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FINITE VOLUME METHODS FOR CONVECTION-DIFFUSION
PROBLEMS

R. D. LAZAROV, 1. D. MISHEV, AND P. 5. VASSILEVSKI

ABSTRACT. Derivation, stability and error analysis in both discrete H*
and L? norms for cell-centered finite volume approximations of convection-
diffusion problems are presented. Various upwind strategies are investi-
gated. The theoretical vesults are illustrated by numerical examples.

1. INTRODUCTION

This paper is devoted to the construction of cell-centered finite difference schemes
for convection-diffusion second order elliptic equations of divergence type. A main
attention is paid to the construction of finite difference schemes with a second order
(in a discrete H! norm) of approximation and at the same time to provide mono-
tone schemes, i.e., schemes that satisfy a discrete maximum principle. The error
estimates we derived are in the natural Sobolev spaces associated with the consid-
ered boundary value problem similarly to the finite element method. The upwind
strategies for convection-diffusion equations have been used for a long time, but due
to their first order of accuracy there have been several attempts to modify them in
order to achieve second order of accuracy, cf., e.g., Samarskii [20], see also Axelsson
and Gustafson [3]. The central difference approximation of the first derivatives has a
disadvantage to require sufliciently small mesh size i in order to guarantee stability
of the solution of the discrete problem, but on the other hand it is of second order
of accuracy. We investigate a number of modified upwind finite difference strategies
which provide both second order of accuracy and that are unconditionally (i.e., not
only for sufficiently small A > 0 } stable (or invertible), There are several known ways
in the Literature to derive the finite difference discretization schemes. For example
one can use direct finite difference approximation by simply replacing the derivatives
by divided differences, e.g., Samarskii [20]. In the same book [20] an error estimate
of order O(h?) in the discrete maximum norm under rather demanding assumptions
on the solution (to have four continuous derivatives) is derived. A modified upwind
finite difference strategy (leading to a second order of accuracy scheme) was also
considered in Axelsson and Gustafson [3]. Runchal [19], and also Spalding [22],
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have proposed and mumerically tested other upwind finite difference schemes that
can be used in both convection dominated and diffusive limits. For one dimensional
problems II'in [13] has proposed finite difference schemes for convection-dominated
second order equations and proved an O(h?) error estimate in the maximum norm.
A general treatment of finite difference schemes on triangular meshes was presented
in Heinrich [12]. The schemes there are very similar to those obtained by the finite
element method and in [12] mostly the selfadjoint case was addressed and in the
convection-diffusion case some schemes based on central differences were considered.
A general approach for cell-centered finite difference schemes on triangles including
local refinement was considered in Vassilevski, Petrova and Lazarov [24]. The error
estimates derived in [24] are in a discrete H'-norm including some superconvergence
type estimates on uniform triangulations, namely, O(h?) error estimate on uniform
triangulations. Cell-centered discretizations on tensor-product nonuniform meshes
were considered in Weiser and Wheeler [25] with superconvergence type error esti-
mates derived. Similar results only for the Poisson equation were proved in Sili [23],
i.e., H'-estimates of order O(h'**), 1 < a < 1. Morton and Sili [17] considered
point-centered finite difference schemes for one dimensional problems and also some
hyperbolic equations in two-dimensional domains, Method that is closely related to
the finite element one is the finite volume element method proposed and analyzed in
Cai [6], Cai, Mandel and McCormick [7], and McCormick [16]; see also some early
formulation by Baliga and Patankar [4] that includes the convection-diffusion case.
The relationship of the similar box method and the finite element method in the
symmetric positive definite case has been investigated by Bank and Rose [5} and
in Hackbusch [11]. In Hackbusch [11] second order error estimates in H'-norm on
uniform mesh has been proved.

This paper is devoted to fill-in the lack of results for nonsymmetric equations and
cell-centered finite differences. We prove in the present paper for a number of upwind
finite difference schemes error estimates in discrete H'-norm of order O(A™ 1), 2 <
m < 3 for solution w € H™(§2). These results can be viewed as natural extension of
the results from Ewing, Lazarov, and Vassilevski {9], now for the non-selfadjoint case.
In addition, we provide error estimates in L?-norm elaborating the discrete “Aubin-
Nitsche trick” of duality argument proposed in Samarskii, Lazarov, and Makarov
[21] and used in the case of finite difference schemes for general self-adjoint elliptic
equations in Lazarov, Makarov and Weinelt [15]. For the original duality technique
in the finite element method, cf., Aubin [2], Nitsche [18]; which can also be found in
Ciarlet [8].

The remainder of the paper is organized as follows. In the subsection 1.1 the
boundary value problem is stated and the notations used are introduced in subsec-
tion 1.2. The discretization schemes are presented in Section 2. The stability (a
priori estimates) and error estimates in H'-norm are derived in subsection 3.1. The
error estimates in L%-norm are proved in subsection 3.2. Finally, in Section 4, the
numerical results are presented.
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1.1. Boundary Value Problem. We use the standard notation for Sobolev spaces
(1}

Wy (Q) = {ue LM(Q) : Due LP(), |a]<m}, m20,1<p<oo
and W' (Q) = H™(Q). The norm in H™(Q) is denoted |||, o and defined by

- 1/2 /2
[ullm,0 = (Zluﬁ.n) ; |l n = (E “Da““g,n) ,

o]=i

lellm 0,00 = max sup |[Duf,
[af<m TE

where ||.||p o is the standard L®norm in . We also use Sobolev spaces with real
index m > 0 [1].

We consider the following convection-diffusion boundary value problem: find a
function u(z) which satisfies the following differential equation and boundary con-
dition:

(1) { div(—a(z)Vu(z) + b(z)u(z)) flz) inQ

u(z) = 0 on T

where @ C R? is a bounded domain, I' = 902, a(z), f(z), and the velocity vector
b(z) = (bi(z), by(x)) are given functions in (. We introduce the bilinear form

a(u,v) = La(w)gaiu(m)a,-v(w)dm
—l-/n(b(a,)Vu(m))v(a:)da:-l-Lu(m)v(m)(VMm)) dx

and the linear form
fw) = /ﬂ f(e)o(z) da .

Here and hereafter §; denotes the partial derivative with respect to z;.
The problem (1) can also be formulated in the following weak form:

Find u € H}(Q) such that a{u,v) = f(v) forall v € Hg().
From

/n(b(m)Vn(m))u(m) dx = —./{]V(b(m)u(w))u(m) dx
- - jn (V.5(2))u(z) d — fn ((2).Vu(2))u(z) de

we obtain .
fn(b(m)Vu(m))u(:c) dz = -3 -/n(VQ(a:))uz(z) dz

and hence

@) alu,u) = fﬂ a(m)g:(a,-u(m))gdw+—é— fn (V.b(2))(z) do .
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Let the coefficients a{z), b(z) satisfy the conditions:

(7)) a(z) > ay > 0, alz) € WL(Q),

(i1) (V.b(z)) > Bo > 0, |b(2)] £ By, b € WoL(D)

for some positive constant ag, Bg, f1. Then we see from (2) that there exists a
constant C such that a(u,u) > Cllullyq , ie. a(u,v)is a Hj-elliptic bilinear form.
Then by the Lax-Milgram lemma argument the problem (1) has an unique solution
in Hg(8).

