AN ANALYSIS OF THE COMPOSITE STEP BICONJUGATE
GRADIENT METHOD
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Abstract. The composite step biconjugate gradient method (CSBCQ) is a simple modification
of the standard biconjugate gradient algorithm (BCG) which smooths the sometimes erratic con-
vergence of BOG by computing only a subset of the iterates. We show that 2 X 2 composite steps
can cure breakdowns in the biconjugate gradient method caused by {near} singularity of principal
submatrices of the tridiagonal matrix generated by the underlying Lanczos process. We also prove
a “best approximation” result for the method. Some numerical illustrations showing the effect of
roundoff error are given.
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1. Introduction. In this paper, we give an analysis of the composite step bi-
conjugate gradient method, for solving linear systems of the form

(1) Ar=7r

where A is a large, sparse, nonsymmetric and indefinite, but nonsingular matrix. The
composite step biconjugate gradient method was introduced in [4] as a method for
improving the performance of the biconjugate gradient method.

As is well known [24], [19], [17], [8], [14], [12], [13], the Dbiconjugate gradient
method can suffer from two sources of failure, both of which can be traced to the
underlying Lanczos process. One type, which we call a failure of the second kind or
a serious breakdown, is caused by a breakdown of the underlying Lanczos process.
The other type of failure, which we call a failure of the first kind, is simply due to
the fact that the biconjugate gradient method implicitly computes and uses the LDU
factorization of an indefinite tridiagonal matrix arising from the underlying Lanczos
process. Since no pivoting is used, there is the possibility of encountering small or
zero pivots in this factorization. The use of small pivots often appears as apparently
erratic convergence of the method. When a small pivot is encountered, typically the
residual norm will increase by a large amount on one iteration, only to be reduced by
a stintlar amount on the next step, creating a “spike” in the convergence history. Such
spikes can cause large cancellation errors and render the method numerically unstable.
In looking at such convergence histories, often littered with many such spikes, it is
clear that simply using 2 x 2 updates to reduce the number of these spikes should go a
long way towards stabilizing the behavior of the method. It is in fact this observation
which forms the basis of the composite step biconjugate gradient method.
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The composite step biconjugate gradient method is just a simple algebraic modi-
fication of the regular biconjugate gradient method which allows one to proceed from
an iterate zy to the iterate 4o without computing ®j41 (or the residual riy;). The
cost is negligible; 2 x 2 composite steps cost about twice as much as 1 x 1 steps, which
are in turn essentially the same as steps in the regular biconjugate gradient method.
We show that the use of composite steps can prevent breakdown in the biconjugate
gradient method due to failures of the LDU factorization. Its impact on the serious
breakdown of the Lanczos process is more problematic. On the one hand, our theory
has nothing directly to say about this case, as we assume at the start that Lanczos
breakdown does not occur. One the other hand, using a 2 x 2 update has a great
deal of similarity to look ahead Lanczos procedures [19], [17], [9], [8]. Since locking
ahead for more than two steps may be required to avoid a Lanczos failure, a siimple
composite step is certainly not sufficient in all cases to cure this type of breakdown.
However, some Lanczos failures can be averted using just a double step. So while a
simple composite step cannot cure this breakdown in all cases, it might still reduce
the potential for Lanczos failure, and in any event, should not make the situation
worse.

Tn section 2, we consider the factorization of general nonsingular tridiagonal ma-
trices. There we show that such matrices can successfully be factored without pivoting
if one allows the occasional use of 2 x 2 pivots. This becomes the theoretical basis
of the composite step method. In section 3 we make a derivation of the composite
step biconjugate gradient method from the underlying nonsymmetric Lanczos process.
Under the assurnption that there is no failure of the Lanczos process, we see that the
use of 2 x 2 pivots or composite steps solves the problem of small or zero pivots in the
biconjugate gradient method. It is simple to see that the composite step biconjugate
gradient method reduces to the regular biconjugate gradient method if just 1 x 1 steps
arve used, and further, that it reduces to the regular conjugate gradient algorithun if
the mafrix A and the preconditioner B are symmetric and the starting conditions
are approptiately chosen, Similarly, the composite step biconjugate gradient method
reduces to a composite step conjugate gradient algorithm when 4 and B are sym-
metric (but possibly indefinite). This algorithm can be used for symmetric indefinite
linear systems to address the problem of computing the LDL! factorization of the
syrmunetric indefinite tridiagonal matrix forming the foundation of that process. Since
the symmetric Lanczos process cannot have a serious failure, the composite step con-
jugate gradient method can be applied without as much qualification in these cases,
and can be used as an alternative to the SYMMILQ class of methods [18], which are
hased on orthogonal factorizations of the tridiagonal matrix,

