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Abstract

‘The evolution of the vortex sheet created at the interface of a two-
dimensional cylindrical bubble of light fluid in an infinite volume of heavy
fluid is followed using the point-vortex method. Both fluids are assumed to
be inviscid and incompressible, surface tension is ignored at the interface,
and the flow is taken to be irrotational. A Boussinesq approximation is
made,

The evolution equations are integrated forward in time. The filtering
technique of Krasny {1986) is used to control the effects of rounding error.
It is shown that after a finite time two singularities develop. At the
sirgularity points the curvature of the interface becomes infinite, while
the vortex—sheel strength develops a cusp. By means of an asymptotic
analysis of the Fourier series of the sheet position, estimates of both the
time at which the singularities form, and the singularity structure, are
obtained. In particular, it is shown that when the singularity forms the
algebraic decay of the Fourier coefficients is proportional to £7%® where
k is the wavenumber,

1 Introduction

One of the simplest models for the motion of a bubble of light fluid through
a heavier fluid consists of assuming that both fluids are incompressible and
inviscid, and that there is no surface tension at the interface, The buoyancy
force arising from the density difference causes the bubble to move upwards.




Due to the differential flow on either side of the fluid interface, a vortex sheet
usually develops there, i.e. while the normal velocity is continuous across the
interface, the tangential velocity is usually discontinuous, The magnitude of the
discontinuity is referred to as the strength of the vortex sheet. In this paper we
will study a model problem in which a circular two—dimensional bubble of radius
a is instantaneously introduced into the fluid at ¢t = 0. We show that after a
finite time, singularities develop in the shape of the interface. At the singular
points the curvature becomes infinite, while the sheet strength develops a cusp.
The singularities occur when the bubble is kidney shaped. They appear on the
lower surface of the bubble where the sheet is continually being compressed.

The appearance of a singularity in a vortex sheet was first shown analyti-
cally by Moore (1979). He considered small sinusoidal disturbances to a uni-
form vortex sheet. His results have been confirmed numerically by Meiron,
Baker and Orszag (1982), Krasny (1986) and Shelley (1992) (see also Higdon
and Pozrikidis, 1985). Using similar methods Rottman, Stmpson and Stansby
(1987) and Rottman & Stansby (1992) have studied the two—dimensional jnvis-
cid motion of an initially circular vortex sheet released from rest in a cross—-flow;
they also find that singularities develop in the shape of the vortex sheset.

Pugh (1989) has studied flows driven by small (Boussinesq) density differ-
ences. He found that as a result of the vortex sheets generated at the density
interface, singularities developed in the shape of the interface for such diverse
flows as the rise of two-dimensional and axisymmetric bubbles, Rayleigh-Taylor
instability, and the descent of a vortex pair towards a stable interface. This is
in agreement with Moore’s (1981) suggestion that singularities can develop in
all vortex sheets that are not being stretched sufficiently rapidly. Siegel (1989)
has generalised this work to order one density differences. He argues analyti-
cally that in the case of Rayleigh—Taylor instability, singularities can form at
the interface between two fluids of different, non-zero, density. Baker, Caflisch
& Siegel (1991, private communication) have confirmed this result numerically,

The underlying reason why singularities arise is related to the fact that the
the growth-rate of small wavelength disturbances is directly proportional to the
wavenumber, As a result small changes in the initial conditions can produce
significant changes in the solution at later times; the mathematical problem is
said to be ill-posed. Despite this ill-posedness, Sulem et al. (1981) proved a
short time existence result for analytic initial data, while Caflisch & Orellana
(1986) proved existence almost up to the time of singularity formation for initial
data close to that of a flat sheet. Caflisch & Orellana (1989) have constructed
exact solutions which display singularity formation in physical space; however
these solutions, which are almost linear to leading order, are restrictive in that
they correspond to special choices of initial conditions.

An important consequence of the ill-posedness is that in numerical calcula-
tions perturbations created by machine round-off error are amplified by Kelvin-
Helmholtz instability; this can lead to inaccurate solutions. However Krasny
(1986) showed for a fixed number of modes (or points}), sufficiently high arith-
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metic precision enabled a smooth regular solution to be obtained until the (pos-
sible) development of a singularity. In contrast, he showed that for a given
precision a sufficiently large number of modes gave rise to irregular motion of
the interface. In order to obtain accurate numerical solutions which are not
contaminated by rounding error, Krasny (1986) adopted the following method.
At each time step, the discrete Fourier series of the solution is found. 'Then
any modes of magnitude smaller than a given filter level (dependent on the ma-
chine precision} are set to zero and the new Fourier series inverted to give the
filtered solution. In this way round-off error can be controlled without seriously
affecting the non-linear growth of the modes; this is in contrast to methods
like linear smoothing and repositioning (e.g. see Moore (1981), Rottman et al.
(1987)). Furthermore, Krasny (1986) demonstrated that the solution obtained
was accurate and converged as the number of Fourier modes, N, increased and
the time step, dt, decreased.

In the case of flows involving fluids of two densities, a key parameter gov-
erning the motion of the bubble is the Atwood ratio A, defined by

Pt~ P
Py +p-’

where p_ and py are the densities of the lighter and heavier fluids respectively.
The rise of a vacuous bubble in an infinite fiuid, corresponding to the case
A =1, has been studied by Baumel et al. (1982) and Baker and Moore (1989).
They found that no singularity developed in the interface shape; indeed Baker
and Moore (1989) were able to follow the solution almost up to the moment
that the interface intersects itself. We will consider the other extreme case, i.e.
the Boussinesq Hmit in which A - 0 and ¢ — oo such that G = Ag remains
finite; the parameter G is the modified gravity. The Boussinesq limit is used
to model situations in which the two fluids are of almost equal density, and
gravity is much greater in magnitude than any acceleration of the vortex sheet,
Such situations can arise in geophysical fluid dynamics where a pocket of warm
air rises in a slightly cooler atmosphere. For instance, Scorer (1958) suggested
that plumes of chimney smoke which are bent horizontal by a crosswind can be
described in terms of a two-dimensional buoyancy source.