Remark 1.1. For the stability analysis (Propositions 2.1, 2.8, 2.5, 2.7) we will need
higher smoothness, i.e., bj(z} € WLF*(Q), a > 0.

1.2. Grids and grid functions, We suppose that { is a rectangle with sides
parallel to the axes z; and z,. Extensions to the case of more general domains can
be accomplished using the technique described in Samarskii, Lazarov and Makarov
[21, Chapter III, p. 123].

We consider the case of cell-centered grids, which owing to their good conservation
properties, are very popular in reservoir simulation, weather prediction, heat transfer
etc. We cover the plane R? by square cells with sides of length 4. The grid points
are the centers of the cells (see, Fig. 1). We suppose that the Dirichlet boundary I
passes through the grid points, as shown in Fig. 1.

The grid points are denoted by z = (z,,2,) = (214, 22;) = (¢h, jh), where 4,7 =
0,1,2,..., N are integer indices. We introduce the following notations for various
grids in Q:

W= {(ﬂ;l,h 3"2,]') e i, = 0,1,2,...,N};

w=0NQ, 5=w\w;

wF = wUyE, where v = {z € y 1 cos(z;,n) = 1}, i=1, 2,

here g is the unit outer normal to the boundary T.

Functions defined for # € w are called grid functions. We consistently use the dual
notation for the value of the function y at the grid point & = (21, 2;); ¥(2) =
y(21 4,22 ;) = y;; and in the points (=, ;, 25, £ A/2) = (21,4, T2 +172) and (@y; +
b2, 29;) = (B3521/2 Tag) » Yijr1j2 = y(ml,i,mz,ﬁi/z), Yikrf24 = 9(181,;;1:1/2,332,3') .

For a given function y(z), z € @ we use the following discrete inner products and
norms:

(,0) = 3 Ry(z)o(e), [19llow = (¥, ¥)%;

TEW

(ol = 30 Wy(@)(a), vl = (olf s s=1,2.
me?
We introduce the following finite differences for grid functions y(z):
(¢) forward difference Ay, ; = 9415 — %,; and divided forward difference y,, =
Ayy/h; _
(4) backward difference A,y;; = #;; — %:_1; and divided backward difference
¥z, = Day/h;
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(#i4) divided central difference of second order

o Baliy —DBaly
yE,m1 - h2 .

Similarly, differences are defined in 2, and in combination of z; and x, coordinate
directions.
We also introduce the discrete analogues of H! and H? -norms:

e = e + lvllée s
and
Y120 = 195,01 + 295,57 + 95,0 ]
Hyllzw = 9130 + [l9l]F 0

We will also need the negative norm:

I(y, )|
= SUP .
toll-s, v 9]

Any grid function y(z) can be considered as an element of a vector space of
dimension equal to n, the number of the grid points in w. In this case, we denote
y(2) by y € R* and consider it as an n-dimensional column vector. Then y7 will
be the row vector transpose of y.

2. DISCRETIZATION SCHEMES

The finite difference approximation is derived from the balance equation. We
integrate (1) over each cell e

/ div[(—a(c)Vu(a) + b(z)u(e)] do = f f(z)dz
and then using the Green’s formula we get
(3) [-aVu.n + ubn]dy = f f(z)dz
de e

where n is the unit outward vector normal to the boundary of e. Splitting fe =
st Ust Usy Us, (see Fig. 2) this identity can be written in the form:

(4) /de Vdy = /+Wd7+]+Vd7—] Wd'ymf Vdy
de de LN 3] 51 LT

-I—/+Wd7+/+Vd'y—j Wd."y—f Vdy

where we have denoted by

W = —a(v)Vu(y)re and V = b{y).nuy).
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FIGURE 1. Cell-centered mesh
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In order to construct the finite difference scheme we approximate the balance
equation (4), We split the approximation of the balance equation (4) in two parts

(5) A®y 4 Ay

where A® is the part arising from the approximation of the second derivatives, and
A®M comes from the approximation of the first derivatives; y is an approximation to
the exact solution solution u. We have the expressions

(6) APy = 3wl —wygg +wd; —wa ]
rTEw
Ay = E [ofis = vrig + V2 — V2,i,3]
TEwW

In these formulae w}t, w;, v, v, [ = 1,2. are some approximations of the corre-
sponding integrals fs:, W, [, W, fs}. W, [,,W and fs"f‘ Vil 'V, fs;;. v, J,,V, respee-
tively. Now, in order to complete the finite difference scheme we have to express the
approximate fluxes w;", w;, v;%, v; by the approximate values y(z) of the solution
u{z) at the grid points, We consider the following approximations:

{1) central difference scheme CDS

(2) upwind difference scheme UDS

{3) modified upwind difference scheme MUDS
(4) I'in’s difference scheme IDS

2.1. Central difference scheme (CDS). We call this scheme “central” because
of the analogy of A1) and a central difference approximation of the first derivatives.
We first rewrite the fluxes —a(2)}Vu(z) = (Wi(z), Wa(z)) in the form

ou __Wilz)

oz, afz)’
Next, we integrate the equation for { = 1 along the interval with endpoints (& ;_y, 23 ;)
and (zq;,24;). We get

#ui W8, 2y ; T1,i ds
1 2
Ui — gy = _/' Mds ~ W, :'—-1/21'/ L
! : orioy  @(8, 2 ' Y Jaries 08, T

We can now write the following approximate relations

-1
1 foui ds
f Wl(ﬂ;) ds =~ th’,'_l/g,j &= (Ef —'—) [ui,j - ui—l,.‘f]’

I,i-1 G(S, mz,j)

—~1
1 o2 ds
/ Wg(ﬂ?)ds (- th),;,j_l/g = (E/ ___.________) [fu’",.’f - ui:f"ll'

2,5l a’(ml,i? S)

These approximate relations allow us to define:

(7) 'U);l—(ﬂ,') = ’U)+ = _k;l,—t',_f A; yl',j N = 1, 2

Lig

zefl, 1=1,2.

w,(m) = w,,‘-’j = _kf,i,in'yi,j , l funad 1, 2 s
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where

v wl

1 pE ds
(8) kl,i,j = (Ef —“) 3 kff,j = kl,:’+1,j

1,i-1 G(S, $2,J')

-t
1 [ ds
*~=(5/ T""’i) i = b

The integrals fs:' Vit(z) ds, [,, Vi(z) ds can be approximated as follows (I = 1)
'U;"'- + w; y
/+ Vit (z) ds & hby i1 [W] ,
[ Vi@ ds = by sg {Hw_—_ué,t‘u] ,

and thus we can define the approximations

ofi; = B i{(Yisrj +viy), B, = wa
V145 = B+ %-14)y By = ?_LL:.}QM,
(9) viis = Bl iWiger +vig), Bl = Q&:_;_%}ﬁ_’i,
Vi = B (Ui +¥ij-1), Baij= w

Substituting (7) and (9) in (5) we get CDS, This scheme is stable if the local Peclet
number satisfies the inequality [14], [20]:

(10) M <1

Obviously this is true only for sufficiently small h. We will not further consider the
CDS because of its conditional stability.

