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ABsSTRACT. We consider saddle-point problems that typically arise from the mixed
finite element discretization of second order elliptic problems. By a proper equiv-
alent algebraic operations the considered saddle-point problem is transformed to
another saddle-point problem. The resulting problem can be then efliciently pre-
conditioned by a block-diagonal matrix (with blocks corresponding to velocity and
pressure, respectively) with first block on the diagonal corresponding to the bilinear

form fn [a‘l X 8+ %V xV- Q} (6 is a positive parameter) and the second block
equals to a constant times the identity operator. We derive uniform bounds for the
negative and positive eigenvalues of the preconditioned operator. Then any known
preconditioner for the above bilinear form can be applied. We also show some numeri-
cal experiments that illustrate the convergence properties of the proposed technique.

1. Introduction. We consider the following saddle-point problem in operator
form

M N*||up 0
® ERS ]
typically arising from mixed finite element discretizations of second order elliptic
problems.
This is a saddle-point problem, i.e., the corresponding matrix is indefinite. This
makes it hard for preconditioning and thus using eflicient iterative procedure for

solving (1) not as easy. There are several known techniques for solving saddle-point
problems, cf., e.g., Bramble and Pasciak [8], Bank, Welfert, and Yserentant [6],
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2 PANAYOT S. VASSILEVSKI AND RAYTCHO D. LAZAROV

Axelsson and Vassilevski [4], Axelsson [2], Axelsson [3], Mathew [21}], Rusten and
Winther [24], Ewing, Lazarov, Lu, and Vassilevski [15], and Cai, Goldstein and
Pasciak [12], Ewing and Wang [17], [18], Vassilevski and Wang [25], Ewing, Pasciak-
and Vassilevski [16]. We can distinguish several approaches; namely in Bramble and
Pasciak [8] the original problem (1) by equivalent algebraic transformations is trans-
formed to a positive definite problem in a certain inner product. Another approach,
exploiting inner — outer iteration was studied in Bank, Welfert and Yserentant [6)
and Axelsson and Vassilevski [4]. In Axelsson [3] a general treatment of iterative
solution of saddle-point problems was presented. In Mathew [21] and Ewing and
Wang [17], [18] the original problem is reduced to a symmetric and positive def-
inite one by working in a certain subspace (in their application this is the space
of divergence-free fluxes). In Axelsson [2], Cai, Goldstein and Pasciak [12], and
Ewing, Pasciak and Vassilevski [16], and Vassilevski and Wang [25] methods based
on introducing penalty term were studied. The latter approach as a discretization
procedure was first introduced by Bercovier [7}. Rusten and Winther [24] used
proper block—diagonal preconditioning of the original saddle—point operator in the
MINRES iterative method (cf., Paige and Saunders [22], or Chandra [13]). Our
method is similar to that of Rusten and Winther [24], see also Ewing, Lazarov, Lu,
and Vassilevski [15], but we first transform the original saddle—point problem to a
more suitable again saddle-point problem. We also introduce a parameter § > 0
which need not necessarily be small. This transformation was essentially described
(in different context and assuming é - 0) in Axelsson [3]. In our case, by choosing
§ — 0 we can control the length of the intervals that contain the eigenvalues of the
preconditioned problem thus improving (to a certain extend) the conditioning of
the preconditioned operator. In this respect our method has much in common with
the penalty approach studied in some of the above papers. But there is a principal
difference. Even in the case § — (0 we precondition a problem that is equivalent
to the original one, whereas in the penalty approach one first approximates the
original problem with a slightly perturbed one (hence only close to the original one
and not exactly equivalent to it).
The preconditioner we propose is

_[M+IN*N 0
2) D= ; 51|

Here I is the identity operator and 6y is just a scaling parameter, Possible choices
could be §; = 1 or &; = O(4).

