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PERTURBATION THEORY FOR ORTHOGONAL PROJECTION METHODS
WITH APPLICATIONS TO LEAST SQUARES AND TOTAL LEAST SQUARES

RICARDO D. FIERRO* AND JAMES R. BUNCH!

‘Abstract. The stabilized versions of the Jeast squares (LS) and total least squares (TLS) methods are two
examples of orthogonal projection methods commonly used to “solve” the overdetermined system of linear equations
AX =2 B when A is nearly rank-deficient. In practice, when this system represents the noisy version of the rank-
deficient, zero residual problem Ay Xy = By, TLS usually yields a more accurate estimate of the exact solution.
However, current perturbation theory does not jusiify the superiority of TLS over LS.

In this paper we establish a model for orthogonal projection methods by reformulating the parameter estimation
problem as an equivalent problem of nullspace determination. When the method is based on the singular value
decomposition of the mairix [4 B}, the model specializes to the well known TLS method. We derive new lower and
upper perturbation bounds for orthogonal projection methods in terms of the subspace angle, which shows how the
perturbation of the approximate nullspace affecte the accuracy of the solution. Using the new bounds, we show the
TLS perturbation bound is generally smaller than the corresponding one for LS, which means TLS is usually more
robust than LS under perturbations of all the data. Also, the bounds permit a comparison between the LS and TLS
solutions, as well as for any two competing orthogonal projection methods. We include numerical simulations to

substantiate our conclusions.

1. Introduction. In numerous applications one is faced with estimating the relationship be-
tween the columns of the data matrix A € R™*" and the observation matrix B € 87"%?¢ (m > n+d)
in the overdetermined system of linear equations

(1) AX = B,

For example, in spectral estimation this problem must be solved in the noisy forward or forward-
backward linear prediction technique for resolving closely spaced sinusoids [1},[20]. Usually (1) does
not have a solution and compatibility must be restored by “fitting” AX =~ B with a compatible
system

AX = .é,
and the “correction” matrices are AA=A-Aand AB=B-B.
The least squares (LS) or total least squares (TLS) methods are commonly used for (1). These

methods, as well as the analysis pertaining to them, are often based on the singular value decom-
position (SVD). Denote the SVD of A (cf. [7, p.70]) in the dyadic form by

) A=Y ojulyT,

i=1

where o] > o}, > .- 2 ¢!, > 0 and the u}’s, as well as the v} ’s, are mutually orthogonal.
Literature on LS is abundant (e.g., {2],[5],{6],[9]). If the numerical rank of A is k < n, it is
well known that small perturbations in 4 or B may cause disproportionately large changes in the

o’
ordinary LS solution Xors = ¥ o vfﬁivgl. The fruncated LS method stabilizes the solution by

{1 o

solving the related LS problem

3 AxX = B,
where A; = foz ol ul UET. Note that the approximation of A by A; is independent of B and
|AALll = 0}4y, where || - || = || - |l denotes the Euclidean norm, unless otherwise stated. Here,
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one attempts to achieve stability in the solution at the expense of a slightly larger residual. A
perturbation analysis for the truncated LS method for the case d = 1 is given by Hansen in (8]. Let

o

. o
(4) Xps = Ev: (u}” B)
=1

ol
denote the minimum norm LS solution to (3). The set Sps of all solutions is characterized by
Sps = {X|X = ALB+ (I - ALAy)Z, VYZ e R~x4}.
Equation (1) often contains independently and identically distributed errors in both A and B.
Denote the SVD of [A B] in the dyadic form by

n+d
(5) [A B] = Z oiuivy

i=1
where 03 > 04 > «++ > 0n4q and the s, as well as the v;’s, are mutually orthogonal. In the setting
of orthogonal projection methods, Van der Sluis and Veltkamp [13] provided brief results about the
TLS approach to {1). Golub and Van Loan [6] provided the first analysis of TLS (k = n,d = 1}
using the SVD, and later the results were extended (k = n,d > 1) by Van Huffel and Vandewalle,

who also examined the case where A is exactly rank k [14],[15].
In TLS we consider a perturbation of A which depends on B, as follows:

minimize ||[4 B] — [C D}|| subject to CX = D.

For stability reasons (more explicitly, see TLS perturbation theory in §3) when the numerical rank of
Ais k < n, the TLS problem is reformulated as finding the minimizer of the constrained optimization

problem

(6) minimize lIlA B] ~[C D]||
(7 subject to rank (C) = rank([C D}) =k,

provided such a minimizer exists; this will be assumed in this section, and enforced in the following
sections with a mild condition.
A nearest rank-k matrix approximation to [A B], given by

k
(8) [AB]=) o],
i=1

is the most likely candidate for the solution. HAA|| is the error in the approximation of 4 by A and
[l{AA AB)|| = ox+1. The truncated TLS solution, X7rs, is the minimum norm solution to

(9) AX =8B.

As proven in [13], the set Srrs of solutions to (9) is the same as the set of LS solutions to AX ~ B.
Thus, Sprs = {X|X = AlB+ (I - AtA)Z, VZ e ®"*4}.

The purpose of this paper is to develop theory which explains the superiority of (truncated)
TLS over (truncated) LS observed empirically in the literature. We shall assume that A is possibly
near-rank deficient (in which case the truncated versions of these methods are employed), and the
results and conclusions are equally valid if rank(A) = n.

The paper is organized as follows. In §2 we establish a model for a general orthogonal projection
method M, such as LS and TLS, by reformulating the parameter estimation problem as an equiv-
alent problem of nullspace determination. When the method is based on the SVD of the matrix
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[A B], the model specializes to the well known TLS method. For an arbitrary orthogonal projection
method M, we derive lower and upper perturbation bounds for the solutions. The bounds are in
terms of the subspace angle between approximate nullspaces, which shows how the perturbation of
the approximate nullspace affects the accuracy of the solution. The perturbation result is briefly
mentioned in [4] but ie formulated and explored more thoronghly in this paper. In §3 we apply the
general perturbation bounds to LS and TLS. In situations where TLS typically applies, our numer-
ical experience indicates the TLS bounds are usually smaller than the corresponding LS bounds.
This means 'TLS is usually superior to LS under perturbations of all the data. In §4 we examine the
difference between the LS and TLS solution using the general perturbation bounds as a platform.
The bounds actually allow for a comparison between the solutions of any two competing orthogonal
projection methods, such as LS or TLS and a rank revealing QR factorization [3],[4]. Numerical
simulations are included in §5 to illustrate the conclusions. Finally, we summarize our conclusions
in §6. .

