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Abstract

An axi-symmetric and swirling vortex sheet is investigated as the
simplest flow in which there is non-trivial vortex stretching and as a
possible setting for studying vortex cancellation and singularity for-
mation, Rayleigh’s criterion indicates linear stability of a single sheet
but instability for other configurations of sheets. Due to the simplicity
of vortex sheet problems, the linear modes and growth rates (or fre-
quencies) can be explicitly expressed. Subsequent nonlinear evolution
is numerically simulated using a vortex method. The numerical results
for an axi-symmetric swirling sheet with a vortex line along the axis
of symmetry show detachment of a vortex ring from the sheet into
the outer fluid, and collapse of the sheet onto the vortex line at some
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points. Vortex cancellation, which in the presence of viscosity would
likely lead to vortex line reconnection, seems to occur in both of these
phenomena. The evolution of two co-axial, axi-symmetric, swirling
vortex sheets is similar,

1 Introduction

Axi-symmetric flow with swirl for an inviscid incompressible fluid is the
simplest flow that allows non-trivial vortex stretching. The flow description is
further simplified if the vorticity is concentrated on an axi-symmetric surface;
that is, a flow induced by a vortex sheet (or more than one sheet).

The restriction to axi-symmetry and to vortex sheets provides the sim-
plest setting in which to examine nonlinear processes such as vortex can-
cellation and singularity formation. For similar reasons, there have been a
number of recent computational studies of smooth axi-symmetric flow with
swirl [3, 11, 16, 22]. Furthermore in the present study, a new phenomenon,
the pinching and collapse of a vortex sheet, is exhibited.

These flows represent a significant idealization, since the restriction to
axi-symmetry for a swirling vortex sheet suppresses the dominant Kelvin-
Helmholtz instability, which is not axi-symmetric. The resulting flows, how-
ever, are quite similar in appearance to those generated by the impulsive
rotation of a cylinder 7, 12, 31]. This gives us some confidence that the phe-
nomena studied here are of physical significance, in addition to their basic
mathematical importance.

An axi-symmetric swirling vortex sheet with circulation I' can be rep-
resented by the cylindrical coordinates (z(e,t),r(e,1),%¥(a,t)) of a vortex
line on the sheet, in which « is a “Lagrangian” parameter along the vor-
tex line. The full sheet is formed by rotating this curve around the axis of
symmetry r = 0. The evolution of the sheet is governed by the following
integro-differential equations [5]:

Gpz(e,t) = ;?PV-/ Li(r, 7',z — 2/ ¢ }do! (1.1)
Or(a,t) = -ég-é-PVf L(r, ',z — 2/, ¢")da! (1.2)
Opp{e,t) = T(drr?)-! (1.3)
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in which
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In these equations r' and v denote r(a’) and (o), etc., and E = E(m) and
K = K(m) are the elliptic integrals of the first kind evaluated at

4y

= Az2+(r+r’)2‘

(L.5)

They account for the integration of the vortex interaction around a circle of
symmetry. The integrals in (1.1) and (1.2) have singular integrands at o/ = &
and are interpreted in the Cauchy principal value sense. The simplicity of the
angular velocity equation is because the circulation ru, is constant in each
irrotational region of an axi-symmetric flow, i.e., ruy = 0 inside the sheet and
rug = I'/2n outside the sheet, and because the velocity u of the sheet (at
fixed @) is the average u = %(u + + u _) of the limiting velocities » ; and
u _ on either side of the sheet. The system (1.1)-(1.3} is analogous to the
Lagrangian description of 2-d vortex sheet dynamics through the Birkhoff-
Rott integral. The generalization of (1.1)-(1.3) to configurations of more
than 1 sheet is straightforward. For the case of an axi-symmetric vortex
sheet without swirl, these equations were derived earlier by de Bernardinis
and Moore [9] and used in [8, 19, 20, 21].

The steady flow solution (z,r, %) = (e, R,tI'/(47R?)) for (1.1)-(1.3) is
linearly stable to axi-symmetric disturbances, but flows with multiple vortex
sheets can be linearly unstable, as described in Section 2. In order to investi-
gate the subsequent nonlinear evolution, a numerical method for solving the
vortex sheet equations (1.1)-(1.3) is formulated in Section 3.

The numerical method is applied first to the (linearly) stable configura-
tion of a single axi-symmetric swirling vortex sheet in Section 4. For small
amplitude perturbations, the oscillation of the sheet agrees with the linear
theory; while for larger amplitude the resulting outward flow leads to a cur-
vature singularity and rollup of the sheet, which cannot be reversed, so that
the flow loses its temporal periodicity.

The simplest linearly unstable configuration consists of an axi-symmetric

vortex sheet combined with a vortex line on the axis of symmetry. According



to Rayleigh’s criterion {re-expressed through a kinematic argument at the end
of Section 2) this flow is unstable if

[Ta] < T4 (1.6)

in which T, is the circulation inside the sheet and I'; is the circulation out-
side the sheet; i.e., I'; is the strength of the vortex line and T’y — T'; is the
strength of the sheet. The numerical computations presented in Section 5 for
the resulting nonlinear evolution show formation of outward and inward jets
along the sheet, detachment of a vortex ring from the sheet into the oufer
fluid, and collapse of the sheet onto the vortex line at some points. The in-
tense winding-up of the sheet as it collapses prevents accurate computation
past a certain time before the sheet hits r = 0. Extrapolation of the results,
however, seems to indicate that in a finite time there is a collision and cancel-
lation between the sheet and the vortex line, as well a collision between the
sheet and itself during the detachment of the outer ring. In the presence of
viscosity, this would lead to the breaking and reconnection of vortex lines (see
[26] for example). Rayleigh [23] also noted the analogy between the stability
of axisymmetric flows and the stability of density stratified two-dimensional
flows. However, while some of the structures observed here are very similar
to those seen in simulations of the Rayleigh-Taylor instability {see [30] for
example), very nonlinear phenomena such as collapse of the sheet onto the
axis of symmetry are quite specific to axisymmetric flows.

For two co-axial axi-symmetric vortex sheets with swirl, the instability
criterion is the same as (1.6) and the subsequent nonlinear evolution is also
similar if the inner radius is not too large, as shown in Section 6. As before
the outer sheet collapses onto the inner sheet at some points. Unlike the
previous case no collapse onto the axis is observed.

