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1 Introduction

There are several ways of tracking a front propagating under certain con-
ditions. One of them consists in replacing the front by a finite number of
points, which will then be moved according to the front‘s propagation law.
This method is not always very simple to handle, especially when parts of
the front merge together, when there are sharp angles or when there are more
than two regions.

For general propagation laws and for two regions motion there exists another
method, based on a Hamilton-Jacobi level set formulation!. If this propa-
gation law is an affine function of the curvature , then a very simple way
of tracking the front exists. This motion can be computed using a diffusion
kernel.

see Front Propagating with Curvature dependent Speed: Algorithms Based on Hamilton
Jacobt Formulations by Stanley Osher and James A. Sethian , Journal of Computational

Physics, V 79, (1988)



2 Diffusion Generated Motion

The idea of this method? is quickly motivated by looking at the diffusion
kernel written in polar coordinates. It reads:

oF _ DOF 0*F D 0*F
% " Ror Yo T

for a two dimensional problem.

A front usually splits the plane in two regions, at least locally (we will not
yet consider more complex topologies, such as triple points). In the following
F(X,t=0) will be the characteristic function of one of those two regions. It
1s equivalent to chose F as the characteristic function of Regionl or Region2,
because F'1 + F2 =1 for t = 0, and this property remains true for t > 0 if
we diffuse F'1 and F2. The level set 1/2 of both functions will be equal.

Region 1
F(x,1=0)=1

Region 2
F(x1=0)=0

If we write the above 2-dimensional equation in coordinates centered at the
center of curvature of a given point, M, of the front, we have initially around

M:
0*F —0
862

2see Diffusion Generated Motion by Mean Curvature by Barry Merriman, James Bence,

Stanley Osher, UCLA CAM report 92 - 18 (1992)
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the equation then reduces to:

or DOoF L o°F
5 " Ror TV

which is clearly the addition of motion at speed £ and diffusion. The level
set F(z,t) = 1/2 will have an initial velocity of —g. If we take the level set
F(z,dt) = 1/2 as being the new front with a small enough time step and
iterate this operation we will obtain a curvature dependent motion at speed
%, where R is the local radius of curvature.

For an n-dimensional problem there is not center of curvature valid for
all directions but the following calculation (and proof) yields a speed of
(n — 1)D times the sum of the inverses of the principal radii of curvature in

all directions.



3 Proof of the convergence of the algorithm

In this section we will prove that the level ' = 1/2 mentioned above has the
correct initial propagation speed, and that therefore the algorithm converges
toward the curvature dependent motion described above when the time step
is sufficiently small. We will use the explicit solution to the heat-operator:

oF
— = DAF
at
which yields
1 —(X -Y)2
)= —— (p ————F Y
FX.1) (47 Dt)"/? /ae P T4Di a0l

Those functions are not differentiable when t=0 so we can not use results
about implicit functions, and have to calculate approximations.

We will now suppose that the boundary of the expanding area is smooth, at
least 3 times differentiable and with a bounded third derivative.

We chose a system of coordinates centered on a point of the expanding front
and suppose it is tangent to z=0, where z is the last coordinate.

The initial front can then be written at least locally as a smooth function,
g(X), of the n — 1 first coordinates, x1,...,z7~1. We will suppose that it
is the case globally, and then add the corresponding correction terms. The
capital letters will designate a vector relative to the n — 1 first coordinates.

gX)

F(X,z,1=0)=0

FX,z,t=0)=1

eccmccetecccnccccnac e

F(X,2,{=0)=1



We have:

1 —((z—y)* + X?)
P - F(X,y,0)dy0X
0,2.1) (47 Dt)"? /&mn—l o 4Dt (X, 00040

(z—y

1 (e g
F(0,2,t) = WAeXp——TM—H(y)By

- — (o~ y)# + A%
W/se*sen-l eXp $ ﬁgt )Fz(Xﬂl)@an

where H is the characteristic function of the negative numbers, and F, =1 if
0<y<g(X), F=-1i0>y > g(X), 0 otherwise. (the sum of F,(X,y)
and H(y) gives back the original F).

