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Abstract

In this paper, which is a continuous work of [20], [21], [22] and [24], we
present a shock tracking technique in one space dimension. The main feature
of the technique is that it uses the conservativity of the hyperbolic conserva-
tion laws rather than Hugoniot condition to track discontinuities. Roughly
speaking, the technique is as follows: The computation of a numerical so-
lution on each side of a discontinuity uses information only from the same
side. This is able to be done by employing extrapolated data on the same
side. From the viewpoint of shock capturing the overall scheme is not con-
served; therefore, conservation errors that indicate how much the numerical
solution is away from being conserved are formed on every time level. These
conservation errors are used to locate the discontinuity positions within grid
cells. Numerical analysis of the conservation and of the relation between the
conservation errors and discontinuity positions are presented. Handling of
interactions of discontinuities is developed. Finally, numerical examples are
.presented to show the efficiency of the technique.
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1. Introduction

We consider the initial value problems of hyperbolic conservation laws,
which can be described as

e+ f(u), =0 (1.1a)
u(z, 0) = up(z) , (1.1b)
where u = (uy,---,un) is a state vector and f, the flux, is a vector valued

- function of m components, For the simplicity of discussion ug(x) is assumed
to be of compact support. The system is hyperbolic in the sense that the
m X m Jacobian matrix '

of

Alu) = B (1.2)

has m real eigenvalues
a;(u) < az(u) < --v < ap(u) (1.3)

and a complete set of m linear independent right-eigenvectors. A weak solu-
tion to (1.1) is a bounded measurable function u(z, t) satisfying

L o+ @idadedtt [ wofeyis = o )

for all ¢ € C3((—o0, 00) x [0, 00)).

The main difficulty for numerical simulation of (1.1) is that solutions to
(1.1) may develop discontinuities, no matter how smooth the initial data
are. The loss of smoothness of solutions due to $he occurrence of discontinu-
ities causes consistency problem for the numerical schemes with the original
partial differential equations. '

There are two kinds of approaches of difference approximations for (1.1),
namely shock capturing and shock tracking. The shock capturing methods
ignore the presence of the discontinuities by applying almost the same numer-
ical schemes everywhere in the flow. It is expected that the discontinuities are

_resolved by sharp profiles of the numerical solutions. The methods are simple
and easy to code and apply. Also it has been shown by numerical experiments
and been proved theoretically for some particular cases that if the numerical
schemes are conservative, stable and satisfy entropy condition the numerical
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solutions will always have correct pictures. Here the “stable” means that

. .

the total variations of the numerical solutions are uniformly restricted by
some bounds, and the "correct pictures” means that the numerical solutions
do not present non-physical discontinuities and all the discontinuities move
with correct speeds. _

In the last several decades, a lot of efficient shock capturing difference
schemes have been constructed, studied and found to be very useful in shock
calculation (see (3], [12], [13], {14], [15], [19], [27], [28], [30], [31], [33], [34], [35],
[36], and the references cited there). The author should particularly men-
tion ENO schemes developed by Harten, Engquist, Osher, and Chakravarthy
and PPM schemes developed by Colella and ‘Woodward. These schemes es-
sentially eliminate spurious oscillations near disconfinuities and present very
good numerical resuls. ,

However, the main drawback of the methods is that they are not able to
give exact positions of discontinuities; besides, smear of discontinuities seems
to be unavoidable.

Instead of ignoring the presence of discontinuities, the shock tracking
methods use lower adaptive grids, the so-called fronts or interfaces, to fit the
discontinuities in the numerical solutions. The partial differential equations
(1.1a) are solved separately in each region surrounded by the fronts using
a method designed for smooth solutions, while the fronts are moved using
Rankine-Hugoniot jump conditions.

Early proposals for shock tracking can be traced back to Richtmyer and
Morton {29]. Several of its realizations in one space dimension can be found
in [16], {18], [26], [32] and [37]. A more challenging task is its realization in
two space dimensions due to geometric and dynamic complications. Glimm
and his coworkers, e.g., [1], [5], {6}, [7], [8], {9], [10], and [11], have developed
a very extensive set of tools for front tracking, which have been successfully
applied to a wide variety of problems. This package includes procedures to
deal with complicated interactions of fronts, Mach triple points, and other
such structures.

The shock tracking methods have been proved successful in dealing with
essentially piecewise smooth solutions by its very nice numerical results.
They present both the numerical solutions and discontinuity positions with
high accuracy. However, it seems still to be a problem for these methods
t6 deal with solutions that are not quite piecewise smooth, e.g., solutions




with several spontaneous shocks in & small region. Besides, the methods is
complicated in hoth coding and applications.

Since eight years ago the author has been developing a shock track-
ing technique that uses the conservativity of (1.1a) rather than Rankine-
Hugoniot jump condition to locate the discontinuity positions (see [20] -[24]).
In other words, he is trying to use shock capturing’s idea to do the shock
tracking. The present paper is a continuous work on this technique. Roughly
speaking, the technique presented in this paper is as follows. The computa-
tion of numerical solutions on each side of discontinuities uses information
only from the same side. This is able to bé done by employing extrapolated
data at the grid points on the other side of the discontinuities. From the
shock capturing viewpoint the overall scheme is not conservative; therefore,
conservation errors that indicate how much the numerical solutions are away
from being conserved are formed on every time level. These conservation
errors are used to locate the discontinuity positions within grid cells.

For two reasons the anthor believes that the tracking based on conser-
vation is better than the tracking based on Hugoniot condition. First, the
conservation, unlike Hugoniot condition, is a global feature of (1.1a). There-
fore, it is easer to carry out than Hugoniot condition in numerical simulation
because to maintain the conservation one does not need to know the detailed
structure of the numerical solutions. For example, when handling collisions
of discontinuities one does not need to know when and where the collisions
actually happen (see section 4). Second, the conservation is more essential
than Hugoniot condition in the sense that Hugoniot condition is a description
of conservation only for piecewise smooth solutions. Solutions to (1.1) may
have very complicated structure and their piecewise smoothness may become
questionable, In this case Hugoniot condition is not suitable for describing
the solutions. However, the solution are always conserved no matter how
complicated they are. Therefore, the tracking based on the conservation is
more robust and able to deal with solutions with complicated structures (see
the second numerical example in section 6).