Conclusions from this investigation are presented in Section 7.

2 Linear Stability Analysis for Axi-Symmetric
Vortex Sheets

On a cylindrical vortex sheet with pure swirling flow, the vortex lines are
straight lines in the # direction. The Kelvin-Helmholtz instability for this



steady flow is then in the 2 — y plane, and so it is not excited by perturba-
tions that are axi-symmetric. In this section a linearized stability analysis
is presented for axi-symmetric perturbations of cylindrical sheets in several
configurations.

Rayleigh’s criterion [10] provides a necessary and sufficient criterion for
linear stability of a steady swirling flow to axi-symmetric perturbations;
pamely the flow is stable if and only if the square of the circulation is a
nondecreasing function of the radius. The results of this section are of course
consistent with Rayleigh’s criterion, but for these vortex sheet problems,
explicit expressions are found for the linear modes and for the dispersion
relation. At the end of this section, a kinematic argument for stability or in-
stability of a vortex sheet is presented, as an alternative to the usual dynamic
argument in the derivation of Rayleigh’s criterion.

Four vortex sheet configurations are considered. First is the most basic
case of a single vortex sheet, which is known to be neutrally stable. In the
second, this flow is made unstable by the introduction of a vortex line along
the axis. Third, to give the inner flow more degrees of freedom, the vorfex
line is replaced by an inner vortex sheet. And finally, we consider the stability
of a swirling vortex sheet within an annulus.

2.1 Single cylindrical vortex sheet

The stability analysis was performed by Rotunno [24] but is presented
here for completeness, since the same method will be used on the other 3
configurations. The (nonlinear) equations in Fulerian variables for a flow
with a vortex sheet of circulation I' are the following: The velocity potential
¢ satisfying u = V¢ is

b= { de(r, 2, 1) inside the sheet

@q(r, 2,8} + 0T /2r  outside (2.1)

and the sheet position is

r = Ry +£(2,1). (2.2)
These satisfy
V2¢3 = 0 (2.3)
Vig, = 0



inside and outside the sheet, with jump conditions that the normal velocity
and pressure are continuous, i.e.,

¢1r = §t+¢1z‘£z (2‘4)
b2 = &+ b2:E (2'5)
1 1
b + 5Lt 59,
1 I'f2n 1
= a5 1+ 6 2
on r = Ry + £. The linearized equations are then
¢, = & (2.7)
¢2'r - é‘t (28)
T'/2n)?
Pt = ¢2t—u§§)"£' (2-9)

The k-th mode for (2.3) is

¢1 = bllo(kr)eikz-'-at
¢2 = b2I{G(kT)eikz+ot (2.10)
f — eikz+at

in which I, and K, are the modified Bessel functions [1] and b,,b; and ¢
will be determined from the linearized free boundary conditions (2.7)-(2.9).

Since I = I) and K! = — K, these equations become
blkI].O =
“““‘b2kK10 = o (2.11)

dblIﬂﬂ - Jbz}{oo - (P/2W)2R63

in which Ipg = Iy(kRy), I1o = I1(kRy), etc. Since Iy(z)K;(z) + I (z)Ko(z) =
1, it follows that

so that the sheet is stable. The coefficients for the mode (2.10} are
bl = Z‘IZE(F/Q'?T)RE;I 1{10/110
by = Fil'/2r)B51\/ Lo/ Ko (2.13)
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For large k, the dispersion relation is approximately

o = (T /27)/k/2R3. (2.14)

2.2 Cylindrical vortex sheet and a vortex line

Consider a vortex line of circulation I'; on the axis of symmetry, contained
inside a cylindrical vortex sheet so that combination has circulation T';. Axi-
symmetric perturbations will not alter the position of the vortex line. The
velocity potential for this flow will be

b= é1(z,7, 1) + 00 /27  inside the sheet (2.15)
] olz,r,t) +0T,/2r  outside ’
2
The equation for continuity of pressure is then
1(Ty/er\* 1, 1,
L) el
1 (Ty/2x\* 1

¢2t+§ (Rz{!—f) +§¢gz+¢§r (2.16)

and the remaining equations are unchanged. The linearized free boundary
equations are then

¢1-r = &t

¢ = & (2.17)
T, /2r)? T,/2m)?

¢1t - %E:‘ﬁzt"&}/{Tﬂ.)‘f-

As before the linearized solution is

b = bI(kr)eikztot

¢2 = bszg(kr)eikz'*'” (2.18)
5 = gikztot
with
blkIIU = O

JblIOU —_ R6'3(P1/271')2 = O'szoﬂ - R63(F2/211')2.



This is the same as (2.11) with I'? replaced by I'Z — I'?, so that

o = (2m)(T? = T2)2kR;1 /LoKy, (2.20)
bl B :E(??T)"i (I‘i - Fg )I/ZRE‘-'].\, 1(10/'[10
bz = :F(Z’Jr)"l(r% - Fg)llzRo—lv 110/1-{10 (2.21)

This shows that the configuration of a vortex line inside a cylindrical vortex
sheet is unstable if and only if

Iz > 1?2 (2.22)

in agreement with Rayleigh’s criterion. For large wavenumber k, the growth
(or decay) rate is approximately

o = +£(2r)~Y (T2 — T2)V/2, [k /2R3, (2.23)

2.3 Concentric, cylindrical vortex sheets

Consider two cylindrical vortex sheets of radius R, and R, with 0 circu-
lation inside the inner sheet, circulation T in the region between the sheets
and T'; outside the outer sheet. The potential is then

Bo(ry 2, 1) inner
¢ =1 ¢i(r,z,t)+ 07, /2r middle (2.24)
do(r, 2, 1) + 00y /2 outer.

The perturbed sheet positions are

r o= =R +§(21)
ro= 1= Ry +&(z,1). (2.25)

The linearized jump conditions are

bor = &ut
¢y = bue (2.26)
bt = ¢ — RP3(T1/27)%
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on r = R, and

¢1r
¢2r
qﬁlt

o
1
¢
S
&

= {n

€ae

(2.27)

R [2m)2E, = ¢y — B3 (T2 /2m)%¢,

on r = R,. The linearized mode is

by Io(kr)eikztot

(boI(kr) + by Ko(kr))eihztot

byKo(kr)etk=+ot (2.28)
b5 gikztat

eikz-l—art .