[} z 4z
‘ gX)
onac,z)=o ) B
F2(X.2)=-1 Fagzl
F2(X,4)=0
X F2X.2)=0
case g COY;CaVﬁ case g convex
Then:
= —(y)?
F(0,28) = 1/2— —— / )
O2t) = 2= D Jo P apr
1 —X2?2 ro(X) -—(z—y)2
° _— < ———0yoX
’ (47rDt)n/2 /32"-1 “Pupt Jo P 4Dy J

We will now define k; bounded functions of the space variables and t. We
then approximate and integrate the first exponential, replace g by its second
order approximation, and approximate the third exponential. Then:
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W + (z/\,/Z)3k1 + I(z,t) ,

F0,z,t) = 1/2-

where I is :

1 -X?
I{z.t) = ————/&_lexp

(47 Dt)n/2 4Dt

S FEl kX 24 g2
o (1+Z_:yk2)6’y6X :
0

and where the a; are the second derivatives of g in its principal directions.
(We suppose that in our coordinate system the Hessian of g is already diag-

onal).
We then have:

1 -X?
I{z,t) = —/32"—1 exp

(47 Dt)™/2 4Dt
= X[eP(X) 22| X|PPy(X
=1

P, and P, being bounded by polynomials in X.
This leads to (P} and P/ are also bounded by polynomials):

(4Dt)3/2q1/2 %21 g, 22
I(z,t) = 2 5" 4 k,t+t32P/(t) + == P!(t
(2,1) 247 D) §2+4+ 1(”\/{2()

1 [Di.=g 22
I(Z,t) = '2— ?Za,+tP3(t)+$P2’(t)
=1

Finally we obtain:

z 1 [Dt 22
F(0,2,t)=1/2 = ——— + =/ — 4+ tPs(t) + —=P/(¢ )3k
( =2 ) / (47TDt)1/2 +2 . ;at-i- 3( )+ ‘\/t- 2( )+(Z/\/_) 1

to which we could add a term in ezp(—k2/t) accounting for the fact that the
expanding region, outside a area of radius k, can no longer be described as the
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region under the graph of a function. Since this is exponentially decreasing
it is much smaller than the three other corrective terms and therefore we will
assume they dominate it. It is then easy to calculate the initial speed of the
level set F' = 1/2. We must solve the equation:

—Z)ﬁ+ 1\/57121(1 +2Py(8) + 22VAPs(2,1) + (2/ 1)k, =

(47 Dt

where P, and P, are bounded by polynomials.
We have:

g= DZ Ot +t3/2P(t) + 22 P(z,t) + (2)3/thy

=1

We then write:

n—1

z=(D>_ a;)t+te(t)

i=1

and assume €(t) is bounded for t small. Then:
e(t) = Vif(t,e())

where f is bounded for t small. Knowing that the original F was continuous
on f"xR+* in (X,z) and t, we immediately deduce from the above that there
exist €(t) satisfying this relation when t is small enough, and such that:

lime(t) =0 .

t—0

This proves3 that the initial speed of the front is

3Since we know that curvature linear-dependent motion is stable, the above is enough
to prove that the algorithm converges. The second order perturbation it introduces at
each step will thus not have a catastrophic effect after a finite time.



4 Affine Velocity

This algorithm also enable us to perform affine velocity front motion. We
must then track at each time step the level | = 1/2 — ¢, where € = v\/ 15

instead of 1/2.
We will then have:

n-1
z=vt+ (D a;)t+ terms.of.superior.order.

1=1

therefore the speed of the front will be:
n—1
v+ (D Z ai)
=1

directed outward. In this case both regions are no longer symmetrical: If
we had chosen to diffuse the characteristic function of the other region we
would have had to track the level I = 1/2 + € to obtain the same motion.

Also the level we track is now a function of the time step we use. This
procedure is difficult to implement numerically, as opposed to the simplicity
of the pure curvature velocity case.



