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Abstract

The accuracy of numerical approximations to piecewise smooth so-
lutions of hyperbolic partial differential equations is greatly influenced
by the presence of singularities in the solution. In the presence of cou-
pling (through lower order terms or variable coefficients), high order
numerical approximations can lose accuracy in large regions, where the
analytical solution is known to be smooth, due to the spreading of the
errors that the singularities introduce in the computation.

This phenomenon, which has been analyzed in the past fifteen years
for a number of classical linear methods, is studied here for nnmerical
approximations obtained with nonlinear ENO schemes. The study
of the local rate of convergence allows us to identify the necessary
techniques to reduce the spread of errors and to avoid the accuracy
loss of the computed approximations.

The techniques we develop, can be applied to nonlinear hyperbolic
partial differential equations and systems to sharpen the resolution of
corners of rarefaction waves,

1 Introduction

At a point where the solution of a hyperbolic problem has a jump discon-
tinuity or a discontinuity in one of its derivatives, the differential equation
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ceases to be valid, and special techniques must be used to guarantee that
numerical approximations to the solution stay accurate.

For linear schemes, the phenomenon of the loss of accuracy caused by
singularities in the solution of a hyperbolic problem has been studied dur-
ing the past fifteen years. In [10], Majda and Osher realize that the loss of
accuracy on linear dissipative approximations to a model hyperbolic system
does not remain confined to a close neighborhood of the characteristics. In
the presence of coupling (through variable coefficients or lower order terms)
the rate of convergence in the region of influence of the singularity drops
down to first order, independently of the order of the underlying scheme.
Similar studies were conducted by Majda, Osher and McDonough ([9]) for
spectral methods. The conclusion, in both cases, was that some sort of pre-
processing of the initial data is necessary if one wants an accurate numerical
approximation at all regions where the analytical solution is smooth.

Recently, a great deal of attention has been devoted to the study of
nonlinear methods for the numerical solution of hyperbolic problems. Among
these, ENO (Essentially Non Oscillatory [6, 7, 13}) schemes have some very
desirable properties: They are highly accurate in smooth regions and they
avoid spurious oscillations around discontinuities (without having to resort
to parameter-tuned artificial viscosity terms); shock profiles are very sharp,
but contact discontinuities are smeared over a relatively large number of
cells.

In {1}, we analyzed the effect of coupling in the accuracy of numerical
approximations computed with ENO methods of various degrees of accu-
racy. As in the case of linear schemes, we found that, in the presence of
coupling, the computed solution becomes only first order accurate in the
region of influence of a singularity (a jump or a discontinuity in the deriva-
tive), regardless of the order of the underlying ENO scheme. With an eye on
the error spread introduced in the computation by a contact discontinuity
as the cause of the accuracy loss, we turned to the two existing techniques
designed to reduce this error spread: Artificial Compression [3, 14] and Sub-
cell Resolution [5]. As expected, only the Subcell Resolution (SR) technique
was able to raise the accuracy to second order (see [1] for details). In the
example under investigation, we were unable to obtain better accuracy rates,
the reason being the discontinuities in derivatives, which we will call corners
from now on, developed by the solution. In an attempt to better understand
the phenomenon as well as to improve the accuracy of numerical approxi-
mations obtained via ENO methods, we continue studying the phenomenon
of propagation of error into regions of smoothness. In this paper we shall



concentrate on the analysis of the error spread introduced by a corner in nu-
merical computations with ENO methods, and we shall devise a technique,
based on Harten’s Subcell Resclution, that is able to eliminate it.

The rest of the paper is organized as follows: Section 2 describes, for
the sake of completeness, the basic ideas of ENO schemes and the original
SR technique due to Harten. Section 3 presents a computational analysis of
the error spread introduced in the computation by a corner and highlights
the main sources of trouble in a straightforward application of Harten’s SR.
Section 4 describes and analyzes a corrected form of the SR technique that
works suitably for corners. Section 5 contains examples of applications to
systems of conservation laws and some conclusions.

2 An overview of ENO schemes; Harten’s Subcell
Resolution

In this section we shall review the underlying principles of ENO schemes and
of the original Subcell Resolution technique due to Harten.

Consider, for simplicity, the one dimensional case, and let us denote by
E(t) the exact evolution operator for the conservation law, i.e., the solution
u(z,t) satisfies

u(z,t) = E(t — to)u(z, ty).

Given a spatial step-size h, we define the sliding average of u(z,t) as

1 hf2
a(z,t) = ﬁ/ u(x + y, t)dy = (A - w)(w, ).
—hf2
The evolution operator for the sliding average will thus be
a(z,t) = (A Bt — to)ulz, to)

_ To specify a method, we have to define its discrete evolution operator
E(7), where 7 is the time step of the discretization, i.e.,

gt = E’(T) T
The abstract form of an ENO scheme has
E’(T) i = Ay E(r)- R(-, %), (1)

where R(:, %) is a piecewise polynomial reconstruction of u from its cell av-
erages .



i turns ouf that this scheme can be written in standard conservation
form and, therefore, bounded limits as A — 0 of approximate solutions con-
verge to weak solutions of the conservation law [6, 7).

ENO schemes call for R(x; %), a nonoscillatory reconstruction of u from
its cell averages. In fact, the most important step in an ENOQ scheme is the
reconstruction step. Given {v}} which are approximations to {i}}, the cell
averages of the true solution, we must extract high order accurate pointwise
information to solve the reconstruction problem without introducing O(1)
Gibbs-like spurious oscillations near the discontinuities. The reconstruction
algorithm is derived from an interpolation technique that uses an adaptive
stencil of grid points. Consequently, the resulting scheme is highly nonlinear,
even when applied to a linear equation.