Similar problems involving the Boussinesq limit have been studied by Hill
(1975) in the case of a trailing vortex pair in a stably stratified atmosphere, and
by Meng & Thompson (1979) and Rambaldi & Randall (1981) in their studies
of rising nascent thermals, Both latter pairs of authors modelled the rising
two-dimensional Boussinesq bubble which is the subject of our study. Meng &
Thompson (1979) used a vortex blob method, while Rambaldi & Randall (1981)
adopted the vortex sheet method used here. However, as shown below, both
pairs of authors integrated beyond the time at which a singularity forms in the
interface shape; the validity of their solutions is questionable after this time.

Anderson (1985) also studied the evolution of a two—dimensional Boussinesqg
bubble. He used a vortex blob method due to Chorin and Bernard (1973). In
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§ (although the physical significance of this approximation is, as yet, unclear).
The equations of motion were modified by a term proportional to the parameter
8, and the computations performed for decreasing values of §. Convergence was
demonstrated as § — 0. Anderson (1985) conjectured that interface singularities
form in which the arclength tends to infinity. An approximate time of formation
was also given but no further conclusions were drawn as to the structure of the
singularity.

The motivation for studying the rising bubble arose out of difficulties en-
countered in studying the motion of an infinite, non-periodic vortex sheet in
which smoothing and repositioning techniques were used (Pugh, 1989). In par-
ticular it was difficult to ascertain whether or not a singularity formed. The
two-dimensional Boussinesq bubble, being periodic and therefore amenable to a
Fourier series representation and Krasny’s (1986) filtering technique, was there-
fore chosen as an easier model problem in which to investigate the development
of singularities on interfaces driven by a density difference.

2 Formulation of the problem

The vortex sheet that forms at the interface between the fluids may be char-
acterised by its complex position 2(€,t) = z(£,1) + iy(€,1), and its strength
V(£,1), where (z,y) are Cartesian coordinates, ¢ is time and £ is a Lagrangian
parameter determined by the requirement that the velocity at a point on the
sheet be the average of the tangential velocities on either side of that point.
Thus if the complex velocities on either side of the sheet are dencted by §; and
-, and § is the complex velocity of the sheet, then (e.g. Moore, 1982)

8z 1
5{(6)0 - E(q‘i- + Q'—) s
where L8
- I Ty Ak
+=¢g% 2V(6£ .

Moreover, from use of the Biot-Savart law, the velocity of a point on the sheet
is given by the Birkhofl-Rott equation:
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where the principal value is taken in the integral, and £, is the Lagrangian length
of the interface. Since the interface is periodic, the solutions must satisfy the
periodicity conditions

z(€ + &) = 2(€), V(E+E&)=V(C).



The derivation of the equation for %(5 ,t)} is non-trivial; the details may be
found in Baker, Meiron & Orszag (1982) and Moore (1982). The equation is

_ d 1
we=0-5-F86. 5 ZiRea-oe)] - @
When equations (1) and (2) are integrated over the interval (¢,1+dt) using a
forward stepping Euler’s method, for example, it transpires that the new values
z(t + dt) and V(i + dt) are given implicitly so that the solution can only be
found by iteration. However, when the Boussinesq limit is taken, equation (2)
reduces to 5
4

W 1) = i
_E{(E;t) = _(1 - ot )g S‘( 55) . (3)

This simplification means that iteration is not required since z and V at the new
time (¢ + df) may readily be found using second or fourth order Runge-Kutta
formulae. This is a major motivation for making the Boussinesq approximation.

In order to simplify the equations, the following non-dimensionalisation was
adopted:

1 1
3 El
Z—az, Vm»47ra(gaAp) vV, t_+(ap+) t,
P gip

where Ap = (p, — p_}. Equations (1} and (3) become

OZ 0 o oy [5 V(€ 1) dE
7 &t = QJ{J z(€,1) — 2(¢,1) )

av 1 Az
6 =356 0) - (5)

Note that equations (4) and (5) are independent of any Froude number so that
the problem is unique.

These coupled integro-differential equations will be solved numerically. A
number of initial conditions could be considered. We will study the simple prob-
lem where a two-dimensional circular bubble of lighter fluid is instantaneously
introduced at ¢ = 0. An advantage of this initial condition is that only one
half of the bubble needs to be considered because of symmetry about the y
axis. However this restriction counld easily be relaxed. Similarly we could study
other initial conditions which are easier to model experimentally, e.g. injection
of lighter fluid into heavier fluid (cf. Hooper, 1986).

The symmetry conditions for 2 and V about the y-axis are

Z(—ﬁit) = _E(E:t)» V(“’s:t) = —V(f,i),
(N +§,1) = ~Z(N - £, 1), V(N +&,t)= =V(N ~¢,1).
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The continuous vortex sheet is replaced by 2N point vortices with complex
position #,(t) and strength V,(t) so that there are (N + 1) interfacial points in
one half of the bubble when both points on the axis of symmetry are included.
The parameter s acts as a discrete Lagrangian variable and the points lie on
the surface in order of increasing s. Following Moore (1982) we take s to be the
discrete set of integers s = 0,1,2,...,2N — 1. We use central finite differences
with respect to s to estimate the derivatives with respect to the continuous
Lagrangian parameter £. The symmetry conditions about the y-axis

25 (1) = —Z:(1), Voo(t) = =V, (2),

zn4s(t) = —Zn_.(1), Vvis(t) = —Vn-s(t)
allow central differencing for the end points,
In order to evaluate the integral in equation (4) numerically, a cancella-
tion function is constructed which models the behaviour of the integrand at its
singular point. This cancellation function is then subtracted out numerically

and added in analytically. The application of this method to vortex sheets was
developed by Van de Vooren (1965). Equations (4) and (5) then become

dz, . Ve [DV, 1V,D%z,
dt *2:2 Zp +t2 [Dz, T2 (Dz, 32 | ° (6)

Ly -
v, 1
T -E E}(Dzs) ) (7)

where DP denoctes a finite difference estimate of the pth derivative w.r.t. s.
The appropriate initial conditions for a circular bubble instantaneously in-
troduced at ¢ = 0 are

z(s,0) = —iexp(2mis/2N) , V{s,0)=0.