5 Angles and Triple Points

5.1 Angles

One of the advantages of this method is that it handles very easily sharp
angles because it doesn’t need to calculate the curvature explicitly. The
speed of the corner of a sharp angle is obviously infinite, and we have tried
to study the second order behavior of those points. In all the following, we
will only consider 2 dimensional problems.

5.1.1 Motion of the edge of an angle for a 2 regions problem

We have first tried to calculate an approximation of the solution of the heat
operator around a sharp angle, using the explicit solution as we did above.
We here use polar coordinates centered at the edge of the angle. The initial
expanding area is delineated by the two half-lines § = o and = —aq, i.e.
F(r,0,0)=1for —-a<<a, F(r,0,1) = 0 otherwise.
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Then

1 o ro Rcos ¢ —rcos§)? + (Rsin ¢ — rsin 6)?
Filr Gth= 47rDt/o /_a «rp - )4Dt( sidgelt
—r2 o) o
F(V4Dir,0,t) = -ezp(w—") / ezp— R? / exp(2Rr cos (¢ — 0))Rd$dR
0 -a

This shows that the patterns for all times are homothetic to that of t=1,
with ratio v/#: F(r,0,t) = F(r/+/%,0,1). For the motion of the edge of the
angle, we calculate F for § = 0.

F(V/4Dtr,0,t) = %(W_T—Q /Ooo exp—R? /cY ezp(2Rr cos ¢)Rd$pdR = G(r)
And F(\/Et)r,O,t) = F(r,0,1). If we denote r;/, the value of r such that
F(r,0,1) = 1/2, we have:
r1/2(t) - \/27'1/2

Unfortunately the value of 7;,, can not be obtained in closed form. It can
be numerically computed by solving : F(r,0,1) =1/2.

If we study the evolution of an hyperbola : y = \/Ee + pz?), and suppose
an hyperbola is a stable by curvature dependent motion (i.e. the front at
different times would always remain an hyperbola, with € being a function of

t: this is not actually the case) we find a very likely result. We observe the
intersection M of this hyperbola with the Y axis. the curvature in M is:

€(t)

p

Dp/ \/6—(5

but its ordinate is:\/e(t). We should then have:
Oe(t)/0t =2Dp

so its speed should be :

i.e., €(t) = 2Dpt and M having a ordinate of
2Dpt

which is what we have found above.
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5.2 Triple Points, Multiple Points

In case of a triple point we have in fact three regions. We diffuse each one
of the three characteristic functions at each time step and then define the
three new regions as the set of points where the corresponding function is
greater than the two other. In the following we will call that ”chopping”.
Numerical approximations show that, regardless of the initial angles between
the tangents to the boundary at the triple point, they very quickly move so as
to obtain three angles of 120 degrees. This configuration then remains stable
, though the triple point may continue to move or rotate. But this motion is
not specific to the triple point and is only induced by the boundaries. (the
boundary between 2 regions always tend to straighten out).

5.2.1 Approximation of the Diffusion of an Angle Near the Origin

In order to study the motion of a triple point we will calculate an approx-
imation, for r small, of the diffusion of an angle near the origin, using our
results above. If we develop exp(2Rr cos (¢ — 6))into a series for r small, we

obtain: )
a sin a cos 6

F(vV4Dtr,6,t) = emp—rz(; +7( =

It is even possible to calculate all the terms of this series : (we note I(8,n) =

J2, (cos (¢ —0))ndg)

)+ t.s.0)

F(\/ADir,,1) = exp—rz(iﬁ (2'9_212_]&0__27_ i 2\/9_222:11)))

which evidently has a convergence radius of 4.
If we only keep first order terms we obtain:

i 6
F(v4Dtr,0,t) = % 3 r(ffﬂ—i’/i) +t.5.0
™

we can now write this for the three different regions around our triple point
(we of course approximate the branches with their tangent half-lines)



o)

Remmmmm———

_______

A M(theta,r)
'''''' § S =
2x alpha,
o sin o cos 8
F,(V4Dtr,0,t) = — — ) + t.s.
1( r,o, ) T + T‘( \/7? )+ s.0

