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Abstract

The rank revealing QR factorization of a rectangular matrix is & potentially useful tool
from linear algebra in many signal processing applications, since it essentially yields all the
necessary information to solve rank deficient least-squares problems, to compute signal and
noise subspaces, efc. In this paper we first review some of these applications, and then we
discuss some issues of rank revealing QR factorization algorithms for implementation on systolic
arrays. Next, we desc_ribe a particular systolic algorithm and we give a detailed discussion of
its implenientation on a systolic array. Finally, we consider the performance of the array and
we compare it with tlhe performance of systolic arrays for computing a related decomposition,

namely, the singular value decomposition.
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1 Introduction

i.1 Motivation

In many fields of signal and image processing, control, and telecommunication there is much interest
today in the numerical techniques offered by linear algebra. As problems grow in complexity
and size, numerical issues such as stability, problem sensitivity, and error propagation become
increasingly important.

The singular value decomposition (SVD) of a rectangular matrix is one of the techniques which
have proven useful in many engineering applications, ranging from least squares problems, system
identification, subset selection, direction of arrival estimation, linear regression, ete. [1, 26, 25, 35,
41, 22, 48, 32]. Very often in these applications, ‘a, reliable estimate of the rank of the matrix, as
well as a good apbroximate basis for the numerical null space, are required. This is the casé, e.q.,
in rank-deficient least squares problems, estimation of the number of bearers in a radar signal, ete.
[34, 54].

Unfortunately, the computation of the SVD is a costly numerical procedure. During the last
few years alternative methods to the SVD—based 61{ the QR factorization (QRF), which requires
much less computational effort—have therefore emerged. In particular, much effort has been spent
in refining the QRF algorithm such that it yields rank and null-space estimates which are almost
as reliable and accurate as those from the SVD. Such QRFs are termed Rank-Revealing QR
(RRQR) Factorizations. Some applications of QRFs in signal processing and linear algebra include
[5, 6, 12, 21, 23, 24, 46]. '

Even on parallel précessors, the complete computation of an SVD can be burdensome, in terms
of computation count and execution time. Also QRFs may not lend themselves to a systolic
implementation, in particular when they require column interchanges, as is the case when pivoting
is adopted. The VLSI realization of QRFs without column reshuffling is, on the other hand, very
simple. The main purpose of this paper is to present a version of the RRQR algorithm which is
suited for implementation on a VLSI systolic array, in the sense that the column movement required

by the original RRQR algorithm is simplified, as explained later, in §3.



However, before discussing the RRQR. algorithm and its implementation, we shall first briefly
introduce the SVD and least-squares problems. Then, as motivation for our analysis we shall also
survey some applications in which numerical rank and null-space estimation are indeed needed as

part of the computations.

1.1.1 The singular value decomposition

In this paper, we assume that the matrix A is m X n with m > n, Then the SVD of A is a
decomposition in the following form

A=UxVvH,

where the superscript ¥ denotes conjugate transpose. Here, I/ and V are matrices of dimensions
m X n and n X n, respectively, with orthonormal columns, and ¥ is an n X n diagonal matrix with
diagonal elements o; which are the singular values of A. They are non-negative and ordered in

non-increasing fashion, i.e.

The singular values are very useful for defining the numerical rank of A. Basically, the numerical
rank r of a matrix is the number of columns which are guaranteed to be linearly independent. For
example, in a direction-of-arrival problem, r represents the number of emitters. A strict definition
of the numerical rank is easily given in terms of the singular values of A: then r is simply the number
of “large” singular values of A. Typically, from the particular application one has some a prior:
threshold 7 below which the singular values can be considered as numerically zero'(representing

noise only), [24, §5.5.8] 51, 47, 29]. In other words, the numerical rank r of A is defined by
Or 2T > Oryl-
Then it is convenient to partition the matrices U, & and V as follows:
g 0 "
A= (Us Un) (Vs V), (1)
0 Xy

where Us and Vg have r columns, and where Zg is » X v. The subscripts § and N denote “signal”

and “noise”, respectively, for reasons that will become clear in §1.1.3.



We note in passing that the SVD can in principle be computed from an eigendecomposition
of the symmetric cross-product matrix A¥ A because AFA = VIHF L VH . However, notice that
the condition number of A¥ A is the square of that of A, Since A tends to have a large condition
number in some of the applications that we have in mind, the cross-product algorithms cannot be
recommended due to their potential numerical instability, and special SVD algorithms therefore

must be used.

1.1.2 Least squares problems

Least squares problems appear in a vast number of applications, such as system identification,
parameter estimation, subspace fitting, linear regression, and so on. Given an m X n matrix A with

m > n, the problem is, formally, to find the n-vector z that solves
min ||Az - b|s, ‘ (2

where the 2-norm [|A z —b||2 is the Euclidean length of the residual vector A z—b. This minimization
problem can in principle be solved using the so-called normal equation approach, in which one solves

the square system

AT Az = AT,

but it is well known that in practice this computation can be very sensitive to rounding errors and
perturbations in the data matrix columns {24, §5.3.9]. Therefore, the normal equations are not
suited for ill-conditioned problems where some of the n columns of A are almost linearly dependent

on the other columns [24, §5.3.9]. The standard QR factorization of A,
A=QR,

where () is m X n and has orthonormal columns and R is n X n upper triangular, provides a
numerically safer way to proceed, since in this case it is sufficient to solve the following triangular

system of linear equations by backsubstitution,

Rz = gfb.



However, when the matrix A is highly ill-conditioned or numerically rank deficient, then also this
approach is very unstable and a different approach is needed.
Assume now that r is the numerical rank of A. Then one costly approach is to compute a

truncated SVD solution, defined as
srsvp = Vs B5'Ug'b,

where Vg, g and Ug are defined in (1), [27]. However, a pivoted QR factorization can also be
used. Suppose that it is possible to find a column permutation, represented by the matrix II, such
that in the QRF of AIl, i.e. ATl = QR, we have
Riin R\ 1 r
B =
0 R;;g I —-r
where the r X 7 submatrix Ryy is well-conditioned and the (n ~ ) x (n — r) submatrix Ry; has
“small” elements. A natural way to proceed is then to use only the first » rows of the triangular

factor R in (2) and define the so-called truncated QR solution as

Rl o :
zror = ILP 1 QH b,
0 0

where P isan 6rth0g0na,l transformation such that { Ry, R12)P = (Ru, 0). An alternative approach
often used in practice is to use only the r X r leading submatrix Ry; instead and define the basic
solution as
zp =11 Ry 0 Q™ b.
0 0

The two solutions xrgr and zp have almost the same residual, in that we have

I(Azp = ) — (Azrgr — b)ll2 < [[Raalz | B1y ||z [1Bl}2-

They mainly differ in that zpgpg has all nonzero elements while 2 g has zero elements correéponding
to those elements of A that are considered linearly dependent of the others. |

As we see, in rank-deficient or ill-conditioned least sciua.res problems the QR decomposition
must &ispla,y the numerical rank r of A in order to produce well-defined solutions zrgr and zg. It
is therefore desirable to resort to a rank revealing version of the QRF, such as the one considered

in this paper.