At this point we introduce notations and definitions used in this paper. Superscripts T' and
t denote the transpose and Moore-Penrose pseudoinverse of a matrix, respectively. Let R(D) and
N(D) denote the range and kernel of the matrix D. Lower case Greek letters are scalars.

Definition [6, p.75] Given D € RF*¢, P € RF*P is the orthogonal projection onto R(D} if
R(P) = R(D), P*= P, and PT = P,

For LS, [Ax Bi) = P[A B} where P = [u},...,ui][uf,...ut]T and R(P) = R(4;). For TLS,
[A B] = P[A B) where P = [uy, ..., ug][u1, ..., us]T and R(P) = R(A). Now, let Pp = DD,

Definition [18] The matrix C is an acute perturbation of D if || Pc— Pp}| < 1 and ||Pcr — Ppr|| < 1.
We also say that C and D are acute.

Finally, the next definition allows one to compare two subspaces.

Definition [6, p.76] Suppose R(C) and R{D) are equidimensional subspaces of £¢*¢. We define the
distance between these two subspaces by sin¢ = ||Pc — Ppl|, where ¢ is the largest angle between
the two subspaces.

2. General Model and Perturbation Bounds. In this section we establish a model for
a general orthogonal projection method M, such as LS or TLS, by reformulating the parameter
estimnation problem as an equivalent problem of nullspace determination and by providing lower
and upper perturbation bounds for the solutions. The bounds apply to any parameter estimation
method which can be reformulated as an equivalent problem of nullspace determination. The key is
to determine an orthonormal basis Y for the nullspace of a compatible system which approximates
AX = B (or a basis for an approximate nullspace of [A B]) followed by a change of basis. This
information can be readily extracted, for example, from the SVD, URV, or ULV decomposition, and
indirectly from a rank revealing QR decomposition of [A B].

As shown by [3),[4] a rank revealing QR factorization can be used to compute a solution based on
an approximate nullspace. Stewart [11] proposed a method which employs a two-sided orthogonal
decomposition to determine an approximate nullspace of a matrix (for subspace tracking). An
efficient implementation of the ULV or URV algorithm to compute a TLS solution is proposed in [17].
The choice is usually governed by the desired accuracy and the computational and implementation
requirements.

We shall now present the model. Denote by Xy the minimum norm solution to

w - Ax =5



where [A B] is a rank-k matrix approximation to [A B) based on method M, and [AA /_\.B]
[A B] —[A B]. The following result gives a sufﬁclent condition for the exastence of X, i.e., the

compatibility of (10).
THEOREM 2.1. Let A have the SVD as in (2), P € ®™*™ an orthogonal pro;ectwn matriz,
IA B] = P[A B), and AA=A~ A Then AX = B is compatible provided |AA|| < o}

Proof: See [4].

This condition means that A must be an acute perturbation of Az. The solution set Sy to (10) is
characterized by

(11) SM=£HX=ﬂB+U~mﬁM,VZeW”%

Let [A B] = [A B]+ [AA AB] represent a perturbation of [4 B]. Let [A 4 B] denote a rank-k matrix
approximation to [A B] based on method M and define [AA AB] = [A B} - {A B]. We shall always
assume the mild condition ||AA| + ||AAl| < ¢}. By Theorem 2.1, AX = B is compatible. Denote
by X the minimum norm solution to

(12) AX = B

Now we are prepared to develop our model. From (10) we have

[Am[fg]zu

Now, let the columns of ¥ = [ n , with ¥; € Rrx(r=k+d) a5d ¥, € RIX-*+d) form an
orthonormal basis for the kernel of A~ B], denoted N ([A B]). Since

=((ZD==(%))

e T v
(13) ___E ={Y; Sy,

it follows

for some Sy € R(*-k+d)xd_ This yields the underdetermined compatible system
(14) Yz SY = —Id.

The general solution set is {Sy|Sy = -¥, + Z, VZeN (Y2)}- 'I‘akmg the norm of both sides
of (13) we get

V14X umll? = {|Sr]l-

Since X is the minimum norm solution, we take Z =0 to get Sy = —YJ. Therefore,

Xu = Vv
= -nY(Yy)™h

1t can also be shown that if the columns of Z = [ZT ZT]” are orthonormal and span the orthogonal
complement of R(Y}, then

Xu = 2123 (Ig ~ Z223)7.
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In addition, if Q € gn-k+d)x(n~k+d) 45 ay orthogonal matrix such that
n—k d

[8]=[R]e-va- 2 ¢)s

then it follows

-(MQ)(¥2Q)!
~[pclory

-waf % |
(15) = ~CT™1,

Xy =-NY)

It

and one only needs to solve a triangular system of equations to compute Xps.

H M = TLS, then this model specializes to the well known computation of the TLS solution by
Golub and Van Loan [6] for k = n, Van Huffel and Vandewalle [15], and Zoltowski [21}. We remark
that for k = n the Generalized CS Theorem [10] can be invoked to develop relationships similar to
those presented in {16, Ch. 3] for the TLS model. o

Now, if Z = [ZT ZT]T denotes another orthonormal basis for N{[A B]) then the “orthogonal
Procrustes” problem for Y and Z can be solved with zero residual, i.e., there exists an orthogonal

matrix Q satisfying Y = Z¢). Then
Xy = -¥1 Y} = =v1QQT Y, = (-¥1Q) (2Q)! = -2 Z],

which means choice of basis is unimportant and the solution is completely determined by the kernel
of [4 B]. ‘

_ Assume the mild condition max([|AA]), |AAll + [[AA]l) < g}, is satisfied and let the columns of
¥ denote an orthonormal basis for N'([A B)). Let @ € R(r—*+d)x(n-k+d} be an orthogonal matrix
such that

— = - n—k d
(7 ]=[s]e=re= 2 ¢];
Then
Xu = -1V
(16) = -CT-L
Thus, ‘
o e

Let W € ®("+9x%n denote an orthonormal matrix with the partition

n
W= W1 n
Wy | d

such that WTY = 0 (i.e., W “completes the space”). From equation (17) it follows

(- [])=w[§]
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and consequently

=51 Cy

}1‘“1.