in section 4, we present an analysis of the convergence of the composite step
biconjugate gradient method. With minor modification, our theorems can also be
applied to the regular biconjugate gradient method. The theory applies for systems
of the form (1) and allows general nonsingular preconditioners. The only assumption
is that the underlying Lanczos process does not breakdown; i.e. no breakdowns of
the second kind. We show that the (composite step) biconjugate gradient method
produces iterates that are within a fixed constant factor of being optimal within the
Krylov subspace, a so-called “best approximation” result. The key to our analysis is
the use of the Babuska-Brezzi inf-sup condition. Using this condition, the convergence
behavior of the biconjugate gradient method can be analyzed in a fashion analogous
to the convergence of Petrov-Galerkin finite element methods [1]. In fact, the analysis
is eagier in the present case because all the spaces involved are of finite dimension.



To our knowledge, this is the first “best approximation” convergence result to be
given for the biconjugate gradient method [8]. When specialized to the symmetric
case, it is similar in content, but not quite as sharp, as the well-known convergence
resuits for the conjugate gradient method [6]. One interesting point is that in the
symmetric case, our theory includes the case of a syminetric indefinite matrix pre-
conditioned by a symmetric indefinite matrix (as opposed to a symmetric positive
definite preconditioner).

1t is important to emphasize that mathematically, the composite step biconjugate
gradient method is really a relatively simple modification of the regular biconjugate
gradient method which allows the computation of a subset of the iterates. In exact
arithmetic, it perhaps should not be regarded so much as a “new” algorithin as an
interesting variant of an old one. On the other hand, smoothing the convergence
history through the reduction of the number of spikes is practically a very desirable
improvement in the procedure. In section 5, we present three of many possible im-
plementations of the composite step biconjugate gradient method. These three differ
in their choice of the basis vectors for the two dimensional spaces used for the 2 x 2
composite steps. We also discuss how we decide between taking a regular or a com-
posite step. In section 6, we present some numerical examples indicating the influence
of roundoff error on the biconjugate gradient and composite step methods. Interest-
ingly, while all three variants are identical mathematically, they often exhibit different
convergence histories when applied to the same problem. Practically, details of im-
plementation appear to be rather eritical with respect to roundoff error. Trying to
determine the best (or a least a very good) implementation with respect to roundoft
from a large number of reasonable choices is an area of current interest for us.

2. The Factorization of a Fridiagonal Matrix. In this section we analyze the
possible breakdown in the factorization without pivoting of an nonsingular tridiagonal
matrix, and show how the problem can be corrected by the occasional use of 2 x 2
block pivots. This idea is similar to one used by Bunch {5] for the case of symmetric
indefinite matrices. Most of the analysis is elementary, and is included mainly for
completeness.

Let Ty, be the n x n nonsingular tridiagonal matrix given by

1 B

Y1 G Je )

(2) Ty = ) T
Tn—-2 (Qn—3 Bn-1

Tn—1 5%

TurmoreM 2.1. Let Ty, 1 < k < n be the upper left principul submatrices of
e nonsingular tridiagonel matriz T, as in (2). Then Ty and Ty cannot both be
singular.

Proof. let

Pr = DEt(Tk}

for 1 € k < n. It is easy to check [24], using expansion by minors, that the pi’s satisfy
the well known recurrence relation

Pr = kP11~ Be—17k—1Pk—2
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for 1<k<n,withtheconventions p.1 =0, =S ==L Hpma=p-1=0,
then pp = pri1 = -+ - = py = 0, contradieting the supposed nonsingularity of 7,.
The main result in this section is:
Tugorem 2.2, Let T, be the nonsingular iridiegonal mairiz given in (£). Then
T can be factored as

(3) Tn. - LnDnUn

where Ly, is unit lower bock bidiagonal, Uy, is unit upper block bidiagonel, and Dy is
block diagonel, with 1 x 1 and 2 x 2 diagonal blocks.

Preof. 'The proof is by induction. The cases n = | and n = 2 are clear. There
are two possibilities for the induction step. First, suppose ovq % 0. Then one has

T%[ 1 0 a0 Hl r;_l}
T tn-1 dn—1 0 Th- 0 In-g

where
ey = [ri/e10...0]
ther = [Pifea0...0]
and
g — Eé%‘“ ,32

Yo w3 P
-2 -1 Pr-1
Tn~1 X

Since Det(T,) = oy - Det(T,-1), Tn—1 is nonsingular and the induction hypothesis
yields

Th— = Ln—an-—lUn—l

and it follows that

T:[l 0 o1 0 [11-;_1 .

