [ renet@pwisdy
and show that A® can be represented by
(1.7) AME = (AR, (DF,..., DY}

here A* is the discretization of f(z,y) for the lowest level of resolution in the sequence
(1.4) and D* = {DF}?., are the scale-coeflicients; D} are Ny x Ny matrices. At this
point we can finally present the main result of this paper: A fast algorithm for
the approximate evaluation of ¢ = Ab, where b is any vector of N, components,
which is obtained by computing this product from the compressed multiresolution
representation (1.7).

In Section 5 we examine the stability of the data compression algorithm and
the efficiency of the matrix-vector multiplication algorithm.
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In review of this paper it was pointed out for us that Alpert, Beylkin, Coifman
and Rokhlin [1] and Cohen, Daubechies and Vial [6] have addressed some of the
same issues; we thank the reviewers for this information. We would also like to refer
the reader to the recent work of Arandiga, Candela and Donat [2] which presents
a comparative study of the standard form of some matrices, which corresponds to
the class of multiresolution representations of our paper; the standard form of the
matrix is its representation in a multiresolution basis and is obtained by a similarity

transformation.
2. Discretization and Reconstruction.

In this section we describe a class of discretizations of a function and the approx-
imate inverse of these discretizations, namely the approximate recovery of a function
from its given discrete values; we refer to the process of recovery as reconstruction.

Let {7}, 2§ = j-h° be a partition of the real line into uniform intervals {1;}, I; =

[29_,,2]], of size ho. Let o(z) be a function which is concentrated around = = 0 and

satisfies
{2.1a) ftp(a:)da: =1,

and define its scaled translates

(2.1b) A= me (2 -5).

Given a function f(z) we discretize it by
(2.2) B=U.ed = [ 1@ @0

Next let us introduce an approximate recovery of the function f(z) from its given
values f° = {f}} which we refer to as reconstruction and denote by R(z; /°). We say
that the reconstruction is r-th order accurate if

(2.32) R(a; ) = f(z) + O((ho)),  (accuracy)

provided that f(z) is sufficiently smooth. We assume that the reconstruction is
conservative in the sense that

{2.3b) (R(; %), go?) = f;} {conservation},

and that R(-; %) is a linear functional of f°.

We assume that the weight function ¢(z) satisfies a dilation equation
(2.4a) plz) =2 ap(2e — ),
)
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where the coefficients {a;} satisfy

(2.4b) =1
(2.4¢) Ea£a£+gm =0 for m#1.

We note that relation (2.4b) is just a consistency condition. Given a set of {a}, o
=1, it is shown in [7] and [11] that ¢(z) is determined by the dilation equation (2.4a)
up to a multiplicative constant. Hence ¢(z) is determined uniquely by adding the
normalization (2.1a) to (2.4a)-(2.4b). In Appendix A we show that condition (2.4c)
implies orthogonality of some matrices and thus reduces the number of operations
in our algorithm. In order for the set of functions {¢{(z)} to be orthogonal we have
to add another consistency relation (see [11])

1
(2.5a) zt: af =3,
in which case
2
(250) (ot = Lels,

where §; ; is the Kronecker-8; 1.e. 6, =1, 6; =0 for i # ;.
In this paper we highlight the following three cases:

Casel. Pointvalues.

(2.62) o(z) = b(z)

where §(z) is Dirac’s distribution. As pointed out by Strang [11] it satisfies the
dilation relation

(2.6b) §(z) = 26(22)
and thus
(2.6¢) ap=1, ag=0for ££0.

Note that the coeflicients (2.6¢) trivially satisfy the orthogonality relation (2.4c).
However
Zaf =1

and thus (2.5) is not valid in this case.

The discretization (2.2) becomes

(270) f= [ 05 (& -i) = 1),
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i.e. the function f(z) is discretized by taking its value at the grid points {«7}. The
conservation property (2.3b) becomes

(2.75) R(zj; ) = £,
i.e. the reconstruction is an interpolation of the values {f7} at the grid points {«}.

Case2. Cell-averages.

1 —-1<e<(}
(2.8a) ple) = X_1,0)(=) = { 0 otherwise,

satisfies the dilation equation

(2.8b) w(z) = o(28) + (22 + 1)
and thus
1
(2.8¢) a = =5, op= 0 for £# —1,0.

The discretization of f(z) in (2.2) becomes

(2.9a) f_? = ff(.’l!)X[._.l,g) (f{-]— —j) % = %Lqi f(=z)dz,

i.e. f(z) is discretized by taking f? to be its average in the interval I7. The conser-
vation requirement (2.3b) becomes

20
(2.9D) if " R(z; O)dz = fO.
hu :u‘[;_l J

Let us denote by F(x)
(2.108) e = [ s,
4
the primitive function of f(z)
d
(2.10b) Tl @) = f{z)
and observe that
j
(2.10c) F(ad)=hoy_ f7.
i=1
It is easy to see that
(2.11) Riz; fO) = %I(az;F“),
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where I(z; F°) is any interpolation of the values Ff = F(z}) (2.10c), satisfies the con-
servation requirement (2.9b). This reconstruction procedure is r-th order accurate
(2.3a) if the interpolation technique in (2.11) satisfies

(2.12) T 1@ FY) = F(z) + O((ho)") = f(2) + Ol(ho)")
for sufficiently smooth f(z).

Cased. Orthogonal Wavelets.

