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1. Introduction. Fourier transforms are good tools to analyze those operators
with coefficients constant in space (or in time, according to the usual signal processing
notation). From a numerical point of view, these operators (or their discretizations)
are represented by Toeplitz matrices (that is, matrices with constant diagonals), and
it is well known that the Fourier transform of many matrices in this class (the special
ones called circulant matrices, that have some sort of periodicity. For example, the
matrices coming from convolution operators) are diagonal matrices. Every Toeplitz
matrix can be related to a circulant one and, thus, the Fourier transform simplifies
the algorithms involving Toeplitz matrices, such as matrix-vector or matrix-matrix
multiplications or inversion of matrices. In this context, we can consider the Fourier
transform as a way to obtain a sparse matrix (in fact, a very sparse maftrix, becaunse
it is diagonal) from a possible dense one.

However, Fourier analysis is not so adequate when the operator does not behave
in the same way all over the space. It seems evident that the main remark about
Fourier transforms, that is, all circulant matrices of the same order have the same
eigenvectors, does not apply here. Matrices representing these operators are no longer
Toeplitz and, in the same way as Fourier analysis cannot locate spatial variations, its
discrete version cannot diagonalize the matrix (actually, the matrix may even not be
diagonalizable). Each matrix needs a different treatment in order to be diagonalized,
if possible. It is interesting, though, to have a general analysis which can be applied
to a larger class of matrices for practical purposes,

The key point is to realize that the problem of getting a sparse matrix from any
given one is similar to that of data compression in signal (or image) processing. In this
framework, the natural idea is to analyze the operator in different scales. Sparsity is
obtained by neglecting those coeflicients corresponding to scales and locations where
the operator has very small variation. If the operator is smooth enough, except
perhaps in a finite number of points, the corresponding matrix becomes sparse (if the
matrix is N x N, it has at most O(N log N) significant coefficients). The multiscale
analysis we are concerned from now on is the multiresolulion analysis. We refer the
reader to [9] for details.

Over the years, some local transforms {in contrast to Fourier, which is global)
have been proposed. Some of them, like the windowed or the Gabor transform are
closely related to Fourier. Nevertheless, the wavelet transform, as stated by Meyer and
(Grossmann among others, has some advantages with respect to the aforementioned
ones and it is more appropiate for frequency analysis (the windows are adapted to the
frequencies: they are wider as the fequency is lower).
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In [7], Harten presents a new multiresolution set-up. The basic ideas about
wavelets are used in a simple way in order to relate the different scales, but the
main difference with the wavelet transform is that the resolution in each scale is ob-
tained by means of interpolatory schemes (point value or cell-average). The better the
approximation resulting from the interpolatory schemes, the greater the compression
obtained by Harten’s multiresolution methods. A two dimensional version of Harten’s
transform appears in [1]. There, a matrix transform (called stendard multiresolution
Jerm of the matrix because of its obvious parallelism with the standard wavelet form)
is introduced.

The aim of this paper is to show that the standard multiresolution form behaves
in most cases in the same way as the standard wavelet form. The structure of these
matrices, the compression and the speed of the algorithms, for instance, are similar
in both cases. It seems to us, however, that Harten’s multiresolution is more natural
than the usual wavelet transform in most numerical problems. Interpolatory schemes
are required in these problems, and interpolatory multiresolution is an obvious frame
to get their multiresolution analysis.

In the next paragraph, we outline the main ideas about interpolatory multireso-
lution and its related standard matrix form. In §3., we will develop some algorithms,
initially appeared in [6], to solve hyperbolic and parabolic partial differential equa-
tions and integral equations. Finally, in §4., those algorithms will be applied o some
specific problems, and we will draw some conclusions in §5.

2. Multiresolution analysis. We review here some of the results in [7, 8].

From now on, we are going to consider f(z) a periodic function in [0, 1] with

Ng = 27 subintervals [a:?_l,n:?], n:j? =j-ho ho = -ﬁ;, J=1,..., Ng, the set of

nested grids {e¥}¥_;, #¥ = 2¥,2] k = 1,...,L < no and a wavelet function p(z),
of (2) = 27 p(27Fx — j).
According to the usnal notation in wavelet theory,

) # = [ Ho)eh()de.

