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ABsTRACT. Based on the duality between the interface domain decomposition (or
DD) methods and the capacitance matrix (or CM) methods in domain imbedding
and on the existing results for preconditioning non-symmetric and indefinite finite
element elliptic problems preconditioners of optimal order for the CM problems are
constructed. The preconditioning technigue explores two-level hierarchical discretiza-
tion of the imbedded problem; on a coarse grid (of fixed size) and on a fine grid. The
major part of the preconditioning then is reduced to solving systems with precondi-
tioners for the capacitance matrix that corresponds to the principal symmetric and
coercive part of the elliptic operator. The theory is illustrated with numerical exper-
iments,

1. Introduction. We consider second order elliptic problems in polygonal planar
domains £ with Dirichlet boundary conditions. Polygonal domain (2 is imbedded
in a rectangle R on which a fast separable elliptic solver can be used. Hence we
assume that the coeflicients of the elliptic operator allow separation of variables. In
a previous paper (c¢f. [20]) we studied various preconditioners for the capacitance
matrix in domain imbedding for self-adjoint and coercive elliptic operators with
separable coefficients. In the present paper we extend these results for indefinite
and non-symmetric elliptic operators also with separable coefficients. The main
difficulty is the indefiniteness while the nonsymmetry can be handled with proper
transformation of the separable coeflicients. Nevertheless, one may as well want to
use the original formulation and thus to deal with non-symmetric problems.

The purpose of the domain imbedding technique is that problems on irregular
regions can be solved by minor modification of the software available for standard
problems (i.e., on rectangular domains) thus avoiding more complicated data struc-
ture needed for the irregular domains. This technique was proposed by Buzbee,
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Dorr, George, and Golub [9] as a direct procedure, and studied later as an itera-
tive process by Proskurowski and Widlund [21], [22], O’Leary and Widlund [19],
Astrakhantsev {1], [2], Dryja [11], Bérgers and Widlund [6], Nepomnyaschikh [18]
and others. In Borgers and Widlund [6] a detailed study of the derivation and com-
parison of various capacitance matrix techniques and their practical performance
was presented. Similar approaches, namely to avoid complicated data structure and
to take advantage of already available software for problems on standard domains,
have been used in deriving efficient preconditioning techniques for elliptic problems
on grids with local refinement, cf., McCormick and Thomas [16], McCormick [17],
Bramble, Ewing, Pasciak, and Schatz [7], Ewing, Lazarov, and Vassilevski [14].

The essence of the capacitance matrix technique is that the solution to the orig-
inal problem can be obtained as a low order modification to the problem on the
imbedding rectangle. One can observe a duality between the capacitance matrix
technique in domain imbedding and the Schur complement methods in domain de-
composition, More precisely, the capacitance matrix can be viewed as the inverse
of a Schur complement that appears in the domain decomposition technique (see
[20]). Based on this duality we extend here the preconditioning technique in a sub-
space developed for non-symmetric and indefinite elliptic problems in Vassilevski
[27] to the capacitance matrix problems in domain imbedding. The subspace in
the case of non-symmetric and indefinite finite element stiffness matrices (as used
in Vassilevski [27]) is an orthogonal complement of a vector space corresponding
to a coarse (and fixed) finite element discretization space. In the present paper
we also use a vector space of a small and fixed size. It corresponds to a set of
coarse—grid nodes on the interface across which the original domnain is imbedded
into a rectangle. As a consequence, one can construct symmetric and positive defi-
nite preconditioners for the major principal submatrix of the capacitance matrix (in
a two-level hierarchical block form) corresponding to the complement of the thus
defined space; namely, to the nodes on the interface that are complementary to the
coarse—grid nodes. These preconditioners are based on any available (symmetric
and positive definite) preconditioner for the capacitance matrix constructed for the
principal symmetric and coercive part (which also has separable coefficients) of the
original bilinear form. Such preconditioners were analyzed in our previous paper
[20]. In the present paper we derive the Capacitance Matrix Method that is based
on a standard block—Choleski factorization with one block in the factorization being
the major block corresponding to the complementary node set on the interface and
a second block on the diagonal in the factorization that is of small and fixed size.
This block can be assembled explicitly in a preprocessing stage at a cost of a fixed
number of solvings with the matrix in the imbedding domain.