The technique presented in this paper, just as expected, is very simple
and efficient. It has the following advantages:

1) The technique can be applied to any shock capturing schemes and it
works just as an adjustment on the schemes near discontinuities. Therefore,
the algorithm can be easily code in an almost shock capturing fashion.
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2) The computation proceeds on the regular grid, and no adaptive grid

ch we oo e P R 1 PR, | Qi T, v
is ncbﬂcu, by which we 5ct rid of t..umplctcl_y i€ Shiall Ceu pIroviel that

troubles most shock tracking methods (see, e.g., [1], [3], and [18]).

3) The handling of discontinuity collisions is quite simple. Due to a so-
called “stacking technique” developed in section 4 the handling is also very
accurate, '

4) The overall scheme is conservative; therefore, it is robust in dealing
with small scale structures and spontaneous shocks.

Development of a shock tracking technique based on the conservation in
two space dimensions, which is an extension of the tracking technique in one
space dimension, is underway ([23] and [25]).

The author should particularly mention Harten’s subcell resolution tech-
nique [12], which also uses the comservativity of (1.1a) to locate the dis-
continuity positions within grid cells. Actually, the ideas behind the two
techniques are just the same. However, Harten’s subcell resolution works in
a shock capturing way, while the author’s technique works in a shock track-
ing way. Besides, Harten’s subcell resolution is applied only to the second
field to improve the computation of contact discontinuities, while the au-
thor’s technique has been extended to all kinds of discontinuities and their
interactions.

The author would also like to mention Sjogreen and Engquist’s work [4],
from which he understood that the “artificial terms along ¢ direction” in his
former paper [20] are actually errors of conservation. So he abandoned the
old terminology and adopted the terminology “conservation error” for these
quantities, which is more precise,

Recently Colella and I.L. Chern [2] and LeVeque [18] have also developed
some conservative shock tracking methods. It seems that maintaining con-
servation benefits also these tracking methods since their numerical results
are quite good and their algorithm are simpler than shock tracking meth-
ods that are not conservative. However, they do not use the conservation
to locate discontinuity positions. The discontinuity fronts are moved essen-
tially still by Hugoniot condition; therefore, the adaptive grid is employed
and particular handling for interaction points of discontinuities is needed.

The format and contributions to the development of the shock tracking
technique of this paper are as follows.




We first develop the shock tracking technique for the scalar case of ( 1.1)

in §2 through §4. In §2 we describe how the technique uses extrapolated data

to compute a numerical solution on the two sides of a single discontinuity
and introduce the conservation errors.

In §3 we investigate the relation between the conservation errors and the
discontinuity positions. Under the assumption that the underlying schemes
are Godunov type we investigate the relation for cases of any order extrapo-
lation through an approach different from and simpler than that in [22]. The
results are generalized and improved than in [22]. :

In §4 we describe how the technique deals with interactions of discontinu-
ities. The so-called “stacking technique” is developed in this section. We also
study the conservation errors in the stacking case and show the conservation
of the numerical solution together the conservation errors. _

In §5 we apply the technique to the system case of (1.1). A key point of
this application is to let information associated with other characteristic fields
be able to travel through discontinuities. The application in [22] realize this
point by solving Riemann problems related to the original and extrapolated
data of the numerical solution. In this paper we develop a so-called “clean-
up step to fulfill this.task, As a result the application is simpler than that

n [22].

In §6 we present two numerical examples; particularly, the second one
- demonstrates the robustness of the technique in dealing with solutions with
complicated structures and spontaneous shocks.

87 is the conclusion.

2. Conservation Errors

In this and the following two sections we assume that both % and f in
(1.1) are scalar and f is convex. We now describe the technique for a single
discontinuity and introduce the conservation errors.

We assume that the underlying scheme is of Godunov type; i.e.,

n+41

ui™ =i = M — f;—llz)* (2.1)

where the numerical solution u} is an approximation of cell-average of the

solution and the numerical flux f T+1/2 15 a0 approximation of the flux average

6



on the interface of adjacent cells. More precisely,

o hj T (e, ta)de (2.2)
T 172
and
5 1 ftess
/e = ;/; f(u(@ji172,t))dt. (2.3)

We say that the scheme is of (2k + 1)-point if the numerical flux is a function
of 2k variables

Tt = f(u?—k+1’ ey uy) (2.4)

and consistent with the flux in (1.1a) in the sense that Flu,- - yu) = f(u).

We assume that there is a discontinuity in the numerical solution and on
the nth time level its position (™ is in the cell [z, 2;41]. This cell, which
contains the discontinuity, is called a critical cell. Suppose that we have
known the discontinuity position {™*! on the (n 4 1)th time level at this
moment, whose calculation will be described in the following section. There
will be three different cases for £™*1. First, it is still in the same cell; i.e.,
z; < €M < @ 40. Second, it moves to the left of the cell; je., £"F! < ;.
And third, it moves to the right of the cell; i.e. z;41 < {™*? (see Figure 2.1).

One of the main ingredients of the technique is to let the computation
of the numerical solution on each side of the discontinuity use information
only from the same side. This can be done as follows. First, we extrapolate
the numerical solution on the two sides and obtain two sets of extrapolated
data, namely w77, ,u}7, ., and qu_k, T J"+ The data with “—" are
from the left to the right, while the data with “+” are from the right to the
left (see Figure 2.2). In the first case, for all j < 7; the numerical solution is
computed as

H?H =u; — )‘(f,+1/2 J 1/2) (2.5)

while for all 7 > 7; + 1 it is computed as

“?H = '”'? - A(f_1+1/2 J 1/2) (2.6)

where f77 112 and ot j11/2 ate defined as

f;;;,fz = f(u;'l'—k-«l-l? T ’ujl ! uJ:-{"l ' ’u?:I-_k) (27)




and

f;ﬂ‘m = f('u?‘—-‘l;-i-l’ Tty 'u;";'+1'“;+1: et 7“?+k): (2.8)
respectively. Meanwhile, the critical cell on the (n 4 1)th time level is still in
the same cell {z;,, zj,+1]. In the second case, for all j < j; — 1 the numerical
solution is computed by (2.5), and for all § > j; + 1 it is computed by (2.6).
At the grid point j = j;, which is now on the right side of the discontinuity
on the (n + 1)th time level, the numerical solution is computed as

n n,+ in,+ n,+
uJ'1+1 =y A(.7(.‘14-1/2 - fj1—1/2)' ) (2.9)

Meanwhile, the critical cell on the {n + 1)th time level is [z .1, 2;]. In the
third case, for all § < j; the numerical solution is computed by (2.5), and for
all j > j; 4 2 it is computed by (2.6). At the grid point j = j; + 1, which
is now on the left side of the discontinuity on the (n + 1)th time level, the
numerical solution is computed as
“;‘:Tl = U = /\(f;';:,/z - f_-;:'-:l/z)- (2.10)
Meanwhile, the critical cell on the (n + 1)th time level is [z, 41, 2}, +2].