Since this is block-diagonal symmetric positive definite operator it allows (it will
be clear from the following analysis) that the first block M + %N *N can be replaced
with any available preconditioner Bs. As a result of our approach the precondition-
ing of the original saddle point problem is reduced to the preconditioning of the
operator

1

For the case of mixed finite element discretization of second order elliptic problems
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Mj; corresponds to the following bilinear form

(4) /g(a*ll-h%v-&v-ﬂ)-

This bilinear form is defined for v and 8 which are vector-functions from the cor-
responding finite element spaces for the velocity unknown used in the mixed finite
element discretization of the second order elliptic problem. The coeflicient a is the
coefficient matrix in the considered second order elliptic operator. It is supposed to
be symmetric and uniformly in z € £ (Q is the problem domain) positive definite.
The bilinear form (4) is the same that appears in the papers by Cai, Goldstein,
and Pasciak [12], Ewing, Pasciak, and Vassilevski [16] and in Vassilevski and Wang
[25]. In the latter two papers optimal order hierarchical basis methods and multi-
grid methods of almost optimal order were derived, respectively. All these methods
have convergence independent of the penalty parameter § — 0, and the hierarchical
method is also shown to be insensitive with respect to possible jumps in the coeffi-
cient matrix a as long as these occur only across edges from the elements from the
initial (coarse) triangulation of the problem domain 2. One can apply the above
mentioned hierarchical basis approach for the bilinear form (4) and thus to get an
optimal order multilevel preconditioner for the transformed problem. Note that
here we have to perform iterations simultaneously for the velocity uy and the pres-
sure py, in a preconditioned conjugate gradient type method (namely, the MINRES
or a least squares version of it, or more generally, polynomially preconditioned CG
methods as studied in Ashby, Manteuffel and Saylor [1]).

Our objective in this paper is to derive uniform eigenvalue estimates (for the
negative and positive eigenvalues) of the preconditioned operator D145, where

_ | Ms N*

(5) =N 0]

is the operator that is obtained from (1) using equivalent algebraic transformation.

The paper is organized as follows. In §2 we present the mixed finite element
discretization and then we introduce the transformation of the problem to a problem
with coefficient operator As. In §3 we derive the eigenvalue estimates. Finally in
84 some numerical results are presented that illustrate the convergence properties
of the studied preconditioning technique.

2. The Problem. In this section we consider the second order elliptic problem:
Given f € L%*(f) for a polygonal domain Q C R?, find p € H'(£2) such that

—V-aVp= f(may)a (a:,y) € Q,
with Neumann boundary conditions
—aVp-n=10 on -

As commonly used n denotes the outward unit vector normal to Of). Here a =
a{z,y) is symmetric and uniformly in (z,y) € Q positive definite coefficient matrix.
The right-hand side f satisfles the following compatibility condition,

/ f(m,y)dxdy =0.
1Y
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Note that the solution p is determined up to an additive constant.
By introducing the velocity (flux) unknown (a vector function)

u=—aVp,

we can rewrite the above equation for p as a system of first order equations,

a”lu+Vp = 0,
V-u = f,
with boundary conditions
u-n =0 on O

In a variational form the above system can be rewritten as follows:

(6) JpeTlu-v— [ V.-vp = 0,
JoV uw = Jo fw,

for all test functions v from the space
Ho(div; Q) = {ve L*(Q)*: V.-veI?Q), v-n=0ond}

and all w € L%(Q) \ Span{l}, i.e., w is in the quotient space L%(§}) over the space
spanned by the constants.

The mixed finite element solution of problem (6) is obtained by restricting the
test functions to finite dimensional subspaces

V= Vi C Hy(div; Q),
W= W, c L*Q)\ Span{l},

of piecewise polynormial functions that satisfy certain (weak) continuity conditions.
Namely, for the velocity unknown the space V has to satisfy continuity of the normal
component of the test functions across the element boundaries. Le., assuming that
the domain Q is partitioned into a set of elements (e. g., triangles or rectangles) so
that the functions from V and W are piecewise polynomials. Suitable pairs of finite
element spaces ¥V and W that provide a stable discretization of the system of first
order equations (6) are proposed by many authors, cf.; e.g, Raviart and Thomas
[23], Brezzi, Douglas and Marini [10], Douglas and Wang [14], etc. The stability
requirement (i.e., the Babugka - Brezzi condition, cf. Babuska [5], Brezzi [9], or the
text by Brezzi and Fortin {11]) reads

5v '
(7) Bll¥lln2 @y < sup V0

forallp e W
xev I xlracaivey’ ’

where > 0 is a constant independent of the mesh size A — 0.
The discrete problem reads: '
Find a pair of functions (ug, ps) belonging to ¥V x W such that

(8) JoaT an x = Jo V- x P f 0,
fQV-UhT,b - fﬂfinb}
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for all x € V and all ¢ € W. In matrix-operator form we have

M N*|iu 0 }
9 = .
2 RN
Here ¢ is the L? — projection of f onto W. The operators M : V>V, N: ¥V - W,
and N*: W — V are defined as follows:

(M&Q,)=/a"1x-ﬁ, for all x and 8 €V,
Q

(N_)g,ip):—jv-xi/), forall y € V and all p € W,
Q

(N*w,ﬁ)w—/ﬂV'Qd’a forally € W and 8 € V-

Here and in what follows (., .) denotes the standard L*()) or L*(Q)? - inner product.
Next we describe the transformation of (8) to an equivalent problem with a
matrix-operator that is again of saddle-point type. We use the equivalent varia-

tional form of (9); namely, fo a given parameter § > 0 we first set in the second
equation of (8) ¥ = —ﬂ%V - ¥ and add it to the first one. We get

1) alTmext5VomVed - foVexm = 5 LfVox
—Jo V- ~ Jo Fo-

Note that we have substantially used the fact that for any y € V its divergence V- x
belongs to W.

In matrix-operator form (10) reads

1ark * 1 a7k
N LR G

We recall that ¢ was the L? - projection of f onto the finite element space W.

In what follows we study the matrix-operator of (11) As. Note that 44 is again
a saddle-point operator. We however will show that this transformed operator
is spectrally equivalent to a block-diagonal symmetric and positive definite one;
namely the operator D, (2) for any choice of the parameter § > 0.

3. Eigenvalue Estimation. In this section we prove a basic lemma concerning
estimation of the minimal eigenvalue of the operator NM; ' N* in terms of the
parameter § > 0 and the minimal eigenvalue of NM~!N*. We recall that we use
the standard L2() or L?(Q2)? - inner product denoted by (.,.). This estimate then
is used to derive bounds for the spectrum (the negative and positive eigenvalues)
of the preconditioned operator D1 4.
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Lemma 1. Let Ao be the minimal eigenvalue of NM ™1 N*. Then the following
spectral bounds for the operator NMy I N* hold

cgu}\[i S }‘ < 6’
0+ Ag
for any eigenvalue A = A [NM;IN*].
Proof. Consider N = NM~%. Then
1 - - 1o\ s
NM;'N*=N (M + EN*N> N*=N (I+ EN*N) N*.

Consider the following eigenvalue problem in W = W,
NN*Qk:“qu‘) k:l}zj.”,nzo(h—Z)-

Here n = O(h™?) is the dimension of W = Wj,.

We can choose {gx} to be a complete and L2(Q) — orthogonal system in W. This
is possible since NN* is symmetric and since W is finite dimensional. Then we can
expand any ¥ € W in terms of {gx},

P = chQk'

N*N(N*qx) = px(N*qi )

We also have

Multiplying this equation by % and adding it with the trivial identity N*q = N*g,
leads to

(14 35°8) o= (14 5) Frae
Or equivalently

| e _1‘* _ AN
(I+6NN) Vg = (1+8) Wqe

Finally, multiplying the last equation by N and using the fact that {qx} are eigen-
functions of NN*, we get
(1+5)7 NVg

—1
(14 2)7 mear
p#rd
= 5+kuk L

It

8 (1+158) fra,

We also have 5 ui )
(&, NM M) kg llanlle
[EAIF > cillaxli
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(Ji-llo stands for L*-norm.)

This shows that the spectrum of NM; 1 N* is contained in the interval

[min v,uk(? , max ,,ng -|
Le o4+pur & O+ pug

Since the function g(t) = S is increasing we get the following interval that contains

i+t
dXo
[5 + Ao’ 6] .

the spectrum of NM; ' N*,

Remark 1. Lemma 1 is related to Lemma 3.2 of Axelsson [3]. The difference is that
in [3] N*N was assumed invertible. Also our result gives more explicit eigenvalue
bounds.

In the case of mixed finite element discretization of second order elliptic equations
the following lower bound for Ay, the minimal eigenvalue of NM~'N*, can be
derived. We remark that similar estimate can be derived in the discretization of the
stationary Stokes equations but we shall not pursue this issue further in the present

paper.
Lemma 2. The minimal eigenvalue of NM~'N* is uniformly in h — 0 bounded
below. We have

O

do > 3% inf Aminla],
“-ﬁ(mff,l)en la]

where 3 is the constant from the Babuska-Brezzi stability condition (7) and a is
the coefficient matrix.