The outline of the paper is as follows. In §2 the problem is formulated and the
capacitance matrix method is briefly outlined. In §3 the change to a two-level
hierarchical basis is presented. §4 contains the description of the solution method
based on the block-Choleski factorization of the capacitance matrix in the two-—
level hierarchical block—form. §5 is devoted to the analysis of the properties of the
major block of the capacitance matrix and the way of its preconditioning. The
main theoretical results are formulated here. Finally, in §6 the numerical results
are presented.
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2. Problem formulation. Consider the following second order elliptic boundary
value problem:

Given f € L*(Q), find u € H}(2) such that
) A, 9) = (J,4), for all ¢ € ()
where { is a planar polygon and

Awd) = [{(@)% 2 +hw)E %)

(2)
+ (b1(2)32 + 0a(v) 32) & — Dule) + e(v)] ug}de dy.

The coefficients ki, ko are assumed to be positive in £2, b; and by to be smooth, and

A1 and A; are allowed to be nonnegative in 2. Problem (1) is solvable with some

exceptions for A = — Ay — Ay. We assume that (1) is solvable. Let R be a rectangle

such that |/ D . In our model case shown on Figure 1, )} = (0,1)2.

We assume that R can be triangulated on a right-angled triangular mesh 7 such
that JQ consists of edges of triangles from 7. This imposes some restriction on the
polygonal form of 2. A treatment of how to construct triangulations for the domain
imbedding in a more general case was presented in Borgers and Widlund [6], see also
Nepomnyaschikh [18]. Another possibility is to use patch local refinement in the
neighborhood of the interface boundary across which ) is imbedded in the rectangle
M. Then one can use the efficient iterative elliptic solvers developed for problems
on patched locally refined grids for generally non-symmetric and indefinite elliptic
problems from Ewing, Petrova, and Vassilevski [15] that extend corresponding re-
sults for the symmetric case from McCormick and Thomas [16], McCormick [17],
Bramble, Ewing, Pasciak, and Schatz [7], see also Ewing, Lazarov, and Vassilevski
[14]. Note that these exploit fast elliptic solvers on the patches which are rectangles.
However, at this point we shall not go into this subject more specifically.

We assume that the boundary of  is aligned with the triangulation 7. Let 20
be the finite element space spanned by piecewise linear functions on 7, vanishing
on R and continuous in M. The subspace U of 2 consists of functions that have
supports in 2. We denote by A the node set in R corresponding to the triangulation
7. The nodes in Q are denoted by A7 and the node set on I' = 02 NA is denoted
by .

Consider finally the bilinear form

Bt = [i(h@ B B +h0E §)

(3)

+ (01(2) 2 + 0a(v) 82) & — [ (2) + o ()] wb}de dy.

We denote by A and B the stiffness matrices computed by the bilinear forms A(-, -)

and B(.,+) using the finite element spaces U and 2U. Note that those are non-

symmetric and possibly indefinite. In the indefinite case (i.e., when %V- b+ +Ay >
by

0,b= l B ] } these matrices are invertible only for sufficiently fine meshes.
2
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Remark 1. We note that the elliptic operator that corresponds to the bilinear form
A(., )

_2
dy

lQ
P
(3
N’

2l

(]4‘2(.’!‘)%) — Aafy)u

can be transformed to a self-adjoint one as follows

pi(@)p2(¥)Eu = —£ (pr(a)k(z)p2(y) 3%)
~£ (n(@eawpa ()%
—p1{z)p2 ()M (2) + Ao (y)]u-

Here

()= I BE E and py(y) =S ET 2.
However, as we see, the indefiniteness can still be present (if Ay + Az > 0). One
might as well prefer to work in the original coefficients since separable problems
although non-symmetric can be solved equally well as symmetric ones. This is
true only for discretizations on uniform meshes and basically for five-point finite
difference stencils {or close to that obtained by piecewise linear finite elements).

(0,1)

(1,0)
Figure 1. Polygon ) imbedded in rectangle | = (0,1)?

As already noted problems with the matrix B can be solved very efficiently based
on discrete variants of separation of variables, cf., Buzbee, Golub, and Nielson [8], or
on the odd-even cyclic reduction, f., Schwarztrauber [25], or the generalized march-
ing algorithm, cf., Bank and Rose [4], Bank [5]. The cost is typically O(N log N)
or O(h?log 1), where N = O(h™?) is the number of nodes in 7 and h is the
mesh-size.