Computed in such a way the numerical solution will have high accuracy
up to the discontinuity. However, the overall scheme is not conservative.
This is because in the first case in cell [z}, z; 41], in the second case in cell
[#;,_1,%;], and in the third case in cell [z}, 14, z;, ;) different numerical fluxes
are used in the computation. The computation on the left uses the fluxes
with “—” in these cells, while the computation on the right uses the fluxes
with “+”. The difference of numerical flux will accumulate and form an error
of conservation.

To analyze this conservation error we introduce a new scheme with nu-
merical flux ' .

w ) f ;.;.;/2 7 <n
i+1/2 { f;.;.-;-/g J > jl (2.11)

and write the overall scheme in a conservation-like form by adding some
auxiliary terms on the RHS (right hand side) of (2.11). Namely,

W =uf = Mffage — Fya) Py — Plapt gt — g (2.12)



Obviously, there are infinite choices of these ;pJ 172 ’s and ¢7's to realize the
overall scheme. However, if we restrict ¢} and g * o be non-zero only at
the left endpoints of the critical cells on the corresponding time level and
P41/, to be non-zero only in the vicinity of the critical cell and regard q7 is
known, these p},, /2's and g7 V’s will be uniquely determined. In the above
mentioned three cases thEII terms that may be non-zero are as follows. In

the first case,

q.;+1 = q.u + A(f.11+1/2 .‘n+1/2)’ (2‘13)
in the second case,
p;':—lﬁ qu + (u_n ) + A( —1/2 J]-~1/2) (2 14)
n41 .
4-1— P,,_1/z;

and in the third case,

Pihsip =4 + A(fml/z n+1/2) (2.15)
i =+ (a3 )+ M 5tare — Frvaps) '
1 =45 1 T U4 a+8/2 — Ji4s/2)
Although the numerical solution 4} is not conserved, according to (2.12)
the numerical solution together with g7 1s conserved; i.e.,

o0

Z (u"+1 “H) Z ('u. ——qJ) Z ('u._,? - q?). ‘ (2.16)

j=—co J=—o00 j=—co

As a matter of fact, g7, is just the conservation error formed on the nth time
level, which presents how much the numerical solution is away from being
conserved,

The original conservation error comes from two sources. First, if the
discontinuity starts at the initial time level, then the initial conservation
error is able to be determined from the initial data by the formula derived
in the following section. Second, if the discontinuity is detected during the
computation, then the original conservatlon error is set to be zero by the
consideration of conservation.

From (2.13)-(2.15) we see that when time evolves the conservation error is
effected by two factors, namely the accumulation of the flux difference caused
by the usage of different numerical fluxes in the same cell and the change
of the grid points from one side of the discontinuity to the other side. This
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conservation error contains information of the discontinuity position, and in

Aromeron b . L

1 3 3 —_— I _ 1 L4l ) s
the following section we will discuss how to use it to locate the discontinuity,

3. Locating Discontinuity Position thrdugh Conservation Error

In this section we derive the formula by which we can locate the discon-
tinuity positions through the conservation errors. Upon this formula we are
able to complete our algorithm.

Since the derivation is based on reconstructions of the solution from its
cell-average approximation, a brief description of the reconstruction proce-
dures in Godunov type schemes is needed first.

As well known, a Godunov type scheme employs a reconstruction proce-
~ dure to recover the solution from its cell-average approximations because the
evaluation of the numerical fluxes requires knowledge of the solution itself
rather than the cell-averages. In this reconstruction procedure an approxi-
mation of the solution is recovered in each cell [€;-1/2, Tj+1/2] through the
cell-average approximations in this and the nearby cells (see [3], [12], [14],
and [34}). .

Different Godunov type schemes employ different reconstruction proce-
dures; however, all of them must maintain the conservation in the sense that

1 o412 n n
“};,/ R{z;u™) = uj, (3.1)
Ti_1/2

where R{z;u") is the reconstruction of the solution. We say that a recon-
struction is of the rth order if for a smooth solution u(z,t) we have

R(z;u™) = u(z,t) + O(R") (3.2)

in each cell [}, _1/2,2;,41/2]. The discussion in [12] shows that if the recon:’

struction is of the rth order, the numerical scheme (2.1) will be the rth order
accurate in the sense of cell-average.
Two simple reconstructions are as follows:

1)

Rz, w™) =u} z;1 <2 <zjpap (3.3)

1 the first order reconstruction used in Godunov scheme.
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2)

Dfouony
R (CHCN
where the slope S7 is
n 1 n

is a second order reconstruction. However, this reconstruction is never used
in any second order Godunov type schemes since it will produce spurious
oscillations. The reconstructions used in all second order Godunov schemes
have certain kinds of restrictions on the slope to control the oscillation of the
numerical solutions.

We now turn to derive the formula that relates the conservation error
and the discontinuity position. We still denote the critical cell by [z;,, x;, 41],
discontinuity position by £™ on the nth time level, and the extrapolated data
by u;'”~ and u; ™+ on the two sides of the critical cell, respectively. In the
following d:;scussxon we assume that the exact solution is smooth on the two
sides of the discontinuity and the numerical solution is accurate up to the
rth order. The later assumption is reasonable since the computation of the
numerical solution on the two sides of the discontinuity employs extrapo-

lated data, by which it evades the discontinuity. Therefore, under the first

assumption the numerical solution will be very accurate if a good underlying
scheme is used.

First we improve the reconstruction of the numerical solution by taking
into account the discontinuity in the critical cell. This is done as follows.
First on the two sides of the critical cell when the reconstruction requires
the data of the cell-averages on the other side. we let it use extrapolated
data instead of the original data. The resulting reconstruction is denoted by
R(a: u")

R(z; u") maintains (3.1) since the reconstruction in each cell [€5-1/2
T;41/2) still uses the original datum of cell-averages u} in this cell. If both the
extrapolation and original R(z;u") are of the rth order R(z;u") maintains
also (3.2) separately on the two sides of the critical cell because of the usage
of the extrapolated data. As a result, R(:n u™) has a big j jump at the grid
point @, 41/, (see Figure 3.1-(b)). We denote by Ry(z;v™) and R (z;u") the
left and right pieces of R(z;u™).