The wavelet satisfies a dilation equation,

(2) p(z) =2 ajp(2e - j).
i

Thus, once we have the knowledge of the finest scale {s?}, it is easy to get the
information of the coarser grids, {s}}.

We assume that, for each scale, we have a reconstruction procedure that pre-
dicts f(z) from the values {s¥}, which we denote by Ri(z). We impose that the
reconstruction is conservative in the sense that:

(3) /Rk(a})gof(m)dm = ff(a,)(p;“ (z)dz = s;-‘

If Ry(z) is a good approximation to f(z) for every scale k, the differences

(4) Qi) = Rie—1(z) — Re(2), k=1,...,L
2



must be small.
From the knowledge of the coarsest scale and the differences Qy{z), we can re-
construet the function in the finest grid:

r
(5) Ro(z) = Re(z) + Y Qu(x)
k=1

From a discrete point of view, this means that we can recover the information
{7} in the finest grid from the coarsest one {s7'}, and the values {d¥}, where

(6) d;? = ka(m)‘P;‘v‘_l(m)d-’ﬂ:S_?—l "/Rk(m)gaf_l(m)dw

The more accurate Rjp(x) is, the smaller the absolute values of {df} are. If we
truncate to zero the coefficients dj-“ with absolute values below a given thresholding,
we get data compression,

As we have just seen this process depends not only on the wavelet but also on
the reconstruction procedure. The freedom to choose this reconstruction is the main
difference with traditional wavelet methods.

In the case of point value interpolation, the wavelet function ¢(z) is the Dirac
distribution, which verifies the following dilation equation:

(7 8(x) = 26(2z)

In this context, (1) and (3) are equivalent to:

(® %= [ tog6 (Tt ) do = s6ab)

(9) Ri(zf)=f(=}), i=1,...,N;

We denote ff = sf, and It(z) = Ry(z) in order to remark the interpolation
process. In this case, the reconstruction is just an interpolation of the functions in
the points {z¥}.

The previous comments lead us to the following algorithm:

Algorithm 1

Given {c; }fr:"l, and an interpolatory scheme Ix(z; f) forallk = 1,..., L such that

Ik(m;?;sj?) = s;’, forallj=1,..., N, we set:

(10) f=c¢, 1<i<No



( Dofork=1,...,L

=AY 1<i< N
(11) .

. b - .
d“} = gj_llqlk(mgj.,la; gk)s 1<ji< Ny

. End

(12) ME = {(d,...,d"), fF}

is the multiresolution representation of c.
We can recover ¢ from its multiresolution by means of the following algorithm:

Algorithm 2

([ Dofork=1L, ..., 1

At =fF 1< < Niey

(13) S
a1 =dF + (5725 f8), 1< <Ny
. End

(14) e=f°

These multiresolution transformations are similar to Mallat’s pyramidal scheme.
Given { ff }j\f_fl forany k= 1, -, L we can get the samples and the differences in the
level k41,
(15) {di*) = G{/H)
(16) {ff¥y = B{s}}

A similar multiresolution analysis can be done for cell-averages. This case comes
by taking ¢{x) to be the box function, that is:

_J 1, ~1<2<0
(17) wle) = { 0, otherwise

w(x) verifies the following dilation equation:
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(18) p(z) = ©(22) + (22 - 1)

The multiresolution analysis

(19) {7 Yo
is given by
k
1 [%
(20} s = /_f(a:)(pl-‘(a:)dm = —-] flz)de
3 i R oy,
We denote ff = sk, and we call it the cell-average of f(z) in IF = [2%_,, z¥]. As

a consequence of 18, these cell-averages are related, as we can see:

(21) fk+1 _(-f23 1 +f2j)

If we denote by A(I) the cell-averaging operator,

(22) ADf =17 [ fa)as

where {I| is the diameter of the "cell” I, B
In order to apply multiresolution analysis, the reconstruction procedure, R(z; f*),
must verify

(23) A(IYR(; ¥y = JF

The following algorithms are the corresponding to algorithm I and algorithm 2
for cell-averages.