" en—1 Lp—1 0 Daay 8 Un-t

On the other hand, suppose that oy = 0. Then v 51 # 0; otherwise, 7, would be
singalar. In this case we can use a 2 x 2 pivot and factor T, as

7= Iy 0 Dy 0 I R,
" Cumn Iz 0 Th-os 0 ILi—

where
Dy = [ ay ]
T G2

t _ | 0 0 0
Cﬂ—Z - D.‘Z [ “ro 0 0 ]

1 N -1 0 0 0
Rﬂ,-2 - Dz [52 0 0 }
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and

— Bavaen
[ 3 opag—~51 81 Ba o -l
RE; EZ I 1

Th-u =

Tn-2 En-1 ﬁﬂ.—l
Yn-1 L%

We have included terms with «; to illustrate its impact when ey is “small” but
nonzero. In any event, Det(T,) = Det(D;) - Det(T,—2), so T—» is nonsingular and
it follows from the induetion hypothesis that

To—p = Lp_oDp_3Upug

and
oo I 0 Dy 0 I, RL_,
" Cn—z Ln.—2 0 Dn—2 0 Un—? ’

CoRrROLLARY 2.3. Suppose 1, is singular, but T,_1 is nonsinguler, where Ty
s the upper left principel submatriz of order n — 1. Then we have

n

(4) Ty = LnDpUs

where Ly 15 unit lower block bidiagonal, U, is unil upper block bidiagonal, and 13,
is block diegenal, with 1 x 1 and 2 x 2 diegonal blocks. In particuler, d, = 0 and
corresponds to a 1 x 1 block.

Proof. We know T,.-1 = Ln—1Dp—1Un—1 by Theorem 2.2. Thus

T, = { Tn—ti ﬂn»lenwi}
Tn—1€p-1 fp
. Ly D Dy_1 0 Upo1 enot
- 1 0 d,, 0 1
where
UZ—1DL-1_M—1 = Tn-1tn-1
Lp1Dn—ien—1 = Pu-i€p-1
dn = @n— "":1-—1011.—16:1—1

t -1
=t~ Bre1tn-16,_1T, 1€n-1.

Since T, is singular, 0 = det{T,,) = det(Dy) = det(Dy_1)ds. Since det(D,—1) # 0, it
follows that d, = 0. O

In the biconjugate gradient method, one does not have the complete matrix 7,
given @ priori; rather, it is (implicitly) computed in bordered form and simultaneousty
factored. Only the most current part of the factorization is on hand, as earlier parts
are discarded (overwritten) when they are no longer needed (see Sec. 3). Corollary
2.3 insures us that if Ty is singular, it can still be factored, and we can recognize its
singularity by examining only the last diagonal entry (and potential next pivot) dg.
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If dj, = 0, then we can “wait” until the bordering (Lanczos) process provides the last
row and column of Ty, knowing that the 2 x 2 block

rJ a1
ih 124
[ Te o Okl j

will be nonsingular (by Theorem 2.2) and can be used as a 2 x 2 pivot.

We next prove a technical result concerning a special choice of the 7's in T,
which leads to a particularly simple form of L. We will use this result in Sec. 3 to
make the connection between the Lanczos procedure and the BCG algorithm.

CoRoLLARY 2.4. Let Ty, denote the upper left principal submatriz of order b of
Th.. Suppose that for these velues of k for which Ty is nonsingular, the subdiagonal
entry vy of 1y, satisfies

(5) i = (b Ty ler) N

Then the diagonael blocks of Ly, are etther 1 x 1 or 2 x 2 identity mafrices and the
subdiagonal blocks have the forms

©) R NI S B Al

Proof.