1.1.3 Direction-of-arrival estimation

this environment it is assumed that a number of antennae in the far field receive a superposition of
narrow-band signals, of same known center frequency, emitted by sources located at different an-
gular directions. The underlying assumptions are that both source signals and noise are stationary
zero-mean random processes, the noise being temporally and spatially white. The physical location
of the antennae is known. The goal is to determine-the number of emitters and their angular
position. For this purpose some of the most popular parameter estimation techniques have been
used, such as the so-called subspace fitting methods (e.g. MUSIC [50, 51}, WSF [42], ESPRIT [49],
. SR [53], etc.). In all of these techniques, a reasonable estimate of either the “signal” or the “noise”
subspace is required. As an example, MUSIC estimates the directions of arrival by determining the

minima of a function of the form
F(9) = T (@0)VnV a(9) = |V a(9)]]3. (3)

Here, a(?) is the “steering vector” as function of the angle 9, and the columns of the matrix
Vn span the estimate of the “noise” subspace which, in linear algebra terms,- is identical to the
numerical null-space of the covariance matrix at hand. For stability and computational reasons,
the numerically best choice for Viy is a matrix whose columns form an orthonormal basis for the
noise subspace, even though this is not a necessary requirement.

If the emitters are located at distinct angular positions and the signal-to-noise ratio is sufficiently
high, then the most reliable way to obtain the required matrix Vjy is to resort to the use of the
SVD method. Suppose the columns of the matrix A represent the outputs of the n antennae. Each
column is a vector of m elements, with m > n, corresponding to the m observations in time. The
matrix A ends up showing a numerical rank equal to the number of emitters (say r), and its SVD
is given by (1). In absence of noise, the n — r smallest singular values are zero (i.e.,, Iy = 0),
whereas if the noise is white Gaussian with variance o2, all the singular values are shifted by o and

YN = 0lnhor. It can be easily shown that the covariance matrix C = E{A” A}/m can be written



as

C=Cs+Cn = VsB2VH + Vy sV,

where Cy is a rank-r positive semi-definite matrix, with r “large” eigenvalues (ie, > o%). Itis
clear that Vv spans the numerical null-space of C and is therefore what we need in eq. (3).

As we have seen, the rank determination is a fundamental requirement in order to determine the
dimensionality of the signal and noise subspaces. Moreover, the null-space calculation is essential.
The SVD is an expensive procedure and alternative, cheaper techniques (such as the algorithm
of §2) are therefore desirable. Methods to reduce the complexity of the MUSIC estimate and its

update, based on the Chan/Foster algorithm of §2 have been proposed in [43] and [5].

1.1.4 Subset selection and collinearity

Consider the case in which we have n sensors, Their outputs, in numerical form, are stored as
columns in a matrix A. It may occur that the data provided by a few sensors are actually superfluous
or bring very little additional information. If this is the case, the matrix 4 will contain a number
of columns which are very “similar” to each other (if not completely equal, in case of no noise).
In linear algebraic terms, it is said that these columns of A are “collinear.” In practice, it may be
useful to determine which of the sensors are redundant and then procede to discard them. The
presence of disturbance in the observations make the problem more difficult. A possible approach
is to find a suitable permutation II of the columns of A so as to concentrate the “energy” in the
first (say) r columns of AIl. In other words, if 7 is the number of non-redundant sensors, the aim
is to find a column permutation II such that the first # columns of AIl are as well-conditioned as
possible. The basic solution B of least squares problems (§1.1.2) is related to the subset selection
problem in the sense that the elements of zg corresponding to the linearly dependent columns of
A are forced to zero.

A QRF with ordinary column pivoting tends to find the “most linearly independent” columns
of A, but is not guaranteed to succeed in doing so. $VD-based algorithms have been proposed by
Golub, Klema and Stewart [22, 24] and Van Huffel and Vandewalle [31]. The problem with these

techniques is that they require both an SVD and a QRF and are therefore very computationally



expensive. In particular, given the matrix A, the first step of the algorithm in [22] consists in
computing the SVD of A, as
A=UnVH,

The numerical rank r of A is revealed if ¥, the diagonal matrix that holds A’s singular values,
can be partitioned as in (1). The second step constructs the permutation matrix Il such that the
bottom right (n —r) x (n—r) submatrix of IITV is well conditioned. As a result, the first r columns
of AIl are guaranteed to form a linearly independent set of columns of A.

The QRF with rank-revealing properties such as the one considered in this paper produces both
7, the number of non-redundant sensors, and the desired permutation matrix II and is significantly
. less burdensome than an SVD. Such a permutation is constructed in much the same way as in
the SVD-based algorithm, but on the basis of the matrix of estimated null-vectors rather than the
matrix of right singular vectors V. It is proved in [13] that even if this method and the SVD-based
technique provide different permutations II, the subspaces spanned by the first r columns of All
are in the two cases very close, under the hypothesis that ther_e is a well déﬁned gap between the

r-th and (r + 1)-st singular values of A.

1.1.5 Curve fitting by total least squares

A technique which is acquiring a considerable popularity in curve fitting, error-in-variables regres-
sion, spectral estimation, etc. is the so-called total least sk;ﬁarés (TLS) method [23, 33, 44]. The
kind of problems solved by this technique are of the same nature as the least squares problems of
(2)), but both A and b are here considered affected by perturbations, and not just the vector 4. In

other words, given an overdetermined and incompatible system

where both A and b are contaminated with errors, the goal is to introduce both a residual matrix
AA and a residual vector Absuch that A = A+AAand b=b+Abe span(A) and such that the TLS
solution & solves the problem A £ = b. Moreover, to obtain a unique solution, the “approximation

effort,” i.e., the Frobenius norm of the compound matrix (AA, Ab), is minimized. Hence, the



computational problem becomes:
Y i F o [ e A A A TN
ﬁUlve AL =0 S jEChL LU ILETIE H\l’_\fl, MU)[IF.

The solution of a TLS problem typically requires a full or a partial SVD of the compound matrix
(A,b). Assume that the matrix V in the SVD of (A, b) is partitioned such that

T i
— —
(Vll Vm) I n
V = ,
Var Vao/ T 1
where I = n 4+ 1 — 7, Vi1 is n X v, and 7 is the numerical rank of A. Then the SVD-based solution

to the TLS probleml is given by [24, 17]
& =~V Vi [[[Vaal®- (4)

A computationally low cost and yet reliable solution can also be providedrby the rank-revealing
QRF of trhié paper. A solution of the same form as {4) can in fact be computed from the estimate of
the nuli-space provided by the algorithm of §2. The two matrices V5 and V;9 are now obtained after
orthonormalization of the estimated null-space matrix, by means of the modified Gram-Schimidt
process [13]. Again, the quantities used are the numerical rank » and the estimated null-space. In
{13] it has been demonstrated that the accuracy of the result computed by the rank-revealing QRF

is comparable with the accuracy of solutions produced by the SVD.

1.2 The rank-revealing QR factorization

As we have seen, the rank determination is very often a crucial problem in both numerical linear
algebra and in many engineering applications. As we mentioned earlier the most relié.ble method
for solving this problem is the SVD.

The computational effort involved in computing the SVD is quite large, however, and alternative
methods that require less computational effort are therefore desirable. Most of these methods rely
on a QRF with column pivoting [9, 35, 38]. Unfortunately, the ordinary QRF algorithm with

column pivoting is not guaranteed to produce a reliable estimate of the numerical rank {24, 18, 19].