Algorithm 3
Given {c¢; }J =y, and a cell-a,verage reconstruction scheme Ry(z;f) for all k =

., L such that RL(mJ, J) = s yforallj=1,..., N, we set:

(24) ff=¢, 1<j<No

[ Dofork=1,...,L

= 3(f% 27— Y+ fgfl), 1<7< Ny
(25) 4

& = fy piet — AUSTR( F¥), 1 <5 < Ny

L End



(26) eME = {(dls""dL):fL}

18 the multiresolution representation of ¢.
The reconstruction algorithm is

Algorithm 4

(( Dofork=17L,...,1

o T = ARG )+ db, 1< < NE
27 <
Art=aff -5, 1<i<N

. End

(28) c=f°

The simplest case is when the point value or cell-average interpolation is centered
and symmetric around the node. Then, the operators I, and A can be evaluated by
the following relations:

(29) L(abits Y =D BilfFas + £20)
=1
where
r=2=0 = —%
(30) rm4:>ﬂ1“§,ﬂ2="""lgz
r=6=p =80 fo=—2 f= %

The order of the interpolation is s = 27,

A(Ié‘;}l)R(-;f’“) = J?’*”Ei:l TI(ﬁ»{-l_ﬁc—l)

(31) 5 _
A(Ié“j‘l)R(-; M = f} - Y1 TI(ff+z - f—f—-z)
where
r=3=g =
32
(32) {”"5:'72 9572 = — 135

The order of the interpolation is s = 2r 4+ 1.
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We denote by v™% the multiresolution form of the vector v either in point value
interpolation or in cell-average according to the context,

A two dimensional version of these algorithms can be found in [1]. Given a matrix
A, we look for itg standard form, that is the matrix A* such that

(33) (AFYME = A° fME  for every vector f

Introducing the invertible operator M such that fME = M f for every vector f,
the standard form of the matrix is obtained by the following change of basis:

(34) A= MAM™!

Algorithms 1 and 3 represent the operator M in point value and cell-average
interpolation, respectively, and algorithms 2 and 4 are the inverses of M in both
cases. Therefore, (34) is equivalent, in point value {respectively, in cell average) to
apply algorithm 1 (resp. algorithm 2) to the rows of A and the transposed of algorithm
3 (resp. algorithm 4) to the new columns (or vice versa). It is remarkable the fact that,
unlike the wavelet standard form, this multiresolution standard form is not symmetric,
and, so, we do not apply the same algorithm to the rows and to the columns of the
matrix. We develop here the transformation (34), when the interpolation is centered
around the node we want to interpolate and we assume periodicity. Some changes
must be introduced if any of these conditions fails.

In the case of point value interpolation, we have

Algorithm 5

Forj=1,..-,N

(35) f_,(z) =da;;, L<ig<N

(36) bg = f7'"

End
Fori=1,.--,N

(37) () =b; 1<i<N

Dofork=1,...,L
(38) SN =gF"125~1), 1<i< N

gk (@) = of T2 + Lzt sE), 1<i< N

End



(39) Cix = {(51) j=11°" '-—1: (9'_, )3-1

(40) A* = (e )5

In the case of cell-average, the algorithm is the following;:
Algorithm 6

Forj=1,---\N

(41) fity= a3, 1<i<N
(42) buj = 17

End

Fori=1,---,N
(43) 7)) =biy 1<j<N

Dofork=1,...,L
() sFD =07 - 1) - gfN2), 1L N

gF () = a1 (25 = 1) + of H20) — AUTEDR(; M) +58G) 1K< M

End

(45) Cix — {( 1)3 =1 l(SL j\:flla(gg )J"‘l

(46) A* = (e )=

In a similar way as the one dimensional case, when the interpolatory scheme is
good enough, most of the coefficients in the standard form are small, and we can get
data compression by discarding those coefficients with absolute value below a given
threshold.

In the next sections we are going to display some examples where we use the stan-
dard multiresolution form, in order to show the liability of the previous algorithms.
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3. The basic Algorithm. We shall apply compression algorithms to problems
that, after the discretization process is complete, have the following form:

(47} u™t = Au" 4 f

with u® and f € RN given vectors. This formula admits a closed form solution given
by

n-1
(48) ut = AP+ YA f

=0

which can be used to compute the solution A™u?, for f = 0 in logn steps, (n = 2™, m
integer; here and throughout logn=logan) by repeated squaring of A: A, A%,A%, A%,
vy A2 (5e€[6]).