: o_
Fy(V4Dtr,0,t) = 2 -+ T(sm b (ﬁ(al T az))) +t.s.0
m
Qs sin a; cos (6 — ay)
F3(vV4Dtr,6,t) = = — r( )+ t.s.0

T \/7?
With alpha; + alpha, + alpha, = 7.
We have F} + F, 4+ F5; =1 at all times (because the diffusion kernel is linear
and F; + F, + F; = 1 for t = 0). We can easily check that the above
approximation keeps this property:

o sin a cos 6

Fy+ F, + F3)(V4Dir,6,t) = — +r—0—m ——
(F1 + Fp + F3)( r,0,t) g ¥4
a; sin a, cos (0 — (a; + a3))
— 4+ ',-(

7 )

+
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Qs sin a3 cos (0 — ay)
= g

T VT

t.s.0

)

+ +

1+ L(sin a; cos @ + sina; cos (0 — (a; + ay))
VT

—sin (a@; + a3) cos (0 — a;)) + t.s.0

I

1+ %(sin a; cos b

+ sinay(cosfcos (a; + a;) +sinfsin (o) + @5))
—sin (a; + a;)(cos O cos @, + sinfsin@,)) + t.s.0
= 14 % cos O(sin oy + sin (ay — (; + @))) + t.s.0

= 1+4ts.0

This will be useful in the following, whenever the property 3° F; =1 will be
needed.

We will also notice that for r = 0, the values of the F; are exactly equal to
< at all times.

Obviously, if we select at each step the greatest of the three functions and
redefine the three regions accordingly as we did above, the triple point will
be the point of the plane where all three functions are equal, and their value
will then be 1/3. Therefore, a necessary condition for obtaining a motionless
triple point will be to have three angles of 120 degrees. Otherwise the triple
point will move with infinite initial velocity, as described above for a two
region sharp angle. We will later try to prove that its motion will tend to
bring back all three angles toward 120 degrees.

5.3 Obtaining different shapes of triple points

We can chose other ways of redefining the three regions at each step. A
very simple one, which still allows us to obtain any kind of angle distribu-
tion, handles Fi(X,dt), F5(X,dt), F5(X, dt) as the barycentric coordinates of
a point,P , inside a triangle, which we will call the "projection triangle”.
This triangle is divided in three areas, A1 ,A2 ,A3.

14



S1

M3

A3
A2

S2 S3
M1

If P(x) is in Ai, then the initial characteristic function for the next iteration
will be: Fi(X)=1,F; (X)=0

We have divided the triangle into A1 ,A2 ,A3 by choosing a ”centroid point”,
C, and drawing lines from it to the middle of each side of the triangle. It is
very important that those lines reach the middle of each side of the triangle:
The sides of the triangle correspond to regions where one of the F; is infinitely
small, i.e. far from the triple point. In those regions the scheme should be
equivalent to the above two characteristic function problem, and we then
have to select the greatest function at each step. Therefore those lines have to
reach the middle of each side. If such was not the case we would obtain affine
curvature dependent motion in those areas , and the constant in this affine
relation would depend on the the time step we use to diffuse the functions
between each chopping. ~ We will also note ¢;, ¢, and c; the barycentric
coordinates of C, the centroid point, in the triangle S1, S2, S3. We suppose
that ¢; + ¢ + ¢35 = 1.