After substitution in (2.26) and (2.27) and some manipulation, the dispersion

relation is found to

be

ot + (K11 Gy + 13K, Gy )k?o?

in which

+ GGyl Kyp(112 Ky — InKu)‘l"‘1 =0 (2.29)
Gy = (Iy/2rRy)?
G, = (I2-1?)/(27R,)? (2.30)

and I, = Li(kR,), I1; = I;(kR,), etc. As in Rayleigh’s criterion, the disper-
sion relation (2.29) has a root o with Re(c) > 0, corresponding to instability,
if and only if T? > I'Z, 1.e., G, < 0.

The coefficients for the linear mode are

b, =
b2 =

oM oo o
o R
o n

(o/klyy)by

—(k/0)Gy K13

~(o/kK,,) (2.31)
—(k[0)Gylyz — (o /R)KG

(kfo)(byIyy — b3 Kyy)

—(k/o (I K1g — K11 I13)Ga + K11/ K.
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2.4 Vortex Sheet in an Annulus

Suppose that the fluid lies in a solid annulus R; < 7 < R,. There is a
vortex sheet at r = R, (with R, < Ry < R,) inside of which the circulation is
I',, which can be interpreted as a distribution of vorticity on the inner wall,
and outside of the vortex sheet the circulation is T'y. The perturbed vortex

sheet is at

r = Ry + &(z,t)

and the velocity potential is

b= 0T /27 + ¢1(r,2,t) By <r < By+¢
) 0Ty 27 + ¢y(r,2,t) Ro+E<r <R,

The linearized boundary conditions are

91511':0 T:Rl
¢2r20 T;R2

at the solid boundaries, and

¢1r = ‘Et
¢2r = ft

b1t — R§3(F1/2W)2§ = gy — By3(Tp/2m)%¢

at the free boundary r = Ry.
The linearized mode is

¢ = (blfo(kr) + szo(kr))eikzwt
Py = (bafo(kr) + b4I{O(kr))eikz+dt
é‘ — eikz-!—a't.

The resulting dispersion relation is

o = Zik\/(b/e)G,
in which

10
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¢ = Kylip— 111Ky, (2.38)
b = (Kan - Kmfn)(KwIlz - Kmfm)
Gy = (I7-T3)/(2nR,)*

With ‘[10 —_ Il(kRD)!Ill - Il(le)'i 112 = Il(kR'Z)! etC. Since b > 0 and c > 0,
the instability criterion is I'? > T (i.e., G, < 0) as before.
The coefficients of the linear mode are

b = (o/k)Ky; (Kl — Kioliy)™

by = 51111/1{11

by = (0/k)K1(Kiplio— Kiolia)™ (2.39)
by = baliy/Kyy.

2.5 Lagrangian Modes

As detailed above, the Eulerian description of a vortex sheet consists of
a radius r = R(z,t) and a potential ¢ = ¢(z,r,0,1). On the other hand the
Lagrangian description used in the Birkhoff-Rott equation in Section 1, con-
sists of cylindrical coordinates (z(a,t),r(e,t), (e, 1)) for a vortex filament
on the sheet. The relation between these descriptions is that the Lagrangian
position moves at the average of the velocities on either side of the sheet, i.e.,

(oror) = {65, 65,7) + 61 47,7670} (240)

in which ¢t and ¢~ are the potentials evaluated at the vortex sheet point
(z,7,%) from either side.

For each of the vortex sheet flows above, we will now determine the La-
grangian description for both the steady state and a linearized mode. Set
the potential to be

®=4+4¢ (2.41)

in which ¢ is the basic steady flow and ¢ is a perturbation. Similarly set the
Lagrangian coordinates to be

(Z,R,¥) = (2,7, 9) + (2,7, 9). (2.42)
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Since ¢, = ¢, = 0 in all of the flows above, the steady solution satisfies

(20t th) = (0,0, 5 R85 + ) (243)

The linearized terms in (2.40) come from two sources, the perturbation ¢ of
the potential and the perturbation ¢ of the interface. Since ¢y, = ¢y = 0,
then the perturbation velocity is

A = 5@ +4)
o= S He) (244)
Py = —R“3(53+$;‘)E-

2.5.1 Lagrangian mode for single sheet

The steady flow corresponds to
(2,7,%) = (o, Ry, (T/4m)R;%t). (2.45)
Since ¢~ = 0, the equations for the linearized mode (z,r, ) are
1
atz - 5(9612 + ¢2z)(r = Ry, z = C\f)

ik .
= ‘Z‘(blfoa + by Kgp)etkte

1
Or = §(¢1r + ¢ )(r = Ry, 2 = a) (2.46)
k .
= E(bllrm - 17217{10)6”“”%”s
at"/’ — _(I‘/Qﬂ)R(—)-Iieika-i-at
which has solution
(Z, r, ) (2: f, 'ﬂg)eika+dt (2.47)
é =S 'i(k/ZO')(blfog + b2I{0{])
’f (k/20)(by 110 — b Ky0) (2.48)
P —(1/0)R53(T /27)

12



in which I, = I;(kR,), etc., and by, b, are defined in (2.13).

Note that the period of the swirling flow is found from (2.45) to be T =
472 R2/T whereas the period of the oscillation for the linearized mode (in this
stable problem) is 7} = 2x/|o|. Since these will differ in general, a vortex
line will not return to its original position after one oscillation but will be
shifted by a finite angle.

2.5.2 Lagrangian modes for a sheet and line

The steady fluid flow corresponds to a vortex filament on the sheet with

(2,7, ) = (0, Ro, tR*(I'y + Ty) /4). (2.49)
As in the preceding subsection, the linearized mode is
(2,7, %) = (3, F, h)ekator (2.50)

with 2,7, given by

Z = %(51100 + b, Koo)

Fo= 5%_‘(51110 — by Kyo) (251)
b o= —-%R;E"(Fl +Iy)/2n

in which Iy = I, (kR,), etc., and by, b, are defined in (2.21).