Next we move the big jump from =z; /2 to the discontinuity position

11




£™ by either extending or cutting off Rz(m;u“) and R,(z;u") within the in-

terval [min(£", 2 11/2), max(€™, ©; 11/2)] (see Figure 3.1-(c)). The resultin

e

function, denoted by ﬁ(m;u“), 1s the improved reconstruction.
Now we are going to derive the formula. As we see that the above move-

. . . Th4l A .
ment of jump position will change the integral f " R(z;u"™) by a difference
. . Ty

& . R

f (R (z;u™) — Ry(z;u™))de (3.6)
Tir41/2

We let this difference equal to i h by the consideration of conservation; i.e.,

[

F1+1/2

L

(R.(z;u™) — Ri(z;u"))dz = @k, (3.7)

which gives the formula relating the conservation error and the discontinuity
position. '
When the reconstruction R(z; ") is (3.3), (3.7) is

(w1 — w3 )€™ — 3j1102) = @1 A, (3.8)

from which we obtain

*h
I (3.9)

n_. .
" =547+ .
: 1+l il

Actually, (3.9) is used in all the numerical examples in section 6. When the
reconstruction R{z;u™) is (3.4), (3.7) is

A 267 = Tjap2) + BY 1 (€7 — 204172)" = h., (3.10)
where
fir1j2 = 5(“?1“ —uj)— E(u?1+2 —ug ;) ' (3.11)
and )
Bjisie = oy (Whhe = whn — o, +uj ). . (3.12)

(3.10) s a second order algebraic equation, which has a single root in the
vicinity of z; when the jump is of O(1) and A is small enough.
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When the initial condition (1.1b) contains a shock or a contact disconti-
nuity, (3.7) can also be used to calculate their initial conservation errors in
the discretization of (1.1b).

PROPOSITION 3.1 If

1) there is a discontinuity in the solution of (1.1), whose jump is of O(1),

2) the numerical solution approzimates the cell-averages of the exact so-
lution up to O(R") on the two sides of the critical cell,

8) both the extrapolation and reconstruciion R(z;u") are of the (r — l)th
order,

4) the discretization of the initial data (1.1b) is accurate,

then the discontinuity position obtained by solving (3.7) is the rth order
accurate, o -

Proof. Consider f R(z;u™)dz, which exists since up(z) is of compact

support. First we sha.ﬁo;)rove that
f (R(z;u™)dz — u(z, tn))dz = 0 (3.13)
We observe that

]m R(z;u™)dz = jziﬁm Ry(z;u™)de + w R.(z;u™)dz

Fh+1/2

3 . \
+ (Bi(z;u") — R.(z;u"))dz (3.14)
-":1+1/2
- E ujh + Z ujh — gk
j=-oc F=jo+1

The last step in (3.14) is due to (3.1) and (3.7). Because the overall scheme

maintains the conservation of ) (u} — ¢}), we have

j=—o0

o0 o0

‘ > uwh—qgih= ). (uf — @)k : (3.15)

j=—0 j=—o0

Here if the discontinuity on the initial time level is in the cell [@50—1/2) Tjo41/2)
then except q;-’o, all q?’s are zero; and if the discontinuity develops later in
the computation, then all q_f,-”s are zero. Because of assumption 4) the RHS

13




oo .
of (3.15) is equal to / ug(2)dz. Due to the conservation of (1.1a)

o

IRTOE /'°° ule,t)ds. C (316)

— O -o0

Combining (3.14)-(3.16) we obtain (3.13).
Denote the exact discontinuity position by s®. Next we shall prove that

™ = €] = O(K"). O (3a7)

Suppose 8™ < £”. We see that

/ ’;(}‘é(m;u") —u(s,))dz = [ ';(R,(z;u") — u(z,1,))ds

=Y @h- [T )d) + [T (Rl - ule b))

j=—oo z5-1/2 iy -1/2
(3.19)
Due to assumption 2) and 3) both the two terms on the RHS of (3.19) are
of O(h"). By a similar argument we can also show

f T(R(w;u™) - ulwit))dz = O(K), (3.20)

We substitute (3.19) and (3.20) into (3.13) and obtain

n

f, . (Blzu") —u(a,t.))dz = O(R"), (3.21)

which means that (3.17) must be true due to assumptions 1) and 2). The

case that s™ > £ can be proved in the same way.

Thus completes the proof. B

We shall make the following two remarks to complete this section,

Remark 1. The reconstruction used to locate the discontinuity positions
should not be the same as the original reconstruction in the underlying Go-
dunov type schemes. In fact, assumption 3) in the theorem shows that the
first reconstruction can be one order lower than the second one.

We say that a difference scheme is pointwise if its numerical solution is an
approximation to the exact solution at the grid points rather its cell-averages.

14




Remark 2, If »r = 2 and the underlying scheme is pointwise then all the

above discussion in this section is still true. This is becanse that a second

ARl ant AL E SRS AVAL A0 Suias va . AAA AU RSLLIMIADY VELGV W O DU

order approximation of a solution at z; is also a second order approximation
to its cell-average in [z;_1/2, Tj41/2]-

4. Algorithm. Interactions of Discontinuities

Now we are able to complete the algorithm of the overall scheme upon
the discussion in the previous two sections.

We start with the case of a single discontinuity and still use the same
notations as in the last two sections. As shown in section 2 there are three
possible cases for the numerical solution in the vicinity of the discontinuity,
namely that the critical cell on the next time level either remains in the same
cell or moves to the left or right. A key point of the algorithm is to determine
which case should happen.

The algorithm in [20] calculates the potential conservation errors on the
next time level for all the three cases and then take the one with the least
absolute value of the conservation error among them.

The algorithm in [22] calculates the discontinuity position on the mext
time level by Hugoniot condition; i.e.,

o = g L0n) 2 I0G) (1.1)

T
uf 41— UG

and then makes the option according to £, In doing so, the corresponding
overall scheme is not conservative; however, we proved that the conserva-
tion error for a single chscontmmty is uniformly bounded if the solution is
piecewise smooth.

In this paper we design the algorithm as follows: First, it computes ¢"+1
by (4.1) and makes the option according to it. Then it computes the nu-
merical solution on the next time level; meanwhile, it computes also the
conservation error on that level. Finally, it recomputes €™ through the
conservation error by (3.7). In doing so, the overall scheme maintains the
- conservation for the numerical solution.

As one can see, the recomputed £™*! may deviate a little bit from its
critical cell. This kind of small deviations will also happen in the interac- .
tions of discontinuities described later in this section. However, numerical
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experiments show that it does not cause any problems. This is because the
tracking technique is based on the conservation; therefore, the corresponding
numerical results are not sensitive to the discontinuity positions.