For an rth order accurate method, R(z;@) is a piecewise polynomial
function of z, of uniform polynomial degree r — 1, that satisfies

R(z; @) = u(z) + e(z)h” + O(A™*1) (2)

at all points # for which there is a neighborhood where u is smooth.
In [6, 7], two different approaches to the design of R(z, %) are considered:

¢ RP: Reconstruction via the Primitive Function.
¢ RD: Reconstruction via Deconvolution.

We refer to [6, 7] for specific details on these two methods. Here we will only
describe the main features relevant to our discussion.

(1) Reconstruction via the Primitive function.

Given the cell averages, @;, of a piecewise smooth function w(z)

~ 1 [%ied
W; = "E“L w(y)dy, hj = @iy — B4,
we can immediately evaluate the point values of the primitive function H(z)

A=) = [ wu)dy

i
H(mJ+%) = Z h,;'LE;.

fmmig



Let @,(z; H) be a piecewise polynomial function satisfying
Qulejey) = Hlzay) Vi

d d
T1@n(ei H) = o= H(z) + O(A™) 0<i<r (3)
in smooth regions. Since
d
w(z) = EH(‘E),

the reconstruction for w is obtained as
_ d
Re; @) = —Qu(; H).

(2) Reconstruction via Deconvolution

Assume now that the mesh is uniform and consider the given cell aver-
ages W; to be the point values of @(z), the globally defined sliding-average
function of w, i.e.

where
_ 1 /2
o(e) = "}{_/ w(z + y)dy.
~h{2

We then proceed to construct a piecewise polynomial function, which we
also call @, (z;®), that interpolates @ at the x; for each j. We ask again
that

Qr(@44) = B(2544) v 3,
d d'
T (et 0@) = o () + O(r~™) 0<igr (4)
in regions of smoothness.
Defining
Dﬂ,j - 'lI?j
- d' d'
Dy; = h’mmod(er(a:j - O;ﬂ')),wQ,.(wj + 0; 1)) for 1<I<r—1,

where mmod(z, y) is the min mod function

_ ) s-min(|z|,]y]) if sgn(z) = sgn(y) =s
mmod(z,y) = { 0 otherwise,



we can easily check that
Di; = h’tﬁ(mj) + O(h"); (5)
Then, since
D(2) = (w1 )(z)
| 1/h for|z] < h/2
»=10 forjz| > h/2
we can calculate (Dg;, -+ Dy_y ;) such that

Dy ; ~ hPw®(a;) 1<k<r

by a deconvolution procedure to G(h") (see [7]).
The reconstruction is then defined as

k!Dk’j{(m —a;)/RF  for |z~ z;| < h/2.

k=0

In each case, the approximation properties of R{x; @) at a particular cell
are derived directly from (3) or (4).
Let us concentrate now on the RP reconstruction. @, satisfies

Q@ H) =g (®)  for m;_y <o <ajyy

where qf—”(m) is the unique polynomial of degree r that interpolates H at the
r + 1 points

5:(7) = A&i,090+» Tistiyer }
for a particular choice of 4,.(j) ( to be described later ). Choosing j such that

. T, . .1
j-r+5<i(i)<i-3
ensures that
g(z5-y) = H(z;-1), 0(2541) = H(zj41)-

It is now obvious that (3) will only be satisfied if the set 5.(7), the stencil
of points assigned to the jth cell, lies entirely in a smooth region of w.

A similar argument shows that the same conclusion can be drawn for the
RD reconstruction. If we want R(z; @) to satisfy (2), the stencil of points
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selected by the ENO interpolation must lie in $he same region of smoothness

of w.

We shall describe now the original Subcell Resolution technique due to
Harten [5}. The basic idea is a simple one: In one dimension, the sliding
average in a cell gives accurate information on the location of a discontinuity
within that cell. An ENO reconstruction can, thus, be modified to account
for discontinuities within the computational cells, Harten identifies a cell
with a possible discontinuity in its interior as one for which the stencils
assigned to its left and right neighbors are disjoint,

Sei-1) N Sy = 0.

In this case, we extend the reconstructions from the cells to the left and
to the right, R;_; and R, into the j-th cell up to a point 8; so that

Fy(8;) =0 (6)

where
Be= [ Ba@es [T R -ney. ()

This will be possible if
Fi(zj-3) - Fj(2544) £ 0,
in this case, the reconstruction in the j-th cell is redefined as

b SRy Rj—l(a;) z = J
R(m’w)_{RHl(m) 6; <z < wjy. (8)

In ‘order to evaluate R(z,w") in (8) we do not have to know the exact
location of the root §;, only whether < ; or # > 6;. Assuming a single
root in I;, this can be accomplished by comparing the sign of F;(z) to that
of the endpoints. Thus

Bl Ri_1(2) Fi(e;_1) - Fi(z) >0
R, 07) = {R:m(m) Fi(z)- Fy(®;43) > 0.

The actual flux calculation in {5] is quite cumbersome. Using conservation
in a clever way, Harten has devised a much simpler procedure to compute



the numerical flux. The derivaiion, unpublished until now, is given by Ami
Harten in an Appendix to this paper.

As we will see later, in the case of a jump discontinuity, the ENOQ tech-
nique picks a one sided stencil when reconstructing at each side of the jump,
therefore, the interpolating polynomial uses information from only one of
the smooth sides of the solution. When the reconstructions to the left and
to the right of the cell harboring the discontinuity are extended to that cell,
we do get an accurate approximation of the solution. On the other hand,
our numerical experiments reveal that, when dealing with a corner, the ENO
technique might still pick information from across the corner in reconstruct-
ing the solution at the cells next to the one that contains it.

The ENO interpolatory technique was studied in detail in [6]. The au-
thors show there that the interpolating polynomial will be monotone in a cell
that contains a discontinuity of H in its interior. However, when applying
the technique to solve a conservation law, we interpolate a function which
is one degree smoother than the solution to the partial differential equation
. Therefore jumps in u become corners for the function to be interpolated,
and the monotonicity result does not apply. In any case, the success of the
SR technique is not based on the properties of the reconstruction in cells
that contain singularities, but in cells next to the one with the singularity.