Let ¢(z) be a function which is determined by the dilation equation (2.4a), with
coefficients that satisfy (2.4b)-(2.4c} and (2.5a). Thus we assume orthogonality of
the set {¢?} (2.5b). In the context of this paper it is most natural to describe
wavelets by first specifying the reconstruction to be a linear combination of {¢{},
ie.

(2.13a) R(z; £) = ) aigl(=)

and to leave the discretization (2.2) to be determined later. The conservation re-
quirement (2.3b) becomes

(2.13b) (RGP o5 =D ailed o) = F.-

Using the orthogonality (2.5b) we get

(2.13¢) | = |E€P“2f
Thus
(2.14) R(z; f°) = T IJZZ Tl (w).

Using the theory of approximation by translates Strang [11] shows that in order for
the reconstruction (2.14) to be r-th order accurate (2.3a) we have to impose the
following condition on the coefficients {a;},

(2.15) S (-1tmay =0  form=0,1,...,r—1

We observe that the conditions (2.4a), (2.4b) for m=1,...,r~1and (2.15) consti-
tute a system of 2r equations for the 2r coeflicients {a,}2,; Da,ubechies construction
in [7] provides a solution for this system of equations. For r = 1 this solution is given
by (2.8¢), i.e. ¢(x) is the box function (2.8a). For r > 2 the resulting p(z) is nec-
essarily nonsymmetric; the smoothness of ¢(z) increases with r, but only by half a
derivative (approximately) each time. Beylkin, Coifman and Rokhlin in [3] impose
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an additional set of requirements on {a;}, namely that there exists an integer = so
that

(2.16a) -/go(a:+rr)a:mda:: 0 for m=1,2,...,r— L
This implies
(2.16b) 5} =0,¢5) = I (2] + 7eho) + O((ho)"),

which shows that the integration in (2.16b) can be approximated to r-th order
accuracy by a single point quadrature. They show that there is a solution to the
extended set of conditions with 3r nonzero coefficients {a;}.

3. Multiresolution Algorithms for Data Compression
In this section we consider a situation where we are given Ny values
(3.1a) o= {_ﬂo};\;“l, Np = 2", ny integer,

which represent a discretization (2.2) of some function f(z) corresponding to a uni-
form partition of [0,1],

(3.1b) 2] =j ho, 0<j<No, ho=1/No.

To simplify our presentation we assume for the time being that f(z) is periodic with
period 1, so that values outside [0,1] are known by periodic extension.

We consider the set of nested grids
(3.2a) {fY), 2h =5 ks, hp=1/Np, Np=2"%Ny

for 0 < k < L, where k = 0, the original grid, is the finest in the hierarchy and
k= L, L < nog, is the coarsest. The coarser (k + 1)-th grid is formed form the k-th
grid by removing the grid points {«%_;}* ; thus

(3.2b) sitl =2k, 0<j < Neps, Niga= Ni/2.

To each of the nested grids we associate a discretization
where o} is properly scaled
oy = Lol E
(3.3) o =e (i -i).
It follows from the dilation relation (2.4a) that

(3.3¢) Ph(z) = D iy (),
£
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and consequently
(3.3(1) Zal 2J+£ = Zaﬂ—z_iﬂ:_ll 1 S j S Nk-

We rewrite (3.3d) in the matrix form

(3.4) FF=Hf iy = oo, Hy X o

Given f° we use {3.4) to successively compute f,...,f-. Observe that these
values are not computed from the definition (3.3a) but from the dilation relation
(8.3d); thus no explicit knowledge of f(z) is required.

Given f* we can use the reconstruction R(z; f*) in order to get an approximation
F¥=1 to the discrete values f*~1 of the finer level by

(3.52) = R, 08, 1<5 < 2N, = Ny,

As we have mentioned earlier, in this paper we take R(; f) to be a linear functional
of f. Hence (3.5a) can be epxressed in the matrix form

(3.5b) it = Rf*

where R is an 2N; x N; matrix. Because of (3.3¢) and the conservation property of
the reconstruction (2.3b) we get that

Z C"“3-’02,1+-‘I = Z (R ‘Pz;+z)

(3.6a) _ _
= (R(; "), Zawz,,H R ), 08) = 7,

or in matrix form

(3.6b) HP1=

It follows then from (3.5b) and (3.6b) that for any vector f*
f* = Hf*' = HRF¥,

which shows that

(3.7a) HR

I
flan

and consequently

(3.7b) H(I-RH)=H - (HR)H =H - H =0.
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We turn now to examine the error ¢~! in the prediction f*~* (3.5)
(3.82) = fEl— ol = U RfF = (- RE)FL
From (3.7b) it follows that
(3.8b) Heb-1 =0,

which shows that only N out of the 2N, components of e¥~! are independent quanti-
ties. In order to get rid of this redundancy in e¥-! we introduce the N; x 2N, matrix
a

(3.9a) Gij = (-1 Pagiry, (G) N x 2,
which satisfies
(3.9b) HG* =0,

In Appendix A we show that it follows from the orthogonality condition (2.4c) that

(3.10a) HH* = GG* = a1,
(3.10b) HH+GG=lef I,
(3.10¢) le]* = 3 "o
¢

Using (3.10b) and (3.8b) we now get that

—_ 1 * * - 1 L3 - 1 *
(311&) ek 1o W(H H+ G G’)ek 1= WG (Gek 1) = FR—IEG dk,
where
(3.11b) d* = Gebt

is a vector of N components. Combining (3.11) with (3.8a) we get

which is the basis for the following data compression algorithm:
Given a sequence of Ny numbers u = {u;}]?%,, we set
(3.13a) ff=u

and execute
(Doffor k=1,2,...,L
Fo = gt

(3.13b) 4 )
k=1 = fe=1_ Rk

. dk - Gek—l
10
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thus arriving at the multiresolution representation u™® of

(3.13¢) uME = [FE (dF, ..., dD].