In the following discussion when saying discontinuity positions we always
mean the recomputed discontinuity positions.

Now we are going to deal with the interactions of discontinuities and
develop the so-called “stacking technique”. As we shall see, this technique
lets the computation proceed still on the regular grid. Just for the simplicity,
we shall restrict our discussion only for the case of two discontinuities. The
extension of the treatment for cases of several discontinuities are naive.

Assume that there are two critical cells [z, 2;,41] and [z;,, 2, 11] on the
nth time level, where j7; < j,. First, if the two critical cells are separated,
which means j; < j,, then each of them can be handled in a way as for a single
critical cell. The two critical cells may be close to each other, probably they
are so close that the grid points between them are not enough to implement
extrapolation with the order required by the technique. In this case the order
of the extrapolation in this region has to be lowered to the highest order that
can be archived with the grid points inside. Although this means that we
lose some accuracy, the numerical experiments show that the problem is
insignificant. _

If the two critical cells approach o each other when the time evolves,
then at certain moment, say on the nth time level, they will move into the
‘same cell (see Figure 4.1). We denote the cell by [z;,, 2;,41], the left disconti-
nuity position by £}, and the right discontinuity position by £7, respectively.
There are two possible cases, namely £ < ¢*, which means that the two
discontinuities have not crossed over each other, and £ > ¢, which means
that they have crossed over each other. )

In the first case we stack the two critical cells in the cell [z, z;, 11]; ie.,
each of them is still regarded as an individual critical cell. We shall choose

a middle state u, to connect these two stacked critical cells. It is chosen as

n—1

follows: In case a in Figure 4.1 u, = u;-‘l Ty, in case b u, = ul and in case

1
C U, = E(u + ul, +1) Algorithmly, we never let case d happen by holding

one of the critical cells.
In the following computation we treat the left critical cell as that the
numerical solution on its right is «, and the right one as that the numerical
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solution on its left is u,. Therefore, during the time we have two discontinuity
positions £ and £ and two conservation errors ¢? ¢h ;and g &, in the same cell.
This situation Wlll continue as long as the two discontinuity positions have
not crossed over each other.

These two stacked critical cells will be separated again if £ and £* move
to different cells without crossing over each other (see Figure 4.2). If this
happen, we shall let the numerical solution at the grid points between the two
re-separated critical cells be u,. Algorithmly, we never let the two critical cells
cross over each other by holding one of them, even though its discontinuity
position may deviate a little bit from it.

Next we shall show that the overall scheme for these two stacked critical
cells is also able to be written in the form of (2.12) with ¢} = g + g3, and
gitt = g3f ' +q}}". This means that the numerical solution together with the
conservation errors are still conserved. To do this we observe the following
two initial values on the nth time level.

1)

n u? J <7
= TS 4.2
U1 { s > ( )
+with a critical cell [z;,,%;,41] and conservation errors
@y = q?”l '? - '7:1
” 0 J#5
2)
o
ul, = { G I =0 (4.3)
' Uy J>n

also with a critical cell [z;,, 2, 41] and conservation errors

q’? — q;,r 3231
T 0 j#5

The corresponding numerical solutions on the following time level satisfy

'”*??1 = Uz )‘(ffﬂ/z,z - f;_uz,l) ”%P?H/z.l - P;'l_1/2,1 + ‘1?,?1 - ‘i';::l (4-4)

and
Lo ndl in m n n n n
uj,:r = U — '\(fj+1f2,r - fj-—-lfz,r) t Pitaar — Pi_12, t+ Qj,;H — G (4.5)
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where, according to (2.11), f;f‘ﬂ /24 and f;T‘H J2+ BT€

An'— - -
fn o= Jivp IS (46
s {f(u*) izh (49)

and £ ) <
- Uy 1<n
n = n A 4.7
e ={ 55 155 1

and p;y 1 /-;,;’s, q;-"f”"’s, P3112, '8 and q;'j'l’s are defined in the way described in

section 2. Particularly, the nonzero terms in the conservation errors are just
the nonzero terms in the conservation errors of the original problems.
It is easy to verify by the definition that on the nth time level

u;, + u;'l,f = "’? T+ . (4.8)

and _ ) )
;?+1/2,t + f;+1/z,r = f_?+1/2 + f(u,.) (4-9)

- Since the two critical cells will not cross over each other, it is also easy
to verify that '

ﬂ‘{*l + uﬂ+1 — uﬂ+1 + u, 7 (4.10)

in all cases. Therefore, by adding up (4.4} and (4.5) and substxtutmg (4.8)-
(4.10) into it we obtain the conclusion.

This stacking technique can be naively extended to treat several stacked
critical cells. In this case we have several discontinuity positions and conser-
vation errors in the same cell. The author would particularly like to point out
that here we have developed a new approach to deal with the region where
the numerical solution has small scale structures. As well known, the usual
way to resolve the details of the small scale structures is to subdivide the grid
in this region. However, this approach has the following two shortcomings.

1} Due to the restriction of CFL condition the time step in the subdivided
region has to be reduced, which will slow the computation.

2) One needs to take care of the coordination between the subdivided and
un-subdivided regions.

Instead of subdividing the grid, the stacking technique developed here
stores more than one pieces of information, namely the discontinuity positions
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and conservation errors, in the same cell to resolve the details of the small
scale structures. In doing so it does not have the shortcomings mentioned
above.

Now we are going to deal with the second case in which £ > £7. H this
happens on the nth time level, we merge the two critical cells to form a new
critical cell and take ¢} = g}, + g}, to be the conservation error for the
new one by the consideration of conservation. The discontinuity position £
of the new critical cell is computed by (3.7) through the new comservation
error.

Obviously, under the same assumptions and by the same arguments of
Proposition 3.1 we are able to prove that the new discontinuity position will
be accurate up to a certain order in the later computation. As a verification,
we shall observe the situation for piecewise constant solutions and show that -
in this case the handling of the mergence of two critical cells is equivalent to
the ordinary tracking methods based on Hugoniot condition and Riemann
problems. -

We assume that

1) the numerical solution on the left and right of the stacked critical cells
are u; and u,, respectively; |

2) on the (n — 1)th time level {71 < £7~! and on the nth time level
&> &

We shall compute £" using the present tracking technique as well as using
Hugoniot condition and solving the Riemann problem, and show the results
are the same.

