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ABSTRACT. For the Iow Mach number laminar channel flows, we prove that
the fast component {sound wave) and slow component of the solution do not
interact up to an O(1) time interval even under the presence of boundary layers
to both parts of the solution. We then consider solving for the slow component
of the solution with the Leap-Frog/Crank-Nicholson method. An initialization
process is incorporated into the algorithm to suppress the sound wave in the
initial data.

1. INTRODUCTION

We consider low Mach number (¢ < 1) channel flows described by the simplified
Navier-Stokes equation

w4 {u-Viu+Vp=vrvAu+F,

M E{pi+(u-Vp}+V-u=y,

in the domain 0 < z,y < 1, with no-slip boundary condition in one space dimension:
(2) u(z,y,1) =0, z=0,1,

and compatible initial conditions. All data and solutions are assumed to be 1-
pericdic in y and C*-smooth.

The most important feature of this set of equations is that the solution involves
sharply different time scales. For laminar flows there are three time scales involving
in the solutions. They are acoustic time scale, convective time scale, and viscous
time scale. The acoustic time scale and convective time scale, also called fast
time scale and slow time scale, are the scales of our interests. In ocean acoustic,
attention is given to the propagation of sound wave, the fast component. While in
oceanography and metrology, the slow component are usually what people quest for,
as the slow component carry most of the energy, and the fast component appears
as the perturbations to the slow one.

From the physical point of view, it is believed that the two different scales in the
solution are separable at least for a while, in other words, the interaction between
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the two scales is negligible for a certain period of time. This belief has been some-
ur]n:i 111uhﬂnr‘ hey Vralnn st alin [R] wheors for the anme coun tinn (1Y with neniadinit

what justified by Kreiss et al in [6], where for the same equation (1) with periodicity
in all space dimensions they showed that the slow and fast components of soluticn
do not interact for an O(1) time interval{the convective time scale} through an
asymptotic expansion. The bounded derivative principle was also shown valid to
suppress the sound wave,

In this paper we want to carry the research of Kreiss et al for one step further.
We consider equations (1) with no-slip boundary conditions in one space dimension,
For this problem, one of the most interesting issue remains to be the pattern of the
interaction between the fast and slow components. Contrary to the belief that the
interaction could happen during the acoustic time scale in the boundary layers and
propagate into the interior, we prove in this paper that, similar to the periodic
case, the fast and slow waves will not interact during the convective time scale even
under the presence of boundary layers in both boundaries z = 0,1. This result
suggests that numerically we can resolve the two scales separately, as otherwise the
time step may be severely restricted.

The numerical solution of the low Mach number Navier-Stokes equation is an-
other focus of this paper. However, we will limit ourselves in the numerical solu-
tions of the slow components only, and leave the solution of the fast component
to a subsequent paper. According to the bounded derivative principle, fast wave
will be of order O(e?) if up to p* time derivatives of the initial data are bounded
independently of ¢[6]. Thus, insiead of performing an asymptotic expansion, we
choose to discretize the complete equation (1), and solve for the slow solution with
such prepared initial data. Because of the embedded sound wave equation in (1),
which is highly unsymmetric, we adapt the Leap-Frog/Crank-Nicholson (LF/CN)
method for the discretization. The advantage of the LF/CN method is that it is
unconditionally stable for the sound wave equation. Thus, no matter how small is
the Mach number, the fast component will not be amplified once it is suppressed
in the initial conditions. In addition, the LF/CN method being used, which is 274
order accurate in time, achieves the highest accuracy in time among uncondition-
ally stable multistep methods Numerical results of the LF/CN methods are also
demonstrated.

We show the existence of the unique solution in §2.1. Then in §2.2 sound wave
is added to the slow solution via perturbations, and an initialization process is
introduced to sort out the slow solution. §2.3 is deveted to the discussions sound
wave, In §2.4 we estimate the remainders which contains the interaction between
the slow and fast waves.

In §3.1 the numerical discretization of the primitive equation (1) with the LF/CN
is detailed. In §3.2 we demonstrate the stability property of the LF/CN method.
The numerical implementation of initialization of initial data is presented in §3.3.
And finally in §3.4 we present some numerical results.

Equation (1) with inflow boundary condition at 2 = 0 and outflow boundary
condition at # = 1 will be topic for the near future.

2. INTERACTIONS BETWEEN SLOW AND FAST COMPONENTS

2.1. Existence of a slow solution. From the physical point of view it is apparent
that a solution without sound wave can be obtained through the evolution starting
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from the stagnated state. This idea has been used by Kreiss et al to obtain the
slow manifold for ODE systein with two different tune scales[8}. In this section, we
will show the existence of a slow solution of the low Mach number Navier-Stokes
equation with such idea, for which we need

Assumption 1. The source funciions F and g can be smoothly extended to —1 <
t<0.