What one needs is a rank revealing QR factorization (RRQRF). Assume that there exists a column

permutation II such that the m x n matrix A with namerical rank » can be factorized as

R E
AM=QRr=0| ™ "], (5)
0 Ry

where ¢ is an m X n matrix with orthonormal columns, R is upper triangular, and II is the
permutation matrix produced by the specific factorization algorithm we are using. Then this
particular QRF exhibits the numerical rank of the matrix A if it is possible to partition the upper

triangular matrix R in (5) such that

o the submatrix Ry isr X r
» the smallest singular value of R;; is of the order o,
¢ the largest singular value of the submaﬁrix Rg9 is of the order o,

where o, a,nd oy41 are singular values of 4, for then we are guaranteed that Ry; is well-conditioned,
that the elements of Rg; are small, and therefore that the rank r is revealed in the size of the
submatrix Riq.

The crux of the computational problem is to identify a suitable permutation II which is guaran-
teed to produce the desired “rank revealing” partitioning of the triangular factor R. Even though
in many cases the ordinary QRF with column pivoting actually produces such a factorization, it
may occasionally fail to do so.

L. V. Foster [18] and T. F. Chan {10] developed independently an algorithm which allows to
choose a permutation II that guarantees the QRF in (5) to reveal the rank of A. When implemented
correctly, the overhead of this RRQRF algorithm, as compared to the ordinary QRF algorithm, is
only O((n — r)n?) operations which is small whenever the rank deficiency n — r is small compared
to n. Moreover, as “by-products” of the algorithm which hardly require any extra overhead, the
Chan/Foster algorithm produces an approximate basis for the null sp#ce of A, and it produces tight
lower and upper bounds for the smallest n — r + 1 smallest singular values.

The RRQRIF can also be used in those cases in which the data matrix dynamically changes, by

means of successive updates. The updating problem arises every time a new row is appended to

10



the data matrix A. This corresponds, for example, to the case in which A represents the outputs
of m sensors in time. A form of update is obtained when the new row is appended to A, but the

dimensionality of the matrix is maintained by erasing its first (oldest) row, as follows:
A ={a1),0(2),. ool A =[a(2),0(3), . ,a(n), aln + DI,

It is well known that the problem of updating the SVD of a matrix is a particularly burdensome
task [8]. The reason for this is that in order to update even one singular singular vector one needs
all the singular values and vectors of the old A. Besides, each update requires O{n®) flops. An
updating technique based on the RRQRF has been recently proposed by Bischof and Shroff [5],
which requires only O(n?) work. The algorithm presented in [5] allows one to keep track of the rank
of 4, to update the triangular factor R, preserving its rank-revealing structure, and to compute the
estimated null-space matrix, on the basis of the updated R. The possibility to tackle the updating
problem in such an inexpensive way is one of the main advantages of the RRQRF algorithm versus

that of the SVD. However, this issue will not be further considered in the rest of this paper.

1.3 Systolic array implementations

The purpose of this paper is to present a systolic array implementation of the RRQRF algorithm.
In the literature, a number of different systolic realizations for the QRF without column pivoting -
have been described by various authors [40, 20], but to our knowledge nothing has been proposed
for Chan’s and Foster’s version of the rank revealing QRF.

1t is well known that systolic arrays represent a class of very efficient special purpose array
processors for real-time applications which is also particularly amenable to VLSI architectures.
The tremendous evolution of VLSI technology and design, along with the demand for high-speed
processing, allows to exploit parallel processing concepts, more than ever before. Systolic and
wavefront arrays have all the features that suit today’s VLSI technology. In particular, among the
main advantages of the systolic approach are simplicity, regularity and modularity of the layouts,
local interconnection patterns and data pipelining, which in turn brings about the reduction of

input/output bandwidth requirements.
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There are obviously also drawbacks which have to be taken into account, such as the problem
of clock skew in large architectures, the fixed size of the array processor and the constraints in
the topology of the array. The first two problems can be solved by using careful design of the
clock distribution network and by resorting to algorithm partitioning techniques—both heuristic
and analytical. The third problem, namely the topology constraints, may impose limitations on the
algorithms which can actually be mapped onto systolic structures. It is well known that, strictly
speaking, only the so-called recursive iterative algorithms [45] can be made to correspond to systolic
architectures. In the literature, though, some definitions of “systolic” have been relaxed, in order
to include a wider class of algorithms. For instance, even though no data broadcast and no global
communications are permitted within the array, long “wrap-around” connections are sometimes

_tolerated, in order to allow multi-stage or iterative processing.

With reference to the above discussion, two operations of the Chan/Foster algorithm (to be
discussed in details in §2) do not appear to be well suited for systolic implementation: LINPACK
condition estimation and cyclic shifts of the columns of RB. The systolic array that we propose in this
paper overcomes these difﬁculties by 1) using a simple “probabilistic” condition estimator based
on the power method, which is sufficient for our purpose, and 2) by not computing a complete
RRQRF, but only the submatrix Rj; plus the necessary null vectors. An alternative approach,
which makes use of processing elements of a different form and which is capable of computing both
R,y and R,3, is considered in the Appendix.

We mention in passing that G. W. Stewart has proposed another strategy for computing a
rank revealing factorization [52]. In addition to the condition estimation, this algorithm requires a
sequence of both column and row rotations throughout the whole triangular matrix. The rotation
parameters have to be computed outside of the main array, by an auxiliary processor. Besides,
since the algorithm requires interleaved left and right rotations, Stewart’s algorithm needs more
operations and a longer execution time than the realization of the algorithm considered in the
present paper. Also, the estimation of the null-space of the matrix, when needed, requires additional
external computation, whereas in our algorithm the null-space comes almost free aé a side-product

of the procedure.
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The implementation of the RRQRF that we propose in this paper requires n(n+1)/2 processors -
and O(n) external buffers, for a problem of order n. An external processor is also required for a few
intermediate operations. Given a preliminary QRF of A, the execntion time for the algorithm is
O(n(n—r)), where r is A’s numerical rank. This should be compared with the existing systolic arrays
for SVD which require O(n?) processors, and for which both the processors and their interconnection
network is more complex than for our RRQRF algorithm. The execution time for the SVD systolic
arrays is O{Ngn), where Ng is of the order n. There are also Jacobi-type systolic SVD arrays for
which Ng is of the order logn, but in order to compute an accurate null-space these methods require
either additional computations to refine the null-space or an additional n? array to accumulate the
orthogonal transformations.

Our paper is organized as follows. The Chan/Foster RRQRF algorithm is outlined in Section 2.
Nexf, in Section 3 a systolic implementation is described in terms of a multi-stage procedure. The
array processor has the shape of a triangular array as in the classical array for QRF by Gentleman
and Kung {20]. In Section 4 we mention several important implementation considerations. Finally,
we illustrate the performance of the systolic RRQRF algorithm in Section 5. In the Appendix, an

alternative systolic structure is briefly discussed.

2 The Chan/Foster RRQRF algorithm

As explained in the Introduction, the main goal of the RRQRF algorithm is to determine a column
permutation II which guarantees Rg; in Eq. (5) to have “small” elements. To start with a simple
case, assume that the numerical rank of the matrix Aisr = n — 1. Let v, be the right singular
vector corresponding to A’s smallest singular value o,,, and let I[,, be the permutation that brings
the largest element in absolute value of »,, to the bottom, as follows;
nly, =w = (WI) bt )
wy/ [ 1
where [w;] = max; jw;}. Then it can be shown [10] that the QRF of All,, yields an Ry = 7, that

satisfies

!""‘nnl < In < \/T-I:O‘n.

|wo]
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Here, the last inequality follows from the fact that ffun]lz = 1 = jwe] > 1/v/n.

