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Abstract

We present a new method to compress matrices based on multires-
olution interpolation, such as it appears in [4, 5], The matrices so com-
pressed allow all kind of algebraic operations, including matrix-matrix
multiplication. We fllustrate through examples the performance of the
compressed matrices. We call the form devised here ”standard” in
contrast to the "nonstandard” form in [5], because they are the mul-
tiresolution equivalent to the standard and nonstandard wavelet forms
in [2}], respectively.

1 Introduction

One of the applications of wavelet bases is compression of matrices. If a
matrix represents a smooth operator, its representation in a wavelet basis is
a sparse maftrix. This is called the standard form of the original matrix. In
[2], the authors present a new form of the matrix which they call nonstandard.
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tResearch supported by a Grant from DGICYT PS90-0265 and by ONR Grant N00014-
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'This nonstandard form is no longer a representation of the operator in any
basis, but a two dimensional tensor form of the wavelet transform. Assuming
the matrix represents the operator in the finest scale, they obtain versions of
the matrix in every coarser scale. In this way, the nonstandard form decouples
the different scales. The price to pay is a non direct form to multiply both
matrix-vectors and matrix-matrix., While matrix-vector multiplication can
be done ([2]) with a small increase of computational complexity (though
the computational overall cost is smaller) over the usual multiplication, this
gets worse in the case of matrix-matrix multiplication (when there is some
previous knowledge of the operator, however, there is a way, in [1], to evaluate
this multiplication). Therefore, the standard and the nonstandard forms have
different properties (simplicity for the standard, speed for the nonstandard)
which can make a cause for each of them for different problems.

Despite all their advantages, and due to the constraints imposed on their
construction, wavelets have two main inconveniences. One is the large sup-
port needed if some conditions are asked. For example, if we wish orthogo-
nality, the support of the wavelet doubles that of the spline basis, in order
to get the same order of accuracy. On the other side, and once again in
the orthogonal case, although they are seldom explicitly computed, wavelet
bases are very oscillatory. This restricts their applications. For instance, it
is not advisable to use wavelet interpolation.

These problems have been reduced by means of biorthogonal wavelets.
But now, while we can control one of the wavelet functions, we need another
one that, in most cases, is imposed by our first choice.

In [4, 5], a generalization of wavelet theory is presented. New algorithms
based on multiresolution analysis are devised. These algorithms are broad
enough to include wavelets as a special case. They are also less restrictive
and it is possible to keep the advantages of wavelets, while eliminating their
inconveniences.

In [5], a bidimensional form of the multiresolution is presented. Prac-
tically, when applied to matrices, this analysis produces a generalized non-
standard form.

However, as we said before, the nonstandard form is not always the best
tool to work with matrices. Our main concern lies on matrix-matrix multipli-
cations. In {3], fast methods to solve some kind of parabolic and hyperbolic
equations are shown. These methods require successive squaring of matrices.
The nonstandard form in [5] does not fit very well from this point of view.
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Moreover, in {1], there are some algorithms io evaluate elementary matrix
functions based on the sparsity of the matrix. They also need matrix-matrix
multiplications. Although it is possible (and, indeed, sometimes it is prefer-
able) to work with nonstandard matrices, it is clear that the standard form
provides a simpler way to do it.

It is interesting, for all these reasons, to get a generalized standard form
complementary to the generalized nonstandard form in [5], as a previous step
to study the wavelet-based algorithms in the more general multiresolution
analysis.

This report is organized as follows: in §2, we review some of the results
in {4, 5]. In §3, we construct the generalized standard form and, in §4, we
show some numerical examples. Finally, in §5, we draw conclusions.

[4, 5] consider multiresolution from three different perspectives: point
value interpolation, cell averages and wavelets. The only one we are going
to consider from now on is point value interpolation. Generalization to cell
averages and comparison between all three will be done in further stages.

2  Multiresolution analysis

We review here some of the results in [4, 5] with respect to point value
interpolation.

From now on, we are going to consider f(z) a periodic function in [0,1]
with Ny = 2™ subintervals [m?_l, a:g?], m? =4+ hg, hg = ng, 7 =1, N, the set
of nested grids {zk}%_,, k= 2620k =1,..., L < ny and a wavelet function
o(z), ph(z) = 27Fp(27Fz — j).