With this week assumption, we can actually construct the slow solution by an
asymptotic expansion. Let ¢(t) £ C° be a monotone cui-off function with the

property
0, fort<-3/4,
¢(t) = ‘
1, fort>-1/4,

we consider the problem

W+ (u-Viu+ Vp=rAu+ ¢F,
@ {62{P1+(U'V)P}+V-u: ¢g,
starting from ¢ = —1 with stagnated initial conditions and no-slip boundary condi-
tion
“ u(e,y,~1)=0, pz,y,~1)=0,
ulh,y,t) =0, h=0,1

The first order approximation U, P to u,p satisfies the following incompressible
equalion

U, +(U-VYU+ VP =vAU+ ¢F,
and initial and boundary conditions
6 Ul(z,y,-1) = 0,
©) Uhy,0) =0, h=0,1.

The pressure is determined as a function of U:

G AP = (¢g) + vA(dg)+V - (¢F — (U -V)U),
(1, P(:L‘, y,t)} =0.

Note that for the solvability of (5,6) we must assume

11
(8) (ot = [ [ @ undeay=0, 121
o Jo
The solution of (5,6} exists for —1 < ¢ < 0o, and it is unique up to a time-

dependent function P(t). We fix it by requiring

(LP+ P+ (U V)P)=0, t> -1,
P{0) = 0.
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If we introduce new variables uy, p;, such that
w=u-U, p;=p-—(P+P(),
then we get, for uy, py,
ay + (U-V)uy + (uy - VYU + (u; - Vus + Vpy = vAuy,
E{pu+(U-Vpr+ (0 - V)P + (ug - Vi } + V- uy = gy,

w =0, m=0, = ~1
a(hyt) =0, A=01

9

with
g1=—{P+ B +(U-V)P}.

Problem (3) is now reduced to (9), and the source terms are reduced to O(e?). We
write the solution of (9) as

u = Uy +us, pyo= P+ Pu(t)) + pa,

where P is not yet specified, and Uy, Py are the solutions of the linearized incom-
pressible problem

Uit + (U . V)Ul +(U1 V)U-}- VP = UAUl,
{10) VU =g, (1, (- 1)) =0,
Uilh,y,t) =0, h=0,1,

with initial condition

Denote
UV = U+ U, PO = pyap,
then the equations for us, p» are
uy + (UM V)us + (ug - VYU 4 (up - Vg + Vps = vAus 4 €7Fs,
& {pa+ (U V)pa + (s V)P 4 (uy Vipa}+V up = ey,
ur =0, pa=20, = -1,
us(h, i) =0, h=0,1,
where
Fy = ~(U; - V)U;
92 = —{Pre+ Pr(t) + (U - V)P, + (U, - V)P} — (U, - VP,

We choose P;(t) such that

(1, 92(‘,f)) =10,
P(,0)=0.

'The source terms have been reduced to O(¢*). This process can be continued so as
to generate the desired asymptotic expansion for (3). We thus can formuiate
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Theorem 1. let U; P+ P;(t),j = 1,... 1, be defined recursively as the solufion
of the linear incompressible problem f
Ui+ (U9-Y .o, + (U; - '\':f)UfJ D4 UP = vAU; + ¥ 4F;,
(1) SV -Uj=g;, (LFA(1))=
Uj(h,u,1)=0, h=0,1,
with initial condition
Up=0 t=-1
Here we define

-1
i = U+Z U, PUN=P1P+Y (P4 P,
i=1]1
Fy =0, FJZM(%—I'V)Uj—l’ 2<5 <,

95 = (i + Pyt (U7 9) Py o (Ujoa - VIPUD)
- €2j—2( Uj_l ' V)ijl,
and P;_1(1) is chosen such that
(1 gj'( ;
-1(0) =
All derivatives of the functions U;, Py + P;(1) are bounded independently of . The
errar terms wipt, ey are defined by

)):()z _1StSTa

w= U0 + Uz,
p=P04p.

They satisfy

wire + (UY - Vugy + (ug - V) UY 4 (s Vg

. + Vpipy = vl + eV Fiy,

(12) e {prpre + (U0 V)prer + (wgr - VIPD 4 (upyg - Vg1 }
+ V- ugg = Mgy,

w1 =0, pry1 =0, 1= -1,

wp (b, t) =0, h=01

It is apparently that for sufficiently large I, the solution of (12) is negligible.
Hence, we obtain the solution of (3) via an asymptotic expansion, and the solution
contains only the slow time scale,

For most application there is € « v < 1. According to the boundary layer
theory the tangential component of the solution U of (5) has boundary layers at
z = 0, 1. More specifically, without dispute we can make an
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Assumption 2. There ezisis T > 0 such that when 0 < t < T all first order pariial
Pt £,

derivatives of the selution of (5) arc bounded independently of v except Vo, which
behaves like

O(-3=), 0<z<Cy
13 el = { Omh 0525 O

0(1), Crv<e<l,

where C is a constanl independent of v.