2.5.83 Lagrangian mode for two sheets

Now there are two vortex sheets with two filaments (2,7, %, )(e,t) and
(23,79,%,)(, t). In the steady flow these are

(21,71,%1) = (e, Ry,tR72T [4n)

(23,73, %;) = (o, Ry, tR7* (T +Ty)/4n). (2.52)
the linearized mode is
(z1,m1,%1) = (35,71, ‘ﬁ:)eikawt
(za,7r9,%2) = (Zy, 7y, hp)etkotet (2.53)

13



in which

5 = i(k/20)((by +bo) oy + by K1)

fro= (k/20)((bs + b} Iyz — baKqy) (2.54)
Yy, = —(1/0)R°T, /27

2y = i(k/20)(bylos + (b3 + by) Ko2)

fy = (k/20)(by]hy — (b3 + by) K1s)

= —(1/0)R3(T +Ty)/2n.

5
8
!

2.6 Kinematic argument for linearized stability

The motion of vortex filaments is best described through a kinematic,
rather than a dynamic, description. Here we present a kinematic derivation
of the stability or instability for the vortex sheet configurations described
above.

Consider first a single cylindrical vortex sheet with vorticity in the 2
direction and perturb its shape by a small sinusoidal perturbation, as drawn
in Figure 2.1a.

Since the circulation r24, is constant, then the angular velocity is larger
where the sheet is pinched. This differential rotation rate can also be thought
of as a result of vorticity in the ¥ direction. It stretches out the vortex lines
in the positive 8 direction in pinched regions, as indicated in Figure 2.1b. The
resulting angular vorticity is in the 8 direction below the center of the pinch
and in the —@ direction above the center. This angular vorticity produces an
axial flow into the pinched region from below and from above. This inward
flow continues until the pinched region bulges out, which causes the vortex
lines to wrap up in the —& direction as in Figure 2.1c. The resulting angular
vorticity then produces axial flow out of the pinched region. This eventually
causes the bulged region to become pinched again, and the sheet returns to
the state in Figure 2.1b. In this process there will be a phase lag between
the bulging and pinching of the sheet and the wrapping and unwrapping of
the vortex lines. This argument shows that a single vortex sheet is stable.

The same reasoning can be applied to the vortex sheet with a vortex

line as Section 2.2 and drawn in Figure 2.2a. The angular velocity of the
sheet is ¥, = R~2(I'y +1';)/2. If I? > I'Z, then the circulation I'; of the

14



line is of opposite sign to the circulation T, of the sheet, since I', = I'y, + I';.
Moreover the vortex lines will now wrap up the opposite direction to those
for a single sheet, since sign (I'y +T';) = —sgn(T,). As shown in Figure 2.2b,
this produces an outward flow away from the pinched region on the sheet,
causing it to pinch further. Therefore the sheet is unstable in this flow.

3 Numerical Methods

In this section we discuss the numerical methods used to evolve the vortex
sheet whose motion is given by (1.1), (1.2), (1.3). Numerical issues that must
be carefully addressed include the implementation of axial periodicity, the
evaluation of singular integrals, the consequences and treatment of singularity
formation, and the resolution of vortex line complexity.

Denote z = o + z. If at ¢t = 0 the data r(a),¥{a), and 3(a) are 27-
periodic, then this axial periodicity will be preserved by the subsequent mo-
tion. For a two-dimensional planar vortex sheet with periodic data (sheet
strength and displacement) the Birkhoff-Rott integral over R can be re-
summed to yield an integral over [0, 27] with a modified but explicitly given
kernel [14]. An exact resummation is not known for the velocity integrals in
(1.1) and (1.2), and a velocity integral I(«) is instead approximated by the
symmetric truncation

Ia(e) = PV [ o e 3.1
@) =PV [ floy el 6.

The range of integration is thus 2M + 1 periods of the data (r, Z,4). By
centering the range of integration at @, Ip(«) is a 27-periodic function, as
is [(e), and the integral need only be evaluated for 0 < a < 2. Moreover,
the convergence of Iy (c) to I{e) is rapid. Using the periodicity of the data,
the symmetry of truncation, and the small m behavior of E(m) and K(m),
it can be shown that

I(a) = Iy{a) + O(1/M1) (3.2)

for large M. Indeed, for the calculations presented here M = 4 (9 periods)
was found to be sufficient. Further increases in M gave no significant changes
in the results.

15



From the initial instability of the sheet the first significant event is the
formation of a singularity, which is apparently related to those seen in 2-D
vortex sheet motion [14, 15, 17, 18, 25]. We seek to compute the sheet motion
accurately up to this first singularity time and then beyond it. One consid-
eration must be the accurate quadrature of the singular velocity integrals.
The limit o — « gives m — 1-, for which both integrands are singular. For
simplicity consider @ = 0. Then either velocity integrand can be written in
the form

( )

fle') = Hy(a) + —— + Hj(a)log|al, (3.3)

where the functions H;(«) are smooth 1f the data (r, Z,%) is smooth. The pole
singularity has a well defined principal value integral, while the remainder is
absolutely integrable. Sidi & Israeli [28] have developed generalizations of the
Euler-MacLaurin error expaglsion for trapezoidal rule approximations to such
12
singular integrals. Let ) a; denote the “trapezoidal rule” sum in which
k= gy
the endpoints a; and a;, are both weighted by 1. Let the a-interval [—m, ]
be discretized umform}y by N 4+ 1 points (including endpoints) where N is
even. Then 2N = (2M + I)N + 1 is the total number of quadrature points
of [~ L, L], where L = (M + 1)2r. Then the trapezoidal rule approximation
to I5s(0), which omits the smgula,r point (at @ = 0), has the leading order
errors (Sidi & Israeli [28])

B = Iy-1IY,
— "
= PV f Y=k S (k)
k;;ofv

= 2 (F(E) = {=L))Hs + HO)h
—tn(27) Hy(0)h + Ha(0)hlog b + O(h3) (3.4)

where h = 2w/N. The first term is usually associated with the Euler-
MacLaurin expansion for smooth integrands (cf. [29]), while the others are
others are associated with the singularities of the integrand. The Richardson
extrapolation It = 2I% — I2k removes the O(R) error terms, and the quadra-
ture formula becomes an alternate point quadrature rule over odd indices, or

16



equivalently the mid-point rule over cells of length 2A. That is
Eh = I M~ f;‘}

L w
- PV L  fleded —2b 32 (k)

k-
k odd

= SU(D) ~ F(=D))s — 2Hy(0)tm (2)
+O(R). (3.5)

For the velocily integrands of (1.1), (1.2) H;(0) is easily calculated. For (1.1),
we have H3(0) = —"2-5«5-%%%%, while H3(0) = 0 for (1.2). Thus, the overall
quadrature error is made O(h?) by the calculation of H;(0) and the explicit
removal of the remaining O(k) error term in (3.5). For 2-d planar sheets the
alternate point quadrature is of infinite order, and was used successfully by
Shelley [25] in the study of singularity formation.