Observe that we obtain not only a small ||R22||2, which is our main goal, but also an estimate
of the null-space of A4, in the sense that ||Av,|ls = o is small. This is a very useful side-product
which renders the RRQRF algorithm extremely helpful in many real-life applications.

The RRQRF algorithm for matrices with arbitrary numerical rank is made up of a series of
steps of the above type in which the smallest singular values of R are “peeled off” one at a time
[10]. We present this algorithm below, including the threshold pivoting modification suggested in

{4]. Here, and throughout the paper, Rﬁ) denotes the leading k& X &k submatrix of the current R.

CHAN/FosTER RRQRF ALGORITHM

1. Compute any QR factorization AIl = Q R, for some initial Il and . The matrices II, ¢}, and

R are updated in the following steps.

2. “Peel off” the small singular values one at a time, starting with £ = n:

{a) Estimate the smallest singular value §; and the corresponding singular vector vy, of Rﬁ).

(b) Determine a large component of vk, say vi(p), for which |vi(p)| > p||vk]|co, for a given

p< 1.

(c) Find the permutation II; that brings vx(p) to the last position of v by means of a cyclic
shift of the elements p,..., k.

(d) Apply this permutation I} to the columns of the matrix Rg’?; this operation introduces
a lower bidiagonal in R from column p to column k.

{e) Restore R’s upper triangular form by means of a series of Givens transformations.

(f) Update @, R, and II, and let k — k — 1.

3. Repeat steps 2a—2f until the singular value estimate in step 2a is above a prescribed threshold

for the small singular values.

We emphasize that this algorithm is most efficient when the numerical rank r is close to the order

of the matrix; i.e., when v = n. There also exist versions of the RRQRF algorithm for low-rank

14



problems, such as L-RRQR [12]. Since the spirit of the low-rank algorithms is simnilar to the above
algorithm, we will not address these algorithms in the sequel.
In addition to providing the desired RRQRF in Eq. (5), the above algorithm produces the

following useful quantities, ¢f. [10, 11, 13].

1. Tight lower and upper bounds for the smallest n — r 4+ 1 singular values, which is useful for

checking the reliability of the computed numerical rank. These bounds are
(*) s —
0r o < “R22 ”27 k=r,...,n, (6)

where Rg;) denotes the bottom (n — k + 1) x (n — k + 1) submatrix of R. The tightness of

these bounds is proved in [10, Corollary 4.1].

2. A matrix W whose columns span an approximation to the null space of A. The matrix W is
constructed during the algorithm by “stacking” the vectors H}:'&k, properly augmented with
zeros, into an upper trapezoidal matrix, and then multiplying with the final II,

1._[31«}-1 Uri1

W =1I( . v ITw). (7)

The quality of W as a basis for the null space of A is demonstrated in [11, Theorem 4.1].

The tight bounds in Eq. (6) are important primarily because they ensure that the algorithm com-
putes the correct numerical rank of A. However, it is the null-space matrix W in (7) which has
most interest in connection with many algorithms in signal processing that rely on a signal/noise-
subspace approach, such as the techniques for parameter estimation mentioned in the Introduction.
Recall, for instance, how the MUSIC estimate of the direction of arrival is intimately connected
with a good estimate of the so-called noise subspace, i.e., the numerical null-space of A.

In the RRQRF algorithm two operations are crucial, namely the singular value/vector estima-
tion in step 2(a) and the column shift in step 2(d). The former operation can be obtained using the
LINPACK condition estimator {16, 14} or Bischof’s incremental condition estimation [2] or other
sophisticated methods {30]. The latter operation, i.e., the cyclic shift, moves the “most linearly
dependent column” in Rg’;) to the back of the matrix. Unfortunately, neither of these operations

are suited for a systolic array implementation: the sophisticated singular value/vector estimation
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techniques require non-homogeneous computations in the construction of the singular vector esti-
mate, and the cyclic shifts require global communication in the array. Therefore, other approaches

have to be sought. In the next section we present our approach to these problems.

3 A systolic RRQRF algorithm

Our systolic algorithm for computing a RRQRY is essentially identical to the Chan/Foster algo-
rithm, in that it consists of an initial QRF step and an iterative part. However, in the iterative
part the estimation of the smallest singular value and the corresponding singular vector, as well
as the pivoting and the restoration of the triangular form, differ somewhat from the details of the

Chan/Foster algorithm.

3.1 Initial QRF step

The initial step, which in our algorithm is a QRF without pivoting, can be implemented on Gen-
tleman and Kung’s classical triangular array [20] (sometimes denoted “triarray” in the literature),
as shown in Fig. 1, which implements Givens’ method [24, §5] for computing a QRF. The data
(skewed) enters the array row by row from the top. The diagonal elements compute the necessary
Givens rotation parameters and, in the end, store the elements r;; of the matrix B. The other
processing elements (PE’s) apply the rotation and transmit the rotation parameters. In the end,
the P& on the ¢-th row and j-th column will store element r;; of R. The operations of the processing

elements are summarized in Table 1 in §4.2.

3.2 Estimation of the smallest singular value

During this step, the smallest singular value and the corresponding singular vector of R%”;) are

estimated. Here, Rﬁ) denotes the leading k X k submatrix of E. The LINPACK condition estimator
[16, 14} and the convex optimization approach [30] are not suited for systolic implementation because
they require “external control” during the construction of the first singular vector estimate by
means of a highly specialized and non-homogeneous “back-solve”. Bischof’s incremental condition

estimation [2] is not suited either because of global communication or data broadcasting. Condition
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estimators based on the theory of comparison matrices (¢f. Algorithm 2.1 in [30]) do not require
global communication, but they cannot be used because they do not provide the corresponding
singular vector.

A simple and communication-wise “local” approach {except possibly for the need of feedback

links) is to apply the simplest form of the power method implicitly to [(R&?)H Rgi)}‘l, i.e.

POWER ALGORITHM

select »(©)

forh=1,2,..:
w® (Rg’;))-—H,U(h—-l)
o - (Rt
o® o8]
609 o [fo®5**

end

Here, v(®) is an appropriate starting vector, The vector (%) needs to be rescaled in each itefation,
since its norm grows with the square of the inverse of the smallest singular value in each step of the
loop. Besides, the quantity 6 = {lo(||; Y2 i1 each step is an estimate of the smallest singular
value of R{’? .

The described method belongs to the class of .“probabilistic” éohdition estimation methods
[15, 30] in that it starts from a unit norm vector »(® whose structure has nothing to do with the
matrix. It is, in a sense, chosen “randomly”. For this type of estimates, it has been shown in
[30] that the sequence {§(*)} is monotonically decreasing, approaching the true value of o,. The
tightness of the estimate increases with & in an exponential fashion. The size n of the matrix also
has an effect talthough not very remarkable) on the goodness of the estimate, in the sense that
the smaller n, the better the estimate. For details, ¢f. [30]. Numerical tests also show that 6(!) is
in most cases not greater than 3o, and a sigﬁiﬁcant improvement in the estimate can be obtained
already for h = 2.