From both mathematical and physical point of view, we believe that the solutions
of the linearized equations {11) are also boundary layer type solutions. We choose
not to go through the complicated justification but only to characterize the solution
in the following

Assumption 3. under Assumption 2 all first order partial d_erz'mtives of UG} and
P& are bounded independently of v for 0 <t < 1T except V,SJ), which behaves like

: o1 Sr<ae <1l -5
(14) IVé-”i:{OE 3’) C;,”"x“ Gz,
W , oihers
where C;,7 =1,2,...,1 are conslants independent of v.

These two assumptions will be used later on for the discussions of the interaction
between the slow and fast waves.

2.2. Sound wave added as perturbation. In last section we have shown that
the sound wave will never be generated if the solution evolves from the stagnated
state. However, it is more interesting to investigate the case when the sound wave
does present in the solution of the low Mach number flows, as we want to understand
the interaction between the sound wave and the slow solution. For this purpose, we
simulate a physical process so as to add sound wave to the slow solution at a specific
moment, say, t = 0, during the evolution of the slow solution, which amounts to
considering problem (1) with initial conditions

u(z,y,0) = U(r)(x, y, 0) +u’(z, ),
p(z,4,0) = PU(z,y,0) + p(e, ),

where UM (z,4,0), PN(z,y,0) are the solutions of (3,4) at ¢ = 0, and u®,p? are
any functions satisfying

Vxu® =0, (L,u") = (1, =0,
wl(h,y) =0, h=0,1,
(1,7 =0.
Note that, characteristically, the velocity of the sound wave is vorticity free.

For problem (1) with the above initial condition at ¢ = 0, the asymptotic ex-
pansion for the slow solution is obtained through a slightly modified asymptotic
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expansion which removes all vorticity from the initial condition. For the first order

N :

approximation, we consider (3} with iniiiai data soived from
V-U(L,0)=g(,0), VxU(0)=VxUDM 0,

1o (LU0 = (LUDC0), 1LV(E,0) = (1LV00).

The first order approximation of the pressure is determined from (7), subjected to

(1,P(',0) - P('>O) - }5(10}) =0,

(16) (LP+ B+ (U-V)P)=0.

It is not hard to see that U, P is precisely U®), P(®). For higher order terms of the
aymptotic expansion, we solve for Uy, P; from (11) with initial conditions obtained
from

VU(~O):QJ(3O)5 VXU('O):Os U(h:y)o):oa h"*_*O,l,

(LPJ'(')t)) =1,
(17) (1,gj(~,t))20,
B0y =0

Through comparison we conclude that Uy, P, is exactly wha$ we have got from the
evolution from the stagnated state. Thus, the slow solution remain unchanged after
the perturbation by the sound wave. Introduce

up =u-UY pyy=p- PO,
then the equations for wygq, pry are
Wi+ (UG Vhwgs + (g VYUY 4 (upg - V)wrgs
+ Vpsr = vAugg; + Py,
¢ {Pr+1,r + (U Wiper 4 (ugy - VIPO 4 (wyyy 'V)Pr+1}
+ Vg =gy,

(18)

gt = u’ pp =% 1=0,
uf+1{h'»y)t):o’ h= 0,1.

For relatively large I, the forcing terms in above equation can be ighored. Note that
the resulted initial conditions are vorticity free. We will see that the underlying
equation of (18) is a typical sound wave equation. The behavior sound wave and
the interaction between the sound wave and the slow solution will be discussed in
next section.

2.3. Sound wave as fast solution. We will show that equation (18) is primarily
a sound wave equation. We make a change of time variable

r=tle, Oz, y,7) = wii(z,y,€7),
é(m) ¥ T) = Epl-{-l(xn Y, ET):



s LIXIN WU

and denote for convenience
U= U(I), P.=pW)
Then (18) is read

4, + e{(U- V)4 (- V)T + (6 Vi) + Vi = evAq,
G +e{(U-V)g+e(@ - V)P+(0-V)§}+ V-0 =0,
U=wyi1,0,4= qre10, at 7=0,

alh,y,7)=0, h=0,1.

(19)

Under the assumption that no confusion is caused we hereafter drop sign *.

Now we we will try to figure out the leading order terms of (19). We assume
at the moment that the solutions away from the boundaries are smooth, hence the
convection terms are of order O(e), and can be dropped in the interior. Near the
boundaries £ = 0,1, we have the following list of magnitude for each term, where

§ = \fev,

ty He{lus +Vuy +uls +oly  tuwe dovuy) 4 = ev(Uae +ayy),
& te{dl 41-6 46-1 4186 461 418} +6 =ev(l  +1)
ve Fe{Uve +Vuy tule 4oV, duve  Hvvy} 4y = er{ven  Huyy),
Uodef{d-g +1-1 +o 4101 465 +1-1) +1 =e(dF +1),
gr +e{Uqe +Vgy +e(uPr +vP,) +uge +vgy} +up +v, =0,
Ioef{led 481 4e(6-1 +1-1) 46-6 +1-1}) +1  +1 =0,

It can be seen that all convection terms are of higher order throughout the domain,
thus we ignore them and arrive at a mixed parabolic-hyperbolic equations

Gy + V= eviiys,

& +Vd=0,

U =W410,¢ = qe1,0 7 =0,
ulh,y,7) =0, h=0,1.