We can conclude, then, that the success of the SR technique depends
solely on the ability of the interpolatory technique to pick one sided stencils
at the cells neighboring a singularity. In the next section, we investigate
the spread of the error that a corner introduces in numerical approximations
obtained via ENO schemes, and show that SR, as it is, fails to keep the
numerical approximation accurate around the corner,

3 Local accuracy around corners

When dealing with nonlinear schemes, the question of accumulation of error
has to be analyzed primarily via computational experiments. To this end,
and to get a grasp on the problem, we solve numerically the linear advection
equation with continuous, piecewise smooth initial data,

Uy — U, = 0
| —sin(fe) -1<2<0 (9)
«a,0) = { sin(Za) 0<e <1,
using second and third order ENO schemes. In Figure 1 we show the



x-coord. | ud0-ut | | u80-ut | numer. order
-1.000 0.36778321E-04 0.74442122E-05 2.305
-0.950 3.37901373E-04 0.79356944E-05 2.256
-0.900 0.38806222E-04 0.83783951E-05 2.212
-0.850 0.43950582E-04 0.87680826E-05 2.326
-0.800 0.51609843F-04 0.91142530E-05 2.501
-0.750 0.24141219E-04 0.93470166E-05 1.369
-0.700 0.66175473E-04 0.95982658E-05 2.785
-0.650 0.94072660E-05 0.11994544E-04 -0.351
-0.600 0.94600794E-03 0.87521738E-05 6.756
-0.550 0.57520062E-02 0.61720144E-04 6.542
-0.500 0.11853433E-01 0.20054690E-02 2.563
-0.450 0.47713198E-03 0.71858019E-02 -3.913
-0.400 0.32952060E-01 0.21142133E-01 0.640
-0.350 0.6T517649E-03 0.53464550E-02 -2.985
-0.300 0.97776380E-02 0.14087049E-02 2.795
-0.250 0.41747724E-02 0.24058211E-04 7.439
-0.200 0.52785419E-03 0.19262944E-04 4,776
-0.150 0.10696189E-03 0.64592174E-05 4.050
-0.100 0.88795438E-04 0.78364293F-05 3.502
-0.050 0.19559739E-04 0.70987159E-05 1.462
0.000 0.14475275E-04 0.65594226E-05 1.142
0.050 0.18802878E-04 0.59522417E-05 1.659
0.100 0.15563837E-04 0.53116037E-05 1.551
0.150 0.11762217E-04 0.46378442F-05 1.343
0.200 6.86518550E-05 0.39355268E-05 1.136
0.250 0.54034343E-05 0.32089448E-05 0.762
0.300 0.20717014E-05 0.24625650E-05 -0,249
0.350 0.12597829E-05 0.17010887E-05 -0.433
0.400 0.45318902E-05 0.92882123E-06 2.287
0.450 0.77417858E-05 0.15052637E-06 5.685
0.500 0.10360447E-04 0.61790480E-06 4,149
0.550 0.14711256E-04 0.314366108E-05 3.356
0.600 0.17945143E-04 0.22256827E-05 3.011
0.650 0.19866165E-04 0.28530570E-05 2.800
0,700 0.22797052E-04 0.36586195E-05 2.639
0.750 0.25820094E-04 0.43694170E-05 2.563
0.800 0.28442211E-04 0.50534813E-05 2.493
0.850 0.30807508E-04 0.57078838E-05 2.432
0.900 0.32970342E-04 0,63268460E-05 2.382
0.950 0.34982270E-04 0.69068201E-05 2.341

Table 1: ENO2. Discontinous derivative.

10

~ location of corner .
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Figure 1: Initial data with discontinuous derivative

numerical solutions at time ¢ = .4, Table 1 shows errors and numerical
orders (comparing with the true solution ) for the second order method.
When h = 1/20, the area of infiluence of the corner in the computation of
the numerical solution is roughly = [—.6, —.2]. Comparing with data in [1],
we see that the sizes of the polluted regions for corners are similar to those
of jump discontinuities, although the pollution is certainly more dramatic in
the case of a jump.

As we mentioned in the introduction, in the presence of coupling, the
error spread caused by a corner can reduce the accuracy of the computed
solution globally in large regions in the same manner a contact discontinuity
did. We seck to remove these regions of low accuracy by reducing the error
spread that the corner introduces in the computation.

1t is obvious that an ENO reconstruction, smooth in the interior of each
cell, cannot represent accurately the solution at a cell containing a corner.
On the other hand, the basic principle underlying the SR technique :

Use the reconstructions at the cells next to the singularity to re-

11



0 1 1 1 1 ’ 5 1 1

-1 -0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 1
ENO2-SR.

Figure 2: Unsuccesfull ENO2-SR

cover the singularity within the cell,

should work for corners just as well as it did for contact discontinuities. In
order to confirm this observation, in our next experiment, we apply the SR
technique to compute the solution of (9). For the time being, we ignore de-
tection mechanisms and simply turn on the SR correction at the cell where
the corner is located. This straight application of the technique gives unsat-
isfactory results. They are compiled in Table 2 for a second order method.
We can see in the table and in figure 2, that the polluted region is of the
same size as in the case of the plain ENO method.