The first term on the RHS of (6} is the velocity induced at the point z,
by a system of isolated point vortices at z, {r # s). It is assumed that the
self-induced velocity of a point vortex is zero. The second term is analogous to
the Van de Vooren (1965} correction term, and comes from the contribution of
the integral around the point z,. These derivatives were estimated either using
interpolation polynomials or by spectral differentiation. The effect of the Van
de Vooren term is to improve the accuracy of discretisation from O(N~1) to
O(N~11) when 11-point polynomials are used.

3 The numerical procedure and the calculation of
invariants

Only the motion of the right half of the bubble was followed. This required
2(N+1) coupled ordinary differential equations to be integrated forward in time.



We used a second order Runge-Kutta method, and after each time step Krasny's
(1986) filtering technique was applied to the Fourier series representation of both
the sheet position z(s,f) and the point vortex strength V{s,1). The Fourier
series were computed using a FFT based on the Cooley-Tukey method. To
check on the accuracy of the computations, the potential energy, 1, kinetic
energy, T' and total energy, (2 + T') were calculated together with the area,
A, of the bubble. Both total energy and area should remain constant. After
non-dimensionalisation the quantities 2, T and A are equal to

N de
— Yl
o= [ e, ®)
N ¢ dz
= - Sg—=)d
7= i [/ﬂ Vds} (a5 e (9)
N od
Amgfo yd—zdf, (10)

where y, denotes the bubble surface, and use has been made of the symmetry
of the problem. The integrals were evaluated using the trapezoidal rule which
1s exponentially accurate for periodic integrals (e.g. Conte and de Boor, 1965}.
The sheet strength, v, is given by

dz,_
7:V|d_§ 1,

and the curvature, ', by
°(4%)
dZ dE?
C=—gn—

A

The computations were performed with N = 32, 64, 128, 256 and dt =
0.01, 0.005, 0.001, 0.0005, 06.0001 in single precision (13 digits) on a Cray-1
using a second order Runge-Kutta method and a filter level of 1013 at each
time step. Figure 1 illustrates the sheet position, sheet strength and curvature
for N = 128 and dt = 0.001. As the bubble rises, the lower surface moves
more rapidly than the upper surface, and the upper half of the bubble begins
to expand. At ¢ & 1.69 the sheet strength forms what appears to be a cusp
point, while the curvature seems to develop an infinite jump discontinuity. The
singularities form at points on the interface where the vortex sheet is continually
being compressed. In other regions of the bubble, particularly the upper surface,
the sheet is being stretched and remains smooth and stable. This agrees with
the observation that vortex sheets do not appear to exhibit Helmholtz instability
in areas of rapid stretching (Moore and Griffith-JTones, 1974).

At f = 1.65, i.e. shortly before the critical time ¢, & 1.69 (see below), the
absolute error in energy conservation was 2.506 x 10~7 and the relative error in




area 1.153 x 10=!); thus a high degree of accuracy was maintained suggesting
that the numerical solution was reliable. At times even closer to the critical time,
these values deteriorated rapidly. Beyond the critical time (which depended on
N and dt}, the solution was no longer smooth and was considered meaningless.
The functions z(€,1) and V(£,1) are then no longer analytic. Consequently the
Birkhoff-Rott equation (1) is no longer valid and the Van de Vooren term in
(6) has become infinite at a point on the sheet. Ast — ., we found that both
the arclength and the sheet strength at the cusp point remained finite, as in the
related problems studied by Meiron et al. (1982), Krasny (1986), Rottman ef ol.
(1987), Shelley (1992) and Rottman & Stansby (1992) (cf. Higdon & Pozrikidis
(1985) who suggested that the sheet strength became infinite at the critical
time).

If the maximum curvature, Cy,a,, becomes infinite as ¢ — ¢, then an estimate
of t. can be found by plotting C..}, versus time (Higdon and Pozrikidis, 1985).

max
Figure 2 shows clearly that C=L  tends to zero as ¢t — 1,. The eritical time 1.

max
can be estimated quite accurately by drawing a straight line through the points
for which the solution was known to be accurate and reliable, For N = 128 and
dt = 10~ this gave {, &~ 1.695. The convergence of the numerical solution as
dt - 0 for fixed N, and N — oo for fixed dt, is shown in figure 3.

Table 1 shows the values of ¢, calculated in this way for various N and dt.
The most accurate results seem to be obtained with dt = 10~23. For this choice
of step size, 1Y was fitted to the expression (Krasny, 1986):

o
ti\r =17+ N
where ¢2° is the extrapolated critical time as N — co. A plot of t¥ against N=1
gave a straight line, and from this #&° and « were estimated using a linear least
squares fit; we found

i° = 1.689 and o =0.971.

Table 2 gives the times 7,, 7v at which the filtering technique was switched off
for z(€,t) and V (£, 1) respectively. Following Rottman ef al, (1987) we fit values

of ¥, ¥ to the expressions

N oo oL N P ay

z z F, Ty = Ty N
The values 77°, &, and 7§°, oy were estimated using a least squares fit. For
dt = 0.001 we obtained

T;"=1.7o—l§§, 7‘1}’:1.70—-2-;5-9.
N
Thus to three significant figures 72° = #%° = 1.70, which is close to the critical
time 12° = 1.689. In fact, 7{°, rQ° must be greater than ¢%° for the following
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k — oo, then they must decrease to zero as k — oo. The value ™ corresponds
fo the time at which every coefficient has reached the filter level (here 10713),
which must be after the critical time ¢2°. A similar argument holds for 7$°.

The computations were repeated with N = 128, a time step dt = 10~%, and
filtering every time step (filter level 10~13). A slightly surprising result emerged
in that both the critical time and the time at which the filtering was switched
off were increased by approximately 0.015 time units. However, filtering every
ten time steps with dt = 10™*, gave virtually identical results to those obtained
filtering each time step with dt = 1072, Thus if d¢ is chosen sufficiently small
for the second order Runge-Kutta method to be accurate, the solution depends
on two numerical parameters, namely N and Fdt where F is the number of
time steps after which filtering is apphed.