2.2. Upwind difference scheme (UDS). One of the ways to find stable finite
difference approximation for convection-diffusion boundary value problem is to use
upwind approximation for the first derivatives. In this case, A1) is defined as in
CDS and the terms v;, v in A®) are approximated in the following way:

(11) vii; = (Bl — 1Bt Dy + (B + 1BF: 519045
v = (B — By + (Braj + [ BriiD -1

In order to investigate the properties of the UDS we need the following auxiliary
result,
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Proposition 2.1. Letb(z) € (WL *(Q2))*, a > 0 and V.b{(z) > B, for some B, > 0.
Then there exisis hy such that for h € (0, ho) the following inequality holds:
[(Biij = Buig) + (Bfi; — Bay)l 2 coh?,

where ¢g = Bo — O(hY), 0 < a < 2.

Proof. Consider the linear functional:

biivize —buiciyzs  Obuiy
O Ui 6;113.

This functional is bounded for b, € Wit*(?), 0 € a < 2 and vanishes for all
polynomials of second degree. Therefore, by the Bramble-Hilbert lemma argument
we get

|l(bl)| S Chalblil-{-a,oo,e‘
Similar inequality holds for b,. Multiplying by h?, using the triangle inequality and
the assumption V.b > B, the desired inequality is obtained, [

Remark 2.1. The above proposition means that, if the divergence of the vector b is
greater than by > 0, then the discrete analog of V.b, defined by

bl,i+1/2,j - 51,:‘—1/2,3' + b2,:',j+1/2 - bz,i,j—l/z

h h
is also positive for sufficiently small h.

First we will prove that the considered scheme is monotone.

Proposition 2.2. UDS satisfies the discrete mozimum principle and the corre-
sponding matriz A is an M-mairiz.

Proof. Let a;4; ;41 be the coeflicient in front of 444 j41, k,{ = —1,0, 1 in the finite
difference scheme. Then it is enough to check the conditions [12]:

(1) a;; > 0;

(2) ai__l’j, a.,-_{_l,j N am-_i, a;,j_l_l are neg&tlve;

(3) @ij — X p=d1 Ttk i > 0, le., A is strictly diagonally dominant.
We have

(1)

2
a;; = Z[(kfi,j + ki) + (Br-',-i,_-,- - B+ IBI";J| + Byl > 0
i=1

(2)

|Brigl+ By 2 0= —(kiij + [Brajl + Bri) <0

Bt — Bl 0= —ki,; + By~ |Biisl <0
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(3)

2
Gj— D, Gipkja =2 (B = Biiy) > 2eh* >0,
ki=%1 i=1

O

Let A be the matrix arising from the finite difference approximation. We scale the
matrix A and define the linear operator A;:

1

Ah:DD"—"‘D, Ahy=h2

Ay,

where D is the space of all grid functions and D° = {y, 3, = 0}. This means that
¥y Ay = (4w, v)-

Now we concentrate on the positive deffinitness of the operator A; and the matrix
A. In Section 1 we showed that the bilinear form, corresponding to the continuous
problem (1) is Hy—elliptic. In the following proposition we establish that the discrete
analog of the bilinear form inherits this property.

Proposition 2.3. Let b(z) € (W t*(Q))* , @ > 0 and V.b(z) 2 Bo. Then the
matriz A of UDS is a positive real matriz and there ezists a constant C' such that
the following inequality is true:

(A, ) > Clylli . , for ally € D° = {y, y., = 0}.

The constant C depends only on the ratio a{z)/|b(z)|.

Proof. Let z(z) and y(z) be grid functions from D°. Then

2
(12) (AhyaZ) = - Z Z [kf-Il—c‘,jAfyi,j s k;),-lj_A—,y,-’j] z!',j
FEW (=1
2 2
2.2 ["’rt',j - 'UI,i,j} ag=l+)
TEW =1 i=1

We transform the sums in formula (12) for I = 1, 2 using summation by parts thus
obtaining

2
I= E IR RTAN 'RTANEINR

=1 TEw
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Using (11) we rewrite J; in the following way

(13) Ji = Z[(B{",J - iBfi,ji)yi-n,j + (Bl+,i,j + foi,ji)?}i,j
TEw

—(Bus; — [BriiDwis — (Buij + 1 BriiD¥i-1,4)204
= D [BF i1 — Buriglioril

J?Ew

+ > [Bfi; — Buigl viz
W

=3 [1BEasl Ay = 1Bris B 71,0
rEW

We now transform the first term in the last identity in (13)

S [Bfijw; — Buisuicnil sy = D [Bfi e — Buriviil zis

FEW TEW

+ 3 Buai(Uis — Yim1)%,

TEwW
Using summation by parts for the first term above we obtain
Z [Bfsi¥is1y — Buij¥iorgl 7y = Z Byij(7i;00055 = 45, 80%,5)-
LEW rew

Finally we get

2
(Apy,2) = ZZ(kr,i,j+|Br,i,j’)Aryi,jArzi,j

I=1 z€w
2
+ 20 Brai(zi D% — 1:0:% )
I=1 z€w
2
2.2, (sz'.f - Br,i,f) YijZege
{=1 z€Ew

Letting z = y in the above formula the desired result follows using Proposition
21. Od

2.3. Modified upwind difference scheme (MUDS). As we will later show the
UDS is only O(h)} accurate. In order to obtain a diagonally dominant matrix and

achieve O(h?) order of accuracy we modify the upwind scheme in the following way
[3], (see also [20})

/ biudy = (Byij—|Brailuiy + (Bri; + | BriihDu-y; + O(R)
= I, + O(h),

/ biudy = By ;(u;; + oy ;) + O(h?) = L + O(?),



12 R. D. LAZARQV, 1. D. MISHEV, AND P. §. VASSILEVSKI

) —
/ (wa% + bm) dy = —kyi O+ L+ O(h%)
L5 Y 3

= —(kyg; — |Bri DBy + L+ O(R?)
ki -«

— A
Lo | Byl ki °

k; 5 =
— (k1,£,j - IBl,i,j‘ - ————_kl,:',j T iBl,i,jl) A;m,j

i

+1, + O(h%)
ki -
- i B,
L4 |By gl /by 0
B,
+ LB Ayu i+ I + O(R?)

Eyig + | Brigl

kygj -« 2
- b R u + I + O(R?).
T4+ | Byl ki 1 T ()

In the last step we have taken into account that B; = O(h). This heuristic formulae
show that if we want to get second order finite difference scheme we should choose
w, w;, v, v in such a way that they satisfy the following conditions:

wiy vty = kA 4 (B = IBE Dy + (Bl + 1B Dy, 1= 1, 2,

Wi T Vi = "’;I.i,jzryi,j +(By,i; = |BrisDyig + (Brij +1Brah¥iery, =1, 2.