The reason for the failure of the SR technique becomes apparent when
we examine the stencils assigned to each computational cell by the ENO
interpolatory technique. Subcell resolution relies heavily on the fact that
the polynomial reconstructions from the cells to the left and to the right
of the discontinuity represent the solution accurately. However, numerical
experiments show that, when a corner is located in the interior of a cell I}, the
stencils selected by the ENO technique to construct B;_,(2) and R; () can

12



x-coord.

| n40-ut §

| u80-ut |

numer, order

-1.0600
-0.950
-0.900
-0.850
-0.800
-0.750
-0.700
-0.650
-0.600
-0.550
-0.500
-0.450
-0.400
-0.350
-0.300
-0.250
-0.200
-0.150
-0.100
-0.050
0.000
0.050
0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500
0.550
0.600
0.650
0.700
0.750
0.800
0.850
0.900
0.950

0.36782313E-04
0.37938204E-04
0.38762450E-04
0.43518546E-04
0.51737141E-04
0.28987203E-04
0.59333187E-04
0.44025456E-04
0.68741694F-03
0.43066815E-02
0.17820093E-01
0.15889789E-01
0.34545650E-01
0.12696976E-01
0.39022649E-02
0.34542038E-02
0.49516875E-03
0.11733596E-03
0.87563937E-04
0.18682640E-04
0.14423937E-04
0.18674082E-04
6.15601442E-04
0.11786959E-04
0.86421507E-03
0.54024979E-05
0.20730586E-05
0.12602105E-05
0.45318105E-05
0.7T7417960E-05
0.10960446E-04
0.14711256E-04
0.17945143F-04
0.19866165E-04
0.22797054E-04
0.25820082E-04
0.28442204E-04
0.30807728E-04
0.32970162E-04
0.34979258E-04

Table 2: EN(O2-SR.. Discontinous derivative.

0.74442122E-05
0.79356953E-05
0.83783863E-05
0.87681885E-05
0.91131018E-05
0.93572227E-05
0.95365571E-05
0.12112081E-04
0.71778122E-05
0.52822350E-04
0.22306300E-02
0.18965571E-01
0.28150688E-01
0.36803447E-02
0.26818612E-02
0.33026743E-04
0.19134324E-04
0.84375187E-05
0.78465561E-05
0.70975194E-05
0.65594837E-05
0.59522451E-05
0.53116036E-05
0.46378440E-05
0.39355268E-05
0.32089448E-05
0.24625650E-05
0.17010886E-05
0.92882114E-06
0.15052626E-06
0.61790494E-06
0.14366110E-05
0.22256828E-05
0.28530571E-05
0.36586196E-05
0.43694172F-05
0.50534814E-05
0.57078840E-05
0.63268461E-05
0.69068203E-05

13

2.305
2.257
2.210
2.311
2.505
1.631
2.637
1.862
6.581
6.537
2.998
-0.255
0.295
1.787
0.541
6.709
4.694
4.188
3.480
1.396
1.137
1.650
1.564
1.346
1.135
0.752
-0.248
-0.433
2.287
5.685
4,149
3.356
3.011
2.800
2.639
2.563
2,493
2.432
2.382
2.340

— location of corner .



contain points from across the corner, thus invalidating the accuracy of the
reconstructions. The analysis of the stencil selection at the cells I; _, and I; 4,
will shed light on the correct procedure to obtain accurate reconstructions
in these cells,

4 Analysis of the ENO stencil around singularities

Let us consider the ENO interpolation problem for a continucus piecewise
smooth function H(x). Assume that H’'(z) has a discontinuity at x4, where
zq € Iy = (v_3,;), and it is otherwise smooth.

The ENO parabolic interpolant for H in I_; = (z_g,%_3) is constructed
as follows [6]:

‘I?}?(CC) = Hlz_i]l+ H[m“%,m_%](m —z_y
+ ﬁ‘b(H[a:_%,m_%,:I:_%], H[w_%,w_%,w%])(a; - :c_,_;_)(a: ~T.3

where,

m(z,y) = =z if e <yl
m(z,y) = ¥ if  |z| > |yl

A Taylor expansion around 24 gives :

Hlz g2 3,24] = %H"(w5)+0(h)
o g, o_ge) = T C{H'() - H'(w3)}

+ @)1= 0 + B (=70 + 1) - 20} + O(h),
where

Ty =a_3 + éh.
Thus, it is clear that
HEH £ H(zy) 1-6=0(1)
imply

; %} = 0(1)
sey] = O(U/h)



AT

and the ENO technique will choose {z_g,2_s, m_%} as the stencil to form
¢
tion. A similar analysis shows that, to construct q§2)(m), the stencil stays to
the right of z,.

If (1-86) = O(h), the error in the reconstruction might be as bad as
O(h). The fact that the error for the reconstruction in a cell next to one
harboring some kind of discontinuity, might be as bad as O(h) was pointed
out in an example in [6], section 5. We must remark, as they did, that this
is a somewhat pathological case ( the discontinuity being within O(h?) of a
grid point ), and this particular source of trouble has not been ohserved in
any of the numerical experiments performed.

If v has a jump discontinuity, we will interpolate its primitive function
(RP) or its sliding-average (RD). Either of these two functions is one degree
smoother than w, so they will have a corner at the location of the jump in
#. Our analysis shows that the stencil in cells neighboring the discontinuity
stays to one side of it, thus ensuring optimal accuracy for the reconstruction
in these cells. The necessary conditions for the success of the SR technique
are satisfied.

On the other hand, if » is continuous but «' has a discontinuity at =y,
H{z) and H'(z) ( or @ and @' for RD) are continuous at z;. The above
Taylor expansions would give:

(2). Information is only taken from one of the smooth sides of the fune-

Hlo_go_y.03) = 3H'(5)+O0(h) (10)
Hlo_g,a_y,a3] = 2{H"(@$)(1—0) + B"(@7)[(6+ 1) = 267]}
+ O(h) (1)

It is now quite possible to pick stencils that include points on both sides
of the singularity, as demonstrated by the following example:
Consider,
x? z<0
H(z) = {-%a,z z>0
and let 2; = (§ — 3)h. Then
zg=0¢(z_1,23)

H(z) has a discontinuity in its second derivative at 2 = 24 = 0, thus it
would model the reconstruction problem for the primitive of a function with
a corner at © = 0.