The later squarings would involve almost dense matrices even if we started with a
very sparse A (as it is the case for discretizations of partial differential equations) and
the algorithm, as stated, is useless. However, for an appropriate representation of 4
in a multiresolution basis, all the powers Af may be approximated by sparse matri-
ces, Note that all powers are equally sparse since the kernel they are approximating
satisfies uniform estimates ({6]). Then, the algorithm of repeated squaring should be
advantageous.

To compute the closed form solution (48), we consider the following algorithm

(see [6]):

B = MAM-!
¢ = 1
(49) O = TRUNG(C+BC, Y | 0o
B := TRUNC(BB,)
W = M YBMuW®+CMf)

The matrix M corresponds to a fast multiresolution transform and the truncation
operator sets elements in a matrix to zero if their absolute value is below the given
threshold ¢

i— A laig] = €
(50) A=TRUNC(A,¢) = { i Z o i I
For € = 0, (49) is equivalent to (48) because
-1 2m_1 -
(51) (I+B)I+B%---(I+B7 )= > B
i=0

They are not equivalent for € > 0, but by choosing ¢ small enough the result of (49)
can be arbitrarily close to (48) (see [6]).

In this paper the matrix M corresponds to the multiresolution analysis based on
fourth order compacily supported wavelets, fifth order cell average interpolation and
sixth order point value interpolation. In order to keep symmetry, we have to choose
different orders of approximation in both interpolations. Though the results depend
on these orders, this dependence is not as strong as to lead to different conclusions.

We shall apply the algorithm to compute approximate solutions to hyperbolic and
parabolic problems in one space dimension, and to some integral equations.

9



4. Numerical experiments.

4.1. Hyperbolic problems. Consider the following scalar hyperbolic problem:

o F T IR Y- £
(53) u(z,0) = wug(z)

with periodic boundary conditions and the following choices:

(64) alz) = 0.540.115sin(4nz)
(55) flz) = cos(drz)
(56) up{z) = sin(4nz)

The basic finite difference schemes for the discretization of the PDE are obtained
as follows (see [6]): In each interval

(57) I

i3

={z : (—Dh <z <jk)

we construct a polynomial of degree k that interpolates the two points (z;-1,u}_)),
{(z;,u}) and k — 1 of its neighbors. If k is even these interpolation points go from

zi.x toz; e, I k is odd, they go from ;. kg1 bo LTETER The procedure gives a

reconstruction function, R™*, which is a polynomial of degree k in each I;_; and is
continuous but generally not differentiable at the boundary points z;_1 and ?cj.

To approximate the solution of (52) at the grid points (z;,#"*!) we solve the
equation “exactly” with initial data

(58) up(z, 1) = RM4(2)

form t* <t < "+, evaluate the solution at (z;,"*1), and set u;?’*'i = up(m;, " +1).
We require the usual Courant condition Atl|a{z)| < h.

In the special case when a(z) = a, constant, f = 0 and & = 1 we recover the first
order accurate upwind difference scheme. For k = 2 we get the classical Lax-Wendroff
second order accurate three point scheme. For k=3,4,5 the schemes are known to be
L4 stable. ‘

For variable coeflicients the approximation becomes

gntt
(59) un(zy, 1) = RME(a, (1)) + f i (¢ — 5))ds

i

where x;{t) solves

(60) % = a(z;), "<ttt
(61) z; (") =

As in 6], a fourth order Runge-Kutta method is used to integrate the O.D.E. and
Simpson’s rule is used to evaluate the integral. The result of this approximation to
the right side of (59) is defined to be u}*?,

We should remark here that, because of the spatial dependence of the coefficients
of the differential operator, the fast Fourier transform is not an efficient algorithm for
these type of problems.
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Fi1G. 1. wpwind, N=256, N==512

t | Hu—twlloo | [Jt— ts]loo | [u—uelloo | 11— udlleo
1 04062 0478 0442 0711
2 0052 .0101 0124 00079
3 0067 .0106 0124 00079
‘TABLE 1
Hyperbolic equation, Lo errov, t=1, N=512
t [ Tu—well [ o= wlh [ o= welh | Tu=udh
1 0173 .0239 .0254 .0430
2 0024 .0050 0072 00032
3 0623 0053 0072 0000063
TABLE 2