(20)

The solutions of the above equation are trigonometric functions with boundary
Tayers. We will characterize these features one by one. We decompose the solutions

into two parts:
a=ul+u’,
i=q +¢,
where u®, p? saLtisfy the inviscous equation
ul 4+ Vg’ =0,
gr+V-u® =10,

u’ = 41,0,¢° = gry1,0, 7 =0,
v(h,y,7) =90, h=0,1,

(21)
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while u’, ¢* satisfy
ul + Ve = el + and,,
V.o =0,

22 : .
( ) ut:O,ql:O, T"—"{J,

u{h,y,7) = 0,%(h,y,7) = —v*(h,y,7), h=0,1
Let us discuss (21) first. We define the vorticity and dilatation of u® by
{23) £ =V xu’, 7=V -u’

then apparently

’50 =0, 5:1 = ASO: Q:T = Aqo)
i,e, the divergence and pressure satisfy the wave equations. Denote the initial data
of 5%, ¢° by
s =495, s7=s70 (1,55} =(1,570) =0,

t = 0.
¢° =4q5, ¢ = Q:,o: (1,95} = (l,qf.o) =0,

(24)

Then by Fourier expansions we obtain

8%z, y, 1) = Z §°(k,f)cos(k11r:c}e"2”k"y,

k,ks
(25) ko FG ) ’ k - (klg k2) e ZE)
e, y,7) = Z EO(k)T)Sm(kww)eﬂwk:y,
k ka0
with
§(k, ) = 83(k) cos 2rkT + —1—§‘T’,D(k)sin 2k, |

2k K = Sk,
§°(k,7) = §g(k}cos 2xkr + W(ﬁ'n(k) sin 27k,

From (24), we get u® of the form

’u"(ﬂ::y:?’): Z ﬁﬂ(k’T}Shl(klwx)ez'QWIch,
K ka0

vz, y,7) = Z 2°(k, ) cos(kymx)e' 2R
k k.20

(26) k= (ki ko) € 2%

Obviously we have
Lemma 1. There are constant C). independent of €, v such thal

s {1l 197007l d < Gl ollns + g olies )
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Given u®, ¢°, we can solve for u', ¢* from (22) by La,pla,ce transform, which turns

T e o ~Ad o L E
thc cqua.muub IJ:H‘U e blUJ in dppllbdblUHb, VCl_y Ulb(’;‘il b[lt‘,’ PUL LU[Ud.bIUH Ui bUL[IlU

wave is of order Ofe), we thus assume

(27) urr,0 = O(e), g0 = Ofe).
Then, from lemma I we have

(28) w’(z,y,7) = 0(e), ¢°(z,9,7) = O(e).

There is no difficulty to show

Lemma 2. If the initial conditions of {20) satisfy {27), then o', q' are the follow-
ing boundary layer type funclions.

(z,y, 1) =0 (f ~1=N£"17+e g 1)/\/3))

ui{e,y,7) = O (e(e*VF 4 o= DV
v'(2,,7) = O (e(e™=/VT 4 = OIVT))

(29) .
(29,7 ([(e~w/ﬁ+e(r—iJ/ﬁ)>’

=0
gz, y,7) =0 (g(e"z/ﬁ+ NES 1)/\/5))
gt (z,y, 1) = O(E(e—x/\/ﬁ+e(_m—1)/ﬁ)) ‘
Therefore, with initial conditions {27) the leading terms of the sound wave satisfy

(30) a=0(), §=0(e).

This result will be used later for measuring the interaction between the slow wave
and the sound wave. This is done by estimating the remainders, for which we need
to highlight another property of the fast solutions.

Lemma 3. Let ¢ = ¢{z,y,7) denole @,§ or any of their space derivalives, if the
initial date satisfy (1,%0) = (1,%0) = (1, §o) = 0 then

f¢>{m g, )dt = (),

i.e, the iniegral 1s bounded independent of z,y.
ProoF: The proof is based on the fact that 4 and § are trigonometric functions

in 7. We consider the solutions of (21) first. Let ¢° be any of u®,v°, ¢° and their
derivatives. Apparently there is

T I
/ ¢%(z, v, é)dt = e/ $°(z,y, 7)dr = 0(62).
o 0
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w that the similar property exists for the solutions of the bound-

sh
.GF A 99N Neadba that bonon I o 45 VR RS S o SR UV S

ary layer Gt jedj. 130I€ wiGL DELEASE GI («0) LS 10TCINE term “’u:z::n is of

Luy oz

&4
order O{e?), we thus ignore it at the moment. Consider

u; + V¢ = evul,
g, +V ut =0,
(31) w=0,¢=0, r=0,
u’{h,y,‘r) = O,U{(h.y;'r)”—” —’Uo(h-,y,?'), h’: 0)1