According to the usual notation in wavelet theory,

st = [ f(2)pi(@)da. ¢y
The wavelet satisfies a dilation equation,

olz) =23 (22 — 5). (2)

Thus, once we have the knowledge of the finest scale {s9}, it is easy to
get the information from the coarser grids, {s*}.
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predicts f(z) from the values {sk}, which we denote by Ry(z). We impose
that the reconstruction is conservative in the sense that:

[ Bu@)ph@)de = [ fla)ph(e)de = s 3)

If Ry(z) is a good approximation to f(z) for every scale k, the differences

Qk(w) :Rk_l(&:)mRk(ﬂ)), k= 1,...,L (4:)
must be small.
From the knowledge of the coarsest scale and the differences Qi(z), we
can construct the function in the finest grid:

L
Ry(z) = By(z) + ; Qx(2) (5)

From a discrete point of view, this means that we can recover the infor-
mation {3?} in the finest grid from the coarsest one {sf}, and the values
{dk}, where

& = [ Qua(e)ph(@)de = 51 — [ Ry(w)ipk(a)de (6)

The more accurate Rk(a,) is, the smaller the absolute values of {d¥} are. If
we truncate to zero the {dk} with absolute values below a given thresholdmg,
we get data compression.

As we have just seen this process depends not only on the wavelet but also
on the reconstruction procedure. The freedom to choose this reconstruction
is the main difference with traditional wavelet methods.

In the case of point value interpolation, the wavelet function ¢(z) is the
Dirac distribution, and in this context, (1) and (3) are equivalent to:

sh= | f(w)Zklhog(Q f»;,o )da: = f(a*) (7

We denote fF = sk, and Ih(a,) R, (2) in order to remark the interpola-

tlon process. In’ this case the reconstruction is just an interpolation of the
functions in the points {a,f}
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Algorithm 1

Given {c; "1, and an mtexpoiatmy scheme I(z; f) for all k£ = 1,.
such that Ik(a,f 3;“) = S;“ forall j =1,..., N, we set:

1<7 <N

[ -
fj _Cju

([ Dofor k=1,...,L
=t 1<i<N,

dk = fz;- Ik(mgf—lﬁff), 1<53< N,

End

“

MR = {(dla"'de)st}

is the multiresolution representation of c.

L

(9)

(10)

(11)

We can recover ¢ from its multiresolution by means of the following algo-

rithm:
Algorithm 2
( Dofork=1L,...,1
St = I 1S5S Ny

f2_7 1= d;? + Ik(ng‘_jﬁff)a 155N,

End
c=f°

(12)

(13)

These multiresolution transformations are similar to Mallat’s pyramidal
scheme. Given {ff }?.r_fl for any k= 1,.-.,L we can get the samples and the



{dit} = G{/ff} (14)

{fi+} = H{f}} (15)

A two dimensional version of this algorithm can be found in ([5]).
Given a matrix A, its multiresolution form AME can be evaluated accord-
ing to the following

Algorithm 3:

A0 = A (16)

{ Dofork=1,...,L

Ak — H Ak~1 %
F*1 = T AFTx — Ab-1
. (17)
Dk = GE*-1GH
Di = GE+-1 [
Dt = HE*1G»
| End
AMR = {{D3 ';'3_—__17 Ty {D?}?=17 AL} (18)

As it happened with vectors, if the interpolation approximates the matrix,
the coefficients in E* are small in absolute value, and so are those in {DE}YS .

In AME, the scales are decoupled. Each D¥ represents interaction be-
tween samples and (or) differences at the scale k. However, AME is not the
representation of the matrix in any basis. Matrix-vector multiplication is
not straightforward. Moreover, matrix-matrix multiplication is not easy to
implement in the nonstandard form.



In §3, our goal is to get another representation of the matrix using the
multiresolution schemes we have reviewed in this paragraph. Among other
requirements, in the form we are going to get both matrix-vector and matrix-
matrix multiplication are implemented in the usual way. The coefficients will
be the components of the matrix in a multiresolution basis.

3 Standard form of a matrix

Our main interest is to get the standard form of the matrix. Although this
concept has a clear equivalence in wavelet theory, we shall explain here what
we mean by standard form in the general multiresolution context.

Given a vector f and a matrix A, the standard form of A is the operator
that relates the multiresolution form of f, fME and the multiresolution form
of f = Af. In other words, we are looking for a way to get fMR directly
from fME, without evaluating Af.

The problem can be stated in the following way:

Problem:
Find the operator A* such that (Af)ME = As fMR,

In the case of wavelets, the standard form of the matrix is obtained by a
simple change of bases, using Mallat’s pyramidal algorithm. In the general
frame we considered in §2, A¢ does not even have to be a matrix. If the in-
terpolation I, depends on data, as it happens in ENO methods, for example,
the multiresolution transformation (the operator M such that fME = M{)
is not a linear operator, and, therefore, A¢ is not a matrix.