We remark here that we split the scheme into two parts only for convenience of the
error analysis. Then we define MUDS as follows: A is the same as in CDS and
the expressions wy, w; in A® are defined by

(14} w?,-i,j - —k?:',j Ayy; i — |Bi:t,'£,j|Afyi,j , 1=1,2,

Wi = ki Oy — 1By, 1=1,2,

where

. ki . -
15 k,": £ ) k+‘-:k,‘ i
( ) Lij 14+ 'Bl,i.jl/ki,i.j 1,4,7 1,441,

bz, - 3
)3, , k+£ . = k ii .
1+ [ Byl ko g 24 2,6,7+1

In the same way as in Proposition 2.2 and Proposition 2.3 it follows.

ko =

Proposition 2.4. MUDS satisfies the discrete mazimum principle and the corre-
sponding matriz A is an M-matriz,
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Proposition 2.5. Let b(z) € (WIH*(Q))?, a > 0 and V.b(z) > Bo. Then the
matriz A of the MUDS is a positive real matriz and there exists a constant C such
that the following inequality is true:

(Any,9) 2 Cllylliw , for ally € D° = {y, yir = 0}
The constant C depends only on the ratio a(z)/{b(z)].
2.4. W'in’s difference scheme (IDS). Another approximation we derive in a sim-
ilar way as in [13]
Ouly
]ﬁ(_a(ﬂ 3“51: ) + by (v)u(y)) dy = ""Yff,jAzyi,j + Bi}:i,jyi+1,j + Bi",i,jyi,j
or
(16) Wi = M Dy Wiy = i Dy, 1=1,2

and v;' , v are defined as in CDS, We choose the coefficient ¥ such that the above
approximate relation is exact for u = ¢®/¢ when a(z) and b;(z) are constants. We
get

= B B

Fr?.i;j = Bl,i,j coth _’;__l:._.

(17) BEM
Y45 = By j coth (%

14,

It is easy to see that 47 and 7, > 0 are positive regardless of the sign of b;. From
[coth(z)f > 1 we have 9 > |Bjt| and 1; > |By|. Using the same technique as in
previous propositions we have:

Proposition 2.6, IDS salisfies the discrete mazimum principle and the correspond-
ing matriz A is an M-mairiz.

Proposition 2.7. Let b(z) € (W r*(2))? , a > 0 and V.b(z} > B,. Then the
matriz A of the IDS is a positive real matriz and there exists a constant C such
that the following inequality is true:

(Awy,9) 2 Cllyli , for ally € D° = {y, y, = 0}
The constant C depends only on the ratio a(z)/[b(z)|.

Summarizing these approximations we formulate the following discrete problem
for (1): find a grid function y(z), which satisfies the finite difference equations:

T (wf (2) - @) + Tha (o (8) —ule) = [, f(e)dz I w,
y(z) = 0 on 7,

where wy, vy are defined by (7), (14), (16), (9) and (11), respectively. These schemes
can be written as systems of linear algebraic equations

(18) Ay =1
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where the boundary conditions have been eliminated.

3. STABILITY AND ERROR ANALYSIS

The stability of problem (18) is a simple consequence of the positive definiteness
of the matrix A. Namely, we prove the following lemma.

Lemma 3.1. For all considered difference schemes the following a priors estimate
is valid:

19thw < ClFll-1,0
where y is the discrete solution and f is the right-hand side of (18). (The constant
C' does not depend on y or f.)

Proof. The proof follows from the inequalities based on the the coercivity of the
operator A and on the definition of the norm {|.}|_,

“y”iw 5 C(Ahyay) = C(f’ y) S C”f“—l,wuyni,w ’
|

Remark 3.1. Since ||fll_10 € | fllow and |l9llow S yll1w we also can obtain the
following estimale:

”y”{],w S Cnf“ﬂ,w

3.1. Error estimates in discrete H'~norm. The error analysis presented here is
done in the general framework of the methods developed in [21} and [9]. We consider
only the case when a(z) = 1. Let

Az) = y(o) - u(a), 7 € w
be the error of the finite difference method. Substituting y = z+u in (18) we obtain
(19) Az=f—-Au=
Then using (4)-(18) we transform 4 in the following form

i{[[v#—%d’r—wﬁ} - u:%d’rmwr]}
+§;{[f,'+b‘u@mv?} - U’rb,udfy—v;]} =P+ =9,

where the local truncation error 4 has been split up into two terms:

P = Z: [ (2) ~ m(=)] , ¥ = Z [t (2) = ()],
(20) mxfa—g—;d'r—'w“#rm/abmdv—v:

Here 1, is the error of approximation of the first derivatives, and 1, is the error of
approximation of the second derivatives.
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Note that the components of the local truncation error 7 and j; are defined on

the shifted grids w;, = 1,2. Using summation by parts and the Schwarz inequality,
we get

(92,2) = D2 [nt(2) — m(=)] «(2)

= —; > m(2)Dyz(z)
< (Z‘ > n?(w)) (Z > Kfz(w))
I=1 gewt I=1 ggut

< (e + mel2) 2l 10
Likewise

(1, 2} < (el + lg21l2) 2l o -

Summarizing these results and using Propositions 2.3, 2.5, 2.7 we obtain the follow-
ing main result.

Lemma 3.2. The error z{z) = y(z) —u(z), z € w of all considered finite difference
schemes satisfies the a priori estimate

(21) 2l < Cg(ilmlh + )

where the components 1y, p;, I = 1,2 of the local truncation error are defined by
(20) with approzimate fluzes wi, w;, v, v, ! = 1,2 determined by (7), (11),
(14) and (16) for the UDS, MUDS and IDS, correspondingly. (The constant C
does not depend on h or z.)

In order to use the estimate (21) of Lemma 3.2 we have to bound the corresponding
norms of the local truncation error components 7, gy, { = 1,2 defined by (20).
These estimates are provided in the lemma given below.

Lemma 3.3. Let the solution of the problem (1) be H™-regular, 2 < m, and the
components of the local truncation error m,, 1y, | = 1,2 be defined by (20) with
approzimate fluzes wl , wy, vt , v, 1 = 1,2 determined by (7), {11), (14) and
(16). Then the following estimates are valid (1 =1, 2):

3
(22) Iﬂi‘l S Chm_Iiulm,Eg "2' <m S 3}

(23) Il < { CE™|by |1 00,0}l for MUDS and IDS,
= Clhlbiloconltliz + B bl coaltlmzl  for UDS,

where } < m L 2, €=¢;_ ;e ; forl=1and€=e;;.1Ue; forl=2.
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Proof. Consider first the component ny(z) = (2,4, 2, ;) for the UDS. Then

F Ju  Ju
(@) == | gardr=wi@)= = [ g ) dy+ (= tiog).

For a fixed z € w{, 7, is a linear functional of u. Using the imbedding of Sobolev
spaces H™(Q) C L,{Q), 1 < m, (see for example {1]) we conclude that this
functional is bounded in H™(8), for § < m, ie. |(m(z)] < Clltflmz for every

u € H™(€), 3 < m. It is easy to check that 7, vanishes if u is a polynomial of

second degree, Therefore, by the Bramble-Hilbert lemma argument we get that

(24) (@) € CH™ a5 < <3.