Through Fourjer transform in y, sine and cosine transform in 7, this set of equations
is turned to a set of ODE’s, and the solution exists and is unique. The solution of
(31) is a trigonometric function in 7, its integration in 7 are bounded independently
of 7. The solution of the equation with an additional source term evu?, can be
obtained with the Duhammel’s principle, and its integration in time interval [0, T/¢]
is of order €. So if ¢' is any of the w', ¢' and their spatial derivatives, then there is

T/e )
(2, y, 7)dr = Ole).
0

Thus finally we conclude that

T 1
[ #te b= 0@,

which completes our proof [

2.4. Estimate of the remainders. We decompose the solution of (18) as
uf+1:f}+ﬁ"§'ur) Pi‘+1:p+ﬁ+pr:

where u”, p" is called the reminders, which represent the interaction between the
slow wave and the fast wave. If the magnitude of u",p" is big, then we know the
interaction is strong, otherwise it is week. Under assumption (27), we can show
that u”,p" are of higher order in ¢ than the fast and slow waves for O(1) time
- interval, the length of convective time scale. This result will help us in designing
numerical algorithms.

Denote

and introduce
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then the remainder terms u”, ¢" satisfy

ru;’ + (U V)" + (0 - VU + (0 - V)u" + %V’q"

= pAd" ~ {{0-Va+ (U V)ia+ @ V)U - viiy,},
(32) G+ (U V) + (0 D)@+ (V) 42V

=—{(@- V)¢+ (U V)i + (@ V)Q},
w=0, ¢"=0, 7=0,
u(h,y,7)=0, h=01.

We now prove
Theorem 2. Assume the initial data salisfy
u—U=wy =0(), g-Q=qu =0(), =0
Then for 0 <t < T the solution of (32) satisfies
el + gl = Coet,
where C,. depends on v only.
Proor: We will have to exploit the oscillatory behavior of the source function

Fi=—(@ V)a+ (U Vin+ (@ V)U—viy,),

g =~{(@- V)7 +(U-V)7+(a-V)Q}.
According to (30) we can write

Fi=cB\(i/c, 1)+ O(F), g = efa(tfe,t) + O(),

where F; and g1 are the sum of the products between the fast and slow functions.
Now we split u", p" into

W =w +uy, ¢ =g+,
where 1y, g1 satisfy

w4 Vg = vAu + Fp,
(33) {
qlt+v ‘1 = g,
with Initial conditions
=0 q=0 i=0

Let S(t) be the solution operator for the homogeneous equations of (33), w =
(w1, q1), and G = (Fy,¢1), then the solutions of (33) can be written as

wit) = /0 S(6)G(E) .

By integration by parts we have

t H 13
wi(t) = S(t) [ G(€)de — ] S'(€) ( ] G(ocsc) de.
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By energy method we know that
i)l < €, [1Si(8)ll2 < C.
Because B
G(t) = eG(t/e) + O(€?),
and, by Lemma 3, there is
1
/ G(é)dé = Ofe).
a €
We thus obtain the bounds on w:
w(t) = O(?), 0<t<T
To get the bound on us, g2, we introduce

["J(Z) _ ﬂ(l) +uy,

OB = AW 4 4,

Then equations for g, ¢» are

()

uy; + {O_{z) - Vus + (s - V)f} + (us - V)us} + Vga = vAu, + Fo,

2 .
gac + (U( ) Vg + (uz - VIQP) 4 (ug - V)ga} + V - ug = g9,
112:0, QQIO, tmO,
welh,y,t) =0, h=01,

where " 0
Fo= —{(u  Vu + (0V 9)uy + (u - )0

A (1 n
g2 =—{(uy - V)1 + (U( ). Vg1 + (uy - V)@
From our estimates for uy, g1 we have

Fy = 0(e?), g2=0(%), 0<E<T.

h

By typical energy method (see [b] for instance) we can derive
[lazllz + Ygzllz = O(%).
Pinally we have
u’ = uy 4 up = O(e?),
¢ = q 4+ g2 = O(e?),
which completes the proof O
Now we can formulate our main result.
Theorem 3. Assume the initial data satisfy
Vug = g(,0)+0(e), po=P(,0)+ P(0)+O(1).

