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Abstract

A level set formulation for the solution of the Hamilton-Jacobi equation
F(z,y,u,uz,uy) = 0 is presented where u is prescribed on a set of closed bounded
noncharacteristic curves. A time dependent Hamilton-Jacobi equation is derived
such that the level set at various time ¢ of this solution is precisely the set of points
(z,y) for which u(z,y) = t. This gives a fast and simple numerical method for
generating the viscosity solution to F = (. The level set capturing idea was first
introduced by Osher and Sethian in [12] and the observation that this is useful for an
important computer vision problem of this type was then made by R. Kimmel and
A.M. Bruckstein in [10] following Bruckstein {1]. Finally we note that an extension

to many space dimensions is immediate.
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Introduction.

We are interested in solving a general first order partial differential equation for
a function z = u(z,y) of the type:

(0.1) F(z,y,2,p,q4) =0
where p = uz, ¢ = uy.

This is a classical problem in P.D.E., in fact the method of characteristics was

invented to solve it. Typically we are given Cauchy data on a curve I, i.e. for

(0.2a) z=x0(s), ¥ =yols)
then
(0.2b) z = z(s).

The data is assumed to be noncharacteristic, i.e. by the chain rule we have:

(0.3) zo(s) = po(s) o(s) + qo(s)yo(s)
while
(0.4) F(zo(s),yo(s),20(s),po(s),q0(s)) =0

In order to solve (0.3) and (0.4) locally for smooth pg(s), qg(s) the implicit funec-

tion theorem requires:

(05) ?OFp(xﬂayO:ZO)p09QO) # Ii:qu(:Cg, yﬂ7zﬂap05q0)-

This is the noncharacteristic criterion.

Given (0.5), one then generates characteristic curves via

do _
dt ~*
(0.6) % —pFy+aF,
% = ~Fy — pF;
% =—-Fy —qF;



The initial data “propagates” along these curves and criterion (0.5) guarantees
that we generate a smooth solution locally in time. However, in finite time char-
acteristic curves generally intersect (caustics develop). Fourier Integral Operators
(FIO) were developed in the sixties and seventies see e.g. [8] to take care of the

resulting multivaluedness (and to do a lot more, of course).

A classical example is the eiconal equation from geometrical optics:

(0.7) PP+gt =1

If " is convex, the solution rapidly develops a caustic. Rather than continuing
it as a multivalued solution a la FIO, we may use the recently developed notion
of viscosity solutions [3,4,5] for Hamilton-Jacobi equations to continue the solution
uniquely as a single-valued uniformly continuous function having “kinks” - i.e.
jumps in the first derivative. For most real-world problems this is the appropriate

class.

We shall propose an analytic and numerical method for solving (0.1), (0.2) when
I" is a compact set of closed curves dividing R? up into  and its complement §2°,
neither of which need necessarily to be compact. We call {} the “interior” and Q2°

the “exterior”.

This method generalizes easily to compact hypersurfaces dividing up R" into an
interior and exterior. In this paper we shall stick to R® for simplicity of exposition

only.

The present work has three main antecedents. In [12] Osher and Sethian intro-
duced the concept of a level set formulation to propagate curves and surfaces. The
problem analyzed there was as follows. We wish to move a closed curve I' normal
to itself with normal velocity u,. This velocity might be geometrically based, e.g.
it might be a function of the curvature of I'. The level set formulation easily treats
self intersections, topological changes, kinks, and higher space dimensions. Theo-
retical justification for this method (along with a great deal of other very important
theory) came later in [2,6,7].



Briefly, one finds a function ¢(z,y,t) so that at ¢ = 0 we have:

(0.8a) P(z,y,0) =08 (z,y) e T
(0.8b) Y(z,y,0) > 0in {2
(0.8¢) Y(z,y,0) < 0in Q°

and ¥(z,y,0) is a uniformly continuous and monotonic strictly decreasing function
of distance to I" near T which we call T'(0).

We require that I'(t) evolves so that
(0.9a) ¥(z,y,1) =0« (z,y) € T(2).

This means that for (z(2), y(t)) € I'()

(0.9b) Lp(e(t)(0),1) =0
(0.9¢) Yae +YPyye + e = 0.

Rearranging terms, we arrive at

(0.9x) P = ~Uny /92 + 2.