First we compute £ using the present tracking technique. As said be-
fore in this section, the discontinuity positions are computed through the
conservation errors; therefore, we have

g b = (& — 54172 ) (s — up) (4.11)

and
@G b = (& ~ gy 172)(ur — ). , (4.12)

Then the discontinuity position computed by the technique for the new crit-
ical cell satisfies ' ‘

G+ @G b= —ap)ue—w). (4.13)
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By substituting (4.11) and (4.12) into (4.13) we obtain

ENfas, s Y L £7 0 _ 4 3\
et Yt ] A J oD Sy WP *J

¢ =

4.14
— (4.14)

'Second we compute £” using Hugoniot condition and solving the Riemann
problem. For the simplicity of discussion we assume that all the {71, £n,
¢r~1 and € are in the same cell [z}, , z;, +1] (see Figure 4.3). We draw lines to
connect points (¢/~!,t,_1) and (£/',¢,) and points (£771,¢,_;1) and (€7, £,).
Since the numerical solution is piecewise constant, the slopes of the two line

segments are
o = L) = flu |  (415)

U, — U}
and

5 = Jlur) — flud (4.16)

.
Uy — U

The two line segments must intersect at a point (£,f) because of the assump-
tion 2, which means that the two discontinuities collide at £ and the time £
to form a new one. It is easy to see that

& =€+ si(ta—1) ' (4.17)

and
£ = £+ 5.t — ) (4.18)
We observe that the the slope of the new discontinuity, is

s = f('u'r)_f(u!);

419
Up — Uy ’ ( )
therefore, the discontinuity position £™ is

£ = ¢+ s(t, — 1).  (4.20)

To compute {7, we multiply (4.17), (4.18) and (4.20) by v, —u;, u, — u, and
u, — 1, respectively, and subtract the first two equalities from the last one.
By substituting (4.15), (4.16) and (4.19) into the resulting equality we can
also obtain (4.14). Thus the technique is equivalent to the ordinary shocking
tracking methods.
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5. Application of the Technique to System Case

In this section we shall apply the tracking technigue developed in the
previous sections to the system described by (1.1)-(1.4).

As well known, the system (1.1) of m un-knowns has m different kinds
of characteristics and, therefore, has m different kinds of discontinuities too
(see [17]). Due to this reason the critical cells in the system case will also be
classified in m kinds according to the discontinuities they contain. We say a
single critical cell [z, ,2; 41] on the nth time level is a k—critical cell if the
solution of the Riemann problem R(u},,u} ;) with «}, and u? ,, as the left
and right states has'a strong k—discontinuity. The sta.cked critical cells can
be classified accordingly.

For a single k—critical cell [z;,,z; 11], we solve the Riemann problem
R(u},,u} 1) to find out the moving speed of the k—discontinuity, and then
use 1t to calculate the predict position of £”*!, by which we are able to
make the option for the computation of the numerical solution. We still
compute the numerical solution on the two sides of the critical cell using
the extrapolated data on the same sides and compute the conservation error
through (2.13), (2.14) or (2.15), which are now in vector forms.

Since there are m different characteristic fields, the computed conserva-
tion error may contain information that belongs to the fields other than the
k—field. This information of the other fields has to be cleaned from the
conservation error and go to the numerical solution by the consideration of
conservation. By doing so, the information on one side of the discontinu-
ity that associates with the characteristics on its other side is able to travel
through it to the other side. In the following of this section, a so-called
“clean-up” step is developed to fulfill this task.

For a single critical cell, we solve the Riemann problem R(u? ul,ul ),
whose solution consists of m waves, dlscontmultxes or centered simple waves,

and m — 1 middle states uj,u},---, u’,_,. We denote
e =ul —u,, 1<I<m, . (4.1)
where ug = u} and u;, = u},,;. Then welinearly decompose the conservation

error through the {e;}g 1,m, Damely
4, = cuey +azes + -+ + e, (4.2)
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and then let , .
q;‘: = XLEY. (4.3)

The discontinuity position £™ will be computed by (3.9) with u} = uf and
Us+1 = u’{-l-l' -

As we see, if the solution is of two constants w; and u, connected with
a k—discontinuity, then the flux difference vector f{u,) — f(1;) is parallel
to the solution jump vector u, — w; according to Hugoniot condition. As a
result, the conservation error of the critical cell is always parallel to u, — Uy
too. Under this consideration we pick the kth term in (4.2), which is the
only term parallel to u, — 2 in the decomposition, as the conservation error.

The rest terms in (4.2) will go to the numerical solution in the fashion
that :

k—1
‘ 'LL; = u;'l - Ea;eg (4.4)
I=1
and
m
Wy = UGy~ D, ogey. (4.5)
I=k41

In doing so, the information associated with the characteristics on the left or

right of the discontinuity goes to the numerical solution on the left or right,

respectively. At the meantime Z (u;‘ — ¢7) is maintained to be conserved.

The developed clean-up ste;) has only the first order accuracy if the so-
lution is piecewise smooth. This is because it is designed assuming that the
numerical solution are piecewise constant on the two sides of the critical cells.
Nevertheless, the numerical experiments show that the loss of the accuracy is
insignificant. The higher order clean-up steps are likely able to be developed
on the basis of the discussion in the previous section; however, they are still
expected.

For stacked critical cells, the clean-up step is constructed accordingly as
follows: When there is an another critical cell stacked in the same cell on
the left with a middle state ., connected with the concerned critical cell, we

clean up the conservation error in the same way as for a single critical cell
k-1

except that u} is replaced by u.. In this case the sum Ea;ez in (4.4) will
=1
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go to u. in the way of (4.4). At the meantime we let this sum also go to the
conservation error of the left stacked critical cell in the way that

k-1

Gp= Gt D me, ' (4.6)
=1

* where g7 ; is the conservation error of the left stacked critical cell. The

last step is due to that u, is not counted in E (v} - af); therefore, this
j=oo

sum has to be stored also somewhere in the conservation error to maintain

the conservation for the numerical solution together with.the conservation

errors. The case that there is a critical cell sta.ckefg in the same cell on the

right is handled in the same way, only the sum > e in (4.5) will go to

I=k-_|-1
the conservation error of the concerned critical cell.

When two critical cells stacked in the cell [x;,, ;] are merged, the
clean-up step is constructed as follows. '

- For the simplicity of discussion we assume that there is no other critical
cells than these two ones stacked in the cell. First we also solve the Riemann
problem R(u} , 47 ,,) and decompose the conservation error, which is now the
sum of the conservation errors of the merged critical cells, through {ethi=1m.
Next we check the strength of each wave resulting from the Riemann problem
in the order that ! increases, namely from the left to the right. '

If the I—wave is a shock or contact discontinuity and strong enough ac-
cording to some criterion, we set a critical cell for it in [#5,,%;,41) and pick
the term oge; in (4.2) as its conservation error. In this case if there is going
to be other critical cells stacked in the same cell on its right, we set uf,, to
be the middle state on its right.