For the purposes of our Algorithm, note that we only need an order-of-magnitude estimate of

17



the true smallest singular value and also for the singular vector, the estimate need not be extremely
accurate {depending on the choice of the parameter p in step 2b of the RRQRF Algorithm). A
reasonable policy is therefore to always take two iteration steps in the Power Algorithm, and avoid
complicated stopping criteria. This method, in spite of its considerable simplicity, gives a good
order-of-magnitude estimate, irrespective of the type of matrix and its size. It is actually shown in
[30} that the quality of its estimates is very close to the one provided by the LINPACK condition
estimator. The only case in which the performance of this method deteriorates is when some
singular values are approximately equal. Nevertheless, the numerical experiments produced in {30]
show that even in the case where all but one singular values are equal, the estimator does not break
down catastrophically. Moreover, in case of several small _singula,r values that are approximately
equal, all that matters is that we compute some vector in the space spanned by the corresponding

right singula.i‘ vectors. These considerations justify our choice.

3.3 Pivoting and restoration of triangular form

In the Chan/Foster algorithm, the information obtained from the above estimation-step is now
used to perform a cyclic shift that brings column p of the current R to the k-th position. The shift
is followed by the annihilation of the subdiagonal introduced in R. In the systolic array, shifts and
rotations could be performed at the same time, but this would require a more complex structure of
the PE’s or an increased processing time. In order to avoid both drawbacks and still be able to use
the same triangular array employed in the previous steps, a simplified procedure is suggested here.

Our implementation allows us to immediately compute the submatrix Ry;, along with an esti-
mation of the numerical rank of A,’its smallest singular values and the matrix W. The submatrix
Ri2, however, must be computed by a separate processor. The idea is the following: instead of
shifting column p to the right end of the matrix, we simply eliminate it, by either overwriting it
or by driving it out of the array. Observe that in the latter case it is actually possible to keep
track of the submatrix Ry2 ezxternally: the eliminated columns can be stacked and later updated by
applying the same Givens rotations as performed in the triarray R;;. These additional operations

can be performed on a sequential processor or another very simple systolic array whose processing
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elements look like the off-diagonal cells of the Gentleman-Kung array.

The column shift in our systolic RRQRF algorithm proceeds this way: all the columns from
1 to (p — 1) are pushed to the right, leaving zeros behind on the diagonal; at the same time, the
contents of the p-th column is either shifted to the right edge and out for external processing, or
Just overwritten and forgotten. At first sight, it appears that our choice of p should favor a small p
in order to minimize the amount of shifts; however, since the shifts can be pipelined with the next
operations, namely the restoration to triangular form, which always takes n time steps, the actual
choice of p doesn’t matter,

Once the column shift has been completed, the matrix stored in the array needs to be retrian-
gularized. In principle, one could think to feed its entries to a smaller triangular array (note that
the first column of such a matrix is all zero) and start the procedure all over again. It is obviously
more convenient to use the same array, by simply “pushing down” the contents of the pg’s. The
same result can be obtained by inputting a new row from the top. A good choice for this additional

row is a one followed by all zeros. To understand the rationale of this operation, consider the QR
1 o7
M= 2.
0 M

1 of 1 o7
o= ) o)
0 QT/\0 M

is triangular and so is the matrix Q7 M, which is what we wanted.

factorization of a matrix M of the type

We have that

Thus, after the actual value of p is determined, the operations we suggest to perform are the
following: (i) put the triarray in shift mode and shift columns 1 through (p— 1) to the right leaving
zeros behind; (ii) put the triarray back in QR mode and input from the top, in the usual fashion,
a row of all zeros except for a one at the very left. The array will then automatically zero out all
the elements that a cyclic shift wﬁu]d have generated in the subdiagonal of R. In this way, we have
“simulated” the cyclic shift, without actually performing it, at the expense of not having the p-th
column stored in the final array.

In order to help visualize the algorithm, consider the following schemes concerning a 4 x 4 case

in which we want to shift the second column to the back of the array (i.e., p = 2 and k = 4). The
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elements shown as z’s are nonzero numbers, while the rest of the matrix consists of zeros. The first
figure shows what a cyclic shift and subsequent Givens rotations will produce in the Chan/Foster
algorithm (the z’s inscribed in boxes are the sub-diagonal-elements to annihilate, whereas the

elements denoted by % result from the Givens rotations):

i T12 T13 T4 Ty T3 T4 T2 11 13 T4 Ti2
T2z T23 T2 | chift T23 T4 T22 § (Qivens T2 T3 o
— —
Tz T34 T3z| Tag T3z Taq
Z44 T44 : Tyq

The second picture shows how we propose to proceed with our systolic array: -

Ty T2 Tiz Tig 0 z41 Tz %14 i 0 0 O
Tz ®23 T24 | ghift 0 z3 2u | QR Tl T1z T4
. — 7 —
T3z Tad Tag Taq Ty T3
Taq T 44 5:33

Note that the bottom right triangular submatrix of the resulting matrix is our desired Rjj:
Ti11 13 Ti4
By = Fa2 ZFos
£33
Also note that this Ry is identical in the two implementations. For reasons that will become clear

in the next section, it is convenient to leave behind a “1” in position (1,1), such that after the k-th
(I 0 ) - ' -
. 8
- plk
0 RY

As we have seen in Section 2, the Chan/Foster Algorithm produces estimates of the singular vectors

step, the contents of the triarray is

3.4 Multi-column shifts

corresponding to the smallest singular values sequentially, one at a time. This is actually not the

only way to perform the RRQRF algorithm. Bischof & Hansen [3] recently presented a block
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algorithm, based on incremental condition estimation [2], that seeks to estimate several singular
vectors associated with small singular values at a time (in case n — r >), and thus allows one to
accelerate the procedure by simultaneously—in each step of the Chan/Foster Algorithm—shifting
several columns to the back of the matrix. Although well suited for high-performance computers,
this block algorithm is not suited for a systolic array implementation because of the need for “global
communication” in the matrix. In addition, Bischof and Hansen’s algorithm requires a small QRF
of the block of null vectors in each step of the algorithm, thus preventing a simple and efficient
systolic realization.

There is, however, another possibility for simultaneously shifting more than one column at each
iteration. The idea is to shift not only the p-th column that corresponds to a large element in the

“estimated singular vector v, but to shift two or more columns corresponding to the large elements
in vg. Our simulations show that when the threshold p (cf. step 2b of the Chan/Foster Algorithm)
is close to one, some benefit can actually be obtained, at least on the average.

For instance, let us assume we want to shift the two columns corresponding to indices p and ¢
(with ¢ < p), according to the followiﬁg rule: either both vi(p) 2 pllvlleo and vi(q) 2 pl|o||oo, if
there are such p and ¢, or else p and ¢ are such that vi(p) and v(q) are the two largest components
of vg. The two columns picked according to this rule are shifted to the right simultaneously until
column p reaches the k-th position. The shift can be implemented by performing consecutive swaps
of adjacent columns. The time needed for shifting two separate columns ends up being the same
as for shifting a single column, namely max{p, ¢}. Therefore, the time spent in column swaps can
be almost halved.

Note that if we opt for a multi-column strategy, then we have to complete the permutations
before actually starting to zero out the sub-diagonals, in order to avoid conflicts of operations. This
means that no pipelining is possible with the subsequent-step where R’s triangular form is restored.
In addition, extra hardware is needed because more processors are required on the diagonal and
different operations have to be performed by them. Moreover, the time spent in performing the
Givené rotations is not changed, thus degrading the actual reduction in computing overhead.

In conclusion, the idea of shifting more than one column at a time requires more complex

21



structure and timing, but can actually reduce the total execution time of the Algorithm whenever

p is close to one.