Filtering may be regarded as a smoothing process which removes energy
from the system. Using di = 107% and F = 1 involves filtering ten times
more often than if dt = 10~2 and F = 1. The increase in 1%, etc., created
by repeatedly filtering seems to be generated during the initial stages of the
bubble’s motion, i.e. while the velocities are small. The Fourier modes filtered
are those of complex position. A mode which is slightly grealer than the filter
level after one time step of 10~3 will be approximately one tenth the size after a
time step of 1074, i.e. less than the filter level and hence removed. Indeed, in the
extreme instance of very small time steps and filtering applied every time step,
the interface would not move at all because none of the modes would ever have
sufficient time to grow above the filter level. We conclude that the solution
is dependent on N and the time interval after which the filtering is applied.
Convergence as dt — 0 can be obtained as long as F dt is kept constant. In
our caleulations the filtering cut-off times and critical time began to diverge for
Fdt < 0.001; thus only solutions with F dt > 0,001 are discussed below,

4 The asymptotic behaviour of the Fourier series

The properties of a periodic function’s singularities can be identified by examin-
ing the asymptotic properties of the function’s Fourier series, e.g. Sulem, Sulem
and Frisch (1983) (hereafter referred to as SSF) and Krasny (1986). In partic-
ular, suppose we extend z into the complex é-plane by analytic continnation.
Then the nature of the singularities closest to the real £-axis determine the
high wavenumber asymptotic behaviour of the Fourier coefficients (e.g. Carrier,
Krook and Pearson, 1966). Suppose that for [¢ — €, (¢)] < 1, the function (¢, 1)
has the local behaviour

€ty = Ao+ A€ — &)+ A6 — &) + .. 4 alt) (- &P+ ..., (11)

where

() = &:(1) +46(t)



#(t) and o are complex, R(p(2)) > —1, §(t) > 0, and 6(¢) is the branch point
nearest to the real {~axis in the upper half plane. In this example a derivative
of z is infinite at £ = &, if u is not an integer. A physical singularity occurs in a
numerical calculation on the real £-axis when the arc traced out by £ (t) + i8(2)
first crosses the real ¢-axis, i.e. when 8{t) = 0. Carrier, Krook and Pearson

(1966) show that the Fourier coefficients a(k,?) behave asymptotically like
a(k, t) ~ C(1)e™ P Op(-1=1) exp(2mie, (1)k/2N) | (12)

as k — 00, where k is wavenumber. Thus when the solution is analytic on
the real £-axis, i.e. when § > 0, the coefficients decay exponentially, but when
the solution has a singularity on the real £-axis then the coefficients decay
algebraically like £~R(#(N+1) By examining the Fourier coefficients for large
k carefully, it is in principle possible to estimate (1), p(t), etc.. However, a
potential difficulty is that p(t) can change discontinuously if two singularities
collide. For example, SSF showed that in the case of shock formation in the
kinematic wave equation, the algebraic component of decay for ¢ < £, is k"%,
but fort =1, it is k=%,

If there is only one singularity closest to the real é-axis, then we have that
as k — oo

log la(k, )i m R — k6 — (R(p) + 1) log & ,

where R = log|C|. SSF and Krasny (1986) used a linear least squares fit
to estimate R, § and () from their numerical results. They found that for
[t—t.| < 1, the decay of the Fourier spectrum for large k > 6~1 is predominantly
exponential, but for 1 € k « 6~ the decay is algebraic. Thus fitting to very
high wavenumbers at times when {t — ¢, < 1 gave values for &(1), while fitting
for moderately large wavenumbers yielded R(u(¢)). Of course t, is fixed by
&(t.) = 0.

A slight complication in the present analysis is that due to the symimetry
of the bubble problem, singularities arise at (£, + 6,) and at (—&, + i61). In
addition there are two further singularities at (& — i63) and (—§, — i62} where
we have assumed that &; > 0 but not that & = §,. The asymptotic behaviour
of the Fourier coefficients for # >» 1 depends only on the singularities in the
upper half plane (UHP), while the behaviour for k¥ < ~1 depends only on those
in the LHP. The asymptotic form for two symmetric singularities was shown by
Pugh (1989) to be

log|a(k, )| & R — ké — (R(p) + 1) log(k) + M , (13)

where
M = log| cos(Bk + S(p) log(k) + ¢)!
and 8 = 2%¢,. /N.

For convenience we define the ‘enclosing envelope’ of a Fourier spectrum to
be the function given by the right hand side of (13) without the term M. This
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function decreases monotonically with increasing k. When logyla{k, )| was
plotted against k it was found that the Fourier coefficients for z oscillated (see
figure 4a). This modulation arises because of the term M in equation (13). The
enclosing envelope of the spectrum yields a straight line before the critical time.
The decay is therefore exponential and the solution analytic. When logiola(k, )|
was plotted against log,, k (figure 45), a straight line representing the ‘enclosing
envelope’ could be drawn at § az 1.695 for N' = 128; this corresponds to algebraic
decay and hence a singularity. In order to obtain values for R, 6 3, pand ¢
for times close to the critical time, we tried a least squares fit, of the numerical
results to equation (13). However this failed to converge even with apparently
good initial guesses.

A second method, referred to here as a ‘global method’ , Was reasonably sue-
cessful in estimating the enclosing envelope of the Fourier spectrum. To do this
¢ was taken to be real. Quadratic interpolation was used to estimate the max-
ima of each ‘hump’ and a linear least squares fit used on these maxima to obtain
R, 6 and p. Expression M was then calculated and inverted to give a straight
line of slope § and intercept @. The estimates for 6, B and ¢ were seemingly
reliable, i.e. they did not vary significantly with the range of wavenumbers used,
whereas this was not true for g. Since one of the main aims of our calculations
was to determine the form of the singularity, an accurate method of obtaining
# was required. Eventually we settled on the ‘local method’ described in the
next section.