The Capacitance Matrix Method (or CMM) relies on efficient solvers for problems
with the matrix B.
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The original problem in § after discretization takes the form

(4) AX1 = bl-
After imbedding @ in R we consider the problem
Y1 b1} M=ANQ
B Yz | = 0 } NQE(fR\Q)QN,
Yo be|} vy=NnNT

where T' = 9 \ OR is the interface boundary across which ) is imbedded in R.
Note that B admits the following 3 x 3 DD block form,

Bn 0 Bl[}:| } Nl

B=1| 0 By Bypl|} N

Byi Box Bao| } 7
Finally note that By; = A. Consider now the following extended matrix,

A 0 Bm]} M

AP = |0 By B} M-

0 0 I} ~

The problem Ax; = b; can be rewritten as

X1 bl
(4) A1 0 =1]0
0 0

We seek wy defined on T, such that

X = B!

b; 0
0l +B7'|o0
b wo

to be the solution of (4’}. Introduce now the so—called DD (domain decomposition)
Schur complement

2
S = By — Z BO,;'BI'_;B:',O

=1

As shown by the present authors in [20] (see also Dryja [11]) the following problem

is obtained for wyg
b,
SHIW{) = e (Bmi 0 ] .
bo
-

5 ~1
C=5"= (Buu — ZBOiBEIBio) .

i=1

Let
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C is called the capacitance matrix. Note that C is non-symmetric and possibly

indefinite. S (and C) is invertible for sufficiently fine mesh and in the indefinite

case with some exceptions of A = ~A; — Ap;. We assume that S (and C) is invertible.
The actions of C are readily available since for any given vector vp on I,

0
C Yo = B -1 0
Vo o
We now present the algorithm for solving problem (3) based on the capacitance
matrix method.
ALGORITHM (CMM)

(1) Solve the problem

b} M
By=1]0]|} M.
boj } 7
(i1} Iterate for wy
Cwy = —Yo
(iil) Solve the problem
0
Bv=110
Wo

(iv) The solution of (4) is
X1 =Y¥1+ V1.

3. A change to a two—level hierarchical basis. From now on we focus on step
(i1) of the algorithm (CMM). The solution method that we will develop is based on
a change of the basis to the two-level hierarchical basis. Let 90 C 20 be two nested
finite element spaces. Let A" and A be the corresponding fine and coarse node sets,
respectively., And finally let ¥ and + be the coarse and fine node sets restricted to
the interface I'. Consider the nodal basis functions in 20 and 20,

{951} i’ and {¢i},, en

Ty

The two-level hierarchical basis of 20 is then defined by

{éi}:ﬂ;EN - {&,}z cir” {Oisiemnr

We will first transform the problem into a two-level hierarchical form, exploiting a
fixed (and of small dlmensmn) coarse finite clement space 2 on a coarse triangu-
lation 7 and coarse node set A in 9% and ¥ on the interface T'. We assume that 7
is obtained by a number of uniform refinement steps of 7. Then the transformed
capacitance matrix ¢ admits a two-by-two block form with respect to the two-level
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hierarchical partitioning of the node set v = ¥U (v \ 4). The block corresponding
to the node set ¥ is of a small (fixed) size. We show that the second block on
the diagonal, corresponding to the complementary node set v \ ¥ is coercive and
can be treated as a slight perturbation (depending upon the coarse grid size and
the coefficients of the bilinear form A(.,.}) of a symmetric positive definite block
(constructed as previously explained), here for the principal symmetric and coercive
part B of B, i.e., the stiffness matrix corresponding to the bilinear form

BO ()= [ (@) g g %Yo ay
R

Consider B and B that are computed from B(.,.} and B((.,.) respectively, using
the two-level hierarchical basis functions, i.e,

B={B3;d)}, BO={B"0;)}
We also need the corresponding coarse—grid stiffness matrices
B = {B(‘gh qgi)} ) E(O) = {B(O)(éjaq;i)} )
There is a relation between standard nodal basis stiffness matrix B and the matrix

B computed by the two-level hierarchical basis functions. Namely, for a unit block-
triangular matrix

;11 0]} N
=l Iy MK
we have .
B=JTBJ.
Here { JI ] transforms the coefficient vector ¥ of a function ¥ € 20 into the coeffi-
21

cient vector of ¥ as a function in 90 D 90 with respect to the standard nodal basis
of 2. For more details see Yserentant [31]. The transformation of the nodal basis
stiffness matrices also induces transformation of their DD Schur complements S to
3. The same holds for their counterparts S and §(9, computed for the bilinear
form B (the principal symmetric and coercive part of B(.,.)). Note that S and
50 are symmetric and positive definite. The following relations hold:

(5) S=JFs0, SO =jgrs@jp,

where Jr is the transformation matrix from the two—level hierarchical basis coeffi-
cient vector of functions restricted to I to the standard nodal basis coefficient vector
of the same function. Note that this transformation is one-dimensional (it is only
on I'). This relation was observed in Smith and Widlund [24], see also Vassilevski
[28]. Because of (5} we can transform problem (ii) to the two-level hierarchical form

(6) Cﬂ";\vﬂ = g{h
where .
C=J'CIET, o= JEwe, and g, = ~J7'yo-

Note that the actions of J5!, J&T are readily available (cf., Yserentant [31]).
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4. Block—factorization of the Capacitance Matrix. In this section we will
discuss an efficient solution of the transformed problem (6). The final solution to
problem (ii) is then obtained by simply changing back to the original basis, i.e., by
computing the product wg = Jp .

In order to explain the method we first partition C into the following two-by-two
block form,

~ X U ¥
) C:{V WHz\—“y'
Similarly, we partition § = ¢!
gz[K P]}? _
Q@ T]}v\%
By simple block-matrix manipulations we find

(8) Wl=T-QK"'P,

i.e., the inverse of the Schur complement 7' — QK 1P of § is a principal submatrix
of C = S~'. The solution method will be based on the following exact block-

factorization of C'
6= Y U I 0
“lo wliwtv I’

where Y = X — UW =1V is the Schur complement of €. Note that ¥ is of a small

size equal to the number of coarse grid nodes on the interface T, i.e, the nodes in

4. Those are a fixed number /i > 1. Then (6) can be solved based on the above

block-factorization of €' by the usual backward and forward recurrences as follows.
We can rewrite (6) in the form

Y U I O {wil & g1 S
(9) {0 W} [W“lv I] {Wg]—[gz},whem _gz]—go_ Jr o,

and denote i
I 0 Wi | |21
W=V I ws | |29 IR

Then the backward step in (9} can be carried out as

WZQ = gg,
(10) Yz; =g — Uz,

while the forward step in (9) reads
(11) w1 =2; and wp = 23 — W Vwy,
where actually the action of W~ in (11) is computed by solving

Wys = —Vw; and then letting wg = 22 + y2-
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Finally, wy = JITT [gl ]
2

As we can see this algorithm requires the action of Y1, We assume that Y is
assembled explicitly. Then (9) requires one solving with the small block Y (it can
be factored or inverted exactly at a negligible cost}, two solvings with W and two
solvings with B {(multiplication by U and V).

We need now to present in some detail the explicit generation of Y. Recall that
the actions of C are readily available for any vector v on 7,

R X 0
Cv=|B"1]0 ,
¥

where the right hand side is restricted from A to v.
We now write B~! in the block form

oLy

<

* C
and since (see (7))

é___[x U} =[YJFUW—W U] }z

vV w V Wy \%’

we see that

R LIRTAV * B AV
B &)}y = |(Y+UWTIVIE 1y
0] }v\% VE | AW

In particular, this shows that we can compute the actions of V. Similarly,

B EABEAY * | JN\y
B7'|o A = U§_0 }"5' )
£ 1 Ir\7 WE | T\ A

This in turn shows that the actions of U, i.e., the product

are available as well. Since
vé=-v [w (V)] +x¢,

the actions of Y are available if we are able to solve systems with the major block

W of C.
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Summing it up, Y can be assembled as follows. The ith column of Y is computed
by choosmg§ = &, € R™, the ith unit coordinate vector, ¢ = 1,2,...,7. First, v; =

) LA .
B! ( [ ] } A are computed at the cost of / actions of B~ (which is based

\L0] }7\7/

on fast elliptic solvers). We obtain Vg; = Vi"y\"y and X¢, = vi|3(. Then 7 solvings
with W are needed to compute { . = WL (VE), i =1,2,...,7. Finally, fa addi-

, ) 01 }M\y
tional solvings with B are required to compute U{, , = B -1 011314 .
g_o,i P\ -

¥
The computation of the ith column of ¥ is completed by Y€, = _U§-0 .t XE¢;.

Thus, the explicit generation of ¥ requires 2 actions of B! (needed for the
actions of X and V and of U) and 7 solvings with W (this dominates the cost
of (9) and (10) equal to 2 actions of B! and 2 solvings with W). Problems with
W can be solved by iterations in a generalized conjugate gradient method (in the
non-symmetric case) with a proper preconditioner. This task is addressed in the
next section.