4 Implementation details

We shall now give a more detailled discussion of the most important implementation details for our

systolic RRQRF array.

4.1 Implementation of the power method

At stage b of the POWER ALGORITHM, one has computed the vector v+=1), and next iteration

then requires the two following backsolves:
w) = R~Hy(h-1) ()

and

oM = g1y, (10)

We emphasize that the inverses of the matrices R and R¥ are not actually needed, since only
golutions of linear equations by backsubstitution are required.

Due to the special structure of R, and the fact that our algorithm forces its leading submatrix
to be the identity matrix such that the matrix R stored in the array always has full rank, cf. Eq.
(8), both substeps (9) and (10) can be performed on the same triangular array used for the QR
decomposition, where the entries of R, r;;, are frozen in the corresponding PE’s {39]. This approach
is more suited for a systolic array implementation than an algorithm that works with vectors of
reduced length, since the size of the array remains fixed throughout the procedure. Of course,
the starting vector v{°} must have zeros in its first n — k components, in order to cope with this
“artificial” R whose leading submaitrix is the identity of order n — k. Observe that if we wish to
always pick the same starting vector v(%) for all Va,lues of k, from n down to the numerical rank r,
the only reasonable and safe choice is v(®) = (0,...,0,1)T.

Consider the first substep (9). If vh=1) is input from the top of the array in skewed form, then

w(") can be obtained at the right edge as an output. The operations of the PE’s are described in
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Table 1 in the next subsection.

Now two different approaches are possible for the second substep (10), according to the available
hardware.
Method #1. One possible strategy, shown in Fig. 2, is to make use of an extra column of n PE’s
at the right edge of the array (denoted by a shaded rectangle in the figure), in order to store the
computed components of w(?) and evaluate the vector ¥(%). The latter can be done by feeding the
array with minus the identity matrix, —I. The PE’s, including those in the extra column, perform
the same operations as in the first substep. For more details about this strategy, see [39].
Method #2. Another way to compute v from w(® is to exploit the fact that the linear equations -
in (10) have the same structure as in step (9). As an example, consider the case n = 3:

First substep

1
w = —N0
T11
1
wy = —={vy — r1aWy)
722
1 .
wy = —(’03 — T13Wy — T23Ws).
T33
Second substep
i
V3 = —w3
T33
i
vy = ““—“(wz - T‘z:ws)
T22
1 -
v = —(wz — T12¥3 — T13V3).
11

We see that if the links are all bidirectional, then a very simple way to implement (10) is to
re-input w(") from the right, reverse all the inputs and outputs of all the PE’s, and obtain v(*) at
the top of the array. Apart from the rescaling, the vector v(*) is now in place for the next iteration,
cf. Fig. 2. No extra column of PE’s is needed in this method.

In both cases, normalization or rescaling! is required between each iteration. This can be done

by an external processor. This processor can also be in charge of finding a large component in

1By rescaling we mean here “multiplication of the vector’s components by a pre-defined factor,” where the factor
need not be related to the vector’s norm. Normalization is the particular case of rescaling by the reciprocal of the

norm of the vector,
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absolute value of the vector vy, which is needed for the next step of the Algorithm. After the
completion of the POWER ALGORITHM, the normalized »(®)—augmented at the bottom with n —k
zeros—can be stored in an external memory, stacked with the previously computed singular vectors
and thus forming the null-space matrix W, cf. Eq. (7).

Note that if rescaling is used in Method #1—instead of normalization—then a further speed-up
of the procedure can be obtained, since one does not need to wait until the last component of the
vector v(? is computed to start the next iteration. The norm of »(* is not evaluated at every
iteration, but only after the final one, in order to compute a good estimate for the singular value,
As for the choice of the scaling factor, one possibility could be to just use v(*)(1), the first element
of v{®) since it can never be zero.

One more consideration can be made at this point. Assume that the starting vector v9) for
the Power Algorithm is chosen so that v(® = (0,...0, )T and v(9(n) = 1. Also, assume that only
one iteration is required. In this case, w(1) will always assume the same form (namely, wt) =
T;i'v(o)) and there is no need to compute it. Therefore, in Method #1, the identity matrix can be
immediately fed into the array and the output from the (n, n)-th PE, being proportional to the true
v(), can be directly used to estimate the value of p. In this way, the extra column of PE’s can be
completely avoided. Choosing to perform only one power iteration may be considered somewhat
risky, and must depend on the accuracy required by the particular application; but simulation

shows that, at least with p = 0.1, one iteration is actually enough for many practical cases.

4.2 Implementation of the shift and rotations

The right shift of the first (p — 1) columns of R can be obtained by sending a control word to the
input of the array (the top row). This can be done by the external processor, once it has determined
the value of p. One possibility is to present a word with ones corresponding to columns 1 through
p and zeros elsewhere. This word is propagated downwards unchanged through all the cells, When
a cell sees a one at its input, then it makes its contents available to its right side neighboring cell.
One of the outputs for the rotation parameters (say s) can be used for this purpose. If the cell is

on the diagonal, then the value of r;; stored in it has to be replaced by zero. I the cell is in the
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interior of the array, the stored r;; has to be replaced by the contents of the left side neighbor,
which is now available at one of its inputs {corresponding to the same rotation parameter}. A cell
that receives a zero at its input does not need to perform any operations at all.

As we have mentioned before, the problem to find the actual value of p is left to the external
processor. Observe that p need not correspond to the component of v having maximum absolute
value. The algorithm performs almost as well if we choose an element vi(p) such that the ratio
vk(2)/|villoo is above a given threshold p < 1. A further desirable consequence of choosing p < 1is
that, in so doing, we can somewhat reduce the number of power iterations. As a matter of fact, after
just one or two iterations of the power method the vector »(*) starts to resemble the true singular °
vector, in the sense that the components which will eventually dominate become “larger” while
the other components tend to decrease. In other words, whenever the largest component of the
estimated singular vector is required (p = 1), one has to iterate a sufficient number of times, but if
only a “large” component is sought (p < 1), then the number of power iterates can be significantly
lower. The number of power iterates can actually be chosen concomitantly with the value of the
threshold p, on the basis of these considerations.

As explained in §3, the column shift generates a subdiagonal which needs to be annihilated via
Givens rotations. This is simply obtained by switching back to the QR mode and inputting a row
of a one followed by all zeros. The operations performed by the cells are therefore the same as
during the preliminary QR step.

Table 1 summarizes the three different tasks performed by the processing elements of the systolic

array.

5 Performance analysis

In this section we analyze in details the execution time of our proposed systolic array, and we
compare it with current systolic arrays for computation of the SVD.

Table 2 summarizes the duration of each phase of the RRQRF procedure as well as the total
execution time of the algorithm. The first entry of the table, denoted “QR”, shows how many time

slots (clock ticks) are required for the initial QR factorization of the m x n matrix A. Since the
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Cell Type QR Sing. val. & vec. Shift

Diagonal Cell if i, = 0, then § — Tin/T if z;, = 1, then
ce—1;5« 0, Sout — 131 +— 0
else end

e fr2 325

c—r/rlys ez /T

4

T —T
end
Inner Cell Loyt = CTin — 87} Tout — Zin — 87 | if z;, = 1, then |
T 8Tip +CT Sout — TiT — Sin

end

Table 1: Operations of the processing elements (cells) in the different phases.

rows of the matrix are input one by one in a skewed fashion, ¢f. Fig. 1, one needs m time slots for
a complete column to enter the array and n slots for a complete row. The complete m X n matrix
A is passed through the whole array in a total of m + 2n — 2 time units, which is the time needed
for the processing elements to settle to the final value.