Starting from the multiresolution representation we recover u by {(3.12}), 1.e.

Dofor k=L L—1,...,1
(3.13d) § }

fk—i — Rfk 1 Tr;l—ﬁG*dk’
(3.13¢) u=f°

The number of quantities in the multiresolution representation «™%£ (3.13c) is
No as in the original vector u (3.13a). The difference is that the quantities {df}
are expected to be small in absolute value wherever the underlying function f(z) is
adequately resolved on the k-th grid. Thus data compression can be achieved by
setting to zero elements of ¢* which fall below some tolerance ¢;. See {10] for more
details.

In Appendix A we present the form of the data compression algorithm (3.13)
when we do not assume the orthoginality condition (2.4c).

In the following we present the details for the three cases that we highlight in
this paper.

Casel. Pointvalues.

R(x; f*) is the interpolation (2.7b). For reasons of symmetry we consider even
order of accuracy r = 2s and take R(z; f*) in [z}_,,2}] to be the unique polynomial
of degree (2s —1) that interpolates f* at the gridpoints {z%_,,...,2%,, ;}. In (3.5) we

get for 1 <i< Ny

(3.142) for ! = (Rf¥)e = ff

(3.14b) A = (B = A(FEe s + Ty
=1

where

(3.14¢) r=d=m =%, fh=-k

In (3.4) and (3.9a) we get

(3.15) Hij = 6955, Gij = 635215,

i1




The multiresolution representation (3.13¢) is obtained by:

Set
(3.16a) P =u

Dofor k=1,2,...,L
(3.16D) =Rt 1<iS Ny,

df = fo7h ~ Sy BelFEecn + Tty 1<4< Ny

u is recovered from the multiresolution representation v* by
Dofor k=L, L—1,...,1
(3.16¢) fErl=fF, 1<i< Ny
Bt = T PeFhaa + T+l 1<i< I,

(3.164) u=f°

Case2. Cell-averages.

Using interpolation of order (2s+2) as above for the primitive function in (2.11)
we obtain a reconstruction of order r =2s+1. In (3.5) we get for 1 <i< IV

(3.17a) A =R =+ 4
(3.17b) fEmt = (Rf*)gs = fF - 2F
where '
(3.17¢) 2 =Y (e — o)
=1

and

r=J=y = —é
(3.17d)

T’=5=>')’1 =_'12?2': Y2 = %:

note that 2f =0 for r = 1.

In (3.4) and (3.9a) we get
1 1
(3.18) Hij = g(b2ij + 2i-1,4),  Gij = 5(82i-1,5 — 8 3)-

The multiresolution representation (3.15c¢) is obtained by:
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Set

(3.19a) f=u
Pofor £=1,2,...,L
(3.19b) FF=YR+ AT 1<i< N

= f§£:11 - ﬁ,& - Z;=1 ’?’L(fik-n - fik—s): 1 <i< N
u is recovered from the multiresolution representation «M*# (3.13¢) by
(Dofork=L L—-1,...,1
Dofori=1,2,..., N}
(3.19¢) 3 - -
A=Y ve(fle— )+ d}

(A= +A, filsf-A

(3.19d) u=fo

Casel. Orthogonal Wavelets
The reconstruction (2.14) for the k-th level is

(3.20a) Rz f¥) = T “22 Frok

and (3.5) becomes

= (RF*) = (R( F*), b 1) =1 ”2213 (%, 1.

Using (3.3c) and (2.5b) we get that

2 2
b ol *
903 :‘P: § :QIL <P2J-:t1‘p: I}! ” i3 = El u H

Recalling that Ay = 2h;_; we get
(3.20D) R=2H".
Using (3.10) with (2.5a) to express the error in (3.8a) we get that

(3.21a) = (I-RH 1= (I —2H"H)f* ! = 26°Gf*~ = 26*d*
(3.21b) d* = gt

i3




The coefficients {v/2-«,}, 1 < £ < 2r of Daubechies [7] are given in the following table:

Table 1.
r=2 r=3 r=4 r=>5 r=6
SN dnaanAnAd D4 A O OaoAaAMMAFFFOARFRA T OOnAOMMA4d 00 N 10T AOOArTAM 4 111""“""““!_"!\
V2o 482562513145 3326706552950 230377813308 160102387574 111540745300

V20 836016303738 .506891509311 .7148565705563 603820269797 494623890398
V2a3 .224143868042 4569877502118 .630880767930 .724308528438 751133908021
V3ag  -.120409522551  -.135011020010  -.027983769417 138428145901 .3152b0351709

Vos -.085441273882  -.187034811719  -.242204887066  -.226264693965
V20 035226291882 030841381836  -.032244869585  -.120766867567
V20 032883011667  .07TT571493840 097501605587
V2as -.010597401785  -.006241490213 027522865530
V20 -.012580751999  -.031582039318
V2010 003335725285  .000553842201
V2001 004777257511
V2019 -.001077301085

The multiresolution representation (3.15¢) is obtained by:

Set
(3.22a) fl=u
rDofor k=1,2,...,L
Dofori=1,2,..., N
(3.22b) _ . _
ff= =1 atfgifz
Cdf = Yol () a5

u is recovered from the multiresolution representation v™*# by:
(Dofor k=L, L—-1,...,1

Dofori=1,2,..., Np
(3.22¢) - )
55 =2 fosea fFp + ed, ]

T3 =2 e — emeadfy ],

(3.22¢) u=f°

4. Matrix-vector multiplication.

In this section we describe a multiresolution algorithm for the multiplication of
an No-vector b by an Ny x Np matrix A, which is based on the data compression of

14




A; we denote the result of this product by the Ny-vector e,

(4.1) Ab=c.