15



5.3.1 Order Zero Approximation

Computations have shown that the above chopping method can give differ-
ent shapes of triple points. We have sought a relation between the position
of the centroid point C and the shape of the triple point. First we must note
that the triple point at step s 4+ 1 corresponds to the centroid point . If dt is
the duration of the diffusion between each chopping (we use the above ”pro-
jection triangle” to chop, and redefine the regions and boundaries), we have:
(F1,5(Ts41, @), Fy (Toq1,dt), F5 o(Topq,dt)) = (c1,¢p,¢3) where Tyyy will be
the new position of the triple point at step s + 1. There is no multiplica-
tive factor in this equation because we know that both ¢; + ¢, + ¢3 = 1 and
> F; = 1. This will then give us a simple condition if we want the triple
point to stay still, i.e. T, = T,,,. We should have:

(Fl,s(Ts’ dt)v F2,s(Tsa dt)’ F3,s(Ts3 dt)) = (ch C, C3)

We name ¢; the half-angles between the tangents of each branch emerging
from the triple point as drawn above. Considering the fact that for a sharp
angle

(Fl,s(Tsv dt)’ F2,5(Ts’ dt)v F3,s(Ts’ dt))

are independent of dt and are equal to

(al/ﬂ-’ 02/71', 0’3/7T) 9

we obtain the following necessary conditions:

o/t = ¢
ap/m = g
o3/m = ¢

The experimental validity of these conditions will be discussed below.

5.3.2 First Order Approximations

The above conditions are necessary but at this point are not proven to
be sufficient. We have tried, using the above first order approximation, to
determine the behavior of the branches. We consider a case where the initial
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branches are straight half-lines, and use the approximation to calculate the
positions of the new branches when the chopping occurs. To this effect we
will study the boundary between the first two regions. Points located on this
boundary should be projected on the segment joining C and Mj, the middle
of [S1-S2].  The barycentric coordinates of Mj are (1/2,1/2,0). The new
boundary between 1 and 2 (after the chopping) will then the set of points
which are not in area 3 and such that there exists ~:

F, = 7/2+(1—7)Cl
F, = 7/2+(1—7)Cz
Fz = (1-79)cs

As 3 F; = 1, the 2 first imply the third equation, this being also true if
we replace the F; by their first order approximations. Using the homothetic
properties of a diffusing angle we will note: R = /4Dtr. the first order
approximation then gives:

a sin a; cos @
R(R6,t)=(1=)/2+7 = —+r(—

t.s.
- v )+ t.s.0

. .
B(R00=(=)/247e = Zonullrel
. M
E(R&t)=ve, = S r(sm @3 €05 CY"})) + t.s.0

7r VT

These equations are linked because 3~ F = 1 so we will only consider the first
and third lines. We obtain:

. o
8- T(M%’}(ﬁ))

"y.._
C3

and

"

—r sin a3 cos (@—a> . 0
( Nz )(61_1/2)+1/2=C¥1+T(SIIIQ/1COS )

3 s VT

This equation (coupled with the two others we would obtain writing this for
the two other branches) has obviously no solution for r small if the order zero
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conditions cited above are not satisfied. If such was the case, the triple point
would move with infinite initial velocity, and any computation of its motion
would heavily depend on the time step used for the first iteration. Therefore
we will assume that those conditions are fulfilled, and consequently:

/T = €1, QT = Cy, a3/ = c3

We then have:

(1- cia(sinag,ct:;;O——%)))(CI C1/2)+1/2 = ¢ +T(sinci;;cos€

Finally r disappears and we have:

(1 —1/2)

sin a, cos (0 — a,)) = sin a, cos @
3 2 1

We can then obtain tan 8

(e —1/2)

C3

sin az(cos f cos a, + sin @ sin a,) = sin a; cos §

(q —1/2) | _ (cp —1/2)
sin o cos ) = ———=
C3 C3

cos f(sin oy — sin a3 sin @, sin ¢

& . o
(__3_(01—1/2) sin a; — sin a3 cos ay)

tanf = : -
sin a3 sin oy,

This differs from tan a;, except in some cases(one of them being ¢; = ¢, =
cz3 = 1/3). It thus doesn’t prove that there can be a still triple point but
rather induces us to think the contrary. We though must remember that
our approximation was obtain by developing F(v/4Dtr,6,t). If we consider
F(R,0,t) = F(v/4Dir,0,t), the above will only be accurate for r small,

or R/ \/E4Dt) small. What we have done does not apply if the successive

positions of the triple point are at a distance of \/Z4Dt) , OF more.
We will now compare these results with those obtained by computation.
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6 Computational Implementation of the Algo-
rithm