If the wave is a centered simple wave, or a shock or contact discontinuity
but not strong enough, we let its corresponding term aye; in (4.2) go to the
numerical solution or conservation error in the way as follows: If there is no
critical cell in the same cell on the left, then this term will go to ul in the
way that

ul = ul — oep. (4.7)

Otherwise, if there is a critical cell in the same cell on the left, then this term

will go to the right middle state of the left critical cell in the way of (4.7).
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Meanwhile, it will also go to the conservation error of the left critical cell
in the way that ‘
g =g tae (4.8)
by the consideration of conservation, where g% ; is the conservation error of
the left critical cell.

As we see, if all the waves resulting from a Riemann problem R(u;,u,)
are shocks and contact discontinuities, then in the linear decomposition of
f(u,) — f(w) through {u},; — 4} }1=1,m, namely

flue) — flw) = en(wy —ug) + aaluz —u3) + - oo+ am(up —upy),  (49)

the coefficient of the Ith term o is just the speed of the l-wave, where uf is
the lth middle state with ug = w; and u;, = u,. This is because of Hugomniot
condition and the fact that {u,, — 4] })=1m are linearly independent.

In section 4 we showed that in the scalar case, when the solution is piece-
wise constant the handling of the mergence of two critical cells is equivalent
to the ordinary tracking methods. In the system case, by noticing the above
mentioned fact we are also able to show this equivalence following the same
argument in section 4. '

The extension to the case of several critical cells stacked in the same cell
is naive.

6. Numerical Examples

In this section we shall present two nnmerical examples for the Euler
equations of gas dynamics for polytropic gas. The Euler equations are

u+ f(u). =0, : (6.1a}

u = (p,m, E)T, - (6.1b)
f(u) = qu + (0, p, gp)" (6.1¢)
p=(-1)(E -~ %pq’), (6.1d)

where p, ¢, p and E are the density, velocity, pressure and total energy, re-
spectively, m = pq is the momentum and + is the ratio of specific heats. The
eigenvalues of the Jacobian matrix A(u) = 8f/6u are

aif{u)=g—¢, au)=4q, aslu)=qg+ec, (6.2)
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where ¢ = (yp/ p)% is the sound speed.
The underlying scheme is a second order TVD scheme with a two-step
Runge-Kutta time discretization described in {31]; i.e

“?“!2 = — A(f:+1/2 i 1/2)

- ﬂ+1 2 in+1/2 n+1 2
.’;H / "’\( +1//2 - ; 1/2 )’

un-{-—l — (u + n+1)

e

(6.3)

and a TVD numerical flux f satisfying

1, . . . )
’};(f;+1/2 — fioaje) = Folome; + O(h?). (6.4)

The mesh ratio is set to satisfy A max;(u; — ¢;,u;,u; + ¢;) < 0.5.

The data structure for the critical cells is as follows: A doubly linked
list 1s used for the critical cells. Each critical cell is an element of this list
with pointers to the left and right neighboring critical cells. With such a
data structure it is easy to insert new critical cells. Whether the neighboring
critical cells are stacked in the same cell or separated is judged by checking
their = indexes.

A special advantage of this shock tracking technique is that it does not
require adaptive grid, the whole computation proceeds still on the regular
grid. Thus, the algorithm of the overall scheme is much simpler than or-
dinary shock tracking methods. It is able to be programmed in an almost
shock capturing fashion by regarding the technique as an adjustment on the
underlying scheme in the vicinity of discontinuities.

The algorithm consists of the following steps:

1) Compute the numerical solution without considering the critical cells.

2) Recompute the numerical solution near the critical cells using the ex-
trapolated data on the same side and regardmg that all the critical cells do
not move.

3) Compute the conservation errors regardmg that all the critical cells do
not move. :

4) Compute the predict discontinuity position in each critical cell by
Hugoniot condition and determine whether the critical cell should move or
not.
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5) For the critical cells that should move, recompute the numerical solu-
tion nearby and the corresponding conservation errors in the way described
in section 2 if they are single critical cells, or recomputed the corresponding
middle states and conservation errors in the way described in section 4 if
they are stacked with other critical cells in the same cells.

6) Clean up the conservation errors and recomputed the discontinuity
positions in the critical cells with the cleaned conservation errors in the way
described in section 5. '

EXAMPLE 1. The initial data are

w 0<z<01
g =4 Uy 0.1<zx<09 (6.5)
u, 09<z<1

where
PI=pm =pr =1,
@ =gm =g =0, (6'6)
P = 103,pm = 10"2,13,. = 102. ’
A solid wall boundary condition is applied to the twoends z =0 and =z = 1.
This is the blast wave problem suggested by Colella and Woodward in [36].
We refer readers to [36] and [13] for the details and comparisons of various
numerical results of this problem. .

The numerical results at the finally time ¢ == 0.038 are presented in Figure
6.1-(a) to Figure 6.1-(c), where (a) is of the density, (b) is of the velocity, and
(c) is of the pressure. The circles represent the numerical solution computed
by the overall scheme with the shock tracking technique with 400 grid points.
The solid lines present the numerical solution computed by a second order
ENO scheme with 800 grid points for the comparison. Figure 6.1-(d) presents
the tracked discontinuities. We refer readers to the contour figure of the

numerical solution in the ¢ — ¢ plane presented in [36] for the comparison
with Figure 6.1-(d).
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EXAMPLE 2. The initial data are

po(ﬂ:) = 1:
qﬂ(z) =0,
460 0 <z <0.1775 (6.7)
R 0.05({ — 1) < z — 0.1775 < 0.051 '
po(z) = { 104+ 50(9 — 1) 1<1<8
10 0.5775 < =z < 0.1.

The same solid wall boundary condition as in the previous example is applied
to the end = 1, and the following symmetric boundary condition is applied
to the end z = 0, : :

ul;=ul j=12,---,k (6.8)

where k is the semi-length of the stencil of the numerical flux.

We see that the initial pressure contains nine big jumps, each of which is
of 50. As a result, the solution to the problem has nine strong left shocks and
a contact discontinuity starting from the initial time level. When the time
evolves, they interact on each other and finally all the left shocks merged
into a strong left shock (see Figure 6.2-(d)).