(19) Wi Xy — Xu) = -WT {

L\ ) T
INOLE Lab

=1ty

)

denotes the sine of the largest subspace angle between R { g ]) and R ([

to present the main result of this section. ~

THEOREM 2.2. Denote [A B] = [A B] + [AA AB]. Let Xy and Xy denole the minimum
norm solutions to the compatible sysiems AX = B and AX = B oblained from method M as in (10)
and (18), provided maz (JJAA|, |AA} + [|AA|l) < of. Then

WT[

SilltﬁM = |

<y

D We are now ready

(20) singu < WXar—Xnall < sindar (/14 X120/ 1+ [ Xnell?,

)

iy

where ¢pr denotes the largest subspace angle belween R([ ‘I:: ]) and ’R,([
Proof: From the CS Theorem [10], since ]

w, C

Wy, T

min (W) = T4l

is an orthogonal matrix where W, and T are square matrices, we know o rin

From (19) we have
ToninW I Xm = Xull < W] (Xnr — Xao)l|

o [§]r

sin éar|[T 4],

IA

or

X — Xull < singp|IT e (Wh).

min

Hence, it follows
1 Xn — Xl < singariTHHIT)
= singar /1+ [ Tal2 /141X,

and this proves the upper bound. To prove the lower bound,

1Xar = Xull 2 (W (Xn — Xnn)l]

el

> singuy opin(T
P sin ¢M:

-1} > 1. This completes the proof.

since oo (T



We remark that Theorem 2.2 may also be applied to the situation where X and Xar are determined

by different orthogonal projection methods; we pursue this matter in §4 only for the case [JAAl = 0.

Theorem 2.2 shows that for method M every perturbation [AA AB) which makes N ([4 B])

equal to N ([A B}) makes AX = B compatible and yields the same solution Xz, since sin¢p = 0.
& perturbations [AA A B] which achieve this are characterized by

The perturbations [AA AR ich achieve this are
(21) [AA AB) = —[AA AB}+ HT

where R(H) L R(Y). Thus various perturbations may produce the same solution. For arbitrary
[AA A B] we conclude that for method M the perturbation effect depends upon the noise distribution
in M([A B]). Van Huffel and Vandewalle [16, p.190] reached the same conclusion (21) for the
perturbation effects in the TLS problem.

Theorem 2.2 also shows as soon as the kernel is perturbed such that 0 < sin ¢as, the new solution
X cannot coincide with Xps. In the presence of noise [AA AB], the best accuracy an orthogonal
projection method M can achieve is measured by sin ¢»s. Finally, the /- in the perturbation bound
is actually a “condition number” for the orthogonal projection method, cf. [4].

Hereto we denote

sinfy = “YYT - ?17""" ,

the sine of the largest angle between N ([A B)) and N([A B]). Although the columns of [CT IT}T
and [CT IT]7 are nullvectors of [4 B] and {4 B], respectively, generally sin ¢ar # sin .

A straightforward approach for finding an upper bound for sin ¢ in terms of familiar parameters
appears difficult, hence we approach the problem by first finding an upper bound for sin #pr. There
are several reasons why we might be interested in an upper bound for sin fas.

e First, sindps = sin s whenever k = n, a situation that arises in many applications.

e Second, an upper bound for sin far in terms of familiar parameters is feasible.

e Third, we can bound sin ¢pr by sin 6ps plus a term, as follows,
Define the projection matrices Py = YYT, Pp = }_’}_’T, Per = [T TTTICT 1T}, Por =
[CT TT)T[CT ©7), Pp = [DT 0]7[DT 0}, and Pp = [DT 07 [DT 0]. Using the facts Py = Pp+ Por,
Pp = Pp+Psp, PoPcr=0,and PpPer =0, then for any vector z € R"+4

(Py — Pp)zll> = ||(Pp— Pp)elf®
+ |(Pe,r ~ Pep)zl? — 27 (PoPgr + PoPer + PerPp + PerPo)z.

In particular, if zp is a unit vector such that ||Pe,r — Pg pll = ||(Pe,r — Pep)#rll, then
singdp < sinfar + enr,

where
1
eu = |27 (PoPe o + PpPor + PerPp + PopPo)er — ||(Pp ~ Pp)erl? |

Note ¢3¢ = 0 whenever k = n.

Our numerical experiments in §5 suggest ey < sin 837, and experimentally we observed sin ¢y <
9sin 6. Although there may exist counterexamples, we did not encounter any.

The abovementioned reasons motivate us to bound sinfas in terms of the fitfings A ﬁ] and
[fi B], corrections, and the perturbation, First, we need to state some useful results.

Lemma 2.3. [18] Let [C D] = [C D]+ [AC AD] where [C D] is obtained by orthogonal
projection. Then [C DI'[AC AD} = 0.