The higher order of the alternate point quadrature given in (3.5} (together
with the explicit error correction) depends upon the smoothness of (r, 2, )
and requires uniform discretization in «. The initial discretization in « is
thus chosen to be on a uniform grid. Derivatives with respect to a are
approximated to 4th order using splines, and the overall quadrature error is
effectively of order O(h3) since |f'(L) — f'(—L)|h? is small compared with
O(h3). Time-integration is accomplished by Hamming’s method, a fourth-
order predictor-corrector method which requires only 2 velocity evaluations
(each of which is O(N?)) per time-step.

Another aspect of the evolution which must be dealt with is its linear
ill-posedness. The linear analysis of the previous section gives the growth
rate

ol ~ |k|. (3.6)

The unboundedness of this linear growth rate causes the rapid and spurious
growth of round-off induced noise at the smallest scales, as they have the
fastest growth rates. This phenomenon has been well-studied for the motion
of 2-d planar sheets. Krasny [14] controlled this spurious behavior by using
a nonlinear Fourier filter at every time-step. It sets {o zero any Fourier
coefficient of the data with magnitude less than some given filter level. For
example for the function r{a}), the discrete Fourier transform 7, is modified
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at the beginning of every time-step by the assignment

\ Fo  if |Fal>e
" *““{ 0 if |hl<e (3.7)

In these calculations, € lies in the range 10-12 — 10-11, i.e. near the level of
the round-off error. In short, if the calculation is well-resolved, so that the
highest modes have amplitude near the round-off error, these amplitudes are
set to zero at each time-step. This filter prevents spurious growth of roundoff
error in the high wavenumber modes, but it allows the correct growth of these
modes due to nonlinearities. Convergence of such a method, when combined
with the alternate point quadrature as used by Shelley [25], has been proved
by Caflisch, Hou, & Lowengrub [4]. This concludes the discussion of the
methods used before the first singularity time.

As is the case for 2-d planar sheets, a regularization of vortex sheet motion
is apparently necessary to investigate the behavior of the sheet past the
singularity time [13]. Different approaches can be taken [2], but the most
convenient regularization, which preserves the sheet description of the flow,
is to mollify the singularities in the integrands [13, 27]. We introduce a
smoothing parameter § and define

drr!

(z=2)2+ (r + 72+ 6%

(3.8)

My =

which bounds m; below by 1 + O(62). Thus, each calculation is stopped
shortly before the first singularity begins to appear, and m is replaced by
m; in the equations of motion (1.1), (1.2) for the remainder of the compu-
tation. As the integrands are now smoothed, special quadrature methods
are unnecessary, and full trapezoidal rule is used. More importantly, the “6-
smoothing” removes the unboundedness of the growth rates at large k. In
the case of 2-d planar sheets it has also been shown that an analogous reg-
ularization gives global analyticity of the sheet motion [6]. While smoother
data, or the inclusion of viscosity, are more natural regularizations, it has
been seen that “§-smoothing” captures the qualitative features of smoother
flows [13]. For the computations described below, the validity of the results
with é-smoothing will be demonstrated by carefully assaying the effect of
varying 6.
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As shown in Section 5 below, the arclength of the vortex sheet goes to
infinity. Therefore, in addition to the parameters N, M, At,§, a set of in-
terpolation criterion tolerances n,,7, and 7, are needed. In particular, we
require that |z;4; — 2;| < 0, rjpn =150 < %y [$540 = ¥51 <y, for every pair
of neighboring points (z;,7;,%;)and (zj117;41,%;41) at each time step. The
typical values for (7,,7,,n,) are (0.1,0.0375,0.1). If two points (z;,r;,%;)
and (2;41,7;41,%;41) fail the requirement, we insert a point in the middle by
placing it on a cubic polynomial which is fit to the neighboring four points

{(zkark1¢k)lk :j" 1:jaj + ]-:J +2}

4 Computation of a Single Cylindrical Swirling
Vortex Sheet

The first computations using the method of the previous section were
performed on the linearly stable problem of a single cylindrical, swirling
vortex sheet. The unperturbed vortex sheet has radius Ry = 1 and circulation
T' = —2r. An initial perturbation is added which is an exact eigenfunction
corresponding to a standing wave. The evolution is governed by equations
(1.1)-(1.3).

From (2.47), (2.48) the linearized mode for a standing wave with k =1
is (2,7, ¢') given by

(2',7,9") = (ay sina coswt, a,cos acoswt, azcosasinwt) (4.1)
in which
ay, = —0.770355
az - ].-0
a5 = 1.714549 (4.2)
w = 0.583244

Thus the initial data for this computation is

Zz2 = a+eqsina
r = Rp+eazcosc (4.3)
b = 0
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in which the amplitude ¢ is chosen to be ¢ = 10~3, small enough that linear
theory is valid. The resulting solution serves as a check on the analytic and
numerical formulation and implementation.

The computation is performed in double precision using Krasny filtering
at a level ; = 1011, with no desingularization (6 = 0) since no singularities
formed. The computation used N = 512 points, M = 4 (9 periods) and the
time step At = 0.010773. For this small amplitude, the computation works
equally well without Krasny filtering.

For z and r respectively, Figure 4.1a and b show that the initial data (solid
line) and the solution after one period T' = 10.772828 are indistinguishable.
The agreement of z and r at £ = 0 and { = T shows that the solution is
correctly simulated.

The computational result for a perturbation of larger amplitude £ = 0.6
is shown in Figure 4.2. In this solution the outward jet has begun to signifi-
cantly distort due to Kelvin-Helmholtz instability, destroying the periodicity
of the solution. This phenomenon is also observed in the computations of
the next section, where it will be discussed in detail.