We shall only give a sketch the preof, which is based on induction. First note,
that for those values of k for which 7} is nonsingular, by Theorem 2.2 we have the
factorization Ty = LpDpllp where Dy iz nonsingular. The case of the first matrix
(L, or Ly depending on whether the first block is T x 1 or 2 x 2) trivally satisfies the
corollary. We thus assume T} is nonsingular, with L having subdiagonal blocks of
the form (G). We must show that if -y; satisfies (5), then the next nonzero subdiagonal
block in Lyt (or Li4s) has one of the forms given in (6)

First, it is easy to check that the vector hy satisfying Liphy = e: has blocks of
the form [1] and [1 0]%; note in particular that the entries d; /y; inany 1 x 2 0r 2x 2
subdiagonal blocks of Lg have no influence on Aj. Since efSUk_— = ei., (5) reduces to
one of the forms

e = —dg

. = _{[oﬂ[f,fjj ﬁfxﬂ_l[é]}

= (dr—10% — Br—1Tr—1)/ 781

-1

depending on whether the last diagonal block in T was 1 x 1 or 2 x 2. Then we have
the factorization

il

{ Ty ﬂkek]

reh  apl
— Ly 0 Dy 0 Us e
- T'f: 1 0 dk-{-l 0 1
where ri DiUs = vrel, LpDyer = Bier, and dyy1 = opyr ~ 7k Dgeg. Note that this

factorization exists even if Tk is singular, by Corollary 2.3. In any event, it follows
6
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that

R trr—1 -1
rr = weplUy Dy
Py |

2 S
= pepll, .
Thus the non zeroes in ri must have one of the forms

[t} [ -1 dees/re-s ]

depending again on whether the last block of Tp s I x Lor 2x 2. I

‘We remark that the condition dy = 0 forces a 2 x 2 step, but we have explicitly
meluded dy in the subdiagonal blocks to indicate what happens if a 2 x 2 step is
chosen when d; is small but nonzero. In such cases, we need not assume < satisfies
(5), even though T} is formally nonsingular.

3. The Preconditioned Biconjugate Gradient Algorithm in Relation to
the Lanczos Algorithm. In this section, we develop the preconditioned composite
step biconjugate gradient method (CSBCG) from the underlying Lanczos process.
The Lanczos process and biconjugate gradient method are described in detail in [24],
[8] [201, [14], [12], {13], and elsewhere. QOur treatment here was inspired by the analysis
given in Paige and Saunders [18] for the symmetric indefinite case.

We consider the solution of the problems

(7) Adr = o
(8) AYE =
by a preconditioned version of the biconjugate gradient method. Here A lsann x n
nonsingular matrix. Our real interest is in the solution of (7), but the system (8) is

also solved as a byproduct of the biconjugate gradient method.
Let

Vi = [vive-:-vg]
We = [ty we - wg]
be n x k matrices, & < n, of rank k. We seek an approximate solution to (7) (respee-

tively (8)) in the subspaces spanned by the eolumns of Vj; (respectively W3 ) using the
Galerkin eguations

(%) WiAVeu, = Wiro
(10) VgAthﬁk = thi:o

and setting
(11) Ty = Vkuk
(12) fk = Wkﬁk

When A is symmetric, positive definite and one chooses rp = g, and Vi = Wy,
then the Galerkin equations (9)-{10) and (11)-(12) become equivalent, and can be
found by formally minimizing the functional

f(uk) = (Av;kﬂ-k - Tg)tA_l(AVkuk - TQ).
7




Let B be an n x n nonsingular preconditioner for A; in this derivation we are
not agsuming that B is necessarily symmetric, positive definite. The Krylov subspace
corresponding to Vj is generated by the Lanczos process

g = 0
(13) B‘U1 = "
"ij’Uj.{.l = Avj - CthB‘Uj - ﬁj_lB‘Uj_]_

for j =1,2,..., and that corresponding to Wy is generated by

Uy = 0
(14) Bl = 7y
'ijiij = Aiwj — o:jBtwj - ,Bj_lBtwj_l

The normalization constant 49 = 1; the v; for j > 1 are nonzero scalars specified
later. The scalars o; f; for j > 1 are defined by

o wé—flvj
'ijUj
R ‘w;'+1B”j+1
Bi = w} B

and are chosen so that ¥, and W, are biorthogonal in the sense that
(15) WiBV; = Ay

where Aj, is a nonsingular diagonal matrix. For completeness, we set By = 1. Note that
the assumption that the Lanczos process does not fail is equivalent to the assumption
that Ay is nonsingular.