LEMMA 2.4. [18, Theovem 3.14] If C is an acule perturbation of D, with C = D + E, then
Gt = DY < wlICH D EN, where = (1 +v/5)/2.
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We are ready to derive an upper bound for sin 8. o §
THEOREM 2.5. Let [A B] = [A B) + [AA AB) with [A B) and [A B] oblained as in (10) and
(12) using method M. Define pp = (1++/5)/2. If maz (||AA|, [JAA] + |AAl]) < o) then

sin Oy < [|[4 BI| ({24 ABll|+ p L4 BIIHIIA B]'| |14 B] - [4 Bl A4 AB|

where By is the largest subspace angle between N'([A B]) and N'([A B]).
Proof: Let R = I~ [A B]l[A B]. Then ‘
sindy = (|l B4 5] - [ B)'[A B
WA BN BlRY)
Il4 B)' ({4 B] - [A B)R™||

il

< NIABI'AB]- A Bl

= |[A Bl'({a4 &B] - [AA AB)|

= |4 B]'[aA &B) - ([A B]' - [4 BY")[AA AB)|

< A BI'Ila4 aBY| + (II4 B) - [A B (I[A4 AB]|

< 1A BiYHIIAA AB]| +p A BIHIEA B NIA B] - [4 Bl [[aA AB])).

The last inequality follows from Lemma 2.4. This completes the proof.

This proof follows a similar line of reasoning as an argument by van der Sluis and Veltkamp [13].
Note that in Theorem 2.5

w4 B 1A BIMIA Bl - 1A Bl llaA AB]| << (4 BIY|[I[A4 AB)|

provided [AA AB] is not too large and (1) is not too incompatible. This is illustrated in the next
section when we see how Theorems 2.2 and 2.5 may be used to derive perturbation theory for the
popular orthogonal projection methods LS and TLS.

3. LS and TLS Perturbation Bounds. In this section we use the general perturbation
bounds in §2 to derive new upper perturbation bounds for LS and TLS by bounding the subspace
angle. In §3.1 we examine the special case rank{A) = k and (1) is compatible. We show that the TLS
subspace angle is usually lower than the corresponding LS subspace angle {assuming errs and €L
are sufficiently small), which explains the superiority of TLS over LS observed by many in various
applications {e.g., see [16] and the references cited therein). In §3.2 we will investigate the more
general case when A is nearly rank-deficient and (1} is incompatible.

3.1. Bounds when Rank(A) = k and AX = B. In many sinusoidal frequency estimations
problems (e.g., see [12],[20]) the coefficient matrix A has rank k¥ < n and Az = b (d = 1) is
compatible in the absence of white noise. The elements of the solution = are the coefficients of a
polynomial

P(z7})=1- z": 2zt

i=1

and the true frequencies are determined from the angular position of the roots of P(z) on the unit
circle. However, due to the presence of noise, one has to estimate the polynomial coefficients from
a perturbed problem Az =~ b and consequently this corrupts the computed frequencies.

For now we shall assume rank(A) = k and (1) is compatible, hence the LS and TLS solutions
to {1) coincide: Xp = Xr5 = X7Ls. Letting [4 B] = [A B] + [AA AB], denote by Ay, the nearest
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rank-k approximation to A = A + AA;. We must solve the truncated LS problem Ay X = B. This
is equivalent to finding the minimum norm solution Xz s to the compatible system

(22) ApX = By,

where B, = A—kﬁlﬂ‘ is the orthogonal projection of B. From the results in §2, it remains to bound
the subspace angle sin ¢ 5, which in turn requires an upper bound for sinfs:

sinfzs = dist(M([4 B]),N (4 B:i])).

We are also interested in solving AX ~ B in the truncated TLS sense. Let [A B} = Zf,__l Fiu07
denote the nearest rank-k approximation to [A B] = 5-7%% 5,4;47. Then TLS finds the minimum

norm solution Xprs to the compatible system
(23) AX =B.

In a similar manner as above, it remains to bound the subspace angle sin ¢7 s, which in turn requires
an upper bound sinfrrs: -

sinfrrs = dist(N({A B]),N([:‘i B]) )

THEOREM 3.1. Assume the rank of A is k and let Xy denote the solution to the compatible
system AX = B. Lel [A B} = [A B]+[AA AB], and denote by X15 and Xrps the minimum norm
solutions 1o (22) and (23), respectively, provided ||[AA AB]|| < o}. Then the following perturbation
bounds hold:

A

< singrsy/1+ [ Xll? /1 + [ Xes|l?

A4 ABJY _
(W;‘; + GLS) \/1 + Xl \/1 +IX sl

sindrs < || Xo — Xisl|

1A

singrrsy/1+ | Xoll? y/1+ | Xrzs|?

AA AB] Y
(ak = a4 AF.‘I?]H * ET”) VI IXoIP Y1+ 1 Xrs]?,

Proof: From Theorem 2.2 and §2, sin¢rs < sinfrs + ¢rs and sin qSﬁTLs < sinfrrs + €rps, so
it remains to bound sinfpzs and sinfrs. The assumptions imply [[[AA4 ABJ|| = ||[A4; R}l =0,
where Ry = B — AX:;. We could determine a bound using Theorem 3.2; however, under the
conditions of this theorem, it is possible to eliminate a term bounding the subspace angle. In direct
analogy to Theorem 2.5,

singrrs < | Xo — Xrrs|]

A

IA

sinfrs = ||[A B]'[A B] - [A; Bi]'[Ax Billl
I{Ax Bel'[4x Bi] — [Ai Bi]'[Ax Bul|}

< l1Ar Bil'([Ak Bl - [Ax Bi)]
= |[Ax Bi)H ([AA AB] + [AA; Ry))|
= ||[4e Bi]'|AA AB]|
< {4 Bil'l|li[a4 AB)||
< NaAAB]
= o~ llAA]l

9



A similar argument will show that

A B]'[A B] - (A BJ'[A B]|
1 B]'[4 B] - [4 B]'[A B

tekd B _ 11 ﬁ}m

sinfprrs ]
]
} R &0 7 192 P
It
]

| I PN

([A4 ABl+[AA AB
a4 aB]|
14 AB]|

ila4 &B]|
o — ||[[AA AB]|I

Thus the desired results follow from Theorem 2.2 and §2. This completes the proof.