Now we consider n; for the MUDS. By construction
- 1 — 2 2
bi(e) = (T + Bl ) = 14 Gl Cufe) ~ BiGe)
Then
ou Ju
m(z)=— [ z—dy—w(z)= ”f o, Ot (1+ Crh*) iy — uimn ).

51 62:1 s; O

We consider u; ;—u;_1 ; as a linear functional of u for a fixed € w*. This functional
is bounded in H™(€), 1 < m < 3 and vanishes for all polynomials of zero degree.
Therefore, by the corollary of the Bramble-Hilbert lemma we get

(25) Jug; — g 5] € Cluhiz + 2™ Haulnz), 1< m < 3.

Hence the estimate (24) is valid in this case as well. Finally for the IDS the result
follows from the fact

By jcoth(By ;) =14 Cy()h?, Cy(z) ~ bi(z).

and the same reasons as in the case for the MUDS. In a similar way we can estimate

m(z).
For the component g, (z) let us begin again with the UDS. We have,

by ; Ah—
(26) i) = ] biuds — vy = I(by,u) + i——l%i?ii—Alu,-)j

where I(by, ) is defined by

i 4 + i1 4
(27) l(bl, u) = hbl.i—l,/?,j [JTI’J] . /bl(mlli - h‘/?’ Y)u(ml,f - h‘/21 7) *
Now we can estimate the second term in (26) by

|b1,£—1/2,jih

5|ty = tionl S Chlbileon (luliz 4+ 2™ Hulmz) , 1 <m < 3.
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The functional (b, u) is estimated in the following lemma, which concludes the proof
for the second component of the truncation error ;. We note that for MUDS and
IDS we have only the first term [ in the formula (26). O

Lemma 3.4, If the solution of problem (1)} is H™-regular, 1 < m, then for the
bilinear functional I(by,u) defined by (27) the following estimate is valid:

1(b1, u)] < CA™|[bill1,e0,0llullmz, 1 <m < 2

Proof. After the change of variables z; + s;h = 7; we get the domain E = {(sy,$,) :
—1 < 8y < 0,]83) < 3} and the functions 4(s;, s3) = u(@,+8h, T2+82h), by (81, 82) =
b1($1 + Slh, Ty 4 Sgh),
(0,0) + @(~1,0)

2

v o1 o1
—hf by(~5, 82)i(— 5, 85) dsy
-1/2 2 2

i(blau):l(al}ﬁ') = h’al(_%s{))

We rewrite { in the following way

- - i il — 1/2
(b7 = hbl(—%,{))[ (0,0)+2( 1,0)_f_ &(_%,32)(132]

1/2

12 _ i
+h [[_1/2[61(—%, 0) - bl(_é‘,sﬂlﬁ(m—;,sz)] dsz}

. = il — 1/2
_ hbl(_%,o) lu(o,o)+2( 1,0) f_mﬁ(m%,%) d&}

/2 -
th [ (=509 = Ba(=5, Ol =590 = =5, 0) oy
/2 -
+h[_”2{b1(—%,0)— by~ 3, s2)li(—5, 0) ds
= BBy 5, 0)p(8) + he(B, 8) + h(~3,0)a(5)

where the linear functionals p(#), ¢(5; ) and the bilinear functional ¢(b,, it) are defined
by

i mf 1/2
p(ﬂ) = (0’0)+2u( 1,0)_[ ﬁ(mlasﬁ) dsZa

~1/2 2
) = [ lo(—3y50) = B, O3, ~ i3, 0] ds
’ —1/2 2’ 2’ 2’ 2’
and
g(by) = f”z 51(_1 3q) dsy — ’61(—"1" 0).
L2 N2 2’
Hence

(b1, )] < hlBy,c0,2lp(B)] + hle(by, D + hlfio cozla(bs)]-
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First we consider the linear functional p(#). It is bounded foru € H™(FE), 1 < m and
vanishes for all polynomials of first degree, Hence {p(u)| < CA™ ulp 7,1 < m < 2.

Obviously e(by, ) is a bilinear functional bounded for (by,%) € WL(E) x H*(E)
and vanishes for r, s polynomials of zero degree, i.e., ¢(r, %) = 0 for @ € HY(E)
and ¢(by,s) = 0 for b, € WL(F). Then by the bilinear variant of the Bramble-
Hilbert lemma we have |¢{b;, u)| < Chlb,}; o z|u|1 7. And finally the linear functional
q(gl) fulfills q(gl) = 0 for all polynomials of first degree and therefore the estimate
|g(b1)] £ Ch|by|1 00,5 holds. Combining the above estimates we have
[ (b1, u)| < CA™ {'ulm,zlbllﬂ,w}"’ hz_mibﬂl,w,z(lﬂll.i"' |“Io,oo,‘e“)] :
Hence by the imbedding H™(2) C L™(Q), m > 1 we get the desired assertion. O

Now we are ready to prove the main result of this subsection.

Theorem 3.1. If the solution u{z) of the problem (1) is H™-regular, with 3 < m <
3 then:
(i) the MUDS and the IDS defined by (14), (9), (16) and (9) have O(h™ 1)

rate of convergence in the H'~ discrete norm, and

ly = wllsw < CE* (14 BE(Ubrlls 0,0 + 1B2ll,002)) sl

(i2) the UDS defined by (7) and (11) has at most first order of convergence in
the H*-discrete norm, and

ly —ulliw < Ch(lbiloeon + [b2lo,eon) [2l0
+Ch™ 1 (1 + h's(“b1“x,oo,n + b2l 00,0)) 11l -

Here
5= 1 3<m<2,
3—m 2<m<3
Proof. In Lemma 3.3 we have proved the estimates for the components n,, y;, ! =
1, 2 of the local fruncation error . Hence

172 1/2
Im 1l = (Z 7?:2(3’)) < Cp™! (Z |“|;2n,"é) < Ch™ M|y g

a:Ew;" :t:Ew;"
In the same way we get for ||u/]|;
[l < CA™|IBall1 00,0l wllm 2
when MUDS or IDS are used, and

”#1“1 < Chmllbslll,w,nllullm,n + h|b1[n,m,n[“|1,ﬂ

otherwise. This completes the proof. O
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3.2. Error estimates in discrete L*-norm. Here we elaborate the discrete Aubin-
Nitsche “trick” that has been proposed in [21]. In order to simplify our presentation
we consider only the case a(z) = 1. First, we introduce the following averaging
operators [21]:

1 Tithf2

S,"u,.-—.- Ef u(ml,...,&,...,mn)df,-

Fi_nyz
1 rih

Sl—*"LLIE "

1 e
Stu=7 [ w(er,ee b e dé
h wi—h

w2y, ey iy e 2y ) dE

‘.T.',' - Stz = S:}-Sl_, T”—"TITQ
Then applying T' to the differential equation (1) at any grid point z € w and using

the properties:
&y + { Ou
1; (B_a:f) (:L) = Ug;,2: Sa‘ ((9_:12;) (CE) = Uy,

we get
(28) — (Tan)z, ., — (T1u)g, ., + ToST ()s, + 1153 (bott)s, = Tf(z) = $(=).
Dividing (18) by h* we express the operator A, in the form

(29) F(@0)s, + 3 (wa)e, + 3 AVY = Tf(2) = §(2).