We are going to assume that the interpolation does not depend on data.
In this case, the multiresolution is a linear process, and we hope the trans-
formation of a matrix to its standard form is also linear. Furthermore, as we
shall see, this standard form is going to be the matrix expressed in another
basis, in the same way as the wavelet standard form. However, we are going
to get this form without computing explicitly the new multiresolution basis.

The multiresolution is linear. So, there exists a. matrix M such that

MR — jf f (19)
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As sa
s means that we can recover the original vector from its multiresolution:

Thi

f=M"1fME (20)

Another way to look at it is to consider M as a change of bases.
Using this notation it is easy to get the standard form of the matrix A,

(AfYMB = M(Af) = MAMY(Mf)= (MAM-)fMR (21)
Thus,

As = MAM (22)

From (21), it is immediate that the multiplication of a standard matrix
times a vector is implemented in the usual way. The other algebraic operation
we want to check is matrix-matrix multiplication.

If A and B are two matrices (we are going to suppose they are square
matrices with the same dimension, though it is not necessary), then,

(AB)* = M(AB)M~ = (MAM~)(MBM~1) = A*B? (23)

Therefore, the standard form of the multiplication of two standard ma-
trices equals the multiplication of their standard forms. This result and (21)
allows us to work with standard forms in a simple and natural way.

Practically, the standard form of the matrix is obtained applying Algo-
rithm 1 to the columns of the matrix and, then, the adjoint of Algorithm 2
to the rows of the transformed matrix.

Because of Algorithm 2, the transformation of rows needs sums instead of
differences. The standard matrix, however, still compresses data. The sums
we have to do are from coefficients we have previously transformed. Then,
most of the coefficients we have to sum are previous differences. So, the final
coeflicients are also small in absolute values.

When the interpolation is centered around the node we want to inter-
polate and we suppose periodicity, the standard form of the matrix can be
obtained by means of the following



fily=a;;, 1<i<N (24)
by = FUP (25)
End
Fori=1,..-,N
@U)="b,; 1<j<N (26)
Dofork=1,...,L
) =012 - 1), 1<j<N, (27)
gk() = g (25) + Iulad;h,8h), 1< <N,
End
Cin = {(3});\211 R (Sf);'\gla (gf)j-\f_fl (28)
A = ()N, (29)

As it can be seen in the figures, the typical finger shape of the matrix
appear when we plot A*, the standard form of a matrix A representing a
pseudodifferential function. Unlike the wavelet case, this is not a symmetric
transformation, and the horizontal shapes are more remarkable than the
vertical ones, mainly in the coarsest scales.

The standard form is organized as a block matrix, Each block A% is a
matrix N; X N;, which represents the interactions between the scales ¢ and j.
The difference at & level of Af (denoted by d*) is the sum of the contributions
of the differences from all the scales, and the contribution from the samples
in the coarsest scale, fL:



L
df =) Akidi 4 BRLFL (30)

i=1

4 Numerical Examples

We present now the results after applying the multiresolution standard form
of three different matrices.

Example 1 Multiresolution standard form of the Lax-Wendroff scheme,
cfl =0.4.

Example 2

_ {0, if i=j
W | log((i — )?), elsewhere

Example 3

0, ifi=j
Gij =1 .1 elsewhere

=3

Example 1, in its original form, is a tridiagonal matrix. The standard
form is more dense than it was originally. Nevertheless, we hope that after
successive squaring, the matrix remains sparse, as it happens in the wavelet
case, in order to apply the algorithms in [3] to general multiresolution.

Examples 2 and 3 appear in [2]. We can compare these results to the
ones shown there.

We tested the examples with linear and cubic interpolation. In the tables
we display the number of significant coefficients (those with absolute values
greater than a given tolerance, {ol), and the error, after thresholding by tol,
carried out when multiplying the matrix times the test vector {u;}¥,, where
u; = sin(27w ;). We show the results for different dimensions of the matrix, IV,
thresholdings, tol, and number of scales, L. Not very surprisingly, when N
is small (less than 8, for instance), the influence of L is not very significant.

The number of significant coefficients in example 2 is slightly greater than
in example 3, due to the fact that the decay of the coefficients in example 3
is higher than in example 2.

The number of significant coefficients in all cases seems to be O(V log N).
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Finally, the error produced by truncation is the same order as the thresh-
olding. So, we are always under the desired accuracy.