5. Solving problems with the major block W. From now on our major
concern will be to construct preconditioners for the block W of C. The main idea
is that W-! is spectrally equivalent to W@ ™", where W(0) is the major block
corresponding to the principal symmetric and coercive part B(®) of the bilinear
form B. In fact, W is a perturbation of W{®) and it can be made sufficiently close
to W by choosing h (the coarse-grid size) sufficiently small. We need to stress
that the spectral equivalence relations we will prove in a moment are independent
of the fine mesh size h and no relation is required between A and h. The results are
corollaries from the preconditioning technique developed in Vassilevski [27] for non-
symmetric and indefinite finite element elliptic problems. Here, we extend these
results to the capacitance matrix problems for non-symmetric and indefinite elliptic
bilinear forms. We state first some results from Vassilevski [27] for the matrices B

and BO),
Lemma 1. Consider the following two-level hierarchical block forms of B and B(®,

B= B E }JV BO) BO®  pO }./\7 .
T|F D] YMAN T F® DO Y N\N

Then for the two—level hierarchical Schur complements
Z=D-FB'E, z® =D© _ pOBO™" pO)
the following spectral equivalence relations hold

(1 _ 0(&2)) ¢T70¢ < eTz¢, forall £ € R™P,
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where n and 7i are the number of nodes in N and N, respectively. We also have

1 i
€77¢ < (1+0(0) [720¢]" [(T20¢)", forallg, ¢ e R
In particular, we have that Z is coercive. O

Results that provide preconditioners for non-symmetric and/or indefinite elliptic
problems were presented in Yserentant [32] for the hierarchical basis method, in
Cai and Widlund [10] for additive overlapping domain decomposition methods,
and for more general setting in Xu and Cai [29] and Xu [30]. The result from
Vassilevski [27] provides way of preconditioning nonsymmetric and indefinite elliptic
problems in a reduced form, i.e., in a subspace. The latter result is useful for
the reduced capacitance matrix problems since the iterations are performed in a
subspace corresponding to unknowns on the interface boundary.

We will also need the following fact from Vassilevski [27] which relates the Schur
complements of two spectrally equivalent matrices (positive definite, symmetric and
non-syminetric).

Lemma 2. Consider two block matrices

(0) (0)
o=an o] waco =% ).
01 0o Gsy  Goo

and let G be non-symmetric and G'% symmetric positive definite. We assume that
they satisfy the following spectral equivalence relations

n{"GW¢ < (TG¢, forall ¢,

and

ETGC < eTGOeE (TGO, for all { and €,
for some positive constants ~i, 2. Then their Schur complements
Y = Goo — Go1GiiGho, and YO =G — ¢We®™ ¥
satisfy the following spectral equivalence relations
nyYO¢ <Iv¢, forall(,
and ,
T T2 1Ty 131 Ty O 13 .
£,Y¢, < " [, Y §0]2{£0Y £0]2 for all § and ¢

Proof. First note that since G is coercive (G is symmetric positive definite) the
principal submatrix G, is coercive as well and hence invertible. This shows that

Y is well-defined.
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For { = [% WlthC chosen such that Guc ‘|‘G10C =0, 16:C = -G, GlOCGa
0

using the coercivity of G in terms of G{% and the fact that G¢ = [Y ¢ ], we get
3p

Gye, = ¢fee
n¢Te0¢
7 inf ¢fa¢

ncTY“’)c

(AVARLY}

i

We used a main minimization property of Schur complements of symmetric positive

definite matrix G(®), For the second desired inequality for €= [%] arbitrary and
29

(= [gl ] in the subspace G11¢, + Gl[}go = (), using the boundedness of G in terms

S
of G and the fact that G( = [Y(Z" }, we get
2

§YG = €a
< mlEfGOGEHCTEO
< H Ogictagt
= [ETGOEEYL 5

Note now that the left-hand side of the inequality is independent of { . Hence

&4,

IA

F [igféTG(“)ﬁ.] (N

= EETYOE Y]

wl»—-

Letting £ = ¢, we get the inequality

2 Ty ()¢ 1%.
sﬁ[g[, ¢,

Substituting last inequality in the preceding one the final result follows

(Fye )