This algorithm has been programmed. A five point Laplacian was used to
compute diffusion, on a grid of 300X300 points (this size was chosen in order
to obtain a good precision, while keeping the program reasonably fast. We
also used a 200X200 grid) . The boundary conditions, which as we will see
are very important, were of null flux (homogeneous Neumann conditions).
We have tried several different values for the time step used in the diffusion
kernel, the number of iterations between each chopping, as well as the posi-
tion of the centroid point. The two first affect the stability and the accuracy
of the program, while the third enabled us to test our calculations concerning
triple points.

6.1 simple curves

In the case of a simple non-intersecting curve, this has yielded very good
results. The motion law of the front can easily be checked to be a curvature
dependent one. The convex parts of the fronts tend to shrink, and the general
effect is to obtain straight fronts, or to make circles shrink and disappear.
The linearity of the law can also be checked by measurement.

Hew. § 720 dX= 0.250-02 dT= 0.50L-04 Rer. § 740 dX= 0.26L-02 dT= 0.50C-04 Rer. § 760 &X= 0.36L-O8 dT= 0.50L-04

here we can see two collapsing circles.
On more complex fronts we can check the correlation
between curvature and velocity. See the end of the report.
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6.1.1 Boundary problems

However, an important problem occurred. While the program gives excellent
results as long as the curve remains confined inside the grid, it has the greatest
difficulties to handle curves of infinite extension or whenever it intersects
with the boundary of the grid. The only equilibrium available for such an
intersection was found to be a 90 degree angle. One iteration is enough to
come to this equilibrium, because the velocity of the front is infinite for all
angles other than 90 degrees.

Iter. # 360 dX= 0.17E-02 dT= 0.10E-04

here all three fronts(each one of them are simple fronts)
are perpendicular to the boundary at the intersection

This phenomena is very closely linked with triple points. the intersection
between the front an the boundary has to be understood as a triple point.
Ideally we would like that those intersection to be stable in all positions.
This would avoid any interference between the boundary and the inside of
the grid. To understand this, we will first consider a straight front, and then
consider the effect of adding a boundary to this front.

20



with the border g

without the border

Adding a boundary will make both fluxl and flux2 null, and introduce a
asymmetry: In this case flux] was negative and flux 2 was positive. The
smaller angle(1) will then tend to become bigger, as the area where F; > 1/2
will decrease in surface, and the reverse will happen to area 2. This will only
stop when both angles reach 90 degrees.

Very little can be done to solve that problem. One solution would be to
introduce a flux through the boundary that would be calculated to overcome
this problem. We would then have to compute the direction of the branches
at each intersection with the boundary and then introduce the corresponding
flux . The flux would be equal to flux 1 and flux 2 of the above drawing.
However the algorithm would then be much more complex, and it would then
lose the advantage it has other front tracking methods. Therefore we tried
to diminish the impact of this phenomena by increasing the size of the grid,
and changing the initial data(see below).

6.1.2 Stability

The parameters of the program have to be adjusted in order to make it
stable and efficient. Mainly, the time 7 step used for diffusion between each

21
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chopping, and the size of the elementary cells of the spatial grid have to be
compatible. If p is the typical curvature we study, then we must have:

VDT << p

otherwise our local analysis is no longer valid(7 is too large), and
dr << pD7 << kdz

with k ranging 100 to 1000 or more. If 7 is too small, the diffusion will
not be properly computed. The fronts will not move, because the time step
will be too small to allow it skip one cell or more at each rechopping. If 7
1s too big, the algorithm will be unstable because the value of the slope of
F(X) around the level 1/2 will be too weak . Depending on the accuracy
of the computer, it might then badly chop the function, leading to uneven
boundaries, ”islands” etc... (see below)

Mer. § 0 &X= C.17X-02 4T~ 050804 Rer.§ 20 &X= 0.175-02 dT= 0.80E-04 Rer. § 100 D= 0.17E-02 dT= 0.800-04

unstable choice for 7: 7 = 0.00005, grid of 300 points

The program we use to compute diffusion itself using iterations, using
a much smaller time step than the ”chopping” iterations. It may also be
unstable , if this second time step is to big.