15



—%99"—%] = 1+O(h)
; %,3}_%,3}%] = '}2’4’0(’1).

For sufficiently small &, {x_%,m_%,m%} would be the selected stencil for
q(_zl)(a:) It is obvious that, with this choice, the accuracy of ¢*)(z) is at most
O(h).

The example shows why the SR technique is bound to fail when applied
to recover the location of a corner with an underlying second order ENO
scheme.

This scenario can be avoided for third and higher order reconstructions.
The ENO interpolating cubic for H in I; is as follows:

(@) = Hlzap)+ By sigynlz - o)
+ H2igy Tigyn Tiggyeal(® — 2ign) @ = 2agiyan)
+ Hl@ig) iyt Tigrre Ciyaal(® — 2:))(@ — 2iy4) (@ — Tiggy42)

where z;(;y is the first point in the 4-point stencil associated to the j —th cell.
For a given cell, the stencil can be chosen now in a hierarchical (Algorithm I)
or a non hierarchical (Algorithm IT) way. We describe these two algorithms
in the general case.

Let @;,(;y be the first point in the £+ 1-point stencil of points necessary to
get a k-th order interpolating polynomial for H in the j-th cell, (-1, Tiyl)

Obviously, we take z;,;y = ;3.

Algorithm I : Hierarchical choice of stencil.

Assume %,(7) given,

e ) al) =1 |Hmagon s 2ages]| < HZo gy Bigyrerl]
t(J) = { () otherwise ‘

Algorithm II : Non-Hierarchical choice of stencil.
Choose 4,(j) so that

. , 1 o1
H[mik(j)a‘ C Bagyen) = min{[Hlzy, - 2], J—k+§ <i< 3“5}

16



For k = 2 both algorithms are the same.

In the example, we have shown that Algorithm I can lead to the wrong
stencil at level & = 2. Since the stencil is calculated recursively, increasing
the degree of the interpolating polynomial cannot improve the accuracy of
the interpolant. However, Algorithm II determines the stencil by looking
only at the highest divided difference of H, it bypasses the step & = 2 and
is, thus, able to distinguish a corner in u ( or discontinuity in H").

Observe that:

1-90

Hle g o g,2_g,23] = ——{H"(z])— H"(27)}+ 0O(1)
Hlz_z,z_s,2_s,8_1] = %H’"(m;) + O(h)
1+ 26 — 267 _
Hlo_go g o0y = 02 ety - m(a)} +0(1)

where H, « and x, are as before.

Since 1+ 26 — 26% > 1, for 0 < @ < 1, Algorithm II would assign the
stencil {z_z,_s,2_3,2_3} to the cell (z_5,2_;). Now, to construct the
interpolant in this cell, we only take information from one of the smooth sides
of the function, thus the requirements for the success of the SR technique

are satisfied.

5 Modifying SR to sharpen corners

As we have seen in the previous section, if we intend to reduce the error
spread introduced by a corner by using the SR technique, we must necessarily
make use of third or higher order divided differences. Around a corner a non-
hierarchical choice of stencil should be used to ensure a proper selection of
the stencil.

We must point out though, that choosing the stencil in a non-hierarchical
way consistently, leads to biased stencils. Algorithm II chooses the stencil
according to the monotonicity properties of H®), and its performance in
the pre-asymptotic range is, in general, poorer that that of Algorithm II. In
general, it is known that centered choices of stencil give better accuracy in
the smooth range. For this reason, we have chosen to implement Algorithm
I, except at the cells neighboring the singularity. This device, coupled with
SR, gives excellent results, as proven by Table 3 and Figure 3. In Figure 3
the circles represent point values of u calculated using the reconstruction.
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x-coord.

| udt-ut |

| u80-ut |

numer, order

-1.000
-0.950
-0.900
-0.850
-0.800
-0.750
-0.700
~0,650
-0.660
-0.550
-0.500
-0.450
-0.400
-0.350
-0.300
-0.250
-0.200
-0.159
-0.100
-0.050
0.000
0.050
0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500
0.550
0.600
0.650
0.700
0.750
0.800
0.850
0.900
0.950

0.13963885E-04
0.13019776E-04
0.120966511-04
0.11141306E-04
0.99551450E-05
0.81654569E-05
0.65866961E-05
0.11649528E-04
0.35925869E-04
0.269516111-04
0,10721541E-03
0.79092848E-03
0.1507T9518E-02
0.82355897E-03
0.14609759E-03
0.10023506E-03
0.49913546E-04
0.96701252E-05
0.13496128E-05
0.812950455-05
0.10753058-04
0.11433245E-04
0.12166279E-04
0.13167218E-04
0.14064885E-04
0.14695076E-04
0.14684537E-04
0.14996517E-04
0.19934748E-04
0.31850687E-04
0.33924355E-04
0.30185995E-04
0.21802798E-03
0.38767237E-04
0.33104961E-04
0.33481730E-04
0.19930528F-04
0.14499142E-04
0.14486354E-04
0.14677536E-04

Table 3: ENO3-SR. Discontinous derivative.