Rearranging (13) and (14), we have

(16) AVL — BVk+1Tk+1Ek
(17) AW, = B'WipTee1 By
where T} is the £ x £ tridiagonal matrix
o1 fh
Yo oar B
Ty = i .
Ye—s k-1 Frel
Thk-1 435
and E} is the &4+ 1 x k matrix
_| &
#e=[ 5]
and I is the k& x k identity matrix.
;From (16) and (17), it follows that
WiAV, = WiBViaThi1Er

= AT}



and similarly that
VEATW, = AT

i From this it follows that the matrix ApT} is symmetric. Moreover, from Theorem 2.2
and Cerollary 2.3, T} can be factored as Ty, = Ly Dy Uy, where Ly is unit lower block
bidiagonal, /i is unit upper block bidiagonal, and Dy is block diagonal with either
I x1or2x 2 diagonal blocks. This factorization is defined as long as the Lanczos
process is well defined, even if T} happens to be singular. ;From this factorization
and the fact that ApTy is symmetric, one can easily derive that ApT}, has a triangular
factorization given by

(18) ATy = U (A D) U

where U} = AkLkAL"l, and Ap Dy is symumetrie and block diagonal.
We now define the sequences of direction vectors py and pi by

P, = [pipa-- pr)
(19) = WU,

Py = [Pihs i)
(20) = WiU L.

Suppose that T} is nonsingular. Then, from (9) and (10), we have Thup = e;.
Similarly, Tyt = e1. Thus
xr, = Viuy
ViTy ey
PeD7 LT e
= Pyeg

By = Wyl
- IV;;Ti__Tlel
= Ppey
where ¢, = D; 'Liley.

We now derive the standard equations for the biconjugate gradient method. When
Tk is nonsingular, we define v¢ by (recall that v, was left arbitrary in (13) and (14))

Y = %(CiTglei)_l.

Note that for this choice of v, the structure of the lower triangular matrices Ly is
given by Lemuna 2.4; in particular, all nonzero off diagonal elements of Ly which are
actually needed for the CSBCG algorithm are equal to —1.

TFhen

Py = rp— Amy
= rg— AVpu;
rp — BVipiThs Erug
{ro — BVie:) — (i eﬁcuk)ka_l_l
~(ek Ty e1) By
= DBuvpyg.

fl



Similarly, we have

', = ?‘:0 —- Aiﬁ'?k

= Hka+1,

showing that the Lanczos vectors are the preconditioned residuals. Thus we define

By = [rori-re-t]
(21) = BV

Ry = [Fof1-- ]
(22) = B'W;.

Notice using (21)-(22) that the left and right “residuals” are defined even for iteration
steps for which T} is singular, although the scaling is arbitrary for those steps.
iFrom (15), we see that

(23) WERL = éiVL = REB_le = Ag.
Next note that, by using (18),

PIAP, = UJ'WiAVU!
(24) = UMl

= ApDj

showing the direction vectors are biconjugate. If all blocks are 1 x 1, this is just the
usnal relationship. If some blocks are 2 x 2, direction vectors corresponding to a 2x 2
subspace are not biconjugate to each other. However, the biconjugate relationship is
maintained at the subspace level. Note that Ay D is symmetric.

The basic Lanczos iteration summarized in (16) may be rewritten in terms of the
residuals and direction vectors as

{25) AP Uy = Req 1Ty F-

We now assume that the lower right block of Thyr is 1 x 1. If it remains a 1 x 1
block or becomes the first member of a 2 x 2 block in T y», then the residual vy will
be updated on this step. Otherwise, if the lower right block of Tpy1 is 2 x 2, then
the residual will not be updated on this step by the biconjugate gradient method.
For steps when the residual is updated, the lower right block of Dy is 1 x 1, Dy is
nonsingular, and Dy Ugs1 Ex = Ex Dy Uy. Thus (25) can be written

(26) APy DY = Biy1 Ly Ey.
Similarly, from (17),

(27) A*ByD7Y = Ryy1 D B
We also have from (19)-(20)

(28) Pl B 'Ry,
(29) ﬁ;;U;, = B—tﬁfk.

10




Equations (28, 27) give the updates of »;, and 7y, in the BCG algorithm in terms
of the entries in Dy and Lyy;. whereas equations {28), 28) give the updates for py
and Fp in terms of the entries of /. We next derive the inner product relationships

a2 ron

used these entries. Using (23)-(24), (28)-(29) and (18), we have

U, (BtAP) {ﬁ’ﬁA(B“le)}

il

(30) (PLaPy {PLAY (B Re)}

AT LA

and from (23)-(24) and (26)-(27)
(31) Ap = PlRyLy = PRy Ly = RLB™ Ry
Equation (31) can be combined with (24) to obtain

Dy (Prap) = {PiRiLi}

Il

(32) (PLar)~t{ PiRLi }

il

(ﬁéAPk)_l {R:,B_le} .