The figures show the standard form of each of the matrices above men-
tioned. We display two cases for examples 2 and 3. One of them is the
standard form assuming periodicity. The second figure of each examples has
been obtained by a small variation of algorithm 4, modifying the interpola-
tion near the extremes of the columns and rows of the matrix in order to
suppress discontinuities in the boundaries. The tables, however, display the
results assuming periodicity.

5 Conclusions

The multiresolution we have just presented is a simple two dimensional gen-
eralization of the multiresolution in [4]. The results obtained so far show
that this standard form mimics the behaviour of the wavelet standard form.
The sparsity of the matrix grows with the rate of decay of the function it
represents. The significant coefficients appear around the diagonals, and its
shifted translates, where it exists some kind of sharp variation.

Gieneralization to cell averages can be done in a rather direct form. Fur-
thermore, as the transformations of rows and columns are independent, mixed
transformations (from cell averages to point values and viceversa) are pos-
sible, allowing discretization of functions of two variables in a different way
for each variable, as it is suggested in [5]. These options are currently under
investigation.

Finally, the standard form is adequate for the fast algorithms presented
in [3]. It is important the fact that multiplication of standard matrices is
itself a standard matrix in order to apply those methods. The algorithms
shown in [1] to get elementary functions of matrices can also be tried from
this multiresolution point of view.
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tol = 10" | scales | nonzeros | || - ||, —error | || - || —error
n=—3 6 1166 2.7225.10—¢ | 8.9900 104
4 1164 5.3897-10—4 | 1.4996 -10-3

n=—4 6 1361 2.4046 - 105 | 1.2774 - 104
4 1396 2.4046 - 10-5 | 1.2775.10~4

n=—7 6 1437 1.4279 - 10-16 | 4.4409 - 10-16
4 1464 1.3986 - 10—16 | 4.4409 - 1016

Table 1: Absolute errors for example 1; points 64x64=4096; cubic interpo-
lation; Lax-Wendroff scheme (A = 0.4).

tol = 10" | scales | nonzeros | || - ||y —error | || - [los —error
n=—3 8 5076 3.3595-10-4 | 1.1915.10-3
6 5036 2.9666 - 10-+ | 1.0581 - 10-3

n=—4 8 6126 3.0173 -10-% | 1.0466 - 10—
6 6136 5.1946 - 10-5 | 1.4536 - 10—4

n=—7 8 7675 1.4653 -10-% | 8.2769 -10-8
6 7884 1.4653 - 10-% | B8.2769 -10-2

Table 2: Absolute errors for example 1; points 256 x256=65536; cubic inter-
polation; Lax-Wendroff scheme (A = 0.4).

tol = 10" | scales | nonzeros | || - [|; —error | || - || —error
n = —3 6 2427 1.6718-10-2 | 2.6123-10-2

4 2402 1.6718 -10-2 | 2.6123-10-2

n = —4 6 2977 8.3642 - 10—4 | 1.4747-10-3

4 2968 8.3642 -10-¢ | 1.4746 -10~3

n=—"1 6 4093 1.5029 - 10-13 | 3.3538 - 10-12

4 4087 1.2942 - 10-13 | 3.2969 . 1012

Table 3: Absolute errors for example 2; points 64x64=4096; cubic interpo-
lation 5 A(%, ) = log((i — 7)%);

13



tol = 10" | scales | nonzeros | || - ||} —error | || - ||, —error

n = -3 8 16099 7.3426 -10-2 | 1.1190-10-1

6 15929 7.3425-10-2 | 1.1190- 10!
n=—4 8 21441 4.3509 - 103 | 7.3054 103
6 21310 4.3509 - 103 | 7.3054-10-3
n = —7 8 49913 3.6926 - 10— | 7.6262 10—
6

49906 3.6926 - 10—% | 7.6262 .10

Table 4: Absolute errors for example 2; points 256 x.256=65536; cubic inter-
polation ; A(%,7) = log{(z — 5)?);

tol = 10" | scales | nonzeros | || - {|; —error | | - || —error
n=-—3 6 2055 3.0791 . 10—3 | 9.8342-10-3
4 2088 3.0791 - 10—3 | 9.8342-10-3

n=—4 6 2448 3.6412-10-¢ | 9.6723 - 104
4 2476 3.6412 -10-¢ | 9.6723 .10+

n=-—"7 6 3879 1.0820 -10-7 | 6.5119-10~7
4 3880 1.0820 - 10-7 | 6.5119.10-7

Table 5: Absolute errors for example 3; points 64x64=4096; cubic interpo-
lation ; A(z,7) =1/(i — j);

tol = 10" | scales | nonzeros | {| - [|; ~error | || - ||, —error
n= -3 8 11961 1.1988 -10-2 | 3.3126 - 102
6 12060 1.1950 -10-2 | 3.5127.10-2