Al

IA

In our numerical simulations in §5, sin¢rrs and sinfiyrs ate usually less than singdrs and
sin 01 g, respectively, hence TLS usually produces a more accurate estimate of the true solution, Xo,
to the zero-residual, rank-deficient problem AX = B. Due to the tightness of the bounds, TLS
usually produces a more accurate estimate than LS because the TLS subspaces are less sensitive to

noise.
Both techniques are enhanced by increasing the respective k*? singular value, which in turn
decreases the sensitivity of its subspace to perturbations. The results in Tables 1 and 3 illustrate

this phenomenon, When HaA ABN o 1 then both techniques produce similar solutions.
i

3.2. Bounds when Numerical Rank{A) = k and AX ~ B. Now we wish to find pertur-
bation bounds under the more general conditions (1) is incompatible and the numerical rank of A

is k. Again, we turn to finding an upper bound for sin frys and sinfrs.
Letting [A B} = [A B] 4 [AA AB), denote by A; the nearest rank-k approximation to A=

A + AA;. Then we must solve the problems

Ay X~ B and A X~ B
in the LS sense. This is equivalent to finding the minimum norm solutions to the compatible systems
(24) Ay X =B and 44X =By

where B = A;,A;FB and By = ﬁkﬁiﬁ are orthogonal projections of B and B, respectively. From
the results in §2, it remains to bound the subspace angle sinfps:

sinfrs = dist(N([Ak B_k]) ,N([./-.ik Bk}))

I[Ax Bl'[4r B ~ [Ai Bi'[Ax Bl

1A

lAx Bel'| l[AA AB)| +tes
where
tus = plllAs Bel'll ILAx Bal'll N[Ax Bal — [As Balll (104 Rl
and Ry = B — AZps is the residual. It remains to bound the individual terms. By the interlacing

property of singular values [7, p.428] it follows

1

. o
s Bl < o end Il Bl < gy

o

.
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If we define

Pyr = [uj,u), ... ui]fuy, u, . ., ulJT and Py = [ay, 93, IRTA | (A A A L
then
[Ax Bx]— [A: Bi]ll < ||Puy[A B) - Pgy[A Bll|
= |{(Pu; — Po:)[A B] - Pg;[AA OB
< sinBrs(|[A Bjfi + [l[AA ABJY.

Here, sinfrs = ||Pu; — P(-,—;‘H and frs denotes the largest angle between R(Ax) = R([Ax Bi])
and R(A;) = R([Ax B:]). Further, it follows from Wedin’s {18] perturbation bounds for singular
subspaces ‘

, |AA]
sinfps < .
of — 0hy — A4

Define xrs by

jLsin Bs|li4 Bl + A4 ABI) HAAL Relll
7} (o1 — 1AA])

(25) ars =

Then 15 < ars and therefore

lia4 ABji

(26) sinfrs <
T

+ors.
Under the reasonable circumstances A3 X ~ B is not too incompatible and ||[AA AB]|| is not
too large, the first term dominates aps. If the upper bound is not too pessimistic, then sinfrs =

jlad aBY

T

Now we will find upper bounds for TLS. Let {4 B] = Zfﬂ &;#;07 denote the nearest rank-k
approximation to [4 B] = Y.¥#u;57. Then TLS finds the minimum norm solutions to the
compatible systems

(27) AX=B and AX =8B
In a similar manner as above,
(26) sinbrrs = dist(V([4 BY), N([4 B)))
(29) = |I[4 B)'[4 B] - [A B]'[A Bl)|
o lednmy,,
where
(30) tres = plllA B A BINIINA B) - (A Bl I[a4 AB)|.
Note that

o i .
< = t
MABMI<—  and  (ABM<
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If we dt‘eﬁne
PU;‘ = I"h“z, . uk}['U1, ug, .. ‘,uk]T and P[_fk = [ﬁl, fig, ..., ﬁk][ﬁl,ﬁg, ey '(_f,k]T
then
IlAB}-[AB)| = ||(Po,~ Po,)lABl~ Pp[0AAB]|
< sinBrusliA B]ll +l[AA AB]|,
where sin fris = ||Pu, — Pp,|| and Brrs denotes the largest angle between R(A) = R([A B]) and
R(A) = R([A B]). Further, from the perturbation of singular subspaces in [16, 18], it follows

. [AA AB]||
< .
sin Pris < or — 041 —~ ||[[AA ABJ|}

Define arps by

(sin Bresll4 Blll + |[A4 AB]||) l[aA A B]Y|

31 =

(31) orLs = o2 (0% ~ TAA AB]))
Then it follows trrs < arrs and

(32) sinfprs < -!-I-[-A—é-?ﬂ +arLs.

Under reasonable circumstances as above, the first term dominates arrs. When the upper bound
is not overly pessimistic then sinfprg = w. Thus we have proved the following result.

THEOREM 3.2. Let A and [A B] have the SVD as in (2) and (5), respectively, and let
[A B] = [A B} + [AA AB]. Let Xrs, Xrs ond Xrps, Xrrs denole the minimum norm so-
Iutions 1o (24) and (27), respectively, provided ||[AA AB]|| < o}, — k41 . Then the following
perturbation bounds hold:

singrs < || Xzs — Xisl]

IA

sin gz.51/1+ X2 /1 + | X2

LA AB v
(—mmm i +0L5+6L5) \/1+1|XL5HZ \/1 + | XLs|l?

%

A

singrrs < || Xris — Xrrsl| < sin ¢TLS\/1 + 1 Xppslf? \/1 + | Xresl®
AAAB X
(u +orps + 6TLS) \/1 + 1 Xprsll? \/1 + || X7es|l*-

L

IA

Neglecting €75 and ars, as well as erps and arLs, it appears the upper bound for TLS subspace
angle is slightly smaller than TLS, since o}, < ;. Finally, 0 can increase when the columns of B
have an nontrivial orientation along the k** left singular vector of A, namely, u},.