The compressible problem (1,2) has a unique solution in 0 < 1 < T. Ii can be
writlen in the form

uw= U+ a+0(e),

p= P+ P(t)+p+ O(c)
Atz =0,1, V and © have boundary layers of thickness \/v and \fev, respectively.
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3. NUMERICAL SOLUTIONS

The presence of sound wave in the solutions of low Mach number Navier-Stokes
equation poses a challenge to its numerical simulations. As the sound speed in
most cases is much greater than the flow velocity, the time step of any conditionally
stable numerical schemes will be severely restricted. Inevitably, the two different
time scale must be separated from the equations and then resolved independently.
In last section we have shown that the two scales can be separated by an asymptotic
expansion, which lead to a series of incompressible equations for the slow scale and
a Helmholtz equation for the fast scale. It seems that to solve for the full solution
one needs to perform the asymptotic expansion and solve the Helmholtz equation.
However, numerically it is disadvantageous to do so unless only one or two terms
of the expansion are wanted. Bounded derivative principle suggests, instead, that
we may obtain the full solutions by computing with the separated fast and slow
waves in the initial conditions. In this section, we will pursuit this idea with finite
difference methods. However, we limit ourselves in the slow solutions only. Note
that in metrology and oceanography, slow scale is usually the only interest, The
resolution of sound wave is a very different issue and is left to another paper.

For the sake of convenience we make a change to our problem. Instead of dealing
with no-slip boundary condition in z direction, we assume periodicity in all space
dimensions. Such change avoids the resolution of boundary layers, which is not a
trivial issue and requires much more efforts.

3.1. The Leap-Frog/Crank-Nicholson method. Two considerations govern
our selection of numerical schemes. First, as the our equations are highly unsym-
metric, we want the stability restraint to be independent of the Mach number.
Second, we need the accuracy of our scheme to be as high as possible. As we
will justify later, the Leap-frog/Crank-Nicholson method introduced in this section
appears to be the only option which meets both requirements.

Introduce spatial step Az = Ay = h = 1/L, time step At = k, and denote the
approximations by ul'; & u(ih, jh, nk), p; 2 p(ih, jh, nk). Let z denote any of the
variables ¢, » or y, we define the basic shift operator and central difference operator
by

Ef;z’zw(z) = w(z + jAz),
Eﬂz,z - ES:,z

Das,e = 2Az

The fourth order accurate numerical differentiation is defined by
1
D, = ’3“{4DAz,z - DEAz,z)’
In turn we define the fourth order approximations to gradient and Laplacian

—_ ‘Dm
"=(5)

h2
A5 = D+¢-Dwz -+ D.&kay - €D+$D_xD+yD_y.



LOW MACH NUMBER CHANNEL FLOWS 15

Our Leap-Frog/Crank-Nicholson method is formulated as follows.

(34)
u’."i'l — u’.".'l p”+1 -+ p’."','l ut"?'l + u'.’._l
1. 1)) 1,7 1, s 7 2,0 n
BT u— +{u}; - Vi, + V( 5 )= uA,(-———————————2 )+ FY;
p?'.H' —_ p{".-l " u’.'l'fl + ur.z“fl
EE{LQ}C__‘LJF(HPJ -Vs)P,-,j + ¥V, '(J—'L—“—ti—):gﬂj,
t=0,1,...,L-1, §=0,%...,L-1, =o=12...,
along with the initial conditions
(35) u?; =u(th, jh,nk), pl; = p(ih,jh,nk), n=10,1

and periodic boundary conditions,
The leading truncation error of the approximations is

o (e (15| +o (15 + [352])

di® dt? DxA
thus the approximation is meaningful only if the second order time derivatives are
bounded independently of Mach number €. In other words, the approximation is
vaitd only for solving the slow solution. Fast wave in the initial conditions, if there
is any, must be suppressed before we proceed with our scheme. This initialization
process will be discussed in subsequent section.
The existence of the slow solution requires the compatibility condition

L L
D> glih, jh, )k =0,

i=0 j=0

Dip
Dxs

+ +

which is the discrete version of {8).

For deriving the equation for pressure, we rewrite the equations so that all known
quantities are put into the right hand side. Also, to make the right hand side bear
the same order of magnitude we multiply the momentum equation by k. Thus the
equations (34) read

(I —vkA ™ 4 V" = (1 4 vkA ) - 0, p" !
(36) + 2k(F" — (u™ . Y, )u") = N,

2

2 2
ik_pn-{—} -+ V, Lttt = %__ v, a1l o 2(9’” _ Cz(u . vs)pn) = M.

Under matrix expression the above equations read

I—vkA, VN [ut? N"
(37) v.. & pﬂ+1 =\M?
s k
The equation for p"*! is obtained by eliminating u™*!, which amounts to perform-
ing Gaussian elimination to the system,
2

(38) (—vas (I~ vEA)TIV, + 7

I) PP = MT -V (I - vkA)TINT.



18 LIXIN WU

Pressure is solved first and then used by the first equation of (36} to determine the
velocity. It needs to be peinied out here that
EV, - (1 —vkA) MY,
is ili conditioned and it is not a good approximation to its continuous counterpart
kV (I —vkd) 'V,

Thus, some technical enhancement should be considered for solving (38). We con-
sider the following preconditioner

(39) k(I - vkA) A,

for system {38), where A, is the standard fourth order 9-point stensile for Laplacian,

-
b= (14 (DaaDos + iy D))

h

(40) ,
(Dia Do+ Dyy Doy + =D Dog Dyy Dy}

It has been shown that this is indeed a good preconditioner.