£Ty¢ < [sTY“’)é}%{gg"Y("’g,]%- O

We next note that

LB

*

NAR)\ (7 \9)
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and similarly o 1) 7\4
‘[ * *]} (MAANG\D)

This is the case since Z~! and Z®™" are principal submatrices of B * and B,
respectively. (Note that Z and Z© are Schur complements of B and B(®), re-
spectively.) And the same is valid for W and W ie., they must be principal

submatrices of 2! and Z® 7", respectively.
As a consequence of Lemma 1 and Lemma 2 we get the following result

=1

Theorem 1. The following spectral equivalence relations hold
(1-0®) &WD¢, < ETWE,, for all €, € R™,

and

1
2 m—m
gnandQOER .

rwe, < (1+0() [(TwO¢ | * e W“’)go]% , for all

Here m and " denote the number of nodes in v and ¥, respectively.

Proof. Since W~ and W™ are Schur complements of Z and Z (0), respectively,
Lemma 1 and Lemma 2 imply the following spectral equivalence relations

2 T N~ Torr—
(1-0(h"))¢, w ) G SEW lgﬂ, for all ¢,
and

W < L+ ORNETWO T JFCTWO T 1E, forall € and (-

1 1
Consider X = W2 W1 (2%  Note that symmetric positive definite square root
of W exists since W% is symmetric and positive definite. Denote || €, |? = g 9%

The coercivity estimate for W' in terms of wo implies
72 2 T
(1 - O(R*DIEN® < & XE, < NEMIXE

Hence for £, = X—lgo we get

X1l < 14+ O))IE I,

which is equivalent to

WO WWO E < (14 0FE))CMNE, N, for all £ and ¢,

-

1 1
Finally, letting ¢ := AU Goand £ = AQK €, the desired boundedness inequal-
ity for W in terms of W follows. For the coercivity one, letting £, = w0 §, and

¢, = W¢, in the boundedness estimate for W1, we get

WO < (1+ ORNETWTWO T we 1T WO 3,
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which implies

— O(EVWeT WO TywTw™? .
(1 O(h))gOW £, Séow W W§0
Finally from the coercivity estimate for W' letting ¢ 0 = W§0 and using the last
inequality we get

EWE, = EWTE, = (1 - OENEWT WO We, > (1- 0(R)g W

£y

which is the desired coercivity estimate for W. [0

Corollary 1. Let M® be an optimal order symmetric positive definite precon-
ditioner for the symmetric and coercive capacitance matrix C(® (for examples

* K

see, e.g., Proskurowski and Vassilevski [20]). Let M© = , Le, A =
* A

0]* 0 0 0] 14
0) - ) . ) )
[ I] M [ I] , Where [ I} { I] Y4\ # Then A gives an optimal order precon

ditioner for W in the GMRES method. The convergence factor is at least

!
) 16\*°
o 52 ’
where § = 1—0(h) and §; = 1+ O(h) are the constants in the spectral equivalence
relations between W and W% from Theorem 1 and »x = Cond (M(o)—lé(o)) +In

particular, we see that for h sufficiently small the convergence of the method will
be close to that of the symmetric positive definite case.

Proof. First note that A is spectrally equivalent to W(® since both are the same
principal submatrices of symmetric positive definite matrices, which are spectrally

equivalent, Moreover we have Cond (A‘iW(G)) < Cond (M(D)_lé(ﬂ)) = s The

rest of the proof follows from Theorem 1 and a basic convergence rate estimnate of
GMRES based on coercivity and boundedness of the preconditioned matrix A~1W
which we now verify. Denote by Apin and Apax the extreme eigenvalues of A1 (O,
We have from the coercivity of W

TWe > (1= OENCTWOL, > Anin(1 — O(R)CTAL,-

24

which shows the coercivity of W in terms of A. Similarly from the boundedness of
W in terms of W(® from Theorem 1 we get

W < (L+OR)IE WO HGWO b
< Amax(1+ O(R)ET AL JFCTAL )7,

which shows the boundedness of W in terms of A. Then the convergence rate
estimate of GMRES from Saad and Schultz [23] (that is a steepest descent type
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estimate derived earlier in Eisenstat, Elman and Schultz [13]) we get the following
bound of the convergence factor :

f1~/f\min§,}_\21 <
7 e s/ |

(X1

[y
{
TN
X
|
[}
S
| S——

Remark 2. The preconditioner A defined in Corollary 1 can be implemented as

follows, provided that the actions of M(®™" on vectors are available. Consider the
following block-form of M®™",