4. Bounds on ||Xrs — Xrrs|l. In this section we examine bounds on || X1s — Xrrs|| using
the general perturbation bound as a platform. Other bounds are given in [19]. As usual, we shall
assume the general condition

O) > O0k41 22 Onga Tork <.
12



THEOREM 4.1. Let A and [A B] have the usual SVD. Let Ry = B — AXs, X1s = ~C'T
Xrrs = -or-1, Ifcrk+1 < O"k then

. 2 R
(83) sing < [|Xps ~ Xrrs|| < (ﬂakﬂ( 0’?124- 122, 1) + e) VI+ [ Xsl?v/1+ | X7esl?
) \ Yk /

where ¢ is the subspace angle between R([C'T M7y and R(CT PT17) and p= (1 + Vv5)/2.
Proof: Using sin¢ < siné + ¢, Theorems 2.2 and 2.5, we can set ||[[AA Ab)|| = 0, and then we
need only bound sin &

sind = |[[A ?]I[ﬁ B} - [A Bk]"{:‘if Byl o
< plltA B IIEAe Bal'|l I[A B] — [A: Bl [AA AB|
< n U—lk ;}; (20541 + [|RelD o1
<

=5 (2ou41 + IRk
k

Note that if (1) is compatible and rank(4) = k, then X1s5 = X715, as expected from [14]. The proof
of Theorem 4.1 shows that when A has a well-determined gap in its singular value spectrum and
Ay X = B is not too incompatible, then the subspace angle between the LS and TLS approximate
nullspace is O(or41/0,)" (whenever € is sufficiently small). Numerical experiments (cf. Table 5)
confirm this observation. By Theorem 4.1, we conclude provided the LS and TLS problems are not
too ill-conditioned (i.e., 1/1 + || Xzs)|* and /1 + || Xrzs|]? is not too large), this ratio then plays an
influential role in determining the similarities and differences by estimating the angle between the
LS and TLS approximate nullspaces. Table 5 illustrates sin ¢ ~ O(or41/0%)* and summarizes the
results of numerical simulations which are relevant to Theorem 4.1.

5. Numerical Simulations. In this section we present the resulis of some computer simu-
lations to illustrate our theory. In the following Matlab computer simulations we considered the
problem of resolving sinusoids with closely spaced frequencies in a noisy environment using the
forward linear prediction (FLP) model in root form.

We estimate the FLP coefficients {Z;} from the noisy problem

@ @Gr-1 - W x; ar41
ar41 ar - fa g QL2
z 3
fiy-1 Gx-2 °*° GN-L zr an
which is denoted
(34) Az wb.

Here, [A }] = [A b] + [AA Ab], Az = b is compatible, and rank(A) = p, where p is the number of
complex exponentials. The-dimensions of the problem are given by A is (N — LyxL,zisLx1,b
is (N — L) x 1, and (N = L) > L > p. Finally, N is the number of measured observations and L is

the prediction order.
In the following two cases p = 4, the exact solution z satisfies [|zo]| = 1.1214, and the frequen-

cies are spaced according to f; = 0.450 Hz and f» = 0.459 Hz.

e In Case 1 we set N = 55, L = 14. The singular value spectrum of 4 is
o(A) = {0.19250, 0.14654, 0.16240- 10~%, 0.49645 - 1072, 0, ..., 0}.

13



o In Case 2 we set N = 65, L = 14. The singular value spectrum of A is
o(A) = {0.19284, 0.14732, 0.23800- 10™*, 0.73616- 1072, 0, ..., 0}.

In both cases we perturbed the compatible system Az = b by structure-preserving noise [L4 AY]
fram the normal distribution with mean zero. The standard deviation of the noise, &, ranged from
7.%10-5 to 1-10~3, Table 1 summarizes the LS and TLS results for Case 1 and Table 2 summarizes
the results for the corresponding subspace angles. Table 3 summarizes the results for Case'2 and
Table 4 summarizes the results for the corresponding subspace angles. The values in these tables
represent the average of the outcomes of 50 trials. The results of each trial are captured in the
histograms in Figure 1.

In Tables 1 and 3 we see that the lower and upper bounds provide realistic estimates of the
error. As suggested by Theorem 3.1, our numerical results indicate that the method with the
smaller subspace angle produces a more accurate solution. These simulations illustrate the TLS
subspaces usually fililer more noise than the LS subspaces, and consequently, the TLS solutions
provide more accurate estimates than LS in the perturbation of zero-residual problems. In ad-
dition, as suggested by Theorem 3.1, Tables 1 and 3 illustrate that a larger k' singular value
(0.49645 - 102 vs. 0.73616 - 10~2 for LS and 0.64353 - 10~2 vs. 0.94786 - 10~? for TLS)
produces less sensitive subspaces, hence better parameter estimates.

In Tables 2 and 4 we see that sin ¢ is realistically appraised by sin s and that mostly epr <
sinfy (M=LS or TLS).

Now we discuss some computer simulations relevant to Theorem 4.1. In the following Matlab
computer simulations, we chose A € R39%10 with the singular value spectrum satisfying numerical

rank(A) < rank(A) as follows:
(35) o(4) = {1, 0.5,0.2, 0.1, 0.05, 0.03, 0.01, o4, b, 040}
where o§, 0§, and o}, vary as follows:

Case 3: {a}, 05, 04} = {107%,1071¢ 10711}
Case 4: {0}, 0, 04} = {107%,1077,10°%}
Case 5: {04, 65, alp} = {107%, 1075, 107}

For Clases 3 — 5 we chose a random matrix X; € $19%3 from the standard normal distribution and
set B; = AX; (2.5 € [|Xi]} € 4 and 1.4 < ||Bj|| € 2.0). Then we perturbed the system AX; = B;
(i = 3,4, 5) by noise [AA4 AB] from the normal distribution with mean 0. In Case 3, the standard
deviation of the noise ranged from 10~1! to 1074, In Case 4, it ranged from 1075 to 10=*. In Case 5,
from 10~ to 102, For fixed i, Xz 5 and Xrrs denote the truncated LS and TLS solution, resp., to
AX = B; and Xpg and Xrps denote the perturbed solutions. We remark that although AX = B;
is compatible, the corresponding LS or TLS residual is usually nonzero due to truncation. '

Table 5 summarizes the results for [|Xzs — XrLs|| and its bounds, sin 8, and the scalar og/07)%.
All values represent the average of the outcomes for 100 trials. The table shows (05/0%)* estimates
the || Xrs — X7rs]| quite well.