The coefficients for the residual updates in (26)-(27) can be obtained from one of
the possibilities given in (32). Possibilities for computing coefficients for the direction
vector updates in (28)-(29) are given in in the first two lines of (30). One can also
obtain these coefficients as ratios of diagonal elements in A, using the last line of
(30} with some form of (31).

4. A Best Approximation Result. In this section, we prove a best approx-
imation result for the comyposite step biconjugate gradient method. Qur analysis is
based on the the Lax-Milgram theorem as developed by Babuska and Aziz in [1].

Let Vi = span{vi, ve,..., v} and Wy = span{wy, ws, ..., w,) denote the Krylov
subspaces generated by the Lanczos method in (13) and (14) respectively. Let

(33) l2lll? = o' My
llwillf = w'Mpuw

where M, and M, are symmetric and positive definite, denote the (possibly different)
norms assoclated with V,, = R” and W,, = R"™. As in the other sections, we congider
the solution of (7).

THEOREM 4.1. Suppose thet for all v € Vy, and for all w € Wy, we have

(34) |w* Av| < T|||o|[}-{Hwl]l]e,

where ' is a constant independent of v and w. Further, suppose that for those steps in
the composite step biconjugate gradient method in which we compute an approzvimation
T, we have

(35) inf sup  wrAv> & >6>0
v €V wE Wy
ol =1 il <t

i1




Then

(36) [z = z|l- < (1+T/6) inf |[|z -~ v]]],.
vEV:

Proof. Our proof is a simplified {and specialized) version of arguments used in
proving theorems 5.2.1 and 6.2.1 in [1]. Inequality (35) is the famous Babuska-Brezzi
inf-zup condition as it applies to the current situation.

;. From the Galerkin equation (9) we have for w € W,

(37) w Az — 1) = 0.
Let v € ¥V} be arbitrary. Then from (37)
(38) w A2y, — v) = w' Az ~ v)

for all w € Wi, We now take the sup of both sides of (38) for all ||jw|{]s < 1. We
use (35) to bound the left hand side, noting 2 — v € Vi, and (34) to bound the right
hand side. Thus we obtain

(39) B ||lze — vlllx < Tz =il
Using the triangle inequality and (39) we obtain
(40) Il = 2|l < Il - vllls + |llex = vlils < (1+ T/}l — ol

Since v € Vp in (40) is arbitrary, (36) follows immediately.
COROLLARY 4.2. Let (3{) and (35) hold. Then

¥ — #pl|le < (L4 D/8) inf |||E — w]|]e-
(41) 13 = Bellle < (14 T/8) inf [IE = wlll

Proof. The proof is analogous to the proof of theorem 4.1, O

Equation (34) is a standard continuity assumption for the linear operator A. The
inf-sup condition (35} asserts the nonsingularity of A for the case k = n, and of AT}
for those steps in which we solve for an approximate solution @y. If v € Vi, then
v = V;b for some § € R¥. Similarly, w = Wi for for some % € R*. We define
Ty = ApT%. Then for this v and w,

wt Av = 'lf)th:AVkﬁ = H b

so that (35) could be formulated directly in terms of Ty, although it is less convenient
for the proof.

The inf-sup condition gives a lower bound on the (generalized) singuiar values
of A and its restrictions to the subspaces Vi and W;. To see this, we first consider
the case & = n for simplicity. A straightforward calculation shows that 6, is a lower
bound on the generalized cigenvalues for

(42) A'MT Av = A Mo
or, equivalently,

(43) AMT AN = X Mpw.
12




If & < n, a similar caleulation shows 8 is & lower bound for the eigenvalues of

(44) T (WMWY Tt = N (VM Vi) §
and
(45) Ti(VEM V)Y YT = AX(WE MW, ) .

Finally, the continuity condition (34) gives an upper bound on the eigenvalues in
(42)-(43) (and (44)-(45) as well).

When A4 is symmetric and positive definite, a natural choice for M, and A, is
M, = M; = A. Then one has trivially I' = § = 1. Estimate (36) is not sharp for this
case (but only by a factor of 2), as it does not make use of the additional minimization
property present when A is symmetric and positive definite.