~ ran—1 v F }f’?
o) :[ ] B
G Al}v\7%

We have, since A is a principal submatrix of M(®), A = (A - G’U_lF)_1 , 1.e., the
inverse of a Schur complement of a matrix is a principal submatrix of the inverse
matrix. Hence

ATl'=A—_QU R

The actions of A~} can be computed based on this expression since, as the actions
of M7 are available, the actions of A, G, and F are available as well.
Thus the process of computing z; = A~ 'ry for any given ry is as follows:

. Fr‘z Y (0)—1 0
(i) Compute [Arg] =M .t

(i1) Solve for wi: Uwy = Fry,

. * ~ -1 W

. .\ — (0) 1
(iii) Compute Gwy: [GW}] M [ o ],
(iv) Compute final solution 22 = Ar, — Gwy.

We can assemble U explicitly (this requires 7 actions of M (0)—1) and factor it
exactly in a preprocessing stage since U is of a small size /i x 7, where m was
the number of coarse grid nodes on the interface I', i.e., the nodes in 4. Therefore,
one action of A=! can be computed at a cost of two actions of M O (one action
needed for A and F, and another action needed for G) plus one (inexpensive) action
of U™! (solving systems with U based on its exact factorization). One should point
out that the cost of the action of M7 ig negligible in comparison with the one
of B! in §4.

We finally note that actually we have available the actions of M (O)Hl, where
M is a preconditioner for C{®) in the standard nodal basis. Then, since MO® =
JITIM(G)JITT, the actions of M can be computed based on the relation

arlot .]FTM(O)—IJI"

In other words, we need to perform some change of the basis (on I' only) using the
transformation matrices Jp and J# defined in (5). This transformation is based on
linear interpolation (for the actions of Jr) along the edges (of coarse—grid triangles)
that cover I'.
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6. Numerical experiments. We report some numerical experiments performed
on a Sparc 2 station in Fortran., A double precision version of the subroutines
BLKTRI and SINT from the current version of {26] obtained via Netlib were used
for solving separable problems in a rectangle and as & real FFT, and the subroutine
GCGLS (generalized conjugate gradient least squares) which implements the version
of GMRES in the form proposed in [3].

In the experiments as the polygonal region ) we choose the unit square R =
(0,1)? with the corner {(x,y) : y < 3 —z} cut off. The example corresponds to the
model bilinear form (2) with the coefficients chosen as

ki(z) = e*, ka(y) = €Y, bi(z) = cosin(2mz), ba(y) = cysin(2my),
A(z) = eze®, Az(y) = cze?

Table 1. Performance for the problem with ¢ = ¢3 =1

n? m | |lerrorfs | N, | Ns | tp ts

152 {1 |0.173D-04 |11 |22 |0.24 0.48
152 13 |0.173D-04 |21 |14 |0.45 0.31
312 |1 |0.418D-05 |11 |32 |1.24 3.77
312 |3 |0.416D-05 |20 {27 |3.39 3.19
312 |7 |0418D-05 |49 |22 |5.59 2.60
632 |1 |0.106D-05 |11 {38 |6.20 21.55
632 |3 |0.981D-06 |29 |32 |16.28 | 18.24
63° |7 |0.974D-06 |49 |27 |2742 | 1544
632 |15 |0.950D-06 | 72 |18 |40.43 | 10.42
1272 {1 | 0.405D-02 | 11 |44 |29.75 | 120.11
1272 13 | 0.219D-06 | 29 |38 | 78.41 |104.22
1272 | 7 | 0.105D-05 | 46 |32 |124.23 | 87.72
1272 | 15 | 0.792D-06 | 78 |27 | 210.62 | 74.24
1272 131 | 0.269D-06 | 136 |22 | 367.59 | 60.83

The exact solution is u(z,y) = sinzsiny with the corresponding values for the
boundary condition and the source function f. The stopping criterion for the gener-
alized conjugate gradient iterations to solve the capacitance matrix equation (step

1
(i) in the Algorithm CMM) is when the norm (g (TA” ¢ u) * of the current resid-
ual ¢, decrease by 107¢ from its initial value (with the zero initial guess for the

solution). Here A is the preconditioner defined in Corollary 1 on the basis of M (0)
(see Remark 2) and equal to the inverse of the square root of the discrete second
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derivative — &4 along the interface boundary I, i.e., on the node set . This pre-

ds?
conditioner {more precisely M (U)_I) was proposed by Dryja [12] for the symmetric
positive definite DD Schur complements $(9 (see (5)). For more details we refer to
our previous paper [20].