Hyperbolic equation, Ly error, i=1, N=512

Numerical results are compiled in tables 1 and 2 and in figures 1, 2, 3, 4 and 5.
The tables show numerical errors with respect to the exact solution. Here At/h = 1.
In each table, u represents the exact solution and w,,, u,, u, the sclutions produced
by the multiresolution frameworks based on wavelets, point-value interpolation and
cell-average reconstruction,

Although the solution obtained with the wavelet algorithm is more accurate in
the Lo norm (in this particular case), the overall quality of all the approximations
(i.e. the L; norm) is about the same.

Figures 4 and 5 show, for comparison purposes, the standard forms of the matrices
A% corresponding to the third order method. We can observe the same finger-like
structure in each case.

Figures 1,2 and 3 show the growth pattern of the number of nongero elements in
MA?" M~-L. Again, we observe the same behavior for each one of the multiresolution
transforms.

4.2, Parabolic problems. We choose the following parabolic problem:

0 (a(2)dpu) + f(2)
11

(62) Oy =
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norm | t 2™ 1l — || | Tlu—udl | Jlu—uel | {lu—udl]
Io's) 00049 [ b12 .0819 0971 0857 000075
1 00049 (| 512 0395 0467 0233 00004179
TABLE 3

Lo and Ly errors, N=512, parabolic equation f(x)=0

norm | ¢ 2" lu—rwll | flu—wlls | ffu—wells | [Ju— ualls
o0 L0039 | 4096 .29 b3 .20 00029
1 0039 | 4096 16 23 089 00015
TABLE 4

Lo and Ly errors, N=512, parabolic equation f{z)=0

norm | ¢ 27 1 |lu=uwil | fle—us|l | e —ucll | [lu— udl]

oo 00049 | 512 040 .038 0857 000163

1 00049 | b12 0200 012 0125 0000440
'TABLE 5

Lo and Ly errors, N=512, parabolic eguation f(z)#£0

norm | ¢ 2™ |l —uwll | lu—wdl | flu—uell | Hu—~ udfl
o0 0039 | 4096 21 22 13 .00033
i 0039 | 4096 .08 069 049 00015
'TABLE 6

Loo and In errors, N=512, parabolic eguation f{z) #0

(63) u(z,0) = wug(x)

with periodic boundary conditions and the following choices:

(64) a(z) = 0.5+ 0.25sin(27z)

(65) flz) = 0 and

(66) f(z) = —w?cos(2rz)? + 72(a(w)) sin(2rz)
(67) ug(z) = sin(4rz)

‘The discrete setting is the same as in the hyperbolic problem. Here we will use the
simple central difference scheme

At
(68) =} + 57 A-(a(z)Aru;) + Atf(z;)
where
(69) Aiuj — i(ujﬂ - 'u.j)

with At/h? = 0.25.

Numerical results for the case f(x) = 0 are compiled in tables 3 and 4. We observe
that the errors in the L; norm are comparable for all the three cases at hand. The
same conclusions are drawn from tables 5 and 6.

Figure 6 shows the growth of nonzero elements in each of the standard forms and
figures (7) and 8 the pattern of significant elements of MA®M~1 | In each case, the
behavior is the same.
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4.3. Integral Equations. Our goal now is to compute approximations to the
solution of integral equations, We shall start with the easiest type:

b
(10) u(@) = [ K, pu(w)dy
a
If K{z,y) is a smooth kernel, there is an obvious way to discretize the equation:
b
(1) we) = [ Koy
N
(72) = > aiu(e;) + O(RP)
j=1
where p is the order of the integration and b = max{|#;41 —#;], i=1,...,N - 1}.
Then
(73) i = A7,
where
(74) © = (u{z),u(®s),...,uen)) + O(h?)
(75) 7 = (v(z1),v(z2),...,v(zN))
(76) A = (ay)

This matrix-vector multiplication can be computed by first computing the standard
form of the matrix, then compressing the vector # and then performing the multi-
plication. There are other ways to perform the discretization procedure, however we
must remark that our main objective is not the study of the different discretizations,
but the eomparative behavior of the different multiresolution ftransforms applied to
these problems. From our point of view, any consistent discretization of an integral
equation leads to a linear system of the form

(77) u= Av
16



where A is, usually, a dense matrix. This system is equivalent to
(78) Mu=MAM~'My

for any invertible matrix 3. When M corresponds to a fast multiresolution transform,
the matrix M AM ™! = A® (see (34)) has only O(NlogN) elements and the vector Mv
has only O(logN) nonzero entries. The main advantage is that, once MAM ! has
been computed, one has a fast algorithm to compute integral transforms (with the
same kernel) of different functions.