For the case of general nonsymmetric and indefinite A, the situation is less clear.
For any choice of M, we can take My = AM tA*. This yields I' = §, = 1, but
not necessarily simple estimates for §; for & < n. An obvious example of this type is
M, = (A*A)/? and M, = (AAY)'/2. A potentially better choice is

(46) M, = B'W.A'ULD)YUA;'WEB
My = BVRAS'UMDIYPULA; VIR,

where D, = A,D,. With these definitions, I' = & = 1 for all & for which zy
is defined. Therefore, in these two norms, each iterate z, computed by CSBCG is
“optimal” to within a factor of 2 in error. Note that

A= BV, AT ILAZ'WER

so that when A and B are symmetric and positive definite, and ¥, = W, as in the
conjugate pgradient method, we have M, = M; = A

Let e = & — zp and E; = & — &, denote the error. Then standard manipulations
[6] show that

(47) er = Po(B™* Adeq

where P is a polynomial of degree k such that Py(0) = 1. An immediate consequence
of Theorem 4.1 is
THEOREM 4.3, Let ep = x - & as above. Then

(48) lexlile < (14 T/8)inf || Pu(M2BTXAMIYZ) | |leol
k

where the inf is taken over all polynomials of degree k such that P{0) =1, and || - ||
is the wsual £2 matriz norm.
Proof. Estimate (48) is an immediate consequence of theorem 4.1 and {47). O
CoOROLLARY 4.4. Let & =T — T; as above. Then

(49) lésllle < (1+T/6)inf || Pu(M;
&

- -1 .
PrratM | leolle
where the inf is taken over all polynomials of degree k such that Pr(0) = 1.

Proof. The proof is similar to theorem 4.3. 0

1t doesn’t seem possible to derive any simple estimates for the rate of convergence
without making further assumptions. For example, when A and B are syminetric and
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positive definite and M, = A, we must estimate || Py(AY?B~1AY?) {|. The standard
approach is 1o use Chebyshev polynomials and bounds for the generalized Rayleigh
quotient 2! Az/z' Bz. This leads to the estimate

k
VK -1
[lexll]r < 4 (W el |-

where K is the (generalized) condition number of AY/2B~1AY2. This is the standard
result [6], except for the factor 4, which is due to our use of theorem 4.1.
For the general case, we note that

H Pk(Mf-i/zB—lAﬂ{{r_l'[z) || = |§ ﬂ/[’}llgpk(B"lA)Mr—l,l? ||
(M2 PuT ) (MY |

giving some alternative formulations which might prove useful in obtaining bounds.
We note here the appearance of the nonsymmetric matrix 7, rather than the symmet-
ric matrix T,. For example, if the eigenvalues of 7}, can be enclosed by an ellipse in
the complex plane which does not contain the origin, then an estimate for the rate of
convergence can again be made in terms scaled and translated Chebyshev polynomials
in the complex plane as in Manteuffel {15], [16].

Since T, is real, its eigenvalues will be real or complex conjugate pairs. We agsuime
that all eigenvalues lie strictly in the right half of the complex plane, so that their
convex hull will not contain the origin. Suppose all the eigenvalues are enclosed in an
ellipse centered at the point d in the complex plane, with foci at d 4 ¢. We assume
the ellipse does not contain the origin and that A is an eigenvalue of T, lying on the
boundary of the given ellipse. By symmetry, we may assume that d is real and that
¢ is either real or purely imaginary. Then Manteuffel’s estimates imply

d— X4 ((d— N2 = 22 [
d+(d3___cg)1/2 |HEDHI"'

Illexlll- < C

where C is a constant independent of k. Manteuffel gives an algorithm for comput-
ing optimal choices of the parameters d and ¢ from knowledge of the convex hull of
the spectrum of T;,. He used them as the basis of an adaptive Chebyshev acceler-
ation algorithm, whereas we vequire them for theoretical purposes only, to improve
our estimate for the rate of convergence of the composite step biconjugate gradient
method.

b. Implementation. In this section we consider some practical aspects of the
composite step biconjugate gradient algorithm. We assume that A, B, vy, 7y, 2p = 0,
and &p = 0 are given. An implementation of the composite step algorithm, based on
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equations (26)-(29) is given by:
Algorithmm CSBCG:

o=l 1]

‘:f’flu = el
Bpy =rofte;  B'Fr=7oft
g1 = Ap1;  §1 = APy

p1 = Pire
Be—1
Begin LOOP:
o — ﬁiqk
5k = OkTh—1 = Prdk; Sk = OkTr—1 — Prdk
§e =l] sk |