Proof. Recalling the BabugkaBrezzi stability condition (7) we get

(V'XJQ)
Bllglle < sup o2
” I[ _X_EH(leQ) ”X;lH(dw;n)
(N*¢,0)
- Sup T
x€H(div:02) I ar (aivie)
S “N*QN()‘

In other words, we have
)\min {NN*] 2 ﬁ2_

Then, since the operator M is spectrally equivalent to the identity operator (it
differs from I by the coefficient matrix a™! ) we see that

Ao = dmin [NMTINY] 2 6 inf Aninla] = O(1):

z,y

O
Corollary 1. Lemma 1 and Lemma 2 imply that NM; IN* is a well-conditioned
operator.

We are now ready to prove our first main result.
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Theorem 1. The eigenvalues of the generalized eigenvalue problem
Ms N*||x|_ ]\ Ms 0O X
N 0 v 0 6|y

are real and are contained in the following union of intervals A~ U A%, where

1 1 § 1 1 Ao 6
A= 14d4— ==, /144 —
{2 2 + 8 2 2\/+ 5+/\061]

contains the negative eigenvalues, and

1 A 601 1 )
2t \/H‘*(sma s Tyt

At = {1} U

contains the positive part of the spectrum. The eigenvalue 1 is of large multiplicity;
it corresponds to the divergence-free space Nx = 0 (and ¢ = 0). These estimates
in particular show, since § > 0, 61 > 0 and Ay = O(1) are constants independent

of the mesh parameter h — 0, that D = ]\ga 51 is a symmetric and positive
1
definite operator spectrally equivalent to the transformed saddle-point operator
A — Ms N*
TN o)

Proof. Since As and D are symmetric and D is positive definite it is clear that the
eigenvalues A are real. The eigenvalue problem is equivalent to the following system

(1-NMsx +N* =0,
(12) Ny _60p =0

Consider first the case A > 0. Taking inner product of the first equation with y and
inner product of the second equation with —¢ and adding the results we get the
identity

(1= X(Msx, x) + & M[[$l§ = 0-

If A =1 it follows that ¢ = 0 and hence Ny = 0 (see the second equation of (12)).
If A # 1 then since A > 0 we get that A > 1. Le., all positive eigenvalues that
are different from one are to the right of one. Next, we estimate those positive
eigenvalues and the negative part of the spectrum.

We solve the first equation in (12) for x and substitute it in the second one. We
get '

NM; ' N* = —§;A(1 — ) -

Using now Lemma 1 that provides O(1) bound %}; for the minimal eigenvalue of
NM;1N* (because of Lemma 2) we get the inequality

6o

— —_ > —
BA1= ) 2 55
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or

b
>
§4+ o 0,

which gives us the following negative upper bound for A~

A2 ) - 6!

1 1 M O
<z et
AS 3 2\/1”"45+A061’

and the following positive lower bound of At \ {1}

11 SV
> Lz 2.
Az +2\/1+45+,\051

Similarly, using the upper bound § for the eigenvalues of NM L N* provided by
Lemma 1 we get the inequality

—51’\(1 - /\) < 6v

or

M _X—68716<0,

which gives us the following lower béund for A~

1 )
- — -
A 2(1 1/1+461),

and the following upper bound for A+

1 / ]
< = N I
)\_2(1+ 1+46l)

This completes the proof of the theorem. O

Theorem 2. If My is replaced by some spectrally equivalent preconditioner By,

then the modified block-diagonal preconditioner D = [%6 60 I] will still be spec-
1

trally equivalent to the transformed saddle-point operator As. More precisely, as-
sume that for some positive constants v, and -3 the following spectral equivalence
relations hold

(15) Y1(Msx, x) < (Bsx, x) < 12(Msx, x) for all x € V-

Then the eigenvalues of D! A; are contained in the following union of intervals
A~ UAY where

_ 1 1 " 1 1 XA 72
16 AT =|—— —,1+4—=6, = ——/1+4 -
( ) [271 2v1 61 " 279 2va 6+ Ag &y ]
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contains the negative eigenvalues, and

27 27, §+Xb1 2w 27 03

- -

11 ) 11
(17) A+m[72—1,71‘1]u[—+— QIR B LY S SR 1+47—*5}

contains the positive eigenvalues. All constants (Ao, 61 and é) are as in Theorem 1.