5 Local method for fitting to Fourier series coeffi-
cients

In this approach we fitted equation (13) exactly to six consecutive values of
la(k)], e.g. la(?)| for k—2 <1< k+ 3.1 This was done for a number of values of
kin arange kmin < k < kmaz, and then we sought consistency in R(k), 6(k), etc.
over the range of values of k. The six unknowns were determined using a NAG
routine which found roots of non-linear equations using a Newton iteration.
Since the NAG routine did not usually converge unless the starting values were
‘close’ to the solution, initial estimates of the solution were obtained from the
‘global’ method. The solutions for the unknowns generated for k were used as
starting values for & + 1.

‘This method was applied to a run with N = 128 and dt = 0.001 at times
t = 1.66(0.01) 1.70 (the estimated singularity time is 1.69). A filter level of
107% was used with 14-digit arithmetic. Initially we assumed that i was real
in line with Moore’s (1979) result. However, while the values for £ and ¢ were
fairly consistent to three decimal places, those for R, § and g were much more

1 Six values of a(k} were required since the Fourier coefficients are purely imaginary due

to the symmetry of the problem.
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erratic {e.g. see figure 5a). On the other hand, when the same data was fitied
allowing 4 to be complex, the plot of R(p) versus k illustrated in figure 5b was
significantly less erratic. This was despite the fact the I(y) was relatively small;
in fact |¥(z)| < 0.03 which turns out to be approximately the same size as the
error in our final estimate of ®(p). Although ast — t,, i.e. 6 — 0, the values
of ®(p(t)) did not change significantly with time, no consistency in R(u) was
obtained with k.

Next, the computations were repeated with 28-digit arithinetic and a filter
level of 10728, Plots of sheet position, sheet strength versus arclength, and cur-
vature versus arclength were graphically indistinguishable from those obtained
using 14-digit arithmetic (see figure 1). For N = 128 and dt = 0.001, the alge-
braic decay R(u) plotted against k at a time ¢ = 1.65 is illustrated in figure 6a.
The values for R(u) for 5 < k < N/2 decrease slowly and appear to tend towards
1.5 as k£ — oo. This value of R(p) corresponds to the same type of singularity
as described by Moore (1979). The reason why there is little consistency in the
values of R(u) for k > N/2 is discussed below.

Since z({) is complex, a(~k) neither equals a(k) nor it’s complex conjugate.
Hence fresh information can be found by fitting (13) to a(—k). The results for
k < 0 are more consistent than those for k¥ > 0. Figure 6b shows that R(p) is
again very close to 1.5 for 5 < [k| < N/2, although there is again no consistency
for |k| > N/2. In figure 7 we have plotted the exponential decay, 6(k), of the
Fourier coefficients as a function of both positive and negative wavenumbers k.
Again, the coefficients for & < 0 yield a more consistent value of § at each time
level than those for k > 0.

In order to assess the relative importance of precision and filter level, the
computations were repeated with 28-digit arithmetic but a filter level of 1012,
The results obtained for R(u) versus k were identical to those using 14-digit
arithmetic and a filter level of 10713, These results were not significantly af-
fected when the filter Jevel was increased from 10728 to 1018, However, as
the filler level was increased further from 1018 to 10~!3, the consistency in
R(u) deteriorated (see figure 8). These results emphasise that the correct com-
bination of filter level and arithmetic precision must be used in order to obtain
accurate results.

The effect of doubling the number of points was also examined. For a run
with N = 256, dt = 0.001, 28-digit arithmetic and a filter level of 1028 we
found that at ¢ = 1.65, the results were consistent up to k = k, ~ 120, i.e.
approximately twice as many modes were accurate as in the N = 128 calculation.
The ratio of kq/N appears to be about 1 for this problem. Figure 9 illustrates
$(p) versus k for both & > 0 and k < 0 at the extrapolated critical time of
1.689 for different N.

In figure 10 we have plotted the values of #(u) obtained for k < 0 at several
times close to the critical time. The consistency for |k| < N/2 is evident except
at t = 1.70, i.e. after the critical time. However, the ‘average’ value of R(y)
slowly increases ast — f., so that at t = 1.69 the average value is slightly greater

12




than 1.8. Tt is not clear whether this change in R(u) is genuine or merely due
to the breakdown of the calculations as t — t, (see below). A decrease in the
slow drift might be achieved by including higher-order corrections in (11) and
(13} (see Shelley (1992) for further details).

We emphasise that one of cur main aims is to obtain an accurate estimate
of R(u) at t =1, since this will tell us what the form of the physical singularity
is on the &-axis. However, as indicated above a potential difficulty is the fact
that for a number of problems it is known that the value of R(u) can change
from one value at { < £, to another at ¢ = {,. This occurs if singularities collide.
An example is the kinematic wave equation with suitable initial conditions. For
exarmple the problem

ou, bu
ot u@:r

is well known to develop a shock at ¢ = t. = 1. S5F have shown that the Fourier
spectrum i has the asymptotic behaviour

=0, u(z,0)= —sinz ,

tiy, =~ E-3efk g t<ty,

but
4
Up 2 b3 for t=1. .

Note the change in the value of pu from £ to 1.

The slow increase in R(u} as t — t, possibly suggests that a similar snap
change occurs here. Fortunately, a slight modification of the analysis of Cowley,
Baker, Tanveer & Page (1992) for a vortex sheet allows us to show that the
singularity in question does not change form at ¢ = ¢.. Following these authors
assume that at £ = ¢, the singularity develops at € = £., and write z, = z(€:,t.)
and V. = V(£ t.). For 0 <i.—1 < 1 and [§—&,| < 1, we propose the following
asymptotic expansions:

7=z + {t. — t){ar + axl) + {t. — ) F(O +... (14)
V=V, + (le — t)(as + asl) + (t. — ) g(O) + ..., (15)
where
— E - fc
=i (18)

is a local similarity variable, f and g are functions of the similarity variable,
and fi and the a; are constants. In what follows we assume for convenience that
1 < f < 2; in due course we will identify i with g in (11). On substituting inteo
(5) we find that

I{az) = 47az , (f') = ~4n (g’ - i5¢) .