At this point we imagine that u, is defined throughout R", not just on I'(t), and
that this is done in a natural way. Thus all level sets of ¥ move according to this

law.

If u, is a given function of (z,y), then this is a Hamilton-Jacobi equation and we
seek the viscosity solution [4,5]. This has an interesting physical interpretation for
flames. Sethian’s entropy condition [15] follows for the viscosity solution (see [12]

for the proof).

If u, is the curvature of the level set, the equation becomes:

_ '@bzxd)z - 2¢zy¢z¢y "f‘ "pyy";b:%
- I+ ¢} '
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(0.10) e



Thus, we can define the motion of a square via its mean curvature, using (0.10)
and following the level set. Again, this was rigorously justified in [2,7] for general

curves modulo some unusual exceptions.

As a numerical device this approach has many advantages over tracking. We
simply set up a fixed, Eulerian grid, solve (0.9) numerically, and let the plotter find
the front. Self intersections, kinks, topological changes, and multispace dimensions
are treated routinely. Of course, we have to construct stable, accurate, and efficient
methods for (0.9). See [12,13}, for a description of such methods.

The second antecedent is [10]. There the authors wished to solve a problem in
computer vision. We are given z{z,y) describing the surface of an object which
is illuminated by an overhead light source at infinity. In the simplest model the

intensity of light I(z,y) is given by

1

0.11 Iz,y) - —————=0= F(z,y,2,p,9).

The shape-from-shading problem is: given 0 < I(z,y) < 1, find u{z,y). Thisis a
very well studied problem, but only recently in [11,14], was the correct theory of
viscosity solutions brought to bear. In [10], the authors assumed that they were
given a level surface of u, i.e. (0.2) for zg = 0. What they proposed was to use the
methods of [12] to propagate the level surface to generate the solution of (0.11).
We now recognize this as a general method for solving (0.1) for Dirichlet data. We

shall describe and justify it in the next section.

Finally, the third crucial antecedent came in Bruckstein [1]. There the author
transformed the shape from shading problem into a level set propagation P.D.E. and
realized the advantages of this formulation. The link with the propagation methods
of [12] and the viscosity solution concept came later in {10] for this important

problem.

I. Description and Justification of the Method.

Let I' be a compact set of disjoint closed curves in R?, dividing R? up into an

interior {? and an exterior Q°. We wish to solve for z = u(z,y)

(113) F(.’E, y’zaP:Q) =0
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with Dirichlet data on I written locally as

(1.1b) z = zo(s)
(1.1c) y = vo(s)
(1.1d) z = zo(s)

which 1s noncharacteristic for (1.1a).

We next assume that z(s) can be continued into a set containing I' as a function
w(x,y) so that the functon n(r,y) defined by

(1.2) z(z,y) = w(z,y) +n(z,y)

is the unknown. This has the effect of changing F and setting zp = 0in (1.1d). Thus
we have the zero level set of the solution to a simple related P.D.E. as boundary

data. We continue to call this new P.D.E. F and the new unknown function z.

The noncharacteristic criterion then becomes

(1.3) pofp+qoFy #0

on I'.
Now we wish to construct a function of three variables v{z,y,t), ¢t > 0 such that

if

(1.4a) v(z,y,t) = 0 then
(1.4b) z=u(z,y) =t

Of course any such function will not be unique. However, all of them will satisfy
on the level set (1.4):

¢

(1.5a) 6—$v(x,y,u(:1;,y)) =0=v; + vu,
0

(15b) 'a_y'v(m} y,u(z,y)) =0= Vy + VilUy
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Thus, at least formally on this level set:

TV Yy o
(1'6) F(“T:y:v: v ' v )"‘0'

We shall choose v(z,y,0) to be a uniformly continuous function vanishing only
for (z,y)on T, v > 0in Q, v < 0 in Q° and v is a strictly monotone function of

distance to I' near I

The noncharacteristic criterion of (0.3) guarantees that we may invert (1.6) locally
for v, near I'. To devise a numerical algorithm based on time evolution we need the

assumption.

Assumption I. An explicit inversion formula exists for (1.6) near I' so that the

formula
(1.7) ve + H(z,y,v,0z,0y) =0

with H > 0 near I implies (1.6) near (z,y) e ', t = 0.