We have performed numerical tests on three integral equations studied in [5]. We
start with

1
(79) Example 1: u(z) = ] cos(z - y)sin?(y)dy
0

comments on tables etc,

When the integral kernel K (=, y) is not smooth, one has to be a little more careful
with the discretization procedure. We discretize following Atkinson [2], and perform
several tests on the equation

1
(80) Example 2 u(z) = f logle — yi(y — v°)dy
0

"This diseretization turns out to be such that the error is of order = O(1/N?).

Numerical results for these two cases are compiled in tables 7 to 18. Here we also
study the behavior of the approximation for different tolerances.

The original design of the multiresolution transforms assumes periodicity of the
vectors to be compressed. If this is not the case, the compressed version of a vector
still has relatively many non-zero components, that account for its lack of periodicity.
Harten’s multiresolution set-up can be adapted to work with non-periodic boundaries.
In the tables, uy, and us, represent the solutions obtained with the algorithms based
on pointvalue interpolation and cell average reconstruction modified so that no peri-
odicity is assumed. Thus, the number of nonzero elements in the compressed vector
is considerably reduced. These modifications reduce the order of the interpolation at
the boundaries and, as a consequence, their behavior is a bit different. However, they
produce good quality approximations for low values of ¢, the tolerance.

These problems do not fit into the general framework of section 3. They are
easter and do not involve any iterative process. Fredholm integral equations of the
second kind however, are usually approximated by an iterative procedure that follows
the framework of (47). We shall apply these compression techniques to the following
particular case:

1 1
(81) Example 3: u(z) = fe) + i /0 log & — y|u{y)dy

where f(x) is chosen so that u(y) = y(1 — y).

Now, »™ is an approximation to the solution of the integral equation that should
improve with n. Moreover, the iterates are closer to the limit if the initial vector is
close to the limit. These two observation set the basis for a very easy acceleration
procedure with no additional cost. Note that

n—1
ut = A"+ YAl
i=1
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N | = ol | [lu—vell | llu—upl] | flu—uspll | [lu— usl]
128 1 21.107° [ 25.10° [ 6.1-10°% | 5.6.10°° | 1.6-10~%
256 | 6.0-10"% [ 25.10~° [ 6.1-10~% § 5.9.10"° | 3.4.10~%
512 1 24.107° | 25-107° | 6.0-10"% ] 6.0-107> | 7.8.10~*%

TABLE T
Integral Bquations, Ewxample 1. Ly errors tol= 10—*
W C P BP BC N
nzv 40 24 13 15 30 128
nzm | 861 | 3022 | 3677 | 1144 | 1200 | 128
ngv 48 24 13 ib 30 256
nzm | 1349 | 6930 | 8439 | 2284 | 2274 | 256
nzv 56 24 13 15 30 | bi2
nzm | 1475 | 9666 | 19268 | 4016 | 2288 | 512
TABLE 8
Integral Egquations. Evample I, tolz 10~¢

N | Hu—w|l | [le—wel] | [Ju—upl] | Jlu—wipll | [lv— weelf
128 [ 2.7-107° [ 29-10~% [ 2.0-10°® | 1.8.-10~% | 3.5 .10°¢
266 [ 2.4.1073 261075 [ 1.9.10°% [ 18- 10~* | 7.7-107%
512 [ 24-107% 1 26.107° | 2.4 -\10“‘5 1.9.107* ] 1.5.10°3