13
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The solution to this equation (Cowley et al., 1992) is

du . (17)

B
f — (1 _ i)arei'ﬂ 1 |a214C2 ? sin ﬁarctanlﬂfwg- (18)
4m2V2 2rv, J °

where a, is a real constant and

20 — —arg (-‘%) .
@3

An important property of (18) is that for 0 < ¢, —t < 1, there are branch—point
singularities of power i located in the complex & plane at { = +2nilay|~%V,,
i.e. at

£ = &, & 2milas| V(L. — 1) .

At t =1t,, the inner region described by the similarity variable collapses to zero
width, and a singularity of power j forms on the real {-axis. From matching
with an outer solution we conclude that as £ — £, this has the form

. 2 — B i
= 2ot aaf€ = €0+ (1= Daresgn(ve — )| ZE 8 7y 4

Therefore, if we can estimate ji from the solution in the complex £-plane for
t < i, we can be confident that the singularity does not change its character
on hitting the real £—axis.

However, there is still the need to address why there is the fall off in the
estimate of the coefficients for |k| > N/2. This fall-off is robust in the sense
that it occurs no matter what numerical method is used to solve the discretised
equations. For instance:

I. No improvement in the estimate of (i) was obtained when the com-
putations were repeated using a fourth order Runge-Kutta method. Of
course for a fixed dt, the energy and area conservation were improved sig-
nificantly and the values for 2, V and the Fourier coefficients differed by
an amount O(dt®). However, using second order rather than fourth order
Runge-Kutta had no effect on the values of R(y), although the values of
the constant in (13) changed slightly.

14
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. The unitial distribution of point vortices around the circle was varied. For

instance, rather than using a uniform distribution, the point density in
the neighbourhood of &, was increased. We hoped that the resolution and
accuracy would be improved; instead we found that the estimates of R(y),
etc, were, if anything, worse.

. More sophisticated filtering methods were tried. For instance, rather than

setting a Fourier mode to zero when it is less than the filter level, we tried
fitting a ‘tail’ to the Fourier coefficients using information from the Fourier
coefficients with magnitudes greater than the filter level (see also Cowley,
Duck & Tutty (1992)). Again, no improvement was obtained.

. As t — 1, the Van de Vooren term becomes very large at the singular

point on the sheet. The error in the velocity using any time stepping
scheme therefore becomes arbitrarily large in the region of the singularity.
A number of checks were applied to assess this effect.

(a) We evaluated the derivatives in the Van de Vooren term using Fourier
series rather than using high-order interpolation polynomials. This has
an advantage that for analytic functions the error falls off faster than any
algebraic power of N. However, as the critical time is approached, spectral
differentiation loses accuracy as significant errors appear from aliasing.
Indeed, at ¢ = ¢, the Fourier series of the Van de Vooren correction term
is divergent.

(b) We performed a number of runs in which we simply omitted the Van de
Vooren term. The growth rate of the instabilities is then decreased (Moore,
1981), with the result that the singularity time is delayed. Of course
the accuracy as monitored by the total energy and area was significantly
worse, i.e. AE = 0(107?) as opposed to O(1078) at ¢ = 1.5, but again no
significant change was observed in the predicted values of Rpu.

(¢} Rather than just omitting the Van de Vooren term, we modified our
scheme to the (spatially) spectrally accurate method developed by Sidt and
Israeli (1988) and used by Shelley (1992). An advantage of this method
is that for the uniform vortex sheet, the growth rates of linear modes are
predicted exactly. This contrasts with the standard point vortex method,
with or without the Van de Vooren term, which artificially reduces the
growth rates of the most unstable modes. An additional advantage of
the scheme is that computational times are halved. However a significant
improvement in the estimate of ®(u) was not observed. This is possi-
bly not surprising since in our earlier calculations sufficiently high order
polynomials were used so that the truncation error was smaller than the
rounding error. In addition, while the alternate point rule is (formally)
spatially spectrally accurate for ¢ < t,, that is not true at the moment the
singularity forms.
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We also note that the system of equations for R(u) is ill-conditioned as

|k} — oo (Pugh 1989). However while this may be one reason why there is
a deterioration in the estimates of R(u) for |k| > N/2, we believe that the
major reason is that the asymptotic behaviour of the Fourier coefficients given
by equation (13) is valid for the coefficients, a{®, of the infinife Fourier series.
In the discretised problem using N modes, the discrete Fourier coefficients aly
are only an accurate representation of ef° for |k| << N. The reason for this
can be readily understood by recalling that the aff are given by a (spectrally
accurate) trapezoidal approximation to an integral. For large |k|, the integrand
oscillates rapidly with the result that a is not a good approximation to ay’
even though the Fourier sum is spectrally accurate for analytic functions. It
is therefore inappropriate to fit (13) to aff for |k| = O(N); in practice the fit
seems to work for |k] < N/2. This conclusion is consistent with the observation
that twice as many modes gave accurate values for R(u) when N was doubled.
This error, coupled with the lll-condltiomng in the system of equations for R(u),
gives rise to the rapid deterioration in the estimates for |k] > N/2. A method
for overcoming this problem, at least for the kinematic wave equation and other
equations with quadratic nonlinearity, is described by Tutty & Cowley (1992).

6 Discussion and conclusions

The equations of evolution for the rise of a two-dimensional Boussinesq bubble
have been integrated forward in time until a singularity occurs. Evidence has
been presented which suggests that at two symmetric points on the interface the
curvature becomes infinite, and the sheet-strength develops a cusp-point. An
accurate estimate of the non-dimensional critical time, & ~ 1.689, has been
found.

Using the asymptotic form of the Fourier coefficients (13) we can explain
the modulated behaviour of the Fourier series. In addition we can determine
the time at which the singularity occurs and the algebraic decay of the Fourier
coefficients with wavenumber, In order to obtain accurate results, especially for
#, both sufficient precision and a suitable filter level need to be used (Krasny,
1986; Pugh, 1989). In particular, for a run with N = 128 and dt = 0.001
consistent values for R(u) were only obtained when the filter level was smaller
than 10~!® and p was taken to be complex. As the filter level was increased
from 1072 to 10713 the consistency in the estimate of y was gradually lost.