0.1728T059E-05
0.16242042E-05
0.15096648E-05
0.13858274E-05
0.12534528E-05
0.11125287E-05
0.97611501E-08
0.75046879E-06
0.73675958E-06
0.23998302E-05
0.98231840E-05
0.30049727E-04
0.19591327E-03
0.31757142E-04
0,84240765E-05
0.28713455E-05
0.51578020E-06
0.79715686E-06
0.98803583E-06
0.11230009E-05
0.12645054E-05
0.13959735E-05
0.15191341E-05
0.16328952E-05
0.17365915E-05
0.18296301E-05
0.19106404E-05
0.19860165E-05
0.20275422E-05
0.19627118E-05
0.30482060E-05
0.33899539E-05
0.18840262E-04
0.34493728E-05
0.30673358E-05
0.19162179E-05
0.20353110E-05
0.19800383E-05
0.19043163E-05
0.18227263E-05
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3.014
3.003
3.002
3.007
2,990
2.876
2.754
3.956
5.608
3.489
3.448
4.718
2.944
4,697
4,116
5.126
6,597
3.601
0.450
2.856
3.088
3.034
3.002
3.011
3.018
3.006
2.942
2.917
3.297
4.020
3.476
3.155
3.539
3.490
3.432
4,127
3.292
2.872
2.927
3.009

- location of corner .
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ENO3-SR (modified)

Figure 3: Initial data with discontinnons derivative

The strategy is as follows:

1. Sweep through the computational domain and calculate the ENO
reconstruction at each cell using Algorithm L

2. Use these reconstructions to single out cells suspected of harboring
corners.

Remark: The detection algorithm proposed by Harten to identify a cell
with a jump in its interior, uses the fact that, for a cell harboring a discon-
tinuity

Fi(zj_3) - F3(544) <0, (12)

where F;(z)is defined in (7) However, (12) does not hold at a cell containing a
corner; in fact, if w(a) is a piecewise polynomial function with discontinuous
derivative at §; € I;, then Fy(8;) = F/(6;) = 0. As it turns out, §; is
an extremum of F;{(x), We give a complete description of the detection
technique in the next section.

3. Recompute the reconstructions at the two cells neighboring a cell with
a corner using Algorithm II.
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4. At each ceil suspected of having a corner, modify the ENO recon-
struction via Subcell Resolution, that is, extend the reconstructions to the
left and to the right of the candidate cell to the computed location of the
corner inside it.

Note: As in the original SR technique, it is not necessary to compute
the location of the corner to proceed.

Table 5 shows that this simple procedure eliminates the error spread
introduced in the computation by the corner.

6 Subcell Resolution for corners

In this section we show how to modify an ENO reconstruction so as to
allow for the recovery of corners in the interior of the cells. To illustrate
the procedure, we first consider a continuous piecewise polynomial function
w(z) of the form
w(@) = { Prz) z<ay
Pplz) z> a4

Py(xq) = Pr(za);  Pu'(z4) # Pa(za), (13)
and we assume that the singularity is located in the interior of the interval
I

T_1y2 < &g < Ty

Consider R(z) an ENO reconstruction of w(z). Provided that the stencils
assigned to cells I, j # 0 are selected from the smooth part of the function,
we have that

Ri(z) = Pgp(e) + O iz L

Where R;(z) is the polynomial defining R(x) in I;. Obviously, Ry(z) cannot
be an accurate approximation of w in I;.

Using (13) and (14), we can modify R(2) in I, as follows: Extend R_,(x)

to apoint zin I, from the left and R,(z) to z from the right, and approximate
the location of the corner in I by finding a value of z that satisfies

G[}(Z) = R,..l(Z) — Rl(z) = 0.
When h is sufficiently small, we expect to have

Go(m—1/2) ‘Go(m-;-l/z) <0,
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s

and a single rooi of Gy{z) = 0 in I,; we denote this rooi by &,
Go(by) = 0.
It follows from (14) that
|8 — z4] = O(R").

The ENO reconstruction with subcell resolution, I%(a:), is the following:

R(z) = R;(x) z eI, i #0
£ - R_l(ﬂ.') $_1/2 < T <L 9()
R(u"‘:) - {Rl(.’}}) 90 < T < 331/2 z € Io.

As in Harten’s subcell resolution, if the polynomial degrees of Py, and Py
are less than or equal to r, we will have R(z) = w(z).

We turn now to describe the algorithm for a general continuous, piecewise
smooth function w(z). As in the previous case, we take R(z) on I; to be
R;(x) unless I; is suspected of having a corner of w(z) in its interior. In this
case, we define

Gi(r) = Bj_1(z) — Rjpa(x) (15)
and check whether
Gi(wj-1)  Gi(2j43) < 0. (16)
If this holds, then there is a root z = §;
G_y(eg) = 0, :BJ_% S g] S ﬂ.?j,{_% (17)
and we define R(:c) in the cell I; as
A — Rj—i(a") Tj-1 << 9.7
B(e) = {Rj+1(9’) 0 s o STy

If (16) does not hold, we take B(z) = R;(z), @ € I,.

The only thing which is left open at this point is the criterion to determine
whether a cell is suspected of harboring a corner. We shall make use of the
insight we gained last section, analyzing the choice of the stencil in cells
neighboring the corner.
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In the RFP framework, we observed that, il w has a corner in f; =
(®j_1,2;41), then its primitive function H(z) = f° w(z) dz satisfles

Hlzjog,25-4,5-5,254] = O(1)
Hlz; g %5_5,2;-1,2;43] = O(1/R)
Hlz; 3@ 3,2545,2548] = O(1/h)
Hlzjy, 54402545, 2543] = O(1L/R)
Hizjyg: 2514, 20gr 2i03) = O(1)

Since
1

H[wj-—k---,}a vt smj+%] = mm[mj—k') v 'am.fh

the detection algorithin we propose is as follows:

Define
ds = min{{@lz; o, ®;_1, 2]}, 0{25-1, 85, 5]l |0[25, 2540, @542]])
db = max(|1ﬁ[:t:j_3,wj_2,mj..1]|,iw[$j+1,fﬂj+2,f”j+3]1)
If
ds > db (18)
and
Gi(2i-3) - Gi(2143) SO (19)
nooy [z Li-3 ST
B(z) = {Rj+1(m) b, <z <ajy.
where
Gi(8;)=0
Otherwise,

fi(m) = R;(z) =€l

Remark 1 . As stated, the algorithm may correct the ENO reconstruc-
tion at isolated cells where the solution is actually smooth. However, because
of the smoothness of w(z) there, we have