n=—4 8 15618 1.3721 -10-3 | 3.9480-10-3
6 15810 1.3721-10-3 | 3.9480.10-3

n =7 8 33405 1.5002 - 10-6 | 3.3952.10-6
6 33523 1.5002 - 10—¢ | 3.3952.10-%

Table 6: Absolute errors for example 3; points 256 x.256==65536; cubic inter-
polation ; A(é,7)=1/(z — j);
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tol = 10" | scales | nonzeros | || - ||, —error | || - |l —error
n=—3 6 737 3.6578 - 10-% | 3.9646 - 10—
4 728 3.6578 - 10-3 | 3.9646 - 10—+

n=—4 6 737 1.1666 - 10—¢ | 3.3307 - 10—16
4 728 1.1059 - 10~16 | 2.3592 - 1016

n =7 6 737 1.1666 - 10-1¢ | 3.3307 - 10-16
4 728 1.1059 - 10~ | 2.3592 - 10-16

Table 7: Absolute errors for example 1; points 64 x64=4096; linear interpo-

lation; Lax-Wendroff scheme (A = 0.4).

tol = 10~ | scales | nonzeros | || - |ly —error | i - || —error
n=—3 8 3171 2.7344 - 10-4 | 9.2703 - 10—+
6 3148 27344 -10-4 | 9.2703 . 10~4

n=—4 8 3205 7.6981 .10-¢ | 7.9359.10-5
6 3192 7.6981 -10-% | 7.9359.10-%

n=—7 3 3205 1.4347 .10-16 | 5.5511 - 10-16
6 3192 1.4347-10-18 | 5.5511 . 1016

Table 8: Absolute errors for example 1; points 256 x 256=65536; linear inter-

polation; Lax-Wendroff scheme (A = 0.4).

tol = 10" | scales | nonzeros | || - ||, —error | || ||, —error
n=-3 6 3599 4.7775+10-3% | 1.4181 -10~2

4 3594 4.7775-10-3 | 1.4181.10-2

n=—4 6 4062 4.0244 - 10-14 | 9.9476 . 10-1¢

4 4057 2.3133 - 10-14 § 9.2371 - 10-4

n=—17 6 4062 4.0244 - 1014 | 9.9476 - 10-14

4 4057 | 2.3133 . 10-1¢ | 9.2371 - 10~1¢

Table 9: Absolute errors for example 2; points 64 x64==4096; linear interpo-

lation ; A(z,7) = log((i — 7)?);
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tol = 10" | scales | nonzeros | || - ||y —error | ||« || —error
n=— 8 30103 1.1630 - 10~ | 1.8500-10-1

6 30003 1.1630 - 10— | 1.8500-10~*
n = —4 8 53127 3.4429 - 10-3 | 7.5692.10-3
6 53122 3.4429 - 10-3 | 7.5692.10-3
n=—"1 8 65406 2.7282-10-13 | 1.0516 - 10-13
6

65401 2.5198 -10-13 | 9.6634 - 10-13

Table 10: Absolute errors for example 2; points 256x.256=65536; linear
interpolation ; A(7,7) = log({(i — 7)?);

tol = 10" | scales | nonzeros | || - ||y —error | || « ||, —error
n=-3 6 2055 6.5417-10-3 | 1.4959 -10-2
4 2063 6.5417.10-3 | 1.4959 .10~

n=—4 6 3034 4.7950 - 10—+ | 1.0387-10-3
4 3043 4.7950 - 10-4 | 1.0387 - 10-3

n=-7 6 4039 2.4876 - 10-19 | 1.3171-10-°
4 4037 9.6796 - 10—-11 | 7.7437 - 10-10

Table 11: Absolute errors for example 3; points 64 x64=4096; linear interpo-
lation ; A(i,5) = 1/(i - j);

tol = 10" | scales | nonzeros | || - ||, —error | || - |loc —error

n=—3 8 11777 27858 -10—2 | 7.4191.10-2

6 11812 2.6671-10-2 | 7.2322-10"2

n=——4 8 19549 3.0270-10-3 | 7.1844.10-3

6 19876 3.0270 - 10-3 | 7.1844 -10-3

n=-—17 8 64553 8.2505-10—% | 1.4858 .10~
6

64551 8.2595-10-% | 1.4868 .10

Table 12: Absolute errors for example 3; points 256x.256==65536; linear
interpolation ; A(z,7) = 1/(i — 7);
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Figure 1
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Figure 2: Example 3
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Figure 3: Example 1
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