3.2. Stability property of the equations with frozen coefficients. In this
section we study the stahility properties of equations (34). According to the stabil-
ity theory we only need to consider the corresponding homogeneous equations with
frozen coefficients:
(41)

(I —vkA)u™! +kV p" L = (T4 vkA " — kv, p" 1 2k{U -V, u"

2 2

€
_k__pn-H LV, u*t! = _f};_ n—-1__ v, - ut ! — Q(U . v)pn’
where U = (U, V)7 is a constant vector, and all functions are 1-periodic in space.
Introduce new variable ¢ = ep and multiply the divergence equation by 1:-, we arrive
at

(42)
(I —vkAHutt 4 évsq”H =({I+vkAju"! - évsq"-i - 2k(U - V,)u",

k k
qn-i-} + Ev-’ cattl = gn—l . ;Vs .un—l . Qk(U . v)qn.

Under matrix expressions, (42) becomes

(43) [I L(Uff MO&H (E)Hl:”?k(UDm%VD (1;)
e O™

_¥.
=4 F) wevmor, o= ()

Let
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we write (43) as
(44) (1 — kQYwW" ! = 2kQow™ - (I + kQ)w" L.
Notice that for any vectors v, w,

(v, Qow) = —(Qov,w), (w,Qw)}<0.

With energy method Kreiss and Oliger[7] showed that when

[kQofl < 1=19, 7>0,
there Is

(w07 1P < P w2 - 2k Qow™)

(46) < (w4 ).

The scheme is hence stable. There is also dissipation due to the viscousity which
have not been taken into account. Noie that

3

(46) 1ol < (U1 + V1),

Thus the restriction on the time step is

- 2h
“o I Ea Y

When there is no convection terms, i.e, 7 = V = 0, the above scheme is uncon-
ditionally stable. This is essential for the numerical approximations to the highly
unsymmetric hyperbolic systems. It is shown that the order of any unconditionally
stable multistep schemes can not exceed two[10], the proposed LF/CN method is
optimal regarding to the accuracy.

In the actual implementation of the scheme (34), we determine time step by
freezing the coefficient at their maximal absohute value, i.e,

> 2h
3 ma):i,jﬂuzji + |v?,i§) ‘

(48)

This condition is not more restrictive then (47) and it works just well,

3.3. Initialization. The preparation of initial conditions is done by the asymp-
totic expansion (5,11). This process can only be realized by numerical algorithm.
Because of the induction of roundoff error, we should not expect to suppress the
fast wave up to any order. Nevertheless, to suppress the fast wave up to a few or-
der is achievable. Notice that the initialization requires the time derivatives of the
expansion terms of pressure, we will have to compute the solutions of (5,11) for a
few time step so as to generate time difference for approximating time derivatives.
We use fourth order Runge-Kutta method to advance the solutions of (5) and (11).
The computation can be made as accurate as we want by using arbitrarily small
time steps.
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Consider the semidiscrete approximation of (5) for t > 0,

dU
. {I+(U-VJ)U+VSP=VA5U+F.

VS-Uzg,(l,P(',f)):O.

Here all functions are defined on grid, U = {U;; (1)}, P = {P;;(t)}. Initial condi-
tions are solved from

(50) Ve U(,0)=9(0), V. xU(,0)=V, xu(,0)=g(),
with uniqueness conditions

(L, U(-,0) —u(-,0)) = 0, (LV(,0)—v(,0) =0
Equations (50) lead to

AU = Deg+ Dyg',

1
(51) AV = Dyg— Dyg'.

At each time step the P is determined by a Laplacian equation

AP = m% v+ Y, - (F - (U.V,)U),
(1, P(, 1) =0.

(52)

The pressure is unique up to a time dependent function P, which is determined by
(1,p0 — P(-,0)— P(0)) =0,

(53) (1, P+ P+ (U.-V,)P) = 0.

The solution of (51,52) give us the second order prepared initial conditions such
that the first and second order time derivatives of the solution of (49) are bounded
independently of €. If we want higher order initialization, we will have to solve for
the sclutions for a few time step. They can be obtained via fourth order Runge-
Kutta method. Note that we eliminate the pressure from the momentum equations
by denoting P = P(U,F,g). Thus we can rewrite the momentun equations as

U
(54) %{:—(U-Vs)U—VSP(U,F,g)+uA5U+FEf(U,t).
Let ¢ = nk, then the fourth order Runge-Kutta method can be described as
kg = f{U™ 1),
k k
— ny " E
ky =f{U" + 2k1,t+ 2),

k k
ks = f{U" + mg"kz,i + 5),
(55) Ky = fU" 4 kka,t + &),
k
urtl U 4 g(kl + 2k + 2ka + ka),

dg

ntl _ 0
AP = (dt

n+1
) 4 Vﬂ;g“+l " vs . (Fn-}-l . (Un+] 'V;)Un+1) .
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The higher order terms of the asymptotic expansion are obtained in a simnilar way.
If p** order initialization is wanted, we need to soive U;, B iteratively, from