Proof. The eigenvalue problem is equivalent to the following system

Ny —61 Ay =0
Let A > 0 donot liein [v;*,7;']. Hence Ms — ABj is definite (negative or positive).
From the identity

((Ms — ABs)x, x) + 61 M9l = 0,

we see that Ms — ABjs is negative definite. Hence A > 7, '. Le., all positive
cigenvalues (outside the interval [v;!,4;"1]) are greater than 47 '. We next estimate
this part of the spectrum. i.e.,all X > ;. In this case Ms— A Bj is negative definite.
We solve the first equation in (18) for x and substitute it in the second one. We get

(19) N{Ms — ABs) ' N*tp = —6 \yp-

Noting now that the spectrum of Ms(Ms — ABs)™! is contained in [1—1—)\“(1’ ﬁ]
Using now Lemma 1 we get the following inequalities

—61/\(1 — }\71) S 5,

and

Ao
§+ o

Solving these inequalities for A > 0 we obtain the desired bounds for the second
interval in At.

The negative eigenvalues are estimated similarly as in Theorem 1. In this case
Ms — ABjs is positive definite and the spectrum of Ms(M; — AB;)™! is contained in
. Using them and Lemma 1 in (19) we obtain the inequalities

—51)\(1 — )\"}’2) 2

[+=5 =)
—61)\(1 — )\"){1) S 6,

and

8Xo
8+ Ao

The bounds for A~ are obtained by solving the above inequalities for A < 0. This
completes the proof of the theorem. O

—-51)\(1 — /\’}’2) 2

Remark 2. Note that Theorem 2 when 72 = 71 = 1 reduces to Theorem 1.
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Theorem 2 implies that the problem of constructing spectrally equivalent pre-
conditioners of the saddle-point operator is reduced to the construction of precon-
ditioners for the symmetric and positive operator M + ; NN* that corresponds to
the bilinear form

/ (a—lx_g+%v.xv.ﬂ) for all x, dey-
Q

We finally note that § > 0 need not necessarily be a small parameter. However,
if § — 0 (and & = O(1)) the lengths of both intervals A~ and AT decrease (see
(15) and (16)), which improves (to a certain extend) the condition number of the
preconditioned operator D~1.As. Note also that both ends of A~ approach zero as
6 — 0 and & = O(1). In such a limit situation the convergence behavior of the
iterative methods applied for solving systems of equations with the preconditioned
matrix is not clear. So there is no obvious reason to choose § — 0.

For preconditioning M5 (including the case § — 0) one possible choice can be the
multilevel preconditioners constructed on the basis of the hierarchical decomposition
of the space V = V}, for the velocity unknown (see, Cai, Goldstein and Pasciak
[12] and its optimal stabilization the hybrid multilevel preconditioner from Ewing,
Pasciak and Vassilevski [16]). Another possible choice (only for two — dimensional
domains) can be the multigrid methods from Vassilevski and Wang [25].

4. Iterative Methods and Numerical Experiments. In this section we men-
tion some iterative techniques for solving systems of equations with symmetric and
indefinite matrices. We also show some experiments that illustrate the convergence
of the MINRES method with a preconditioner D for As for various choices of § and
8.

We first remark that the preconditioned operator D~1.A4; is symmetric in the
inner product generated by D, 1.e., defined by

(Bsx,8) + 6:1(2p, ¢) for all (x,%) and (8,4) €V X W-

Therefore we can consider the iterative methods for the symmetric indefinite oper-
ator C = D1 A; in the special inner product (.,.)p defined above. The MINRES
method (first presented in Paige and Saunders [22]) applied to the system Asx = b,
generates at kth iteration of the method new search vector dg which is (C:,C-)p
orthogonal to the previous k search vectors {do,d1,...,dg—1}. Then the kth iterate

1
X, is computed such that the residual norm |[rg|{p-2 = (xg,rr)5_. (rs = b—Asxy)
is minimized over the shifted space

Xy + Span {do,Cdo, -..,C*"dy} -
Here, x¢ is the initial iterate, rp = b — Asxy is the initial residual and dy = D1y,
is the initial search vector.

The following convergence estimate holds

liexlip-1 < Eglirollp-1,
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where
Ep = i Al
F et rehivar P
Here II; is the set of all polynomials of degree < k; AT and A~ contain the positive
and negative part of the spectrum of C. Explicit expression for £, is known only in
some special cases, for example when length (A1) = length (A ™). Explicit formulas
(involving elliptic functions) have been derived in Freund [19] for the asymptotic

convergence factor of the method defined by klim Ey* for general intervals A~ and
— 00

AT, Since in our application we are interested in a few iterations (i.e., k small) the
asymptotic convergence factors might not give good information about the actual
convergence rate of the method. At any rate, however, if the intervals A* and A~
are fixed (i.e., independent of the mesh size A — 0) the convergence of MINRES
will be independent of the mesh parameter since E}, is independent of A — 0.