Let z(z) = y{z) — u(z), = € w be the error of the finite difference method. Substi-
tuting y = z + u in (29) we obtain

(30) Az = Apy — Apu = ¢ — Ayu.

The right-hand side of (30) is the local truncation error. In order to obtain a priori
estimate we represent the local truncation error in a divergence or almost divergence
form (depending upon the choice of the difference scheme). Next we rewrite (30) as

2

Apz = z[%wr"‘*‘(Ts—r“)a}

=1 zi

2.1
+ [EUI - T5457 (brﬂ)]
i=1 R

2 2

1 _
Z (Tooru ~ u)g,, + Z ['};’Ur — T35 (b,u)]
t=1

I=1

£
2
+ D [k~ Dug,],, -
=1
Finally, we find the expression for the local truncation error

(31) Ahz = Th 51z + T Fazs + )ull,:x:l + /-"2,:::; + gl,ml + 52,3:2
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where
f To_u—u, fzrecw
— d—i ] = [}
(32) = o, ifzen,
1
(33) = Ts 0 S7 (bu) - P &L=—(k—Dug,zcwt.

Let us introduce the solution of the following auxiliary discrete problem

ATw = z inw,

(34) w 0 on7v.

Note that similarly to the Aubin-Nitsche “trick” w is a solution of a discrete second
order problem with a right-hand side the error z(z) of the method. Obviously,
(35) (Apz,w) = (Ajw,2) = (z,2) = {|2||3 .

On the other hand from (31) we get

(Apz,w) = Z [(77!,5;:0: 5 w) + (ﬁ!.xnw) + (Ei',:cn w)]
(36) = Z(Ur, Waye, ) — E {(pywz )i + (€, w11}

< Z (Inllow + NV e + €0 Nlwzizy o + Huwos Ti) -

To complete the proof of the a priori estimate we need the following lemma.

Lemma 3.5. Let b € (WL)?. Then for the error z(z) = y(z) — u(z), = € w of all
considered schemes and the solution w of the problem (34 ) the inequalities are valid:

(37) llwllz, < 01“44%2)'“’“0@ < Cyll#]low
for sufficiently small h,
Proof. Using the definition of A%z) and the triange inequality we get

AP wllow = [llkiws, ]y + [kaws,)e, llow
I(1 + Cy (@) wz, )., + (1 + Ca(z))ws, ], llow

11

2 “wE;xl + w?;x;”ﬂ,w
—R*|Cy 5wz, + Crwg,p, + Cozws, + Catr,s,lo.w
Z !lwi";d}; + sz-’-":‘z!lU,w - D2h2|Im|!2,W

Here ki, =1,C, =0, I = 1, 2 for the UDS and
kg =14 CI(.’B)h2, Cf(&)) ~ b?(ﬂ’?), = 1, 2.
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We use also that Cy, C; and C) z,, Cy 5, are bounded.

Finally using the equivalence of ||ws,, + Wz,s; |0, and w|ly,, in the space D® we
obtain

1420w 2 (D1 = Do) [l

where D, and D, are positive constants. Hence for sufficiently small h the lower
bound in (37) is proved.

An upper estimate for [IAf)”O'w is derived by using the standard a priori estimate
in Wi(w), lwlhe < Cllzllow- Then

T
AP wllow = A wllo. = (Ar — AT 0l
< | ATwllow + 1AL wllow
< lzllow + Cllwlh,e
< Cllellog -

]

Remark 3.2. Lemma 3.5 ts actually a discrete regularity result in Wi(w) (cf.,
Hackbusch [10])
itz < Cllzllow -

Then (35) and (36) yield

2
2l = (Arz,w) < C 3 (Imllow + el + 11 2llo o
J=]1

Thus, we have proved the following a priori estimate

Lemma 3.6. The error z{z) = y(z) — u{z), ¢ € w of all considered finite difference
schemes satisfies the a priori estimale:

H2llow < C;(Ilmllu,u + [l + 1611

where the components ny, py and &, 1 = 1, 2 of the local truncation error are defined
by (32) and (33). The constant C' does not depend on h or 2.

Now we are ready to prove the following basic lemma.

Lemma 3.7, If the solution u of the problem (1) with constant coefficient a(z) is
H™(Q)-regular, 1 < m < 2 then the components of the local truncation error m; and
t, 1 =1, 2, defined by (32) and (33), respectively, satisfy the following estimales:

(%)

mllow < CR™ ||ullm,a,

(#)

lls < { Ch™||br]1,00 all/im,0 for MUDS and IDS
=1 C(blbloo,alulia + A7l o 0lltllma) — for UDS,
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(444)
vevt o [ CRullnn for MUDS and IDS
€1 51 0o for UDS,

Proof. Consider ¢;; = {(z1,22) : @151 £ 21 £ L1415 Taj-1 S Ty < Zaj41). We
begin with UDS. To obtain (i) we rewrite (32) in the form

1
™= U(331,i,932,j) - f 1(1 - lszi)ﬂ(fh,i, Zg;t+ 82) dsy.

We have that 5, is a linear functional of u(z), bounded for u € H™(2), 1 <m < 2.
This functional vanishes for all polynomial of first degree. Therefore, by Bramble-
Hilbert lemma argument we get

(38) Im(z)] € CA™ Nulp,, 1<m <2
%
”nluﬂ,w = (Z ﬁ‘f(m)hz) S Chmlu]m,e'
rew

We note that in this case £(2) = 0. Now, let us take the component 7, () for
the MUDS and the IDS. In both schemes the coefficients ky(z) and v,(z) are
perturbations of the coefficient k;(z) = 1 of the UDS with a term of order O(h?).
More precisely,

be)= 1 |b£m)h/2| + 'bl(;’)lh ~14+GH  (MUDS)
and
T{x) = bl(g)h coth (bl(;)h) =1+Cih*  (IDS).

Since

£1(z) = —(ky(2) — 1)z, = _clh2[ffimﬁ3‘-ia~i~:ll
we have

[€()] < Ch(lulye + A" ulm,e), L<m <2
and hence

&0 < CR* ||lullmas1 < m < 2.