R;pi(z) = w(z) + O(h"), x €I

consequently the error is still of the size of the reconstruction error.
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Hemark 2. We prove
|60 — 24f = O(h")
as follows: Let us define G(2) := Pr(2) — Pg(z), then
Go(2) = B_1(2) = Ri(2) = Pi(2) — Pr(2) + O(R") = G(z) + O(h")
therefore,
0 = Go(by) = G(By) + O(R") = G(za) + (za ~ 65)G ' (g) + - - + O(R").
Since |8y — z4] is at least O(h), G(z4) = 0 and G'(2,4) # 0, we must have
|6 — z4| = O(R").
It is easy to see now that
Fo(05) = O(k") (20)

Remark 3. Recall that when reconstructing via a hierarchical algorithm,
we must recalculate the reconstruction in the two cells neighboring a cell I;
in which (18) is satisfied, before we check (19). This ensures the accuracy of
E;_; and R;y,, which is essential to determine §; accurately.

Remark 4. An ENO scheme based on cell averages can be written in
conservation form due to a basic property of the reconstruction, namely

B(z;, @) = ;.
Harten’s SR-reconstruction preserves this property, i.e.
Rz w) = w;.
Instead, if z4 is a corner of w(2) inside I, our SR-reconstruction satisfies:

hR(z;; @) = / " Ble)de

i1
i3

93 Titd
= f Rj-1($)+/9_ Ry ()
4
= b+ [ (Rya(@) = Rypale)) dat O(AH)
95
= byt [ (0= 20 (Rya(2) = Rypa(e)) do+ O(h'H)
Ta
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therefore .
R(z;;@) = w; + O(R"). (21)

In order to compute the numerical flux in the case of a corner within
the j-th cell, one proceeds as in harten’s SR. In fact the derivation carries
through step by step, the only variations are due to (21) and (20), but these
two modifications introduce terms that are on the order of the truncation
error and do not spoil the accuracy of the calculation.

Unfortunately, it is not possible to derive a closed expression such as
(31) for the numerical flux, but the basic idea underlying its derivation, still
provides a selection process that avoids the explicit calculation of z,(7). In
fact, the location of the corner at time v will satisfy an equation similar to
(17). We must have

Gj(zy(m)) = 0,
where
Gi(2) = B_1(2, 7) = By (2, 7).
To determine the location of ;1 with respect to z,(r) (assuming the
corner moves to the right) one simply does the following:

Frus = { %g i Gi(@i-g) Gile43) > 0

3 i+ otherwise
where f;P+% and _ﬁi 3 are as defined in (29), (30). If the discontinuity moves
to the left, one has to determine the location of #;_; with respect to z,(7).

7 Subcell Resolution and Rarefaction corners.
Limitations and Conclusions

We would like to show now that, with a little care, the techniques described in
the last two sections can also be applied to sharpen the corners of rarefaction
wave solutions of nonlinear equations and systems.

We start with the standard example of a single scalar nonlinear conserva-
tion
law : Burgers’ equation. We attempt to compute the solution of

wt (w32), = 0

-1 xr <0 22
ws,0) = { 1 z > 0. =)
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The solution is a centered rarefaction wave:

-1 AR
u(z,t}= ¢ z/t ~t <z <t (23)
1 t<z

At the creation of a rarefaction wave, the two corners are so close together
that the region of smoothness between the two is not wide enough to contain
the stencil of points necessary for a reconstruction, therefore SR, as stated,
does not have a chance to succeed. In fact, Sever [12] has shown that, because
of its self-similar nature, the rate of convergence of any numerical scheme
approximating (22) is inherently limited to first order.

To avoid this conflict, we will consider instead

Uy + (u2/2)a: =0

-1 T <~
uw(z,0) = z/a —a<e<a (24)
1 a <2

for0<a<l,

Figure 4 shows approximations to (24) with @ = .6, obtained with an
ENO3 scheme and 20 points (h = 6/20) at ¢t = 1.2 and with the SR-corrected
version of the same scheme, As expected, SR eliminates the error spread
introduced in the computation by the corners of the rarefaction wave.

We conclude by showing an example where we apply the corner-SR tech-
nique to compute accurately rarefaction wave solutions of a system of hy-
perbolic conservation laws.

The equations for isothermal flow

P 2m
[m}t+[m7+a2p]m (25)

provide a non-trivial example of a system of two conservation laws,
Figure 7 shows a numerical approximation to the sclution of the isother-
mal equations with the following initial data:

1

0
e~ (Bz+1)

p = —_—
(m)(m,ﬂ) = 9 (e_(52+1)(5w+1)) 2< @& <2
6“3
{ 2e-2 e

25
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o4 ~

0.2 .

-0.2 - .
-0.4 | ]
-0.6 - e

-0.8 - m

-3 -2 -1 [+] 1 2 3

Figure 4: Rarefaction wave for Burgers’ equation

obtained with a third order ENO scheme. We have used 40 points, or
h = 2/40, and have run the scheme until ¢ = .2, so the rarefaction corners
are located at 2 = +.4. The dots represent values of the solution calculated
using the reconstruction, and the solid line is the true solution, which in this
case can be calculated explicitly.

We see that the corner SR technique is able to eliminate the spurious error
spread associated to the computation of corners. However, the very nature
of the technique makes it unsuitable for accurately representing rarefaction
waves at their starting point. We need to be able to choose a stencil of
points from the same side of smoothness of the solution function. This is
not possible at the spring of a rarefaction wave.

Conclusions We have studied the behavior of ENQ schemes for systems
of Conservation Laws in one dimension, when the solution function exhibits
discontinuities in its derivatives (corners). The analysis of the stencil selec-
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Figure 5: Initial values for isothermal system.

tion process allows us to identify the potential causes of error spread and
loss of accuracy. This analysis also enables us to devise a subcell resolution
mechanism that is able to keep the corners sharp when the computation
proceeds. As stated, the correction is a one-dimensional technique.