We start by presenting a tensor-product extension of the one-dimensional data
compression algorithm (3.13) to the matrix case, in which each column and row of
the matrix are treated as one-dimensional vectors. Let us set

(4.2a) A=A
and define the N, x N, matrix A* by
(4.2b) A¥ = HAF'g* k=1,...,L,

where H is the N, x 2N, matrix defined by (3.4).

Given A* we form the prediction A*-! by
(4.3a) AF-1 = RAFRY,

where R is the 2N} x N, matrix in (35) It follows from (4.2b) and (3.7a)} that the
error in this prediction E*-1,

(4'3]3) Ek—l — f"ik—i _ A~k_1 = /ik—l _ R/"ikR*
satisfies
(4.3¢) HE*1H* = HAY'H* — (HR)A*(HR)* = A* — A* = 0.

Consequently, using (3.10b) and (4.3¢) we get

Bt #(H*H + QBN HH + C*C)
= ﬁ(G*Di“G +G*DEH + H*DEG),

(4.4a)

where the N x N matrices {DF}5., denote

(4.4.b) Df — GEk_IG*, Dé’ —_— GEk*lH*, Dg — H.Ek_lg*.
Thus

Ak-1_ fE-1, gE-l
(4'5) Ak px 1 * 1 1yk k * 1k

and we get the following data compression algorithm for the Ny x Ny matrix A:
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Set

(4.62) A=A
(Dofork=1,2,...,L

A¥ = HAR-1H
(4.6b) d
Ek—i = Ak-—l _RA]:R&

\ D} = GE*-'G*, D} = GE*~'H*, D} = HE*-1G*.

The multiresolution representation AM® of A is
(4'73’) AMRL" {EL!({D{']?zhs{Dll}la-_—l)}

It is convenient to store AME in the form

1 1
D) Dy
(4.7b) AMR= ND
2 2
Dy by
1
Dy
2
D
s ok [ ok
DIg Al v
—t No -—

which also shows that the number of elements in AMR is (Ny)?, as in the original
matrix A = A"

Starting from the multiresolution representation AMR (4.7), we recover the orig-
inal matrix 4 by (4.5), i.e.

Dofork=L,L-1,...,1
{4.8a) - 7

A1 = RA*R* + JulG*(DYG + DY H) + H* DEG,
(4.8b) A=A

16



The elements of {DF}?_, are proportional to the local error in predicting A*~1!
from the k-th level of resolution (4.3b). Therefore these elements are small wherever
the discretized function is properly resolved on the k-th grid. Data compression can
be achieved by setting to zero elements of {DF}?_, which are smaller in absolute
value than some tolerance eg.

In Figures 1a,b and 2a,b we show results of data compression of two matrices
which are the first two examples in the BCR paper {3]. In Figures la,b we show
the multiresolution representation AM® (4.7b) of the matrix

it
{4.9) Ay =
0 i=j

with Ny = 512. The discretization in this calculation is assumed to be by pointvalues,
i.e. H and G are (3.15) and the reconstruction is by interpolation. We take R to be
(3.14) with r = 6. Entries of {D¥}_, which are larger in absolute value than g, = 107
are marked in black. The calculations in Figures 1a and 1b differ in the treatment
of boundaries: In Figure la we use periodic boundary conditions while in Figure
1b we use one-sided interpolation near the boundaries. The compression rate (ratio
between (N;)? to the number of entries that are larger in absolute value than 10-7)
is 6.72 for the periodic case in Fig. la and 8.57 for the one-sided interpolation at
boundaries in Fig. 1b; the compression rate for the wavelet based algorithm in [3]
15 7.33.

In Figures 2a,b we repeat the calculations of Figures la,b for the matrix

(4.10) T

tog lir- No/3l-logli=No/2| for ¢ # j,i # Nof2,7 # No/2
Aij =
0 otherwise.

Here the compression rates are 6.11 in Fig. 2a and 7.60 for Fig. 2b; the correspond-
ing BCR result is 7.50.

We turn now to describe how to compute the product Ab = ¢ (4.1) from the
multiresolution representation AME (4.7b) of A. Multiplying (4.5) by a vector p¥-1
of Ny_1 components we get

Ak— - A x71k— 1 ® - -
(4110) AF1pA = RAR(Rb* 1)—]-"-0!—12{(; [DE(GE ) + DE(HB )]

+ H*DXGH 1)},
from which we see that if for all ¥ we define
(4.11b) ' W = R*pEY
(4.11c) ct = AkpF,
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then (4.11a) becomes

(412) = et + G DA (G )+ DI+ T DE(GH D),

It follows therefore that given the (compressed) multiresolution representation AM#
(4.7b) of A we can calculate ¢ = Ab by:

Set
(4.13a) 5% = b,
Do for k= 1,2,...,L
(4.13b) s =l HE =L ik = (Gl

bk — R*bk—l

evaluate by direct multiplication
(4.13c) k= AlbE,

and execute

Dofor k=L, L—-1,...,1
(4.13d)

cF~1 = Rk 4 F}F[G*(thk + DEs®) + H*(Dt%)],
(4.13¢) e=c".