6.2 Experimental Results for Triple Points
6.2.1 Symmetrical Chopping

We have first run the program with the centroid point being the center of
gravity of the triangle. This is equivalent to select at each chopping the
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greatest function. This leads to a 3 x 120 degrees triple point. Here the
correlation between our above calculations and the simulation is perfect.
The triple point moves across the grid. Though this has not been proved,
this motion is clearly the consequence of "tension” occurring at the boundary
of the grid, as exposed above. Hence, the motion of the triple point, an the
shape of the branches outside the immediate vicinity of the triple point can
be greatly affected by the fact that the intersection between the front and
the boundary of the grid are on vertical or horizontal parts of the boundary,
as the following pictures show:

Rar. § 0 &X~ C.368—02 dT=~ 0.106—04 Rer. § 400 X= 0.B5E-02 dT= 0.100-04 Rer. § 1800 dX= 0.26Z-02 T 0.10C-04
Her. § 0 &X= C.B6E-02 dT~ 0.108-04 Ker. § 400 &X= 0.950-02 dT= 0.10C-04 Rer. § 1600 dX= O0MSL-03 dT= 0.105-04
Har.§ 0 &X= C.25E-02 dT= 0.108-04 Rar. § 400 dX= 0.36L-02 dT= 0.10L-04 Rer. § 1800 dX~ 0.NEX-02 €T= 0.100-04

All three cases have been computed with the same chopping method. (The
chopping was not symmetrical, and the centroid parameter, defined on the
following page, was p=0.32 in all three cases.)
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6.2.2 Triple Points with Angles Below 180 Degrees

In order to keep the program quick and simple not all kinds of centroid
points have been computed. It has only been allowed to move on the segment
linking one of the vertices of the triangle to the the middle of the opposite
side:

S1

Al

M2
M3

S2 s3
M1

If centroid point parameter of the input-file is p, the centroid point is the
center of gravity of S1, with coefficient (1-p), and of M1, with coefficient
p. As long as p remains above 0.5, our previous calculation indicates that
there will not be any angle above 180 degrees. Computations with different
p between 0.5 and 1 give very good results. The triple point, if the effects
due to the boundary of the grid are not taken into account, stays still and
the relation between p and the angle are satisfied with reasonable accuracy.
For a given p we have:

cl=(1—P)’ ¢ =¢c3=p/2

Two of the angles are equal to p*180 degrees, and the third is 2*(1-p)*180
degrees. The results of these computations are displayed at the end of this
report. The measurements of the angles are not always very accurate be-
cause the branches are rarely straight, due to the boundary effects. It is
interesting to notice that only the motion of the triple point, and not the
angles, depend on how the fronts intersect the boundary. This indicates that
the local analysis we have performed is valid in this case.
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6.2.3 Triple Points with Angles Above 180 Degrees

When the parameter p is in [0,0.5], the simulations do not yield a still
triple point. When p is under 0.40, the triple point moves rapidly, and its
velocity increases as p decreases to 0. The shape of the triple point itself is
different. It becomes round, and the largest angle does not seem to go over
180 degrees. It is difficult to measure it, because the branches of the front
are not straight, and two of them have a very high curvature near the triple
point. The round shape of the triple point is clearly related to its motion.
It is has not been completely determined whether this kind of triple point
can reach an equilibrium, and stop its motion. The grid we used had to
stay of reasonable size, and, most important, the boundary problems could
have prevented it from reaching an equilibrium. It is also possible that this
method does not converge when the time step tends to 0, or, in other words,
that the behavior of the triple point depends upon the time step, as in the
affine velocity motion we described above. We have tried the same initial
cases with different time steps. It has given slightly different results, without
really confirming this last statement. The results of the computation are
displayed in the following pages.
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RESULTS OF THE COMPUTATION

26



We here see the result of a computation with p=0.66, which should and
does give three angles of 120 degrees. The fronts are first change shape to
give 120 degrees angles and 90 degrees intersections with the boundary, then
the shape of the triple point doesn’t evolve any more and it is only translated
due to boundary effects.