Another way of solving systems of equations with indefinite symmetric matrices
(in the complex case with indefinite hermitian matrices) was studied in Ashby,
Manteuffel and Saylor [1]. The idea is to use a polynomial S(A) such that the
transformed problem

S(C)cx = S(C)b, (b=D""b)

has a positive definite matrix S(C)C (in the corresponding inner product (.,.)p).
This technique is known as polynomial preconditioning. Since now the precondi-
tioned matrix S(C)C is positive definite then the standard CG (conjugate gradient)
method can be applied. A simple choice is S(C) = C which leads to the least squares
preconditioned CG method. This technique needs a priori eigenvalue estimation in
order to construct polynomial S(A). As shown in Ashby, Manteuffel and Saylor [1]
this can be done adaptively.

At the end we present some numerical experiments that show the number of
iterations in the MINRES method applied to solve the system (9). It corresponded
to the discretization of (6) in = (0,1)? using the lowest order Raviart-Thomas
spaces on square elements of size h = %, n > 1 a given integer. The test problem
corresponded to coefficient a™' = 1 4 10(2? + y?) and exact solution p = z(1 —
z)2y(1—y)?. The stiffness matrix corresponding to the operator M was obtained by
using numerical integration based on tensor product Simpson rule in each element.

The preconditioner Bs for M5 was defined by

1
Bs=D+ EN N*,
where D was computed from the bilinear form that corresponds to the operator M
using quadrature formula that gave rise to a diagonal form od D. Then the action

of Bg"l was computed using the Sherman-Morrison-Woodbury formula {cf., e.g.,
Golub and van Loan, [20], p. 51)

B;'=D'-D'N(@I+ N*DIN)"IN*D™.
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Note now that 6§ + N*D~!N is very close to a cell-centered finite difference ap-
proximation of the operator —V - aVp + ép. Since the goal of the present paper
was to study the behavior of the global preconditioner D, in our test the actions of
(6I + N*D™1N)~! were computed exactly based on Choleski factorization.
‘We used the preconditioned MINRES method with a stopping criterion when the
D~ norm of the residual was less than 107°. In the tables below we show the num-
JHast residuall, 1

ber of iterations iter and the average reduction factor p = (

for various choicesof § > Qand 6 =1 or 6; = 4.

TABLE 1. Number of iterations, iter

and average reduction factors p; § = 6;

Hinitial residual}ly .1

hwl 6=1 6=0.1 &= 10'—2 §=10"3% | 6§ =10"*%

16 27 23 19 19 17
0.4516 0.3610 0.2831 0.2621 0.2133

39 26 22 18 18 16
0.4359 0.3451 0.26 0.24 0.1913

64 25 19 17 17 15
0.4191 . 0.3032 0.2417 0.2187 0.1697

TABLE 2. Number of iterations, iter
and average reduction factors p; 6 = 1

il =1 6=01 | §=10"2 | §=10"% | § =10"*

16 27 24 23 28 «
0.4516 0.3999 0.3850 0.4548

39 26 23 22 27 «
0.4359 0.3857 0.3691 0.4420

64 25 22 21 26 «
0.4191 0.3694 0.3511 0.4272

7x“ stands for no convergence.

From both Tables 1 and 2 we see that the preconditioner is of optimal order;
the number of iterations iter and the average reduction factors p are bounded in-
dependently of the mesh size. The preconditioner works also for small (but not too
small) § and &;. Note that in that case Mj is very ill-conditioned. We also see that
there is some optimum of how small § and §; should be and when § becomes less
than that value (see Table 2) the number of iterations began to rapidly increase.
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This was not observed in Table 1 {§; = §). Note that in that case with § — 0
the intervals A~ and A™ (see Theorem 2) approach limit values and this was also
observed in our test; i.e., the number of iterations iter tended to stabilize.

The convergence behavior in Table 2 (§; = 1) when § — 0 is explained as

P 11 ™NT 11 i ! 11 1 A — 1 1 £1 vt T AL i 1 I S
follows. Noie thal in that case A™ {ends to the orgin and My tends to a singular
matrix. This is a possible explanation of the increase of the number of iterations
for § < 1073.
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18.
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