Relation (4.11b) can be thought of as stating the proper scaling of the input
vector as we go to a coarser grid. After preparing the values of t* for all the levels
(4.13b), we start the computation of ¢ = 4b by calculating its lowest resolution
version ¢ = ALbL in (4.13c). Then we proceed in (4.13d) to successively upgrade
¢* by first using the reconstruction technique to predict the value &-! = Rc* for
the finer grid and then correct this prediction wherever needed by the term in the
curved brackets in the RHS of (4.12).

If the number of elements in {P}}?., that are larger in absolute value than
the tolerance ¢; is O(Ng), and the matrices H,G and R are banded (with constant
width), then the number of operations for each k in (4.13b) and (4.13d) is O(M),
and consequently the number of operations in the multiplication algorithm (4.13)
is O(Np).

It is important to observe that due to the tensor-product nature of this algo-
rithm, the operations on the rows are independent of the operations on the columns.
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This enables us to use H,,G, and R, on the left and different H,,G, and R, on the
right. Modifying the relations (4.2b), (4.3b) and (4.4b) to be

(4.2b) A¥ = H AR H],
(4.3bY EF-l= A1 — R AR},
(4.4bY DY = G, E*"'G}, Dk = G.E*'H}, D = H,E*"'G;,

we now get the following multiplication algorithm:

Set
(4.13a) 5% = b,
Dofork=1,2,...,L
(4.13bY ¥ = EEHyb* 1, t* = g Gybt Y,
b = RibF1
(4.13¢cY e = AVbE,
Dofork=1L,L—1,...,1
(4.13dY
= Ryek 4 ([GA(DE + DEs*) + H (DEEF))
(4.13¢) c=c"

This extra freedom in algorithm (4.13)" can be utilized for example to discretize
the integral transform (1.1) by pointvalues in z and cell-averages in y.

Next we present details for the three cases that we highlight in this paper.
Casel. Pointvalues,

It follows form the definitions of H and G in (3.15) that (4.2b) and (4.3b) become

(414&) fi,kjj =/"I]2‘;213, 1stJSNk:
(4.1433) (Dic)i,j - Egs—_lllzj_ls (D;c)i,j = Egi_—-llﬁj’ (Dg)"rj = ngw:;j’
1 <4, < Ng.

Using the definition (3.14) of R in (4.13b) we get

B = (RN =857 + ) BBty + ¥t 1)) 1< i< Ni
£=1

Algorithm (4.13) can be expressed in this case by:
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Set
(4.15a) = b

rDofor k=1,2,...,1L
(4.15b) sk=pE1 b =pE-l ) 1<i< A,

bf = sf + Facy Belthie +Hthy), 1< M,
(4.15¢) el = Alpt,
( Dofor k=L, L—1,...,1

Dofori=1,2,..., N

(4.15d)
AN =i ﬁt(ct-u f_ o)+ (DFe* + DEst);
A= ok (R,
(4.15e) c=c |
here r = 2s.

While writing this paper we found out that algorithm (4.15), although derived
differently, had already been published in [4]. Moreover, it was extended further in
[5] to integral transforms with an oscillatory kernel and to many-body problems.

Case?. Cell-averages.

It is convenient to introduce the operators g and 4,
i 1
(4.18) pv; = -2“(1)5 +wi_t), by = “2'('0:' — Vi1 ),

and use the convention that, when applied to two-dimensional arrays, superscripts
¢ and y denote operation on the first and the second index, respectively. It follows
from the definition of # and G in (3.18) that (4.2b) and (4.3b} become

(4.17a) Af = pt b AR, 1<4,5 < Ny,

(4.17b) (Dr)ij = 5£5yEkJ (DY) = #yémEfg Y (D§)ig = m‘SyEtk.r Y
1 < ""JJ < Nk-

Using the definition (3.17) of R in (4.13b) we get

(4.18) = (R**1); = 2[ubl; ' + 278(662(:+t) 6552 o)l

Algorithm (4.13) can be expressed in this case by:
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Set

(4.192) B =5

sDofor k=1,2,...,L
(4.19b) sk =2ub57 Y, tf = 260570, 1<i< Ny,
b = sk + Tpn melthye —tfy), 1< i< Ny,

(4.19¢) b = ALpL,

rDofor k=L, L-1,...,1
Dofori=12,...,Ni
U = cg-"+(D§tk),r

(4.19b) }
2= Y pay Yelehyy — ¢fg) — (D¥t* 4 DEsk);

k-1
Coy 1 =w+z
k-1 _
Co = W—2Z,
— 0,
(4.19¢) ce=c;

here r=2s+ 1.
Cased. Orthogonal wavelets.