(ii): For the second component p,(z) we proceed in the same way as in Lemma
3.3. First, we need the equality (see [21]):

T8¢ (bru)(ey s 2} =
1 0
f1(1 — |sal) [/ . bi(y; + 81,20+ so)u(@1; + 81,895 + 83) dsy | ds,.
Now, let us consider the component for the MUDS and IDS

by i1/
m(2) = ToS7 (bu)(er,225) = =5 gy + i)
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We can represent y; in the following way

pi{e) = by 12 ;p{u) + c{by, v) + u;,;q{b1)

where
1 0
pu) = /1(1 — [sal) [/1 u(Zy; + 81, 225 + 82) d31] ds;
[z 2a) + u(@yi — Bz )]
2 3
1 0
tbrw) = [ @ =loa) [ a@rst sn,ma o+ o) - ulorsomay)|
- -1
X [by(21; 4 81,225 + 52) = by (@14, %2;) ds1] dsy
and

1 0
g(u) = f1(1 ~ |84]) [/1 bi(#1; + 81,205 + 82) — b1 4,22) d-‘)‘l] dsy
- 51(331,1' - h/2, 9»'2,;')-
We have the estimates:
p(w)l < CR™ ulme, 1< m<2,
|C(blau)l S Ch|blll,m,e|u|1,ea
IQ(U’)! _<.. Chlblll,oo,e}
Hence
()] < CR™ by ([l e + 257 (ke + [2l0,00,))-

For UDS we have to add the error of the term —|b; ; ;|uz, which is

he (1B fo,c0,e{[ula,e + B7 7 2], )] -
Combining the above results we obtain the assertions of the lemma. 0O

From Lemma 3.6 and Lemma 3.7 we get immediately

Theorem 3.2. If the solution of problem (1) is H™-regular, 1 < m < 2 then:

(i) the MUDS and IDS defined by (14), (9), (16) and (9) have O(h™) rate of
convergence in the L*~ discrete norm, i.e.,

lly = wllow < CA™ (1 + [lball1,c0,0 + lb2]l1,00,0) tllm 2

(i2) the UDS defined by (7) and (11) has at most first order of convergence in

the L?-discrete norm, i.e.,
ly—ullow < Ch{|bilo,mn + [b2]o,00,0) [ula
+CR™ (1 [1b1l1,00,0 + [[ball,00,2) [[2]lm.0-

Remark 3.3. The technique used in Subsection 3.1 and 3.2 directly gives the same
estimates for the CDS, when this scheme is stable, i.e., when (10) holds.
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4, NUMERICAL RESULTS

T 4l cpadlnn o dlho o nle waf v dal bant awa Toc wrn atvidy tha arear hahovinm
In this section on the basis of model test CAAMPISS WE 5vaay the error behavior of

our three schemes ( UDS, MUDS, and IDS) in both H* and L? discrete norms.
We consider

(39) ((dol-eVi) Ul = S, n

u(z) = 0, onT,
and for velocity vector b we choose

by = (1~ zcosa)coser, by = (1 — ysine)sina,
where the angle is a = 15°,
Problem 1. f(z,y) is chosen such that the solution is
w(z, ) = 2(1 — 2)y(1 — 1)e’+) ford=0 ord=1.

In tables 1-6 we display the error for smooth solutions without boundary layer
behavior. In the first and the second rows we show the L?(w) and H'(w)-norms of the
error z = y ~ u and “numerical” rate of convergence 3, i.e., A, Our computational
experiments clearly show that MUDS and IDS exhibit second order of convergence
both in L? and H'-norms for problems with moderate convection (i.e., not too small
£ > 0) ; the factor 8 is in the range of 1.822-1.995, correspondingly. For these
problems UDS is only first order accurate: J is between 0.947-1.260. For highly
dominating convection all schemes show about first order of accuracy. The results
for £ = 1072, 107° show that all considered schemes are stable.

Problem 2.
f(l', ?J) = d@v(.b.a vu(}) 3 “0(3?, y) = wzy(l '" y)

Here ug is the solution of the equation (39) when ¢ = 0. In Tables 7-9 we show
ly — uoflo,z, where @ is a grid in Q = [0,7/8] x [0, 1], i.e., away from the boundary
layer. This gives us a reasonable information since for small ¢ the function u, is
close to the exact solution of problem 2, except within the boundary layer. In fact
we have an estimate ||u—ugl|, g < Ce. Our experiments show very weak dependence
of the numerical solution with respect to ¢ — 0 in . This means that if we use
more sophisticated method near the boundary layer, e.g., local refinement, defect-
correction, in combination with the proposed schemes outside the layer we can get
betier results.
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TABLE 1. UDS ,a=15%,d=10
¢/N 16 32 64 128 256
L7 10.380.10°2 [ 0.198.10~%] 0.100.107% | 0.503.10~% | 0.252.10~*
3 0.947 0.974 0.986 0.991 0.997
1
HY|0.154.1072 | 0.859,1073 | 0.454.10~% | 0.233.10~% | 0.118.103
Ji] 0.699 0.842 0.920 0.962 0.982
L? [06.149.10-1]0.811.1072 1 0.425.10°2 | 0.218.10"? | 0.110.10~2
A 0.780 0.878 0.932 0.963 0.987
102
H' | 0.633.1071 | 0.462.107! | 0.288.10"! | 0.163.10~' | 0.868.102
B 0.298 0.454 0.682 0.821 0.909
L2 10.233.1071]0.135.1071 | 0.737.1072 | 0.388.107* { 0.200.10~2
Jéi 0.667 0.787 0.873 0.926 0.956
10-8
HY| 0.110.10° | 0.779.10" | 0.505.10"' | 0.305.10* | 0.180.107
B 0.338 0.498 0.625 0.727 0.761
TABLE 2. MUDS ,a=15%, d=0
e/N 16 32 64 128 256
L7 10.213.107%[0.567.1075 [ 0.146.10~" | 0.372.107% | 0.940.10~"
B 1.822 1.909 1.957 1.973 1.985
1
H' | 0.818.107% ] 0.239.107% | 0.649.10~° | 0.169.10~% | 0.431.10~¢
Jii 1.559 1.775 1.881 1.941 1.971
12 10.102.1071 | 0.416.1072 ] 0.148.10"% | 0.468.10~= | 0.134.10°3
8 1.100 1.204 1.491 1.661 1.804
10~
H' | 0.436.107! | 0.240.10-* | 0.101.10"* | 0.347.10~% | 0.104.10~2
Jé] 0.609 0.861 1.249 1.541 1.738
IL? 10.233.1071]0.135.10-% | 0.736.10~% | 0.387.107% | 0.198.10°2
B 0.667 0.787 0.875 0.927 0.967
103
H'| 0.110.10° | 0.784.107 | 0.511.10-* | 0.309.10-! | 0.174.107?
8 0.338 0.489 0.618 0.728 0.820
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TABLE 3. 1DS ,a=15% d=10