We find that the Fourier coefficients a(k) for k < 0 gave considerably better
results than those for k > 0. As yet no explanation can be given as to why
this is the case, although a possibility is that there is better cancellation in the
higher order terms in the asymptotic Fourier series for # in the case k < 0 than
for k > 0. If so, including higher order terms in (11) and (13) should lead to
an improvement of the results, especially for ¥ > 0 (see Shelley, 1992). Pugh
(1989) has found examples of problems where results are more consistent for
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k> 0than k < 0,

"The loss of consistency for R(x) versus k for |k| > N/2 is due to fitting an
asymptotic formula valid for an infinite Fourier series to a finile Fourier series,
We find that for k < 0 and 5 < [k| < N/2, R(y) = 1.53 % 0.03. This decay rate
is the same as that obtained analytically by Moore £1979) for small sinuscidal
disturbances to a parallel shear flow, and suggests that the singularity has the
same form,

The method of fitting exactly to sequences of six consecutive Fourier coeffi-
cients appears to be an improvement on previous authors’ methods of using a
least squares fit over a range of wavenumbers. The value of R(1) = 1.53+£0.03 is
closer to the theoretical value of 1.5 than those obtained by many other authors;
Shelley (1992) has obtained similar accuracy.

The rise of the two-dimensional Boussinesq bubble kas been studied before,
For instance the formulation and non-dimensionalisation used by Rambaldi and
Randall (RR} is almost identical to that here; the only difference is a multiplica-
tive factor of 47 in the sheet strength. RR used a second order Runge-Kutta
method, but repositioned their point vortices rather than filtered. They con-
firmed convergence of their solution with increasing N at the initial time ¢ = 0,
but not at later times. Hence, while a comparison with their results for # <17
shows qualitative agreement, we believe that their results for { > t. are spu-
rious. In particular, although their calculations appear acceptable for t > ¢,
we believe that this is because of their use of repositioning. Indeed, as Moore
(1981) has observed, ‘smoothing or repositioning can yield an acceptable solu-
tion when none, in fact, exists’. An advantage of filtering is that the breakdown
of the numerical solution is very evident, since the vortex nearest to the point
at which the singularity forms ‘flies off’ the sheet for ¢ > ¢,. When repositioning
is used, the points are ‘constrained’ to remain equidistant, and the breakdown
is less obvious. Moreover, on the basis of the conclusions of Krasny (1986) and
Rottman et al. (1987), it is anticipated that no convergence would be found in
the results of RR after the critical time,

In addition Anderson (1985) has used a vortex blob method to solve this
problem. As the desingularisation parameter, 8, tends to zero, the discretised
equations for the vortex blob method with fixed N converge to (6} but without
the Van de Vooren term. Anderson (1985) conjectured that as § — 0, the
arclength becomes infinite as a singularity was approached. According to the
results presented here, this does not appear to be the case. It can be shown
that the time units of Anderson, ¢4, and those here, t¥, are related by

¥ = /244,

The eritical time predicted here is £ = 1.689 which corresponds to {24 = 1,194.
Anderson (1985) estimated the critical time to be ¢4 = 1.0 on the basis that at
this time the arclength behaved like §=%195 The critical time predicted here is
larger then this. Moreover it is possible to clearly demonstrate convergence and
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a finite arclength at ﬁf = 1.0 (see Pugh (1589; for further details),

Alihough we have concentrated on a specific problem, we believe that our
results are robust. In particular we believe that singularities will develop for
a wide range of initial conditions, and that our results are not an artifact of,
for instance, the symmetric initial conditions. (However we note that singular-
ity formation could possibly be suppressed if the vortex sheet was excessively
stretched, e.g. as a result of rapid injection of one fluid into the other.) This view
is supported by the existence of the local similarity form (18) of the singularity.
Moreover, in the case of perturbations to a vortex sheet, Cowley et al. (1992)
show that branch-cut singularities of power 5 have a tendency to form in the
complex §-plane at ¢ = 0, and that these singularities can then propagate onto
the real {~axis. A similar analysis should be possible here confirming that ji =
will be the preferred power of singularity as a result of being fixed by the 1n1t1a1
conditions. We also note that Pugh (1989) numerically identifies the same sin-
gularity power in a number of other density—driven flows, e.g. Rayleigh—Taylor
instability, the descent of a vortex pair towards a stable interface, and the rise of
an axisymmetric bubble. Indeed, Jennings (1992, private communication) has
confirmed that a local singularity structure similar to that of (18) can be found
for the axisymmetric vortex sheet formulation.

Finally we note that the formation of singularities is an artifact of the model,
There are a number of physical properties of the fluid that have been neglected,
e.g. viscosity and surface tension. When these are included the singularities
will at least be modified, and may well be eliminated. (That surface tension
may not completely eliminate the singularities is supported by Yang (1992) who
claims to find singularities in the interface shape for the rise of a vacuous bubble
in a two—dimensional channel.) Certainly the development of singularities im-
plies that simple inviscid models involving vortex sheets have limited validity in
time, and calculations involving them should be carefully tested for convergence.
As Krasny (1986} suggests, in physical terms the development of singularities
probably indicates the onset of the roll-up of the vortex sheet.
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Figure 1 Motion of the 2-D Boussinesq bubble. Solution of equations (6}, (7)
using a second-order Runge-Kutta method, N = 128, d¢ = 0.001 and a
filter level of 10713, (a) The interface plotted at times ¢ = 0.0(0.1)1.6 and
1.65(0.01)1.69. (b) The sheet strength, v, plotted against arclength for
one half of the bubble. The sheet strength appears to form a cusp point
at the critical time. (¢) The curvature, C, of the interface plotted against
arclength. At the critical time, the curvature seems to develop an infinite
jump discontinuity.

Figure 2 The minimum radius of curvature of the sheet plotted against time
for N = 128,dt = 001. Linear extrapolation from values for which the
solution is known to be accurate and reliable gives an estimate for the
critical timne.

Figure 3 (a) Minimum radius of curvature against time for N = 128. o: dt =
0.01; o: dt = 0.005; A: dt = 0.001. (b) Minimum radius of curvature
against time for dt = 0.001. 0: N = 64;0: N = 128; A: N = 256.