5 Computation of an Axi-Symmetric Swirling
Vortex Sheet with a Line Vortex on Symme-
try Axis

5.1 Evolution of a Linearly Unstable Vortex Sheet

In this section, we will consider an axi-symmetric vortex sheet with a line
vortex along the symmetry axis. Denote the circulation inside the sheet and
outside the sheet by I'; and T'y, respectively. Because of its symmetry the
line vortex does not move.

Since the circulation of the sheet is I'; = I';—T';, the Lagrangian equations
of motion for the sheet are

r,-T,
27?2

=

PV j L,z — "ol
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r,-T,
= PV/Iz(r, vz — 2 P )do (5.1)

Ty + Tp)(4nr?)?

Ty
Y,

For this problem, the sheet is linearly unstable if and only if I'? > I?
according to Rayleigh’s criterion, We choose a linear unstable Lagrangian
mode as initial data, derived in Section 2.5.2. In particular, let By =1, I'y =
6,T, = 6 — 27, k£ = 1 in (2.49) and (2.51), and choose initial amplitude
e=10.1:

z(t=0)=a+¢cesina
r=1+4+ecosc (5.2)
1 = ey co8

in which ¢; = —0.77, ¢, = —1.66.

The equations (5.1) are solved by the methods described in Section 3 with
N =512, M = 4, and time step At = 0.005.

The plots in Figures 5.1-5.6 are vertical cross-sections of two periods in z
for the cylinder at successive times. As discussed in Section 2.6, the unstable
Lagrangian mode produces axial flows which send fluid into the regions where
the cylinder bulges and out of those where it pinches (Figures 5.1-5.3). This
motion forms an incoming jet towards the symmetry axis and an outgoing
jet away from the axis in each axial period. Simultaneously, this collapse
causes the vortex lines to be pulled around the axis more rapidly where the
cylinder is narrower (i.e. z = ), and there is substantial stretching and
realignment of vorticity into the azimuthal direction. This is vorticity for
which the Kelvin-Helmholtz instability is operative, and at t ~ 2.7 (Figure
5.3), we observe a curvature singularity presumably related to that seen in
2-D vortex sheet motion [14, 15, 17, 18, 25]. This curvature singularity for
an axi-symmetric vortex sheet has been studied in detail by Pugh & Cowley
[21]. As described in Section 3, for t > 2.7, the é-regularization is introduced
together with the usual trapezoidal quadrature.

Proceeding on, figure 5.4 shows splitting of the tip of the incoming jet
and roll-up on the neck of the outgoing jet for 6 = 0.1. The roll-up is
a result of the Kelvin-Helmholtz instability in the z — r plane induced by
angular vorticity on the sheet. In Figure 5.5, the stem of the outgoing jet
sheet pinches further together, the tips of the incoming jet continue to move
towards the axis, and the roll-up proceeds smoothly. Figure 5.6 shows the
configuration of the vortex sheet at the end of the computation. The sheet
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is further pinched together at the stem of the outgoing jet, the tips of the
incoming jet are yet closer to the axis, and each tip has split a second time.

The computation stops at this time because the sheet configuration has
become complicated and difficult to accurately represent. Since the minimum
radius of the sheet is nearly zero, the angular velocity 1, is very large, and the
vortex lines on the sheet are tightly wound up. Moreover, since the vorticity
density is —r—1(r2 + zi)“%éz(za,ra,r'gba) in cylindrical coordinate (z,r,8),
the vorticity density blows up when the radius goes to zero. This collapse and
singularity formation is caused by vortex stretching that produces angular
vorticity and radial jets.

The collapse of the vortex sheet onto r = 0 could also be interpreted as
(partial) vortex cancellation between vortex lines on the sheet and the central
vortex line. Since the computations stop slightly before this collapse occurs,
further details of the cancellation are not discernible.

A second cancellation occurs as the vortex sheet hits itself along the
stem of the outward jet. Note that the vortex sheet stays symmetric with
respect to planes » = 27 (or any periodic image of 27) where this collision
occurs. At points (zy,7y,%,) and (z,,7,,1,) that are symmetric about the
plane z = 27, ie., 25 = 2% — 21, Py = 71, P = Py, the derivatives are
(210 T1as P10) = —(Z20 20> P24). Thus the vorticity vectors are equal and
opposite at these points; so that during this event the vorticity cancels along
the pinching stem of the outgoing jet. Therefore the outgoing jet forms a
vortex ring that is detached from the rest of the sheet.

Note that the vortex blob method could be interpreted as a vortex sheet
with “thickness” §, Therefore, it desingularizes the collision of the sheet with
itself and the collision does not actually appear in the computation. Finally,
Figure 5.7 shows that the arclength of the vortex line goes to oo as the sheet
evolves in time. This requires addition of new points on a vortex line after a
certain time using the tolerances 7, as described in Section 3.

5.2 Sensitivity to Numerical Parameters

For fixed § = 0.1, the graphs presented in Sec. 5.1 are not significantly
altered if At is decreased or M is increased. Variation of the number of
points N is slightly more subtle since points will be automatically inserted,
as described in Section 3. Consider two computations with initial values of

22



N = 512 and N = 1024, and with values of the insertion parameters n for
the 1024 computation equal to half their values for the 512 computation.
The sheet positions are detectably different only for ¢ > 4.5. Figure 5.8 at
t = 4.71 shows slight differences in the region where many points have been
inserted.

Figures 5.9a shows that the minimum radius r;, of the sheet goes to zero
at a rate that is similar for different 8 values. Figure 5.9b shows the minimum
distance d,;, between the two sides of the stem of the outer jet, which also
goes to zero at a rate that is similar for different § values. Since the speed of
vortex sheet motion increases as the blob size é is decreased, the collapse of
Tin and d,;. occurs earlier for smaller §. We also found that the horizontal
velocities inside the stem became very large as it pinched. It was, however,
difficult to quantify whether these velocities or their associated mass fluxes
were actually diverging as the blob size was decreased.

Finally, the vortex sheet profiles are compared for two different values
of 4. Since the velocity is large for r near (), which is the most interesting
region in this comparison, small differences between the solutions can easily
be amplified. In order to show a meaningful agreement between the two
computations for § = 0.1 and § = 0.05, we compare the two solutions at
times for which the values of r,,;, are the same. Figure 5.10a and 5.10b show
this comparison at two values of r,;,. The shape of the vortex sheet is seen
to be roughly independent of §,

Together with the comparison of r,;, and d,,;, at different values of § in
Figures 5.9a and 5.9b, this shows that the qualitative features of the flow,
including collapse and pinchoff, are independent of .