e/N 16 32 64 128 256
L7 10.169.107% | 0.451.107°1 0.116.10~° | 0.295.10~°% | 0.740.10""
i 1.840 1.908 1.959 1.975 1.995
1
H'|0.650.10-4] 0.189.10~% | 0.511.10-° | 0.133.107% | 0.338.10~¢
i 1.578 1.782 1.887 1.942 1.976
L2 [0.860.10~%] 0.288.10"2 | 0.816.10~2 | 0.213.10™% | 0.540.10~*
Ié; 1.253 1.578 1.819 1.937 1.980
1072
H'|0.366.107'10.166.107* | 0.557.1072 [ 0.158.10~% | 0.420.1072
J;; 0.786 1.141 1.575 1.818 1.911
L2 10.233.1077]0.133.1077 ] 0.736.10% | 0.387.107% | 0.198.1072
8 0.667 0.787 0.875 0.927 0.967
1078
H!'| 0.110.10° | 0.770.107% | 0.511.10"* | 0.309.10~1 | 0.175.10"*
Jé; 0.338 0.515 0.592 0.728 0.820
TABLE 4, UDS ,a=15",d=1
e/N 16 32 64 128 256
L?710.232.10°%10.102.107% | 0.470.107% | 0.223.1072 | 0.113.1073
A 1.260 1.186 1.118 1.040 0.981
1
H'10.930.107%1 0.451.10~2 | 0.218.107% ; 0.106.10~% | 0.545.1073
Jéi 0.984 1.044 1.049 1.040 0.960
L? 10.486.107710.267.1077 ] 0.141.1071 { 0.725.107% | 0.368.10~2
i 0.769 0.864 0.921 0.960 0.978
10-?
HY1 0.228.10° | 0.170.10° | 0.110.10° { 0.637.1071 | 0.345.10°*
Jei 0.201 0.423 0.628 0.788 0.885
L2 10.719.1077 ] 0.408.10°1 } 0.219.10-1 | 0.114.10~! | 0.585.10~*
i 0.690 0.817 0.898 0.942 0.963
10-3
H'| 0.329.10° | 0.215.10° | 0.138.10° | 0.847.10"' | 0.496.107¢
J¢i 0.536 0.614 0.640 0.704 0.772
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TABLE 5. MUDS ,a=15%,d=1

e/N 16 32 64 128 256
L7 10.768.1072 [ 0.204.10% | 0.526.10"%] 0.134.10- [ 0.337.107°
B 1.830 1.911 1.956 1.973 1.991
1
H' | 0.302.1072 | 0.900.10~% | 0.246.1072 | 0.646.10~* | 0.165.10~*
B 1.531 1.747 1.871 1.929 1.969
L7 10.291.10°7} 0.117.10°7 ] 0.415.1072 | 0.130.10"2 | 0.374.1073
B 1.101 1.315 1.495 1.675 1.797
102
H'| 0.132.10° | 0.721.10"' | 0.306.10°* | 0.106.10"? | 0.319.10~2
Fii 0.677 0.872 1.236 1.529 1.732
L2 10.719.10°1] 0.407.10"7 [ 0.218.10°1 ] 0.114.107 | 0.576.10™*
B 0.690 0.821 0.901 0.935 0.985
107°
HY| 0.329.10° | 0.216.10°% | 0.138.10° | 0.840.10" | 0.432.107?
B 0.536 0.607 0.646 0.716 0.822
TABLE 6. IDS , a = 15°, d =
e/N 16 32 64 128 256
22 10.752.107%( 0.200.10~° | 0.515.10"* | 0.131.10~* | 0.330.10"°
3 1.828 1.911 1.957 1.975 1.989
1
H'}0.296.10°2| 0.883.10° | 0.242.10"% | 0.634.10~* | 0.162.107*
3 1.532 1.745 1.867 1.932 1.968
12 10.227.10°1 | 0.755.107% [ 0.212.10~% | 0.553.10~2 | 0.138.103
3 1.277 1.588 1.832 1.939 2.002
1072
HY| 0.100.10° | 0.454.10"! | 0.153.10~! | 0.443.1072 | 0.116.102
i 0.880 1.139 1.569 1.788 1.933
27 10.718.10-1 | 0.407.10~" [ 0.218.10"* | 0.114.10~* | 0.576.10~*
B 0.690 0.819 0.901 0.935 0.985
1078
HY| 0.329.10° | 0.216.10° | 0.138.10° | 0.840.10°* | 0.475.10~¢
B 0.536 0.607 0.646 0.716 0.822
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'I'ABLE 7. UDS , @ = 15% , boundary layer

e/N 16 32 64 128 256
L2 10.427.1072[0.252.107% | 0.147.107% | 0.894.107° | 0.594.107°
Jii 0.622 0.761 8.778 0.717 0.590
1078
H'10.414.10°1 | 0.276.10~t | 0.172.10"' | 0.109.1071 | 0.744.10~2
¢ 0.332 0.585 0.682 0.658 0.551
L2 10.2393.10°2 ] 0.225.102 ] 0.122.10~2% | 0.645.10-% | 0.342.10™3
Jéi 0.641 0.805 0.883 0.920 0.920
10~
H' | 0.365.107 | 0.233.107 | 0.134.10* { 0.733.10? | 0.396.10~2
B 0.380 0.648 0.798 0.870 0.888
L% 10.391.107%10.223.10"%? | 0.119.10°% | 0.621.10~° | 0.318.10™®
Jij 0.642 0.810 0.906 0.938 0.965
10°5
H'10.361.107' | 0.229.107* | 0.130.10* | 0.700.10? | 0.364.10~?
¢ 0.387 0.657 0.817 0.893 0.943
TaBLE 8. MUDS , @ = 15° , boundary layer
e/N 16 32 64 128 256
L% 10.392.107%] 0.224.10°% | 0.122.10-2? | 0.682.107% | 0.340.107°
Jéi 0.640 0.807 0.877 0.839 0.652
1073
H'[0.364.10°1 | 0.233.107* | 0.135.10! { 0.790.10~2 | 0.525,10~?
A 0.381 0.644 0.787 0.773 0.415
L210.390.10°2]0.223.1072 ] 0.119.10~% ] 0.618.10~° | 0.315.10~2
Jé, 0.643 0.806 0.906 0.945 0.972
104
H'|0.361.1071 ] 0.228.10! |{ 0.130.10~' | 0.696.10~% | 0.361.10~2
3 0.384 0.663 0.811 0.901 0.947
L?10.390.10°2}0.223.10°%{ 0.119,10~% | 0.618.10" | 0.315.1073
3 0.643 0.806 0.906 0.945 0.972
10-°
H'|0.360.1071 | 0.229.1071 | 0.130.10~1 | 0.696.10~2 | 0.361.10"2
Jé) 0.388 0.653 0.806 0.901 0.947
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TABLE 9. IDS , @ = 15° , boundary layer

e/N 16 32 64 128 256
L2 10.390.10°2]0.222.10°2 | 0.116.10~? | 0.594.1073 | 0.376.1073
Jéi 0.643 0.813 0.936 0.966 0.660
10732
H'10.361.1071 | 0.227.107! | 0.124.10~' | 0.665.10~% | (.454.10"*
B 0.384 0.669 0.872 0.899 0.551
L? 10.390.107? [ 0.223.107% | 0.119.107? | 0.619.10~* | 0.314.107%
Jii 0.643 0.806 0.906 0.943 0.979
104
H*10.360.10-1| 0.228.10~! | 0.130.10~" | 0.697.10~% | 0.360.10~?
B 0.384 0.653 0.817 0.899 0.953
L7 70.390.107%] 0.223.10"7 1 0.119.1077 ] 0.619.10-% | 0.315.1073
Ji; 0.643 0.806 0.906 0.943 0.975
10-%
H'10.360.10-'| 0.229.10~1 | 0.130.10~! | 0.697.10"%* | 0.361.10~*
B 0.384 0.653 0.817 0.899 0.949
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