In this case H and G are defined by (3.4) and (3.9a) and the Daubechies coeffi-
cients (see Table 1). Since R = 2H* (3.20b) and HG* = 0 (3.9b) we get in (4.4D)

(4.20) DF = GA*lG*, Df = GAF-1H*, D = HAY'GH

thus for 1 <4, < Ny

2r  3r
(4.21a) fif,j = E E aﬂamAga-lt,qu—m'
t=1 m=1
2y 2r _
(4.21b) (D¥)ij = E z(_I)H-mafamAgi_—ll—t,Zj—l—m’
£=1 m=1
9 2 _
(4.21c) (D5)ig =D (—D'ar D am AT iim
£=1 me=1
2r 2r B
(4.21d) (D5 =D (—1)"om 3 aedbgiosom-
m=1 £=1

Using R=2H* in (4.13b) we get that
(4.22) BE = 2HB* -1 o = bF,
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Algorithm (4.13) can be expressed in this case by:

Set
(4.23a) b0 =,
f Dofor k=1,2,...,L
Dofori=12,..., N;
(4.23b) ¢
bk =2 Ez— aﬂbzzu
2r
\ tf =2 2.4:1(—1)t“£b§1 11 e
(4.23¢) ek = AL,
(Dofor k=1L, L—1,...,1
Dofori=1,2,...,Ng
(4.23d) 4
ohilhy = 2Y 4 {ome [k, + (DE*)i o] + crae(DFE* + DEV )iy},
el = 2375 {anele]_p + (D5tF)ine] — a1 (DEE* + DEV*)ite},
(4.23¢) e =cv.

Algorithm (4.23) is identical to the BCR algorithm (the “nonstandard form”)
in [3].

5. Stability and Efficiency.

In this section we examine the stability of the data compression algorithm (4.6)-
(4.8) and discuss the efficiency of the matrix-vector multiplication algorithm (4.13).

From (4.3b) we get

A= E° + RA'R* = E° + RE*R* + R2A%(RY)* =
(51) G = k ok & L ALt pl
= E°+ > REEF(RF)* + RVAY(REY".
k=1
Applying data compression to AME (4.7) we get truncated matrices £* which result
in A% in (5.1). Denoting

(5.2a) &= BF — g*
we thus get
. B L-1
(5.2b) A% - A% = £+ Y REEM(RNYY,
k=1
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which shows that each column and row in £* are amplified by R*. For discretization
in {0,1] R* in (5.1)-(5.2) should be interpreted as

(5.3a) R* = Ry Ry Ry

where R,, is the 2N, x N, matrix in (3.5); for discretization in (—o0,c0) R is an
infinite matrix and R* should be interpreted as the k-th power of R, i.e.

(5.3b) RF = (R)®.
Let e denote the unit sequence corresponding to a partition of the real line into
intervals of size 1 with integer endpoints,
er = de,0, —o0 < £ < oo,

and consider successive applications RFe, k¥ — co. For example when R is the piece-
wise linear interpolation (3.14) with » = 2 we get

Table 2.
z=-1 =10 r=1
e 0 1 0
Re 0 i 1 3 0 0
R O 0 : 2 3 1 3 2 : 0 0 0
Be 0004 434885 1FEEEFEL00000
Clearly here
(5.42) (Rfe); = n(27%5),
1—[z| 2] <1
(5.4Db) n(m):{ .
0 otherwise

We observe that 5(z), the “hat function”, is the solution of the dilation equation
(5.4c) () =in(2e—)+n(20)+Ln(2s+1),
the coeflicients of which are given by a, = (Re),.

The limiting process R*e, k¥ — oo, has been studied by Deslauriers and Duboc
[8] and Dyn, Gregory and Levin [9] for interpolating R, and by Daubechies [7] for
orthonormal wavelets, R = 2H* (3.20b). As in the example above they found that
the limiting process is convergent in the sense that

(5.5a) Jim Z (R¥e); Xo,1y(2°2 — §) = (=),

j=wo0
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where X 1y is the characteristic function of 0,1) and the convergence is uniform in
#. The limit »(2) is a continuous function of compact support which satisfies the
dilation equation

{5 EhY e =N aenfOe — N ar — {Rel,

AN 7 AN ARV R AN Al L VAL
4

and _

(5.5¢) ;% = (n,25p(2% - —j)) = (R*e);.

Since n(«) is continuous and of compact support it follows from (5.5a) that

5.6a sup,{27F RFe); |} < const sup; . }(R¥e);} < const.
k 7 ik ¥

j=—00
Consequently we get for the matrix norms
(5.6b) ¥ lloo < Coay 1R < 2% - G
In Appendix B we prove convergence of the limiting process (5.5a) for recon-
struction from cell-averages under the assumption that the corresponding limit func-

tion for the interpolation in (2.11) is continuously differentiable. This implies that
relations (5.5) (5.6) hold also for the cell-average algorithm (3.17) with » =3 and 5.

We return now to the stability analysis (5.2) of the data compression algorithm.
Setting to zero elements of Df (4.7) which fall below the tolerance & we get

(5.7a) [£5] < const - 41,

(5.7b) ¥, < C - Ni - €rq1,  p=1,00.

For each term in (5.2b) we now get for both the L, and L, norms that

(5.8a) IR E*(BF)*| < 1 R*lool|R¥ll1 - €+ N €241 < CCo0Cl+ No - £
= N gy,

and consequently

L
[A° = A% < C- Y e

k=1

i
(5.8b) 0!
this shows the stability of the data compression algorithm.

In the numerical experiments shown in Figures 1a,b and 2a,b for the matrices
(4.9) and (4.10) we have used e = ¢ = 1077 (here ko = 1) and computed

(5.9) Pp(e) = (A® — Dbllo/llblls, p=1,00

for a randomly generated vector b; for purposes of comparison we also computed
7p(0) which corresponds to running the program with ¢ = 0 and thus shows the
effect of round-off error. In Table 3 we show the results for the case where R is the
interpolation (3.14) with » = 6.
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Table 3.

case |boundary | ratio| ©;{1077) P60(1077) () )

(4.9) periodic 6.72 | 6.95% 107° | 4.96 x 107° 1.09 x 1077 1.33 x 1077
one-sided | 857 | 7.52x107¢ | 4.41x107% '] 9.34x1077 | 277 x10°°

(4.10) periodic 6.11 | 1.62x107% | 1.82x107°% | 4.76x107% | 9.15x 1078
one-sided | 7.60 | 1.46 x107% | 2.04 x 107° 6.46 x 107 8.64 x 167°

In Table 4 we repeat the calculation of Table

cell-averages (3.17) with r = 5.