6 Computation of Two Axi-Symmetric Swirling
Vortex Sheets

If the vortex line in the computations of Section 5 is replaced by an axi-
symmetric vortex sheet of small radius and with the same circulation, then
the initial motion of the outer vortex sheet will be nearly unchanged. As
the radius outer vortex sheet collapses, however, the two sheets will start to
interact in a nontrivial way.
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In these computations the background steady flow is that due to an inner
cylindrical vortex sheet of radius .1 with circulation I'; = —27 and an outer
cylindrical vortex sheet of radius 1.0 with circulation I' =T’ — T'; = 27. The
circulation outside the outer sheet is thus I'; = 0, so that the configuration
is unstable according to Rayleigh’s criterion. Following the linear stability
analysis of Section 2, an unstable mode of amplitude 0.1 on the outer sheet
is added to this steady state. The initial data is thus

zr = a=-0.090868¢in o
rr .1+ 0.000061 cos o
1y = 0.104298 cos
zo = a—0.07783sina
ro = 1.4+0.1cosa
Yy = 0.171917 cos a.

(6.1)

(6.2)

The evolution equations for these two sheets are generalized from (1.1)-(1.3)

as
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in which I; and I, are defined in (1.4).
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Equations (6.3)-(6.8) with initial data (6.1)-(6.2) were numerically solved
using the method described in Section 3 with N = 512 numerical points,
M = 3, desingularization parameter § = .05, timestep Af = 0.01, and
point insertion parameters (7,7,%,.;) = (0.03,0.001) for the inner sheet and
{(7.0,70) = (0.06,0.038) for the inner sheet. No point insertion parame-
ter n, was needed. Desingularization was used throughout the computation.
For consistency and simplicity, all of the integrals in equations (6.3-6.7) were
desingularized throughout the computation.

The numerical results of this computation are displayed in Figures 6.1-6.6.
In the first two Figures 6.1 and 6.2, the initial unstable amplification and the
formation of an outward jet with Kelvin-Helmholtz rolls are displayed and
are almost exactly the same as the corresponding results for a vortex sheet
and a line vortex in Figures 5.1 and 5.2.

When the outer sheet approaches the inner sheet, as portrayed in Figure
6.3 and continued in Figures 6.4 and 6.5, a strong interaction develops be-
tween them. In Figures 6.3-6.5, the first figure (a) shows the overall shape of
the two sheets and the second figure (b) is a magnification of the interaction
region. At first, the inner sheet is pushed inward by the inward radial jet of
the outer sheet, as in Figure 6.3 at £ = 4.5, Then rolls in the outer sheet begin
to form on the sides of the inward jet and the inner sheet gets entrained into
these rolls, as in Figure 6.4 at ¢ = 4.55. The last Figure 6.5 at ¢ = 4.6, shows
the two vortex sheets to be almost exactly aligned (i.e. ro = ry, 20 = 27) in
their interaction region. Unlike the previous case of a single sheet interacting
with the line vortex, no collapse onto the axis is observed.

Although the configuration at these late times is quite complicated, the
vortex sheet curves are well resolved, as seen in Figures 6.3b, 6.4b and 6.5b.
Moreover the results for § = .1 presented in Figure 6.6 are very close qualita-
tively to the results for 6 = .05. The main difference for two different values
of § is a time delay for larger 8, as discussed in detail in Section 5.

As the two sheets align there is cancellation of their r and z vorticity, but
not their # vorticity, as shown in Figure 6.7. The values of the z-component
ol for the inner sheet and the negative of the z-component for the outer
sheet are plotted against z in Figure 6.7a. The analogous plot for the r-
components o! and ¢9 is in Figure 6.7b. Figure 6.7c shows that there is no
relation between o} and of.

This cancellation is expected according to the following argument: For
the z-component, consider the circulation T’y around a circular loop outside
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the two sheets. Since the net circulation vanishes, I, = 0. On the other
hand, Stokes theorem says that I', is equal to the integral of w, over the
horizontal disc bound by their loop. Since the surface area of the sheet per

unit height in z is 27r(/1 4+ r2 /22, this integral is

Ty =clrrp 1412 [22 +092mro\ /1415 [23, . (6.9)

When the two sheets are aligned then r; = rp and (r1,/21,)? = (Fou/204)?
so that
ol = —ag9, (6.10)

z z

For the r-components suppose that the two sheets are nearly aligned and
not vertical. Consider two loops of the same radius, one inside the inner
sheet and the other outside the outer sheet, both of which have 0 circulation
so that the total circulation is T, = 0. Apply Stokes theorem using the
cylindrical section bound by these two loops. As in (6.9) the integral of w,
over this section is

Ty = ol2zrpf1 422 [r2 4+ 092nro\ /1423 /3. (6.11)

As before this implies
ol = ~a? (6.12)

if the two sheets are aligned.

A very different evolution occurs if the radius of the inner sheet is not
small, Consider a steady configuration with inner radius 1 and outer radius
1.5 and perturb with the unstable mode to get initial data

zr = «a—0.119007sin «
Ty 1. +0.015975 cos @
¥; = 0.051564 cos «
Zo = a—0.077275sin
ro = 15+ 0.1lcosa
Yo = 0.095639 cos a.

It

The solution of equations (6.3)-(6.8) is presented in Figures 6.8-6.10 for this
initial data.
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The first Figure 6.8 shows the linear growth of inward and outward jets on
the two sheets, as expected. Because the radius of the inner sheet is relatively
large compared to that in the previous computation, the amplitude of the
perturbation is also much larger. As the outward jet on the outer sheet
starts to pull away and roll-up, the inner sheet is entrained into the stem of
the outward jet on the outer sheet, as seen in Figure 6.9. The inner sheet
then begins to roll-up inside of this stem and the main interaction of the
two sheets occurs along this stem, as seen in Figure 6.10, in confrast to the
earlier computation.