Figure 4 (a) The Fourier coeficients of z(£,1) plotted against wavenumber k,
for the case N = 256, dt = 0,001, 13-digit arithmetic and a filter level of
10718, The time levels are ¢ = 0.0{0.1)1.6 and 1.670 (0.005) 1.695. The
critical time is 1, & 1.692. (b) The Fourjer coeflicients of z(£,1) plotted
against log, o k for the same parameter values. A straight line envelope to
the high wavenumber coefficients in the final spectrum indicates algebraic
decay and the presence of a singularity.

Figure 5 (a) The algebraic decay p{k)+1 of the Fourier coefficients at ¢t = 1,65
using N = 128, dt = 0.001, 13—digit arithmetic and a filter level of 10—13,
p is taken to be real. No significance can be attached to any particular
value of p. () The algebraic decay R{u(k) + 1) of the Fourier coefficients
assuming p is complez for the same parameter values. Although the scatter
is eliminated there is no consistency in ®(u(k) + 1) as a function of k.

Figure 6 The algebraic decay R(u(k) + 1) of the Fourier coefficients for N =
128, dt = 0.001, 28-digit arithmetic and a filter level of 10728, 4 is taken
to be complex. Results for {(a) k¥ > 0 and (b) k& < 0. Particularly for
k < 0, the value of R(u(k)) + 1 is consistently close to 2.5 for Jk| < N/2.
The deterioration for k > N/2 arises because (13) was derived for infinite
Fourier series.
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Figure 7 The exponential decay §(k) of the Fourier coefficients ploiied as a
function of k for the case N = 128, dt = 0.001, 28—digit arithmetic and a
filter level of 10728, From the top of the figure the times are o: 161; x:
1.62; *: 1.63; +: 1.64; 0: 1.65; x,: 1.66; *: 1.67; +: 1.68; 0: 1.69; x:
1.70. The coefficients for & < 0 yield more consistent values of § at each
time than those for k > 0. Clearly §(k) decreases to zero at a finite time.

Figure 8 The effect of the filter level on R(p(k) + 1) at ¢ = 1.65 for N = 128,
dt = 0.001 and 28~digit arithmetic. Filter level n: 10~14; o: 10-15; A
10718 40 10717; x: 10-18,

Figure 9 The effect of increasing the number of points (and therefore modes)
on the accuracy of fitting to the Fourier coefficients. As N is doubled the
number of coefficients giving consistent values of R(p+1) is approximately
doubled. The plot is for the extrapolated critical time {2 = 1.689. Results
for (a) k> O0and (B) k< 0. 00 N =32;0: N =64 A: N = 128 +:
N = 258,

Figure 10 The algebraic decay against time for t = 1.65 (0.005) 1.70 with N =
128, dt = 0.001 and using the k < 0 coefficients. The mean value of ()
slowly increases as § — ¢,.
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Tabie Captions

Table 1 The estimated critical times, ¢, obtained from plots of (maximum
curvature)~! versus time. Filtering was applied after each time step. Too
much filtering leads to the increase in the critical time illustrated by the

value in the final column.

Table 2 The times, 7, at which the Krasny filtering technique is switched off
for the interfacial position z and the vortex strength V. The values in
italics come from the expressions 7 = 1.70 — 7.36 N~ ! for 2, and 7 =

170 - 250N for V.,
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(a) Plot of logmlz(k,t)l against k {wavenumber) at t =
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Y Iogm{z(k.t)[ against log, k. The straight line envelope

\ to the high wavenumber coefficients in the final spectrum
)(t = 1.695) Iindicates algebraic decay and a singularity
has developed.
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WG INIL  Algebralc decay, u+l, of Fourier coefficients at t = 1.65

PN o

using N_=13128.dt== 0.001, 13 digit arithmetic, filter
level 10

The values p(k) + 1 were obtained from expression (23.7.4)
centred about each value of k assuming p was entirely
real. No significance can be attached to any particular
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LA

.w Same as (a) except that p is complex. The algebraic decay
is given by Re(u)+1. The scattering in (a) is removed and
the values decrease monotonically.
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Fig. € (2)

00

Re(p)+

@ Algebraic decay of Fourier coefficients at t = 1.85 wusing
N = 128, dt = 0.001 when conl%%tations are performed using
32 digits and filter level 10 . i is complex.

(a) Re{pu) + 1 against k (k > 0)
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® Re(p) + 1 against k (k < 0)
The value is consistently 2.5 for -k = N/2; the
deterioration of Re(p)+1 for k > N/2 arises from errors in
calculating the high wavenumber Fourier coefficients and
the ill conditioned nature of the equations for Re{pu)+1.
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Table 11

N dt 0.01 0.005 0. 001 0. 0001
64 1.717 1.710 -3 1.702
128 1.707 1.697 — 1.685 1.705
256 1.706 1.887 — 1.892

—ab-te—8+8- The estimated critical times t.c obtained from plots of
{max imum CLJr"\.fatur*e)"i vs time for the two dimensional
Boussinesg bubble. Filtering was applied after each time step.
Too much filtering delays the critical time as demonstrated by the
value in the final column.

-]

An expression of the form t: =t - —:-— was fitted to the arrowed

values using linear Jeast sguares giving t.': = 1.6B9 and a = 0.771.
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2(€) |\ dt 0.01 0.005 0.001 0.0001
32 1.36 1.365 1.393
64 1.57 1.865 |— 1,585
1.585
128 1,65 1.645 |— 1,643 1.6860
1.6425
256 1.69 1.676  |— 1.671
1.67125
dt
vee) |y 0.01 0.005 0.001 0.0001
32 1.51 1.510 1.539
64 1.65 1.650 |— 1.657
1.661
128 1.69 1.680 |— 1.682 1.6937
1.680
256 1.72 1,700  |— 1.891
1.690

e 36  The times, T, at which the Krasny filtering technique

E &LLL is switched off (when all the modes have grown above the filter

-13

level of 10 °7) for interfacial position z(£) and point vortex

strength V(§). The values in italics come from the expressions

T =170 - ?—%E for 2(€) and T = 1.70 - 2'30 for V(E} ; the
coefficients were obtained by fitting expressions of the form

8

T=a - N to the values which are arrowed.