We think that SR corrections for jump discontinuities are more natu-
ral in numerical approximations to solutions of conservation laws. This is
supported by the fact that Harten’s reconstruction is conservative while our
reconstruction is conservative up to the level of the truncation error. Never-
theless, we think our study does contribute to a better understanding of the
nonlinear process involved in ENO schemes.

Acknowledgements [ would like to thank Ami Harten for his many
suggestions and comments.
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APPENDIX
A, Harten

The purpose of this appendix is to show how to carry out the flux computa-
tion in the Subcell Resolution context when there is a discontinuity within
the j-th cell. This derivation generalizes the procedure in [5] to the nonlinear
case.

Let us assume that the discontinuity is propagating to the right, and
denote its location by =,(%), with 2,(0) = 8;. Let us denote by #(x,?) the
solution of the IVP

ug + f(u), = 0 u(z,0) = By(w, @) (26)

Since the initial data here are polynomial, the solution remains smooth for
some time, and can be approximated in the small by a Taylor expansion.
Under a suitable CFL restriction, the numerical flux of the Godunov-type
scheme represented abstractly by (1) is given by

fivy =7 [ S0z )

where v(z,1) is the solution of
R;_i(z,a") 2 <6
U+ flu), =0 w(x,0) = (N ! 27
+ F(u) (2,0) {Rm(m,w) se@

The solution to this problem can be expressed in terms of the solutions
to the polynomial initial value problems (26) by

o Boa(et) e <)
v(e,t) = { ;Hi(a:,t) & > a,(t)

First, let us consider the case ,(7) > ®;41/; in this case v(z,7) =
Bj_1(z,7) for @;_4 < & < @44, and the numerical flux can be found from
considerations of conservation in the j-th cell. Integrating (27) and (26) over
I; x (0,7) and using that F;(2,(0)) = 0, we get

Fird . - T o
/ B-1(2s 7)o — BT + 7 fiyp — fﬂ F(oj-r(j_s, )t = 0. (28)

a!J_%
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On the other hand, if we do the same for 4;_,(x,1) in (26), we get
Tivd | Titg _
f (e, m)de — / R;_i(z, @™ )dz
T, —_——=

+ V[UT f('aj_]_(qu_%,t))dt - /C;T f(ﬁj_l(i??j__%_,t))d‘t =0.

Combining the last two equations and using the definition of Fj(z), we can
express the numerical flux in this case by

_ T . vk .
Tfiyy = ./;f(vj_l(mj+%,t))dt+hw —-] R;j_y(z, @™ )dz
751
= | 1oy it = Fiogy) = rfhy (29)
FL

we denote this value by el
Next, we consider the case @,(7) < z;,1. Now v(2;,1,1) = ;41(w;41,1)

for 0 < t < 7 and therefore the numerical flux is given by

Fiu3 =f0 F(@41(@s4y, )t =t 7T (30)

At this point, we have expressed the two possible values of the numerical
flux in the case of a discontinuity propagating to the right

~ L, i i1
fs={ Gt g o) (@)
i+ s it
in terms of solutions to the polynomial IVP (26), which can be approximated
analytically to any desired accuracy ([6, 7]). The proper value to be used
in (81) can be determined without having to compute the value of z,{r),
provided the discontinuity is computationally meaningful. The main obser-
vation is that the location of the discontinuity at time 7 satisfies an equation
similar to (6), in fact

Fi(w,(r)) =0 (32)

where Fj involves now the interval (z;_1,2;,3) at time 7 and is defined as

. N Tied n
.E}‘(«'L') ot j 'Uj_l(ﬂl', T)dﬂt + / 'Uj_i,;(:t:,T)d:B —_ qj‘ +1, (33)

i—
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where
= hf + ) = [ SGpesg D+ [ Gy, 0t (34)

Using (28),(29),(30) and the conservation relation for the solution of the
polynomial TVP (26) in the (§ + 1)-th cell, we get

Fi(zies) = ([ — Faga)

On the other hand, one can deduce directly from (32), (33), (34) that

ﬁ}(m:ﬁ%—%) = Fj(qu.%) - F}(m,(r)) = ]

@ -
i3

Ei+d

[9;41(2,7) — 91 (=, 7)]dz. (35)

Equating the RHS of the last two equations and using the mean value theo-
rem for the integral, we finally get

T(Jzﬁnl/z - ff+1/2) = [2,(1) - Wj-zr%] ’ ("7}2 - "7L) (36)

where

('in - ’E?L) = [’E‘j+1(¢, 7-) - ~j-1(1:b: T)]) "/) € (GUJ-_I.%,Q’:,,(T)). (37)
Multiplying (36) by
s = sgn(d™ ~ o%)
we find that

sgn(s - fjliljz — 8 ffﬂ/z) = sgn[z,(7) - w:‘«i«%k (38)
it follows that the numerical flux (31) can be expressed by
- ) - -
fivg =s-min(s- f}4, s- fﬁ_%). (39)
We recall that the evolution operator of the Conservation Law is order pre-
serving; hence if R;_;(z,@") and R;,,(z, @") do not intersect in the interval

I;, then the respective solution in (37) keeps the same pointwise order. Con-
sequently we can replace s in (37) by

8 = sg(Ry 41 (2544, 0") ~ Byos(2i41,07)).
The above assumption of nonintersection holds for any “computationally
meaningful” discontinuity.

The numerical flux for the case of a discontinuity propagating to the right
is given by (39) without any reference to the exact location of the discon-
tinuity. A similar expression can be derived for the case of a discontinuity
propagating to the left. If the initial discontinuity corresponds to a centered
rarefaction wave, we do not use Subcell Resolution in this case.
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