7 Conclusion

Axi-symmetric vortex sheets are a special class of solutions that may be
studied to gain insight into three-dimensional fluid flow. Our investigation
demonstrates that analysis and computation for such flows can be performed
in a relatively straightforward manner. A number of phenomena emerge from
this study:

Instability occurs for a system of axi-symmetric vortex sheets if Rayleigh’s
criterion is met. Due to the simplicity of these flows, explicit expressions are
found for the unstable growth rate (or the frequency in the stable case) and
for the linear modes.

Although there are singularities and numerical difficulties in the vortex
sheet formulation, an effective numerical method has been developed for this
problem. The method is stabilized through use of Krasny filtering before
the first roll-up singularity and é-desingularization afterwards. Although it
is not possible to make é smaller than .01, the main features of the flow are
seen to be independent of 8.

The numerical results show the formation of inward and outward jets,
along with winding up and stretching of the vortex lines, as predicted by
linear theory. Further computation shows a number of nonlinear effects in
the unstable cases. The tip of the inward jet splits into two. Furthermore, in
the case of a vortex sheet and an axial vortex line, the inward jet drives the
vortex sheet to collapse onto the vortex line at some points; while for two
vortex sheets, the outer sheet is driven into the inner one. This process may
be interpreted as vortex cancellation, and in the case of the collapse onto the
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axis it is accompanied by blow-up of the vorticity density.

A second collision take place between the vortex sheet and itself along
the stem of the outward jet. Due to the symmetry in these problems, the
vorticity exactly cancels where it hits. The result is detachment of an outer
vortex ring.
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List of Figure Captions

2.1 Oscillation of a single perturbed cylindrical vortex sheet with positive
swirl. The dashed curve is a vortex line on the sheet. A vortex line
with constant angle @ in the initial data (a) will be wrapped around
the sheet in the positive @ direction as in (b), due to increased angular
velocity in a pinched region. The azimuthal vorticity generated by this
stretching causes the vortex sheet to bulge out and the vortex lines to
then wrap around the sheet in the opposite direction.

2.2 For a perturbed vortex sheet with a strong negative vortex line (not
drawn) on the axis of symmetry, an initial vortex line (a) is stretched
in the negative # direction along the pinched region of the sheet. The
azimuthal vorticity generated by this stretching causes the vortex sheet
to pinch further and thus the stretching to increase as in (b).

4.1 Comparison of initial data and solution after one period, which are in-
distinguishable, for a single cylindrical vortex sheet with small initial
perturbation. The perturbation in height 2 — « vs. the Lagrangian
parameter a is plotted in (a), and the perturbation in radius r — 1 is
plotted in (b).

4.2 Development of rolled-up jets for a single cylindrical vortex sheet with
perturbation of large amplitude. This profile is irreversible, so that the
motion is not periodic.

5.1 Profile z (height) vs. » (radius) at ¢ = 0.0 for a perturbed cylindrical
vortex sheet with a vortex line on the axis of symmetry (r = 0). The
perturbation of the initial data shown here is chosen to be a linearly

unstable mode. The horizontal scale is quite exaggerated in Figures
5.1-5.6.

5.2 Same as Figure 5.1 but at t=1.26. Note the formation of inward and
outward jets.

5.3 Same as Figure 5.1 but at t=2.7, showing broadening of the inward jet.

5.4 Same as Figure 5.1 but at t=4.05, showing splitting of the inward jet
and the beginning of roll-up on the outward jet.



5.5 Same as Figure 5.1 but at t=4.65. Note the narrowing of the stem to
the outward jet and the further roll-up.

5.6 Same as Figure 5.1 but at t=4.74. The inward jet has split a second
time and nearly hit the vortex line on r = 0. The stem of the outward
jet has nearly collapsed.

5.7 Inverse of the arclength for a vortex line vs. time in the computation
of Figures 5.1-5.6. Rapid growth of the arclength requires addition of
new computational points.

5.8 Comparison of the computation of Figures 5.1-5.6 (solid line), in which
the initial number of points is N = 512, with a refined computation
(dashed line) for which N = 1024.

5.9 Dependence on the value of the desingularization parameter § for (a)
the minimum radius r,;, of the sheet, and (b) the minimum distance

d,,:» between the sides of the stem for the outgoing jet. The values of
6 are 0.1 (o), 0.075 (+), and 0.05 (*). Note that the collapse of both
Pmin a0d d,;, occurs earlier for smaller 8.

5.10 Dependence of the vortex sheet profile on é at {a) an early time and
(b) a later time. The values of § are 0.1 (solid) and 0.05 (dashed). The
times for the two computations are chosen so that r,,, is the same:
t =435 for § = 0.1 and £ = 4.26 for § = 0.05 in (a); t = 4.71 for
6 = 0.1 and ¢ = 4.52 for § = 0.05 in (b).

6.1 Profile z (height) vs. r (radius) at ¢ = 0.0 for a configuration of two
co-axial, perturbed cylindrical vortex sheets. In this computation the
initial radii of the two sheets are very different.

6.2 Same as Figure 6.1 but at t=4.0. The outer sheet has formed jets and
roll-up as in the computation of Section 5,

6.3 Same as Figure 6.1 but at t=4.5. The inner sheet has begin to deform
as it is hit by the inner jets of the outer sheet. A detailed view of the
region of interaction between the sheets is provided in (b).

6.4 Same as Figure 6.1 but at t=4.55.




6.5 Same as Figure 6.4 but at t=4.6.
6.6 Same as Figure 6.4 but at t=4.8.

6.7 Comparison of (a) the z components, (b) the r components and {c) the #
components of the vorticity vector on the inner sheet (*} and the outer
sheet (solid) at ¢ = 4.55 as a function of z. Note that in regions where
the two sheets align, the z and r components are equal.

6.8 Profile z (height) vs. r (radius) at ¢ = 0.0 for a configuration of two
co-axial, perturbed cylindrical vortex sheets. In this computation the
initial radii of the two sheets are not very different.

6.9 Same as in Figure 6.8 but at ¢ = 8.0. Note that the inner sheet is en-
trained into the outgoing jet of the outer jet, in contrast to the behavior
of the sheets in computation of Figures 6.1-6.6.

6.10 Same as in Figure 6.8 but at ¢ = 8.25. A detailed view of the region of
interaction between the sheets is provided in (b).
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z vs 1 solid:delta=0.1 t=4.35; dashed:delta=0.05 t=4.26
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z vs 1 for 2 vortex sheets
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z vs 1 for 2 vortex sheets
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