6. Conclusions. In this paper new perturbation theory is presented for orthogonal projection
methods with applications to LS and TLS. A model for orthogonal projection methods is established
(§2) to “solve” the overdetermined system of linear equations AX =2 B. It is shown that the minimum
norm solution Xy is competely determined by the kernel of the lower rank approximation to [4 B].
Also, interesting relationships between the solution and an orthonormal basis for the kernel are
proven. If M =TLS, then the model specializes to well known TLS model.

Lower and upper perturbation bounds for the solution using method M are presented (§2).
The bounds are in terms of the subspace angle between approximate nullspaces and the norms of
the solutions. This shows that method M makes only assumptions about the noise distribution in
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the kernel of the lower rank approximation to [A B], and that various perturbations may produce
the same solution, Then it is shown how the subspace angle can be bounded (§2) in terms of the
fittings, corrections, and perturbation. This leads to new perturbation bounds for LS and TLS (§3).
Numerical simulations show the LS and TLS bounds involving the subspace angle are quite good.

The analysis shows that usually the TLS upper bound is slightly smaller than the corresponding
LS perturbation bound in the presence of noise in all the data (§3), and hence the TLS subspace
is less semsitive (smaller subspace angle) to noise than the LS subspace. This is confirmed by
pumerical simulations in the perturbation of rank-deficient compatible systems (§5). This explains
the superiority of TLS over LS cbserved in the literature.

Furthermore, the general perturbation bounds also permit a comparison between any two com-
peting orthogonal projection methods. In particular, the LS and TLS solutions are compared. The
bounds identify the subspace angle as a key factor in determining the similarities and differences
between the two solutions, and the numerical results show the quantity (oz+:/0%)? is shown to be

closely related to || Xis — Xrrs| (§4).
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[ ¢ | lfo—Jjusll [ smérs | [zo—rsll | sindrsv'v- |
7.0e-05 | 4.044]e-04 1.18562e-02 1.9107e-02 2.6658e-02
9.0e-05 | 6.2276e-04 1.7439e-02 | 2.8477e-02 3.9141e-02
1.0e-04 | 7.1727e-04 || 1.90756-02 | 31535002 | 4.2703¢.02
3.0e-04 | 2.9938e-03 9.4030e-02 | 1.6094e-01 1.99563e-01
5.0e-04 ] 8.2532e-02 2.2696e-01 | 3.7142¢-01 4.4328e-01
T.0e-04 | 2.3703e-01 4.0881e-01 6.3515e-01 7.4136e-01
9.0e-04 | 2.0758e-01 5.2861e-01 | 8.0701e-01 9,1886e-01
1.0e-03 | 2.5522e-01 5.6893e-01 8.6304e-01 9.7877e-01

[ o Tllfo— fresl [ singres [ leo— Erosll | sindresvy |
7.0e-05 | 3.5201e-04 1.1160e-02 1.7681e-02 2.5221e-02
9.0e-05 | 5.7031e-04 1.6297e-02 | 2.6136e-02 3.6823e-02
1.0e-04 | 6.0568e-04 1.6928e-02 | 2.7049e-02 3.8204e-02
3.0e-04 | 1.7934e-03 5.8442e-02 | 9.2296e-02 1.3185e-01
5.0e-04 | 2.8366e-03 1.1965e-01 1.8967e-01 2.7202e-01
7.0e-04 | 4.3220e-02 2.3929e-01 | 3.7800e-01 5.3751e-01
9.0e-04 | 1.8734e-01 4.0433e-01 | 6.2839e-01 8.3911e-01
1.0e-03 | 3.0808e-01 4.3969¢-01 | 6.8327e-01 9.0690%e-01

"TABLE 1

Case 1: Comparison of truncated LS and truncaied TLS bounds under perturbations of the compaiible system Az =1
by noise [AA Ab] from the normal distribution with mean 0 and standard devietion o. The frequencies are fi =
0.450 Hz and f; = 0.459 Hz, end N = 55 and L = 14,

[ ¢ | singrs | sinfrs +e€rs sinfrs |
7.0e-05 || 1.1852e-02 2.0062e-02 1.3971e-02
9.0e-05 || 1.7439e-02 2.8956e-02 2.0255e-02
1.0e-04 }| 1.9075e-02 3.1608e-02 2.2269e-02
3.0e-04 | 9.4030e-02 1.5231e-01 1.0588e-01
5.0e-04 }| 2.2696e-01 3.9331e-01 2.6826e-01
T.0e-04 } 4.0881e-01 7.7458e-01 5.3256e-01
9.0e-04 || 5.2861e-01 1.0965e-4-00 7.3413e-01
1.0e-03 | 5.68%3e-01 1.2082e-+00 8.0349e-01

I o | singrrs |sinfrrs+erps | sinfris |
7.00.06 || 1.11606-02 |  1.88900-02 | 1.32936-02
9.0e-05 || 1.6297e-02 2.8381e-02 1.9150e-02
1.0e-04 }| 1.69280-02 2.9531e-02 2.0149e-02
3.0e-04 || 5.8442e-02 1.0246e-01 6.9508e-02
5.0e-04 } 1.1965e-01 2.0429e-01 1.4330e-01
7.0e-04 || 2.3929e-01 4.123he-01 2.0021e-01
9.0e-04 )i 4.0433e-01 7.6256e-01 5.3041e-01
1.0e-03 | 4.3969e-01 8.4100e-01 5.779%e-01

TABLE 2

Case 1: Comparison ofsing s and sinfyg, as well aasindrrg andsinfrrs. Here, the frequncies are fy = 0.450 Hz
and fo = 0.459 Hz, and N =355 and L= 14.
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I e [ fo—Jusl | singrs | [lzo—Zzsfl | singrsv'v" |
7.0e-05 | 3.3610e-04 6.6645e-03 1.0884e-02 1.5012e-02
8.0e-05 | 4.5089e-04 8.5048e-03 1.3877e-02 1.9151e-02
1.0=-04 | 5102504 1.02382.02 1,80282-02 2,22370-02
3.0e-04 | 2.0950e-03 4,928he-02 | 8.6829e-02 1.0746e-01
5.0e-04 | 3.4182e-03 1.2037e-01 2.0965e-01 2.4994e-01
7.0e-04 | 7.2137e-02 2.2184e-01 3.6528e-01 4.3398e-01
9.0e-04 | 1.6100e-01 3.3563e-01 5.3320e-01 6.1917e-01