(56) %i% +(UUD VU 4 (U VYUY 1 v, = 04U+ AR,
V,-UzZQI, (I,Pf(°,ﬂk)):0,

with initial conditions determined by

(57} V. Ul =g, V,xUl=0, (,UD)=(1,V")=0
Here,
-1 ) i-1 )
U = Uy Uy, PUD =Py (R4 R,
t=1 i=1

F,=0, F, z—(U[._l-V)U;_l, 2l <m,
g1 = —{ViPoy + VP 4+ (UED V) Py + (Upss - 0, PU-1)
— ¥ UL - V)P,

and P, (nk) is chosen such that
(1,91(',?’!’6)) =0,
P}..;(’,O) = 0
Let
(58)
fi = (U0 v U — (U, - v, )UY - 9, P(UL FrL ) + vA U+ By
Hi==Vegr 4 v+ Vs - (F1 = (U0 V)0, - (U7 9,)Us0-D)

we summierize the initialization process in the following algorithm. Suppose we
need up to " order time derivatives bounded independently of ¢,

Algorithm of INITTALIZATION:
Solve U, P? from (51,52)
Forn=1,2,... 4(p-1)

compute U™, P" from (55)
Forl=p—~2,p-3,...,2,1
Compute U}, P? from

Ve Ul =g, V,xUl=0, (1,UN =1,V =0,
AP = HY
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For n=1,2,...,4l compute U}, PI" by

ki = (U7, 1)
k E
kng,(U?+§k3,t+§)
k k
= (U + —kg,t 4+ —
ky = fi{ ;+2 2, +2)

ks = £(U} + kka,t + k)

k
Ut = U 4 &k + 2k + 2k + k)
AsPIn+1 = an+]

end of INITIALIZATION

Appearently this process of initialization can also be used during the calculations
to suppress the fast wave if it exeeeds our tolerence.

3.4, Numercal Results. The numerical algorithm is composed of twe parts. The
first part is the initialization which suppresses the fast wave from the initial data.
The second part is the advancement of the Leap-frog/Crank-Nicholson method with
the prepared initial conditions. The initialization process can be repeated at later
time once the magnitude of fast wave exceeds a set tolerance due to the long term
effect of roundoff errors. The framework of the algorithm is displayed below.

Algorithm L¥F /CN:

I. Initialization:
if divergence > tolerance then prepare initial velocity
Prepare initial pressure
Extrapolate for the initial data of the second time step
II. Advancement in time
Advance with the LF/CN scheme

if divergence > tolerance then

Prepare the velocity
Prepare the pressure

Extrapolate for velocity and pressure of the next time
step

Ht<T gotoIl
end of LF/CN

The test data is constructed in the following way. For the continuous equation
(1), we compute source functions ¥, g {rom the following distribution of velocity
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and pressure

U(z,y,t) = e sin 2w (1 — %sin 2ry),

Viz,y,t) = '(1 — cos 2mz)(1 + %cos 2ry),
P =10

We then run our algorithm LF/CN with the perturbed initial conditions

u(z,y,0) = U(z,y,0) + esin4rz(1l ~ cos 4my),
(59) v(z,y,0) = V(z,y,0) + (1 — cosdwr)sindwy,
p= P

We take the mach number ¢ = 10~3, viscousity » = 10~%. The grid size we use Is
32 x 32, The initial time step is determined by

3k max:’,j(?“?,ﬂ + |U?,j )

0.1 = Qo] = 5

so that the initial truncation error in time is of the same order as the truncation
error in space. Then step size in time is limited by for stability concern

3k max; ;(|ul ;| + |vF,])
2h

0.1 < kj|Qoll = < 0.9.

The time interval of our calculation is 0 < ¢ < 1. We take p = 1 in the INITIAL-
IZATION algorithm.

We judge the quality of the computed slow solution by the magnitude of the
divergence = V -u — g, which also reflects the strength of the fast wave in the
pressure. For comparison purpose, we also provide the results by LF/CN without
the initialization process. The results are given in Figure 1,2,3 and 4, where the
maximum norm of the divergence at each time step is plotted.

1t takes 1381 time steps to reach ¢ = 1. It can be seen that without suppressing
the sound wave from the initial condition, the divergence is of order 0(1072) = O(e).
'This magnitude implies that the sound wave in pressure is at least of order O(1).
Under the situation, the resolution of the pressure is no longer reliable, unless we
considerably decrease the time step. However, through the initialization the sound
wave is effectively suppressed, and it stays in the order of o(1). The maximum
norm of the pressure given in Figure 3 and Figure 4, respectively, is consistent with
the magnitude of the divergence.
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Figure 2, With initialization
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Figure 3. Without initialization.
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