Iter. # 0 dX= 0.25E-02 dT= 0.50E-04 Iter. § 100 dX= 0.25E-02 dT= 0.50E-04
Iter. # 220 dX= 0.25E-02 dT= 0.50E-04 Iter. # 1760 dX= 0.25E~02 dT= 0.50E-04

/
\
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The following shows computations with initial branches of +45 and -45
degrees. The centroid point parameter is 0.80, which should give a theoretical
(1-0.8)*360=172 degrees angle. The final angle is approximately 85 degrees.
The triple point is then almost still.

Rer. § 0 &= 0.172-02 dT= 0.108-04 Rer. § 80 &X~ 0.17T-08 dT= 0.108-04 Rar.§ 40 &X= 0.175-0% &7~ 0.108-04

Rer. § 60 &X= 0.17E-02 dT= 0.108-04 Rar. § 100 dX= 0.17E-0R dT= C.100-04 Rer. § 180 dX= 0.17X-03 &7~ 0.106-04

Kl Kl

Rer. § 500 X= 0.17C-02 dT= 0.100-04 Mer. § 1000 dX= 0.17E-02 ¢T= 0.10E-04 Mar. | 1600 dX= 0.17E~02 dT= 0.10L-04
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We here see the final results of computations with p= 0.90 and 0.95. They

theoretically give angles of 36 and 18 degrees. The actual angles are 38 and
18 degrees.

Iter. # 1000 dX= 0.17E-02 dT= 0.10E-04

Iter. # 1500 dX= 0.17E-02 dT= 0.10E-04
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When p is between 0 and 0.5, the triple point starts having a round shape,
and it becomes impossible to measure the angles. In fact that round shape
could be interpreted as two 90 degrees angles and one 180 degree angle. how-
ever the shape of the triple points is still affected by the centroid parameter,
as can be observed in the following. This round shape is not an effect of
the boundary problems: it occurs almost instantly and is present regard-
less of the position and angles of the intersection between the front and the

boundary.
Iter. # 0 dX= 0.17E-02 dT= 0.10E-04 Iter. § 20 dX= 0.17E-02 dT= 0.10E-04 Iter. § 180 dX= 0.17E-02 dT= 0.10E-04
centroid parameter p=0.1
Iter. # 0 dX= 0.17E-02 dT= 0.10E-04 Iter. § 60 dX= 0.17E-02 dT= 0.10E-04 Iter. § 500 dX= 0.17E-02 dT= 0.10E-04

centroid parameter p=0.2
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Iter. ¥ 0 dX= 0.17E-02 dT= 0.10E-04 Iter. § 340 dX= 0.17E-02 dT= 0.10E-04 Iter. # 1500 dX= 0.17E—-02 dT= 0.10E-04

\
>

1

centroid parameter p=0.3

Iter. § 0 dX= 0.17E-02 dT= 0.10E-04 Iter. § 720 dX= 0.17E-02 dT= 0.10E-04 Iter. # 2000 dX= 0.17E—02 dT= 0.10E-04

"~

VL
[ L

centroid parameter p=0.4



Iter. § 0 dX= 0.17E-02 dT= 0.10E-04 Iter. # 120 dX= 0.17E-02 dT= 0.10E-04 Rer. # 1600 dX= 0.17E-02 dT= 0.10E-04

centroid parameter p=0.5

Iter. ¥ 0 dX= 0.25E-02 dT= 0.10E-04 Iter. § 500 dX= 0.25E-02 dT= 0.10E-04 Iter. # 3500 dX= 0.25E-02 dT= 0.10E-04

centroid parameter p=0.55
for p=0.5 we have a well defined 180 degrees angle. For greater values of p
we have well defined angles. There is a change in the behavior of the triple
point for p=1/2.