The next row of the table shows the number of time slots required to estimate the smallest
singular value and corresponding.singular vector. Here, Ny represents the number of iterations
required for this purpose. According to the considerations given previously in Section 3, Ny can
be as small as 1 or 2. If Method #1 is chosen, 2n — 1 clock ticks are needed to compute w(f) given
v(*=1) and an extra n + 1 clock ticks are required to complete the iteration. On the other hand,
if one chooses Method #2 then w(® is obtained from »*=1) in 2n — 1 time units and the same
amount of time is required to produce v{M),

Before starting the column shift one needs to determine the location p of the maximum compo-
nent of the singular vector. Once this is accomplished, a control word has to be generated in order

to shift columns 1 through (p — 1) to the right and to fill the empty cells with zeros. In Table 2,
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the time due to the determination of p and the generation of the control word is denoted by 7.
Since it is required to scan all n components of the estimated singular vector, usually 7 = O(n)
{for sequenti;ﬂ computers, while 7 = O(log n) if the search is done in parallel. The number of clock
ticks required for the column shift operation is therefore given by 7 plus the time needed for the
control word to be propagated along the array (=~ 2n). In total, ~ 2n 4+ 7 time slots are required
for this phase,

Finally, consider the subsequent QR step which zeroes out the subdiagonal elements generated
by the column shifts, and restores R into its triangular form. This step is simply obtained by
inputting a row vector consisting of a one followed by all zeros, ¢f. §3. This operation requires
a total of 2n — 1 time slots to complete. Observe that in this analysis the time required to feed
back the data via the feed back lines has been neglected; whether this is a reasonable assumption
depends on the actual realization.

In order to evaluate the total time, we must consider that the operations can be pipelined. At
the beginning of the procedure, the initial vector »{®) can be input immediately after the matrix A,
thus completing the Ny iterations required by the singular vector estimation in either m 4+ 3nNy or
m + 2(2n ~ 1) Nt time steps, according to whether Method #1 or Method #2 is used. If r = n, the
algorithm stops here. If A is not full rank, then the new leading triangular submatrix has to be
computed. Rg’;—l) will be stored in the bottom left part of the array after the determination of P, the
shift of the first {(p— 1) columns and the zeroing of the subdiagonal, namely after m+3nNr4+2n+7
(respectively, m + 2(2n — 1)Ny + 2n + 7) time slots.

From this point on, estimation of the smallest singular value, column shift and restoration to
trianguia,r form can be pipelined. Any succeeding iteration of the RRQRF algorithm will therefore
need 3nNy + 7+ 2 {resp., 2(2n — 1)N; + 7 + 2) time units to complete (notice that p does not
appear). In total, there will be (n —r) complete iterations plus an additional Power Algorithm step
to check that the next estimated singular value is actually above threshold. Thus, the total time
for computing the RRQR factorization becomes m + 3n{n — r + 1)N; + (7 + 2){n — r) for Method
#1 and m+ 2(2n — 1)(n —r+ N1 + (7 + 2){(n — 7) for Method #2. In Table 2, we give these

times together with the simpler case in which m = n and 7 = n,
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Operation Method #1 Method #2

Init. QR 2n+m— 2 2n4+m—2
Sing. vector 3nNy 2(2n -~ 1)N;
Column shift In+T on+4r1

Subs. QR 2n—1 2n—1

Total m4+3n{n—r+ DN | m+22n—-1)(n—r+1)N;
+H(r+2)(n—r) +H(r+2)(n—7)
(fm=n,7=mn)| ~BNr+1n(n-r) ~ (4N;+ n(n —v)

Table 2: Duration of each phase and total execution time (Np: number of iterations, r: rank, m,n:

matrix dimensions, 7 = O(n) is the delay needed to determine p: see paper).

Table 3 gives a rough description of the hardware needed by the systolic implementations of
the RRQRF algorithm considered in this paper. Method #1 requires n additional PE’s in order
to store the vector w(" in each iteration of the Power Algorithm and to compute the vector v{#),
This vector has to be used for the next iteration of the Power Algorithm, thus requiring feedback
wires. An external processor is needed to compute p and produce the required control word, which
has to be stored in n buffers on top of the array.

In Method #2 feedback lines are essentially traded for bidirectional links and PE’s that can
switch inputs with outputs at given times. 2n buffers are needed to store the vector w(*) and the
control word. Again, an external processor evaluates p.

Both methods require control signals to run across the array in order to scan the different stages
of the procedure and define the sets of operations to be performed by the different processing cells
(see Table 1).

From Tables 2 and 3, it is apparent that Method #1 actually requires a shorfer execution time
than Method #2, at the expense of a higher number of processing elements. The different structure

requirements are difficult to compare, without additional information on technology and available
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Method #1 Method #2

n(n+3)}/2PE's | n(n+1)/2 PE’s
n buffers 2n buffers

control logic control logic

feedback lines | bidirectional links

Table 3: Hardware requirements.

hardware.

For comparison’s sake, recall that implementations of Jacobi-type algorithms for the singular
value decomposition of an n x n matrix [37, 7, 55] require aproximately n?/4 processing elements
and an execution time O(N, g_n), where Ny is the number of “sweeps” required for a good estimate
of the singular values. The number of sweeps cannot bé predicted with certainty, but there are
heuristic arguments [7] for Ng to be of the order of logn. However, as pointed out in [28], the
null-vectors produced by Jacobi algorithms are not accurate unless either an additional refinement
step is used or the rotations are accumulaﬁed in a separate array. Hence, the constant in the com-
putational complexity O(Ngn) is somewhat higher than that for the RRQRF algorithm. Moreover,
the processing elements and the interconnection pattern for the SVD arrays have a complexity
similar to those in the alternative, more complex, structure discussed in the Appendix.

Liu, Hsieh and Yao [36] recently proposed two alternative multistage systolic arrays for com-
puting the SVD of symmetric matrices, based on the QR algorithm. The triangular array they
describe requires n(n + 1)/2 processing elements, n feedback lines, and a circular multiplexer. The
execution time is O((3Ng + 2)n). The second array proposed in [36] is a square array, thus re-
quiring n? processing cells, with O(n?) delay elements, n feedback lines, and n buffers. This array
(interconnection pattern included) is more complex, but allows greater numerical stability than
the triangular one. The execution time, however, is somewhat larger than for the triangular array,
being of the order of O((10Ng 4 2)n). It is found in {36] that Ng can vary greatly for different

matrices, and that in the practical cases analyzed, Ng is proportional to n.
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Ir summary, arrays based on Jacobi-like iterations tend to be more complex in terms of hardware
and software. On the other hand, processors based on the QR algorithm are limited to symmetric
matrices and complete the computations in a time which can be considerably longer than what
is required by our array. Thus, when implemented correctly, our systolic RRQRF algorithm is

certainly a competitor to the systolic arrays for SVD computation.