3 for the reconstruction from

Table 4.
case | boundary | ratio§ £(1077) P6e(1077) ,(0) P00(0)
(4.9) periodic 571 | 6.03x1077 | 7.83x1077 | 566x1077 | 4.39x1077
one-sided | 6.71 | 1.03 x10~% | 1.55x 10 9.87 x 1077 9.52 x 1077
(4.10) periodic 620 § 4.00x10"7 | 597x 1077 | 3.50x 1077 | 3.06 x 1077
one-sided | 7.53 | 276 x 1077 | 6.09 x 10”7 1.73 x 1077 3.06 x 1077

We remark that in the above calculations we used L = 7 levels of resolution with
er = 10-7 for all k; thus T°F_, e, = 7x 10~7 in the RHS of (5.8b). Observe that we get

a similar bound by using

g =22"F %1077, 1<k<T.

This choice usually gives a better rate of compression, e.g. in the periodic case in
Table 3 we get for (4.9) a rate of compression of 7.48 instead of 6.72 with 0,(1077) =
6.74 x 1075, 9eo(1077) = 5.18 x 10~%; for (4.10) we get a rate of compression of 6.55
instead of 6.11 with #;(10-7) = 2.02 x 1075, Do (10~7) = 1.86 x 1075,

We turn now to discuss the question of efficiency. If a(z,y) is a function that has
isolated regions of large variation then its discretization on a uniform grid results in
a matrix A which is actually over-resolved in most of the computational domain. In
this case it pays to use multiresolution algorithms as they offer the efficiency of an
adaptive grid method without the complicated logics that is associated with such a
calculation. In applying multiresolution algorithms to matrix-vector multiplication
there is another important consideration: The computational effort of preparing
the representation AM® (4.7) may be greater than a direct application of the mabrix
A to a single input vector b. Therefore it makes sense to use algorithm (4.13) only
when the computational task calls for an application of the same matrix to many
input vectors and/or there is apriori knowledge of the location of regions of large

variation.

An important class of applications is the calculation of integral transforms (1.1)
1
(6.10) u(z) = / K(z,y)v(y)dy,
¢
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where the kernel K(z,y) is smooth except for curves y,(z) at which it has integrable
singularity. To each grid of size h, we associate a finite-dimensional approximation
K¥(z,y) to the kernel K(z,y)

N Nx
(5.11a) K¥z,y) = ) Kinf(x)} (),
i=t j=1
1 1
(5.11b) Kf = f f K(z, y)ef (2)pf (y)dudy,
o 0

and a finite-dimensional approximation «*(z) to the output u(z)

i Ny Nx B

(5.12) ) = [ Ky =Y (Y Khihnk ),
8 [E5 1 j=1
1

(5.12b) o = % fo () ().

Here n(z) is the limit function in (5.5) and
(5.13a) 7 (@) = (= — 0.
&
From (5.5¢) with k = 0 we get that
(5.13b) [ n(@et = iz = o,
and thus by scaling
(5.13¢) (nf, ¢5) = bi

Using (5.13c) in (5.12a) we get

Ni

(5.14a) @k =hy Y KEw 1 <i< Ny,
j=t1

(5.14b) af = (u*, o).

Next let us consider the finite-dimensional approximation +%(z) to the output

u(z)

Ny

(5.15a) w(z) = ani(z),
izl

where

(5.15b) i® = hoK%%°

is computed by the matrix-vector multiplication algorithm (4.13) with
(5.16a) A= RO, 80 =5 & = A%
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It is easy to see that A%, ¥* and ¢* in this algorithm correspond to
(5.16b) A* = hoRE b= 2Fgk F =@k

which are defined above.

We assume now that the kernel K(z,y) satisfies the estimates

Cx

(5.17) K (2, 4)] < 7= e

oo K@D S o

and observe that

(5.17b) A3, = [ho KD, < = ]

as in the example (4.9) in Figures la,b. The prediction error Ef;* (4.3b) in this
case is bounded by

BES| < o - Cr - (Y 118K | + 100 K TIE;

(5.17(:) ho(hi) 9—k

< C,C' T s & C Cp—7r—r.
- = K g — ) Ko+
Taking
(5.18b) ex = CrCg2-¥ /Bt

in the data compression algorithm for A° we get that
(5.18b) (DE)ij=0 for [i—j|>O(B)

in the comprssed multiresolution representation AM#% (4.7b) of A°, and that the
compression error (5.2b) is bounded by (5.8b),

CC.Ck Zg_k < CCPCK _

1. .0 =
(5.18c) FOHAD —- A% < Bri By &

for p = 1,00, This shows that using banded {D%} with a width of O(B) results in a
reconstructed matrix A°, where the average error per entry is bounded by ¢ in the

1

N
1<1< N, }(r'ggmi.j—fis,jl <e,
1512, (NUZIA )

i=1

sense that

and ¢ can be made arbitrarily small by increasing the width of the band B in (5.18).
We remark that if the discretization error u(z) — u’(z) satisfies
llu =’} < O((ha)"MIvllx
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then it follows from the analysis above that in order to have the same estimate
for ||u— @°|; we have to take £ = O((ho)™+'). This implies that the tolerance ¢ is of
the order of the local discretization error, and that in refinement we have to take

P
6. Summary and Conclusions.