We denote the number of meshpoints in each coordinate direction by n, and by
7 and m the number of coarse and fine meshpoints on the separator I, equal to the
dimension of the capacitance matrix € and its principal submatrix X of (7). N,
and N, are the number of BLKTRI solves for the preprocessing and solving stages,
respectively, and ¢, and ¢, are the CPU-time (in sec) for the preprocessing and
solving stages, respectively. In all experiments m = "T"l Note that the dominant
cost of the whole algorithm is the cost of the separable solver BLKTRI called
(Np + N,)-times while the cost of the preconditioner and the transformation is
of lower order with respect to n, i.e., it is negligible.

Table 2, Performance for the problem with ¢, = ¢3 = 10

n? m | |Jerror||s N, | Ng |t 1,

152 |1 |0.365D-04 [11 |22 |0.24 0.48
152 |3 |0.365D-04 {21 |14 |0.46 0.33
312 |1 |0.872D-05 |11 |32 |1.29 3.72
31 |3 |0.873D-05 |33 |32 |3.79 3.74
312 |7 |0.873D-05 |49 |22 |5.59 2.58
632 |1 |0.213D-05 {11 |44 |6.26 25.05
632 |3 |0.214D-05 |33 |32 |18.45 |18.19
632 |7 |0215D-05 |49 |32 |27.42 |18.23
632 |15 [0.218D-05 |84 |22 |47.09 |12.71
1272 11 ]0.631D-01 |11 |51 |29.90 |139.90
1272 13 | 0.263D-05 |29 |44 |78.78 | 120.89
1272 |7 | 0.676D-06 |49 |38 |133.17 | 104.62
1277 |15 | 0.165D-05 |96 |32 | 260.83 |88.24
1272 | 31 | 0.555D-06 | 136 |22 | 369.90 |61.18

We can see from the data that the accuracy of the method is clearly O(A?) (the
error for n = 127 is affected by the chosen stopping criterion) and largely insensitive
with respect to the value of i, the number of auxiliary coarse mesh nodes on I’
(unless the ratio £ is too large), even if /2 = 1. For moderately nonsymmetric and
indefinite problems as in Tables 1 and 2, the cost of preprocessing grows linearly
with 7 {averaging 4 to 6 B-solves per iteration, which is consistent with the results
in [20]) and thus is much higher than for the symmetric definite problems.
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The performance deteriorates somewhat for strongly indefinite problems, al-
though the iterations converge even if the algorithm detects that the major block
W (see (7), (8)) of C is non-coercive (denoted by ”"*“ in Table 3). This is the case
when the coarse-grid is not fine enough. Such behavior is explained in Saad and
Schultz [23]; namely, that the GMRES converges even in the presense of eigenvalues
of the matrix (in our case A~'W) in the left part of the complex plane.

Table 3. Performance for the problem with ¢; = 0 & ¢3 = 100
2

n m | |lerror|[s N, | N, |¢ is

152 |1 {0.102D-04 |11 |22 |0.24 0.48
152 |3 10.102D-04 [39 |14 |0.81 0.32
312 |1 ]0.562D-05 |22 |72 |2.50 8.23 *
312 |3 |0.571D-05 |60 |38 |6.82 4.38
312 |7 ]0.373D-05 |77 |27 |875 3.14
632 |1 ]0.554D-06 |16 |86 |8.93 48.65 *
632 |3 10.571D-06 |74 |51 |41.89 |29.01
632 |7 ]0.112D-04 {87 |38 |48.68 |21.55

63% | 15 ]0.398D-05 | 105 |22 58.96 12.73
127% | 1 0.245D-05 | 16 100 | 43.49 273.03 «
1272 | 3 0.113D-04 | 74 72 200.28 | 196.17 %
1272 | 7 0.526D-04 | 77 51 209.28 | 140.01
1272 | 15 §0.207D-05 | 137 | 32 373.86 | 88.96
127% | 31 | 0.655D-05 {214 |22 582.26 | 61.73

Note that in all tables when increasing the coarse-grid accuracy (i.e., choosing
large 1) the convergence of the method improves. However this gives rise to a
higher cost of the preprocessing stage. When a series of the same problems with
different right-hand sides are to be solved (the case when the presented method is
to be recommended} the cost of the preprocessing stage can be neglected.
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