We shall test our shock tracking technique on this problem in two different
ways to demonstrate its robustness in dealing with solutions with small scale
structure and capturing spontaneous shocks.

First we set critical cells for all the discontinuities on the initial time
level and track them afterwards. The numerical results at the final time
t = 0.026 are presented in Figure 6.2-(a) to Figure 6.2-(c),  where (a) is of
the density, (b) is of the velocity, and (c) is of the pressure. The circles
represent the numerical solution computed by the overall scheme with the
shock tracking technique with 200 grid points. The solid lines present the
numerical solution computed only by the underlying scheme with 1600 grid
points for the comparison.

The numerical results on the 200-point grid computed only by the under-
lying scheme is not very good since the peak in the density profile around
z = 0.8 does not shoot up well.

Figure 6.2-(d) presents the tracked discontinuities and Figure 6.2-(e)
presents a picture of the critical cells, which is drawn by linking the left
and right endpoints of the critical cells on the neighboring time level relat-

27




ing to the same discontinuities by line segments, respectively. The final left
shock position at the time ¢ = 6.026 is 6.8136.

Figure 6.2-(f) presents a picture of the critical cells in the region 0.55 <
z < 0.75 and 0.015 <t < 0.02, i.e. the region marked by dash lines in Figure

6.1-(e). Because of the small scale structure of the solution the region is

crowded with critical cells and stacking and mergence of critical cells happen

a lot.

There are some small oscillations in the velocity and pressure profiles.
These oscillations must come from the shock tracking technique since the
TVD underlying scheme is supposed not to produce oscillations. An investi-
gation of how to maintain the TVD property for the technique is underway.
It is seems that care needs to be taken also for rarefaction waves, particularly
when shocks of the same type or shocks and contact discontinuities interact
on each other and strong rarefaction waves are generated.

Next we do not set the discontinuities on the initial time level; instead,
we choose a tolerance number ¢ and use it to detect discontinuities in the
computation. When in a cell [z;,2;4,] on the nth time level the jump of the
pressure is greater than €, we solve the Riemann problem R{u?,47,;). When
the solution‘ of R(u?,u},,) contains a shock with the jump of the pressure
greater than e, we set a critical cell for this shock in the cell. At the time
that the critical cell is set the conservation error is 0.

We test for £ = 15, 20 and 25, and the numerical results are presented
in Figure 6.3, Figure 6.4 and Figure 6.5, respectively. All the (a) figures are
of density profiles at the time ¢ = 0.026, all the (b) figures are of velocity
profiles at the same time level, and all the (c) pictures are of the tracked
discontinuities. The final left shock positions are 0.8141 for £ = 15, 0.8143
for € = 20, and 0.8142 for ¢ = 25. We see that the difference among the
final left shock positions in the above four cases (including the first case of
tracking the discontinuities from the initial time level) is of O(h?), which
agrees with the analysis in section 3.

7. Conclusion

" The shock tracking technique based on conservation presented in this pa-
per 1s efficient and robust in deal with solutions with complicated structures
and spontaneous shocks. The technique is also very simple since it does not
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require adaptive grid and the computation proceeds still on regular grid. This
makes the coding and application of the technique quite easy. Things that
need more investigation are 1) how to maintain the TVD property when it is
applied to TVD underlying schemes, 2} how to improve the order of accuracy
when it is applied {o the system case, and 3) how to extend the technique to
two space dimensions. 1) and 3) are underway now.
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Captions for Figures

Figure 2.1 :
The three cases for discontinuity position "', (a) £**' remains in
[, Z5,41), (b) £"*! moves to the left, and (c) £"F' moves to the right.

Figure 2.2 :

Numerical sclution on the nth time level has a jump in cell {x;, 2; 4]
Solid line circles denote the original data of the numerical solution and dash
line circles denote the extrapolated data from the two sides of the jump.

Figure 3.1 :
Reconstructions of numerical solution. (a) R(z;v"), which does not take
into account the discontinuity. It smears the discontinuity. (b) R(z;u"),
which takes into account the discontinuity. It has a big jump at ;11,2 ()
R(z;u™), which is obtained by moving the big jump in R(z;u") to disconti-
Ty bl

nuity position £™. The change of integral ” R(z;u™)dz, i.e. the shaded
z;

area in the picture, is equal to conservation error a5,

Figure 4.1 :

Cases of two critical cells moving into the same cell. Upward brace denotes
the left critical cell while the downward brace denotes the right one. (a) The
left critical cell remains in the same cell while the right one moves to the left.
(b) The left critical cell moves to the right while the right one remains in
the same cell. (c) The left and right critical cells move to the right and left,
respectively, into the same cell. (d) The left and right critical cells move to
the right and left, respectively, and cross over each other. This case does not
happen in algorithm. '

Figure 4.2 :

Cases of two stacked critical cells being separated. Upward brace denotes
the left critical cell while the downward brace denotes the right one. (a) The
left critical cell moves to the left while the right one remains in the same cell.
(b) The left critical cell remains in the same cell while the right one moves
to the right. (c) The left and right critical cells move to the left and right,
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respectively. (d) The left and right critical cells move to the right and left,

s 3 i hrneeman dee nlonidl
respectively. This case does not happen in algorithm.

Figure 4.3 :

Two discontinuities start from £~ and £, collide at point (£*,¢*), and
form a new discontinuity. ¢ and £ are the two discontinuity positions before
the mergence of the two corresponding critical cells. £™ is the position of the
newly formed- discontinuity.

Figure 6.1 :
Example 1. Numerical solution at time ¢ = 0.038. (a) Density. (b)
Velocity. {c) Pressure. (d) Tracked discontinuities,

Figure 6.2 :

Example 2. Numerical solution at time ¢ = 0.026. Discontinuities are set
at the initial time level. (a) Density. (b} Velocity. (c) Pressure. (d) Tracked
discontinuities. (e) Critical cells. (f) Critical cells in region (0.55,0.75) x
(0.015,0.02).

Figure 6.3 : i
Example 2. Numerical solution at time ¢ = 0.026. Discontinuities are

detected with tolerance number ¢ = 15. (a) Density. (b) Velocity. (c)
Tracked discontinuities.

Figure 6.4 :
Example 2. Numerical solution at time ¢ = 0.026. Discontinuities are

detected with tolerance number ¢ = 20. (a) Density. (b) Velocity. (c)
Tracked discontinuities.

Figure 6.5 :
Example 2. Numerical solution at time ¢ = 0.026. Discontinuities are

detected with tolerance number ¢ = 25. (a) Density. (b) Velocity. (c)
Tracked discontinuities.
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