In this paper we have presented a class of multiresolution algorithms for data
compression and matrix-vector multiplication. In constructing this class we have
introduced subclasses of different discretizations. Each subclass corresponds to a
particular choice of p(z) in (2.2); ¢(z) is assumed to be a solution of a dilation
equation and to satisfy the orthogonality condition (2.4c). Members of each sub-
class of discretization correspond to different reconstruction procedures R(z; f); the
reconstruction is assumed to be conservative (2.3b) and to depend linearly on the
discrete data f.

We have paid special attention to the subclasses of discretization correspond-
ing to pointvalues and cell-averages because of their simplicity. The wavelet based
algorithms [3] are also included in this class but in a “diagonal” fashion: In each
subclass of discretization corresponding to a ¢(z) which satisfies the moment condi-
tion (2.15), there is a wavelet based algorithm corresponding to the reconstruction
R =2H* (3.20b). For example the wavelet based algorithm for r = 1 (Haar basis) is

in the subclass of cell-averages.

Our numerical experiments and those of BCR [3] show that the rate of com-
pression and the stability properties are about the same for all the three algorithms
that were studied in this paper. What matters therefore in choosing an algorithm
is simplicity, operational count and suitability to the particular application; under
simplicity we also include handling of boundaries. Comparing wavelet based algo-
rithms to those of pointvalues and cell-averages of the same order of accuracy r,
we find the wavelet based algorithm to be considerably more expensive because its
compression rate is about the same, but each application of R, H and G requires
significantly more operations. The handling of bounderies in the pointvalue and
cell-average algorithms is certainly simpler than it is for the wavelet algorithm. In
comparing cell-averages to pointvalues we find cell-averages to be more suitable for
discretization of kernels with integrable singularity.
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Appendix A.

Let P denote the symmetric matrix
(A.1n) P=H'H+GG
where H and G are (3.4) and (3.9) respectively. A direct calculation shows that
(A.1b) Py = p(li - )

where for m integer

p(2m—1)=0
(A.1c) {

p(2m) = Z CE X4 2m -
k

Let us assume now that P is an invertible matrix. It follows then from (3.8b)
that

(A.2a) = PlPF = P HYH + G G)e " = PTIG* Gt
=P-ig*dk

where

(A.2b) d¥ = Ge*1.

Replacing relation (3.11) by (A.2) we get that the encoding part (3.13b) of the
data compression algorithm (3.13) remains the same, but the decoding part (3.13d)
becomes

(A.3) e
7l = RF 4 PG

{Dofor k=LL~-1,.,1
The orthogonality condition (2.4¢) implies that
(A.4) P = p(0M = |e|*]
which brings us back to (3.13d).
As an example for the nonorthogonal case let us consider the “hat function”

o(z)

1-le| 0<le|<1
(A.5a) p(z) = {

0 otherwise
which satisfies the dilation equation

(A.5b) () = %[{p(2m — 1)+ 20(2) + (22 + 1)].

In this case the only nonzero elements of P are

3 1
(A.6) P;;= 37 Piizo= T8 -
Thus P is diagonally dominant and hence invertible.
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Appendix B.

In this appendix we use the interpolation results of [8] and [9] in order to prove
convergence of the limiting process (5.5a) for cell-averages with the symmetric re-

construction (3.17).

Let R denote the matrix (3.5) corresponding o the central interpolation (3.14)
and let 7(z) denote the limit function in (5.5a). #(x) has its support in [z| <r—1
where » is the order of accuracy of the interpolation. For » = 2, (2} is the “hat-
function” (5.4b) which is only Lipschitz-continuous; for r = 4,6, #i(z) is continuously
differentiable.

Let 5™ denote the “step-sequence”

S o

0 j<m-1
J {

1 j>m.

The limiting process corresponding to R*S° is also convergent and we denote its
limit by ((z). Since
e=S5"- gt

we get that
(B.1a) i(e) = () — (e — ).

It is easy to see that

6 g<—r+1
(B.1b) ()= S i(e—1) r+l1<a<r—2
1 r—2<z

and thus ¢(z) has at least the same smoothness as #(z).

We turn now to express the limiting process R¥e for the reconstruction from

cell-averages (3.17) in terms of ¢((z). From (5.5¢) and (2.11) we get that

(B.2a) (Rke)j — C(Jg_k) _ng.(kj o 1)2“") .

Since ¢'(z) 1s continuous and of compact support we get that

(B.2b) pe) = lim 3 (R*e); xj-nz-+, j2-n(2) = ()
i
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and that the convergence is uniform in z. From (B.1b) it follows that n(z) has its
support in —r+1 <z < r—2; from (B.1a) and (B.2b) we get that n(z) is related to

fi(z) by

(B.3) 7(2) = n(@) ~ n(z — 1).
We remark that for r = 2 we get for all & that
> (RFe)j xi-1y-s, j2-#(2) = p(x)
i

where ¢(z) is the “box-function” (2.8a) (note that the order of accuracy of the
reconstruction from the cell averages is » —1). Thus 5(z) = ¢(2) and we get formal
pointwise convergence of (B.2b) although n(z) is discontinuous.
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Figure la