TABLE 9
Integral Equations. Evample 1. Ly errvors fol= 102
w C P BP BC N
nzv 28 16 9 12 18 128
nzm | 7i4 | 2500 | 3bb1 | 1009 | 783 | 128
nzv 28 16 9 12 18 256
nzm | 1054 | 5004 | 8363 | 2013 | 1393 | 256
. MZV 30 16 9 12 18 512
nzm | 1475 | 9666 | 19268 | 4016 | 2288 | 512
TABLE 10
Integrel Equations. Ezample 1, tol= 10~3

N | flu—uw| | [lo—uel] | [lu—apll [ [u— wpl] | [Ju— usell
128 13.3-107* 1 2.0-107% [ 3.0-10°% ] 3.2.10°% [ 1.6-102
256 12.8-107*116-10-%1(3.1.107% ] 82-10"3 [ 3.6-10"2
B12126-107*[25.107% [ 31.10-4 ] 33.10°3 { 9.3.10°¢

TABLE 11
Integral Equations. Example 1. Iy errors tol= 1072
w C P BP | BC| N
nsv 16 8 5 7 11 ] 128
nzm | 565 | 1154 | 3231 765 | 797 { 128
nzv 16 8 ) 7 11 § 258
nzm | 831 | 1940 | 7h64 | 1520 | 534 | 256
nzv 18 7 b 7 10 1§ 512
nzm | 1183 | 2022 | 17314 | 3024 | 796 | b12
TABLE 12

Integral Egquations. Evample 1. tol= 102
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[ — weo|] | fle— vel] | [lu—upl] | [lu—uspl] | [Ju— wul|

128 | 3.5-10"° [ 5.8.10-% [ 9.3-10~° [ 7.2-10~% | 1.1-107¢
266 | 6.8-107°[23.10"° [ 1.7-107* | 1.4-10~% | 3.2.107%

‘TABLE 13
Integral Equations. Esample 2. Ly errors tol= 10~*
W C P BP BC N
nzv | 2b 24 23 3 4 128
nzm | 3030 | 3046 | 4964 | 3940 | 3623 | 128
nzv 28 27 27 3 4 256
nzm | 177 | 6764 [ 10926 | 9201 | 6805 | 256
TABLE 14
Integral Equations. Bremple 2. tol= 10~%

N[ [[u— up [ [ = wal] | To= ] | T =]l | 2= vac]
128 | 54-10"° [ 28-107* ] 1.7.1073 ] 2.1.1073 | 86-.10"%
256 | 5.7-10 [ 561073 [ 58.1073 ] 5.0.1073 | 4.4.1972

TABLE 15
Integral Equations. Ezample 2. Iy errors tol= 102
W C P BP BC N
nzv 20 19 19 3 4 128
nzm | 1329 | 1545 | 3130 | 2730 | 1691 | 128
nzv 23 20 21 3 3 256
nzm | 1547 § 2189 | 4703 | 4322 | 2466 | 256
TABLE 16
Integral Equations. Example 2. tol= 1072

N [ flu—woll | Hu—ue|l | flu—upl] | flu—wusp|l | Hu—ul|
128 1 3.6.-103 [ 5.5-10-2 [ 8.68-16"2 [ 10101 [ 59.10°7
256 | 6.0-107° [ 2.6-10~1 | 1.9-10"1 | 2.1-107% | 3.1-107F

TABLE 17

Integral Byuations. Evample 2. In errors tol= 1072

Wi{CI P |BP[{BC{| N
nzv 9 7 7 3 3 128
nzm | 247 [ 21 | 539 | 600 | 112 | 128
nzv { 11 7 7 3 3 | 256
nzm | 225 | 0 § 359 | 108 | 663 | 258
[ABLE 18

Integral Equations. Ezample 2. fol= 1078
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initial vec, | iter, algorith 1 | iter. algorith 2 | || - [|: —error | || - |l —error
f 1 0 0.9741-107% | 0.1165- 107"
2 0 0.1422.107< | 0.1699-10~*