We note that H must be homogeneous of degree one in v,,v,. We also have a
technical assumption: H is a nondecreasing function of v near the initial region.
This is required by the theory of viscosity solutions — it basically rules out shocks

as possible solutions.

We now have our analytical method for solving (1.1), kinks and all. (Numerical
methods may be easily constructed using the results of [12, 13)).

We solve (1.7) on all of R" (we really only need to do this near I'()) with

uniformly continuous initial data

(183') v(m, Y, 0) == 'Uo(:c, y)

with

(1.8b) vo(z,y) =0iff (z,y) e T
(1.8¢) vo(z,y) > 0iff (z,y) ¢ Q
(1.8d) vo(z,y) < 0iff (z,y) € Q°

Then, to compute u(z,y) for (z,y) € Q we calculate the level sets via the relation
(19) o(z,,t) = 0.6 ¢ = u(a, ).
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This allows us to generate u(z, y) by building it up through this level set formulation.

It is clear from the classical method of characteristics - see e.g. [9], that if I'is a

smooth curve and F and H are smooth functions near I' then the solution to (1.1)

is locally (near I') the same as {1.9) for £ > 0 and small. We now claim that the

1) el AlllC o> R340 sl RN ELE JIil wll

level set generated function (1.9) is a viscosity solution to
(1.10) -1+ H(z,y,u,uz,uy) =0
if v is the viscosity solution to (1.7), (1.8).

We now recall the definition of viscosity solution, see e.g. [3].

Definition 1.1. Let ¢ ¢ C? near (7,7%,). Suppose v — 1 has a local minimum
(maximum) at (Z,#,1), then v is a viscosity supersolution (subsolution) of (1.7) at

this point if
(1.11) e+ H(z,y,0,9z,1) 2 0(< 0) at (2,7,1)

for all such 1.

Definition 1.2. v is a viscosity solution at this point if it is both a viscosity sub

and supersolution.

The fact that H > 0 indicates that v is strictly decreasing in t near this point.

In fact, if v — 3 has a local maximum there, then
Y < —H

which means that i is strictly decreasing there.

We take 3 so that

(1.12a) v(z,y,t) < ¥(z,y,1) near (z,7,1)
and
(1.12b) v(z,7,1) = ¥(&,7,1).

Then, for ¢ satisfying t < ¢t <1 + ¢ for € > 0 small,
'U(f,ﬁ,t) - v("iﬁ}ﬂ < ¢(f:gat) - i,b(f,ﬂ,f)
(1.13) = ¢t(i,ﬁ,?)(t — 1) (where £ < 1< t)
< —H(t-1).
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Thus v is uniformly strictly decreasing for ¢ > f. This is true for all such ¢ and ¢
in any neighborhood in which v(z,y,t) is a viscosity solution. Thus there exists an

increasing uniformly continuous inverse function h such that
(1.14) h(v(z,y,1)) = u(z,y) — 1.

What remains to be shown is that u is a viscosity solution to
(1.14) -1+ H(z,y,u,uz,uy) =0.

This follows directly from Theorem (5.2) of [2] under the hypothesis that H is
independent of u. Thus we make that assumption for theoretical purposes only and
conclude. (This key Theorem of {2] was motivated by problems involving motion of

level sets such as those described in [12]).

I1. Examples.

Given the shape-from-shading problem described above, with a remote generally
non overhead light source whose direction cosines, are (a, 8, —v) for v > 0, with

respect to the normal to the surface z = u(z, y) we wish to solve:

(2.1a) I(z,y)y/1+ul+ul—ou, —Puy—v=0
with
(2.1b) u="0onTI =0Q.

The noncharacteristic criterion is satified if y4/1 + p? + ¢ # I. Equation (1.6)

becomes in this case

v vl ow Bv
2.2 I(z, 14+ 24 Y4 2400 ~=0.
(2.2) @yhl+vf+d4-m o

This can be inverted to obtain our version of (1.7)

(2.3)

(sign(I? — y*))y(avs + Buy) + I fv2(—F% + 1 = I?) +vI(—a? + 1 — I?) + 2afv,vy

v [? - I?]
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Note that if, for example, vy = 1 & a = § = 0, the resulting overhead formula:

I
o2 + 2 =
(2.4) v + D v +v; =0

gives difficulties near I = 1. This is inherent in the problem [11,14]. In the general
case the method has problems because of a possibly negative quantity under the
square root sign, unless I < «. If this inequality fails we must require that the

gradients satisfy:

(2.5a) vi(1—I% - %) + vi(1 = I? - a®) + 20Bv,vy > 0
if
(2.5b) I>n.