I} 1.0e-03 | 2.2166e-01 4.19236-01 6.5215e-01 7.5308e-01

I ¢ [llfo-frisl| | singres | [|[@o— Zresll | sindrosyvv- |
7.0e-05 | 3.0564e-04 6.1604e-03 9.7787e-03 1.3907e-02
9.0e-05 | 4.2490e-04 8.1620e-03 1.3040e-02 1.8444e-02
1.0e-04 | 4.7421e-04 9.4260e-03 | 1.4995e-02 2.1289e-02
3.0e-04 | 1.3079e-03 2.9750e-02 | 4.7237e-02 6.7263e-02
5.0e-04 | 1.8015e-03 5.4272e-02 8.5342e-02 1.2223e-01
T7.0e-04 | 2.7937e-03 1.0471e-01 1.6574e-01 2.3871e-01
9.0e-04 | 1.3215e-02 1.6933e-01 2.6968e-01 3.8984e-01
1.0e-03 | 5.8285e¢-02 2.2887e-01 3.5628e-01 4.8818e-01

TABLE 3
Caeae 2: Comparison of trunceted LS and truncated TLS bounds under perturbations of the compatible system Az =5
by noise [AA Ab] from the normal disiribution with mean ¢ and standard deviation o. The frequncies are f1 =
0.450 Hz and fo = 0.459 Hz, and N =65 and L = 14.

I ¢ | singrs | sinfrs+ers | sinfrs |
7.0e-05 || 6.6645¢-03 |  1.2255e-02 8.2135e-03
0.0e-05 || 8.5048e-03 1.5628e-02 1.0332e-G2
1.0e-04 || 1.0338e-02 1.9018e-02 1.2714e-02
3.0e-04 || 4.9285e-(2 8.4540e-02 5.5317e-02
5.0e-04 | 1.2037e-01 1.9826e-01 1.3209e-01
7.0e-04 || 2.2184e-01 3.8278e-01 2.5948e-01
9.0e-04 || 3.3563e-01 6.6650e-01 4.1709e-01
1.0e-03 || 4.1923e-01 7.8111e-01 5.4511e-01

[T o | singrrs | sinfris+errs | sinfris |
7.0e-05 || 6.1604e-03 1,1493e-02 7.7769e-03
9.0e-05 || 8.1620e-03 1.4365e-02 1.0075e-02
1.0e-04 || 9.4265e-03 1.7451e-02 1.1918e-02
3.0e-04 || 2.9750e-02 5.3809e-02 3.6994e-02
5.0e-04 || 5.4272e-02 9.7650e-02 6.7033e-02
7.0e-04 || 1.0471e-01 1.7926e-01 1.2737e-01
9.0e-04 || 1.6933e-01 2.8606e-01 2.0268e-01
1.0e-G3 || 2.2887e-01 4.2287e-01 2.9795e-01

TABLE 4

Cose 2: Comparison of sindrs and sinfips, ar well aasingrrs and sinfppg. Here, the frequncies are f1 = 0.450 Hz
and fo = 0.459 Hz, end N = 65 and L = 14,
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[i ¢ || sing | [[Xps — Xrrs|l | sin PN sinfd | (os/oh)* |
31 1.0e11 || 4.9965e-15 1.1635e-14 3.0141e-14 | 4.2348e-15 | 2.3475e-14
1.0e-10 || 5.2029e-15 1.3177e-14 3.1386e-14 | 4.458%9e-15 | 2.6461e-14
1.0e-09 1| 1.2469¢-13 4.3205e-13 7.6217e-13 | 1.1650e-13 | 4.4861e-13
1.0e-08 || 1.2552e-11 4.4770e-11 7.5720e-11 | 1.1811e-11 | 4.2552¢-11
1.0e-07 || 1.2426e-09 4.3743e-09 7.4058e-00 | 1.1718¢-09 | 4.2143e-09
1.0e-06 || 1.2045e-07 4.2580e-07 7.2657e-07 | 1.1364e-07 | 4.2971e-07
1.0e-05 || 1.2041e-05 4.3296e-05 7.2658e-05 | 1,1373e-05 | 4.2587¢-05
1.0e-04 || 1.1921e-03 4.2041e-03 7.1849e-03 | 1.1240e-03 | 4.3035e-03
4 ! 1.0e-08 || 1.6488e-09 3.4774e-09 2.1827e-08 | 1.9087e-09 | 1.1457e-08
1.0e-07 || 2.2068e-09 5.5373e-09 3.0405e-08 | 2.4920e-00 | 1.3999¢-08
1.0e-06 §i 1.2709e-07 3.4808e-07 1.6823e-06 | 1.2914e-07 | 4.4896e-07
1.0e-05 i 1.2274e-0b 3.3037e-05 1.6248e-04 | 1.2474e-05 | 4.1894e-05
1.0e-04 3 1.1695e-03 3.1715e-03 1.5487e-02 | 1.1888e-03 | 4.3070e-03
5 1.1.0e-06 || 2.1303e-06 7.2403e-06 2.6030e-05 | 2.1508e-06 | 1.1101e-04
1.0e-05 j| 1.1459e-05 4.6995e-05 1.4001e-04 | 1.2131e-05 | 1.3532e-04

1.0e-04 j| 1.0983e-03 4,4583e-03 1.3309e-02 | 1.1244e-03 | 4.2291e-03

TABLE 5
Comparison of (0s/0})?, sing and sind for cases 3-8, where A € ®IOX10 ,nd B, € RIOX3, The numerical renk of A
i2 7 in all cases. The simulotion is described in §5.
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