3 0 0.2859.10~% | 0.80h6 .10~

4 0 0.9551-107° | 0.6040.107*

1 3 0.3001.10~% | 0.9725-10~*°

2 2 0.2744-10~° | 0.4142-10°°

3 1 0.9537-107° | 0.6044.107°

1 1 0 0.1168-10=° | 0.1356-10~°
2 0 0.1702-10= | 0.2019-10~1

3 0 0.3612-10=° | 0.4372.10~°

4 0 0.9537 -10=* | 0.6040.10~*

1 3 0.3659-107° [ 0.4361-107°

2 2 0.8925-107° | 0.6438.10~*

3 i 0.9493-10~° | 0.6054-10¢

TABLE 19

Integral ec. Example § ; N= 128 toi= 10758, u,

and the second term on the right hand side of the equation above does not depend on
the initial vector chosen for the iterative procedure. Thus, we can start by choosing
any arbitrary vector u®, say (1,1,...,1) and compute the n-th iterate with n = 2™ by
using algorithm (49) m times. Obviously b = u™ is a much better choice than u%. We
can now compute again the n-th iterate with initial vector b without repeating the
algorithm m times as before. In fact the cost of this step is just the cost of multiplying
a compressed vector by the compressed from of s matrix which has been computed
already,

Nummerical results are compiled in Tables 19 and 20. Table 19 uses the multires-
olution transform associated to Harten’s interpolatory set-up. Table 20 the wavelet
multiresolution transform. Algorithm 1 refers to (49) algorithm 2 refers to the ac-
celeration procedure described above. We would like to remark that 2 iterations of
algorithm 1 (that involve 2 matrix multiplications) followed by two iterations of algo-
rithm 2 {the acceleration procedure, that only involves matrix-vector multiplications
of a compressed matrix by a compressed vector) gives the same accuracy as 4 iterations
of the basic algorithm (49) (that, of course would involve 4 matrix multiplications,
even though these matrices are sparse).

5. Conclusions. Along the previous examples, it seems clear that the behav-
ior of both the traditional wavelet analysis and the interpolatory multiresclution (in
its point value and cell-average versions) is similar. The significant coeflicients in
the standard maftrices are distributed in the well known finger-shape, where the fin-
gers appear in those locations and frequencies where the analysis finds some sort of
singularity.

Moreover, the standard form of matrices representing smooth operators, or op-
erators with a finite number of singularities, is sparse. This sparsity depends on the
operator and the three multiresclution analysis we have studied produce comparable
results,

We do not want, however, to to get into too much detail about comparing the
particnlar results of all three standard forms. As noticed, the compression rates de-
pend on the order of the approximation and, due to the symmetry, the reconstructions
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initial vec. | iter. algorith 1 | iter. algorith2 | ||« |1 —error | || - {|occ —error
f 1 0 0.9740-107° | 0.1166-10"
2 0 0.1426.10~“ | 0.1716-10—°

3 0 0.3308.107% | 0.6226-10~*

4 0 0.8318.10=° | 0.3110- 107

1 3 0.3314-16—* | 0.6253-10~*

2 2 0.8326-10° | 0.2983 101"

3 1 0.8329-10~° | 0.3105-10~*

1 1 0 0.1167-10"° | 0.1356-10~°
2 0 0.1701-10"" | 0.2020-10—1

3 0 0.3659 - 10~° | 0.4522.10~°

4 0 0.8318.107° | 0.3110.-10~°

1 3 0.3659 - 107" | 0.4bbb . 103

2 2 0.1180-10~* | 0.3031-107°

3 1 0.8362-10-° | 0.3090-10~*

"TABLE 20
Integral ec. Ezample 8§ ; Nz 128 tol= 1075, uy,

we have chosen have different orders, Also, the support of the wavelets doubles that
of the interpolations and, especially for the parabolic and hyperbolic problems, the
number of significant coeflicients depends not only on the order but on the support.
In order to compare particular performances it is necessary to consider some circum-
stances which are beyond the scope of this report. The general behavior, though, as
noticed, is comparable in these three cases,

In each one of the problems we have studied there are two different processes. One
is the discretisation of the problem, the other is its multiresolution analysis. In this
report, we have emphasized the second one, but it is obvious that the obtained results
can be improved if we strengthen the first one. We can state that the sparsity comes
from the multiresolution process per se, and not by the particular local reconstruction
we use in each scale, let it be either wavelet approximation, or point value or cell-
average interpolation.

Thus, Harten’s multiresolution analysis appears to be a good alternative to the
traditional wavelet analysis, and a very natural one from the point of view of numerical
analysis. Furthermore, the freedom to choose the reconstruction is quite remarkable.
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