6 Conclusions

In this paper we have considered the Rank Revealing QRF Algorithm due to Foster and Chan,
which allows to compute both the numerical rank of a matrix and its (approximate) null-space. One
" possible systolic implementation which makes use of the classical triangular array by Gentleman
and Kung is analyzed. At theAend of the operations, we obtain the numerical rank r, and the
Well-coﬁditioned leading r X r submatrix R;; of R remains stored in the array. As a side-product
of the algorithm, obtained at no extra expense, one also obtains a good approximate basis for
the null-space of the matrix. This additional feature can be very useful {and sometimes is the
most interesting aspect of the RRQRF Algorithm) in real-life applications. A possible different
implementation is also briefly sketched in the Appendix.

We give a detailed discussion of the systolic implementation and the modifications that are
necessary to the original Chan/Foster algorithm. We also point out that alternative strategies are
possible, with trade-offs between computing time, storage, and complexity of the systolic array.
Finally, we consider the performance of our proposed systolic RRQRF algorithm, and we compare
it with the performance of systolic SVD algorithms that are also capable of computing the rank and
null space of a matrix. We conclude that for a general matrix whose rank is comparable with the

size of the matrix, our systolic RRQRF algorithm is competitive to the systolic SVD algorithms.
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Figure 1: Gentleman and Kung’s triangular array “triarray”. The insert shows the two different

processing elements,
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Figure 2: Methods #1 and #2 for implementing the Power Algortihm. Shaded areas denote :
procesing elements while white are 1s denote data. The figure does now show the hardware necessary

to find a large element of the vector v(A),
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Appendix

An alternative systolic RRQRF array

The main problem that arises when a systolic implementation of the RRQRI algorithm is sought is
to efficiently use the parallel processing capability offered by systolic arrays. Consider the column
shifting and the following subdiagonal zeroing by means of Givens rotations. The former task is
obviously a column operation, wh reas the latter task involves the rows of the matrix. It would be
desirable to somehow have both column shifting and Givens rotations happen together in parallel.
If this were possible, we could store the whole matrix R in the array, withoul ever having to
““aliminate” any of its columns. In this way, we would keep track of both submatrices R;; and
Ryy. With the array structure considered so far, it would not be impossible, but, at the least, slow
and complicated to realize the aforemenfioned behavior. Besides, extra hardware would be needed
on the main diagonal of the array. It is therefore conceivable that an alternative structure of the
systolic array would enable us to achieve what we want in a simpler way.

A possible such structure could be a network of memory ce!’s, each corresponding to an element
of the matrix R, and a similar grid >f processing eleménts, as described by Moonen {40]. In Fig. 3 the
black circles represent memory cells, while the white circles ard squares correspond to processing
elements (boundary aﬁd internal :ells, respectively).

Each processor has access to four storage elements and thus shares each of them with another
processor. In addition to the connections between processor and-memory cells, the PE’s are con-
nected with each other horizontally and vertically. Since neighboring PE’s cannot be active at
the same time (or else they would be working on the same data) each processor ends up being
idle for 75% of the time. For this reason, four contiguous processors can be merged into a single
“super-processor” (sP), as suggested in [40] and shown in the insert of Fig. 3. Each sp will have
four storage cells of its own and - ill share the other eight with its six neighbors. If we proceed as
described, the total number of sp’s will be roughly eight times smaller than the number of matrix
elements and they will all be working efficiently (Z.e., 100% of the time).

This array can perform both the QRF and power iterati>n steps in much the same way as
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Figure 3: Alternative structure of a systolic RRQRY array.

the array described in §3, since all operations are exactly the same; only the data retrieval and
movement change. What this structure actually helps to obtain is the combined column shift
and row rotations. The columns are permuted two by two, starting from the p-th column, until
the whole cycle is completed. At the same time, the subdiagonal is annihilated and the rotation
parameters are propagated to the right. The diagonal sP’s can in fact permute the matrix elements
stored on their right hand side with those stored on their left hand side and simultaneously compute
the suitable rotation parameters, without ever letting a subdiagonal show up. The off-diagonal sp’s
corresponding to the same columns will just permute the matrix elements in a similar fashion, while
the sP’s corresponding to the same rows will perform the rotation once they receive the parameters
computed by the diagonal processor. Table 4 synthesizes the operations performed by the different
cells in this alternative structure. We emphasize that the whole R matrix (and, in particular, the
submatrices of interest Ry; and Rj2) is stored in this array at any given time.

Fig. 4 shows an example of the {iming of the shift & rotate phase for a case in which p = 2.

In the figure, “s” stands for “swop”, *r” for “rotate”, and “x” for “swap, compute the rotation
Py ) 3
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Cell Type QR Sing. val. & vec. Shift & Rotate

Diagonal Cell compute (e, s) s +— xilry; swap (P, Tig1,i)
T — ”’,2. + 37,2 332.;_1 — Tig1 — Sriiq1 | and (P41, Tigrit1)
Tiyy — CTig1 — STii41 then same as
Piidl ¢ STig1 + CTiiy1 in QR phase
Inner Cell apply the transformation to Ty Tj— 8Ty if rotate, then

(rigr25) and (rij41,2541) | 25y & Zje1 — Srige1 | 1olate (7if,Tij41)
and (75415, Tig1,541);
if swap, then

swap (7ij, Tit1,5)

and (r; j11, Tig1,541)-

Table 4: Operations of the processing elements in the different phases for the alternative structure.

parameters and rotate.” The numnber of “clock ticks” necessary for the completion of the whole
phase, for a triangular array of diz1ension k, is 2(k — p) + |k/2] — 1. Without describing the details
of how the single operations are scheduled on the array, we summarize in Table 5 the approximate
duration of each phase and of the whole procedure (see also [40]; for the notation, ¢f. Table 2).

This alternative structure requires a low number of processors (about eight times smaller than
the number of matrix elements in R), but they have to be capable of sharing memory cells with
their neighbors, The execution time is longer than for the array based on the Gentleman-Kung
processor, but in this way the who. 2 final matrix R, and not just the submatrix R;;, will be available
at the end of the procedure. The matrix W is computed in much the same way as for the array of
§3, therefore in this respect the two structures are equivalent.

An a priori comparison betwen the architecture presented in this Appendix and the one con-
sidered in the paper is very diffic 1t, if not impossible. Drawbacks and advantages are very much
dependent on the specific application. Some of the applications listed in the Introduction explicitly

need the Ry5 submatrix {e.g., the truncated QR solution of a rank deficient least squares problem).
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Figure 4: Example: timing of the shift & rotate phase.

Some do not. Besides, when no updating is required and all is needed is an estimation of rank
and numerical null space (e.g., DOA problems, curve fitting by total least squares), then it seems
obvious that the architecture based on the Gentleman-Kung processor is more advantageous, since
it has a lower computation time and less complex hardware (both cells and interconnections). If,
on the other hand, updating is an issue, then the array described in this Appendix is probably
better, since it allows one to compute the updated null space by the formula
W= (_R;IIRH) ,
I

as suggested in [5]. This computation could actually be performed using the same array. Notice,
however, that even when the submatrix Ry2 is needed the architecture presented in the paper is
not necessarily ruled out. As brir fly mentioned in §3, Ei2 can be stored outside the main array.
The choice of the actual architecture to adopt therefore involves computation time, complexity of
the individual processors, interco: nection pattern and also the availability of external storage and

processing capabilities.
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Operation

QR 2n +4m — 4
Sing. vector 6n
Column shift ~ 2503471

Total

(if m=n,7=n) | ~(6Nr+3.5)n(n—r)

Table 5: Duration of each phase and total execution time for the alternative structure.
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