This is, of course, required at the zero level set of v(z,y,t) from (2.1a) using (2.3)

and the related (1.5a,b), but it does present some numerical difficulties.

Example 2. Control-optimal cost determination

(2.6a) — (siny)us + (sinz)uy + |uy| — %sin2 y— (1 —cosz)=0
(2.6b) u = 0 on I', which is noncharacteristic, which means :
1
(2.6¢) 3 sin®y + (1 —cosz) # 0 on T\
We are led to:
@) ve + |vy| + (sinz)vy — (siny)v, _0

3sin’y + (1 — cosz)

and the quantity H(z,y, u,,uy) defined above is assumed to be strictly positive near
I'. (Of course, if it strictly negative, everything works with a different initialization,

just reversing the inequalities in (1.8¢-d)}). n
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us aware of his work in this area and Professor L.C. Evans for informing us of the

existence of Theorem (5.2) in [2].

10



Bibliography

[1] Bruckstein, A.M. “On Shape from Shading”, Comput. Vision Graphics Image
Process, V. 44, (1988), pp. 139-154.

[2] Chen, Y.G., Giga, Y., and Goto, S., “Uniqueness and Existence of Viscosity
Solutions of Generalized Mean Curvature Flow Equations”, J. Diff. Geom., V.
33, (1991), pp. 749-786.

[3] Crandall, M.G., Ishii, H., and Lions, P.L., “User’s Guide to Viscosity Solutions
of Second Order Partial Differential Equations”, Amer. Math. Soc. Bulletin, V.
27, #1, (1992), pp. 1-67.

[4] Crandall, M.G. and Lions, P.L.; “Viscosity Solutions of Hamilton-Jacobi Equa-
tions”, Trans. Amer. Math. Soc., V. 277 (1983), pp. 1-42.

[5] Crandall, M.G. and Lions, P.L., “On Existence and Uniqueness of Solutions of
Hamilton-Jacobi Equations”, Nonlin. Anal. Theory Methods App., V. 10, (1986),
pp. 353-370.

[6] Evans, L.C., Soner, M., and Souganidis, P.E., “The Allen-Cahn Equation and

Generalized Motion by Mean Curvature”, preprint.

[7] Evans, L.C. and Spruck, J., “Motion of Level Sets by Mean Curvature I”, J. Diff.
Geom., V. 33, (1991}, pp. 635-681.

[8] Hormander, L., “The Calculus of Fourier Integral Operations”, in Annals of Math.
Studies #70, Prespects in Mathematics, Princeton University Press, (1971), pp.
33-57.

[9] John, F., “Partial Differential Equations”, 4th Ed., Springer Verlag, New York,
(1982).

10] Kimmel, R. and Bruckstein, A.M., “Shape from Shading via Level Sets”, Technion
g
(Israel) Computer Science Dept. Report, CIS #9209, (1992).

[11] Lions, P.L., Rouy, E., and Tourin, A., “Shape-from-Shading, Viscosity Solutions,
and Edges”, Numerische Math., to appear.

[12] Osher, S.J. and Sethian, J.A., “Fronts Propagating with Curvature Dependent
Speed: Algorithms Based on Hamilton-Jacobi Formulations”, J. Comput. Physics,
V. 79, (1988), pp. 12-49.

11



[13] Osher, S. and Shu, C.-W., “High-Order Essentially Nonoscillatory Schemes for
Hamilton-Jacobi Equations”, SIAM J. Numer. Anal., V. 28, (1991), pp. 907-922.

[14] Rouy, E. and Tourin, A., “A Viscosity Solution Approach to Shape from Shad-
ing”, SIAM J. Numer. Anal, (1992).

[15] Sethian, J.A., “Curvature and the Evolution of Fronts”, Commun. in Math.
Phys., V. 10, (1985), pp. 487-499.

12