Brpyr = sufés; B'Ep = & /b
Yot = Azpp1s Pepr = Az
9.&:+1 = E£+13k

Crat = ZL yues1

If 1 x 1 step, Then

oy = pr /oy
Pi41 = 9k+1/0'k
Br = pryr/px

Tp =gy +oppr;  Ep o= Ep-1 + P
PR o= PR—1 — QR{E PR T Pho1 o Gk
P =] 7
Pit1 = Zhg1 + OkPr; Petr = Zepr + Brp
el = Yep1 + Frgr; Ges1 = Yer + Prds
Ee—k+1

Else

-1
o _ ok =fry1/pk ] [ £h ]
[ g p1 } [ —brp1/ Pk Cht1 0

Tyt = Bl + @ePr + CpprZpi1; Frgr = Tp—1 + oxPr + 0priZg
Thpl = The] — QkQk ~ GR41¥h4+1;  Fhdl = Fho1 — Qpfk — Qkp1lp4+1

Prepr =l Tra ||
Bzpyg = reqr /g B'Egn = /e
Pryy = E L oTk41

[ B }:[ PL-+2/PA: ]
Pryt Pr+26k P

Prar = Zpaa + Oepr + Peg12k+1;  Prya = Zego + Oebr + Frr1Zeqa

Grt+2 = APryoy  Grie = A'Prya
Ee—k+2
End If
End LOOP

At this point we make more precise the correspondence between the more abstract
matrix formulation of the CSBCG algorithm given in section 3 and that given here.
For 2 x 2 steps, the two direction vectors used by CSBCG are pi, and 2y, (and py
and £;y1) the current BCG dirvection vectors and the next Lanczos vectors. In section
3, it was more convenient to call them simply pi and pgpyy (respectively fp and fryq),
but here that notation would lead to some confusion. Similarly, for 2 x 2 steps, the
two residual vectors in Ky are denoted sy, and vy 41 rather than ry and ri4q, and those

in f?,k are denoted by 5z and ripyy.
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The residual update coefficients, denoted by e here, arve computed using the
third form of (32). These formulae are symmetrical with respect to their use of the
vectors corresponding fo the systems for A and A?, and reduce to the usual choices

S S DEUUUC NP SN LT AN AU S, S SR R » TR Y. SR B 1

EOI LR LCRULAL VOLLFURALC Kl allICilL IIICEIlU(‘{ WEICH 1 dlid O ofe Sy 1HUHCLEC adld g — 7(Q.

For 1 x 1 steps, The diagonal block of P{AP; of (32) is given by ¢ here, and the
. . ford -1 _ - . .

diagonal entry of BYB™' Ry = Ay in (32) is given by py.

For 2 x 2 steps, the relevant 2 » 2 block of ﬁéAPk in (32) is given by

[ 7 Api phAzpp ]: o ~Bis1/pr
B Ape £ Azig —8x+1/px Cht1 '

The off diagonal entries of the 2 x 2 block are computed using the identity

PeAzmgpr = ZipAp

= Eitn+1'1k
—Z 1 (85 — owre~1)/pn
—05/pu-

. 'The relevant part of the diagonal matrix é},B“le = A in (32) is given by

B lres 1
giB_l?”k_l - 0 )
The coefficients for the direction vector updates, here denoted by £, are given
by the third form in (30}, U} = AEIL};A;.,; that is, as ratios of the diagonal elements

of Ax. As with the coefficients a;, these are symmetrical formulae which reduce to
the usual choice for the conjugate gradient algorithm in the symmetric case. For 2 x 2

steps we have
[ B }:{ Prvaf pr ]
Bre1 Prtafprs1

where we have (formally) made the identification ppay = Opy1/o%. .

Note that the vectors sy, 5 are scaled versions of rg, i respectively (sp = opry
and §; = o Fr) when rp and 7; are defined for the I x 1 update. Thus for 1 x 1
updates, these vectors could be computed from simple rescaling, rather than from
the more standard formulas given in algorithm CSBCG. Also note the nonstandard
update formulae for gryq and gryq for the case of a 1 x 1 step. These vectors are
updated by recurrence relations rather than the more standard ¢gyp1 = Appyy in
order to save a matrix multiplication. Either ypiq or §zyq is required to compute
Cht1, the (2,2) element of the current 2 x 2 block. This element is typically needed
in the process of deciding whether to use a 1 x 1 or 2 x 2 update. Using a recurrence
relation for gpyy and §roy allows us to recycle this matrix multiplication. Also note
that in this implementation, a 1 x 1 step requires one multiplication by 4 and one
by At, and one preconditioning by B and one by BY, A 2 x 2 update requires two
of each of these matrix operations, and approximately twice as many inner products
and vector-scalar multiplications, so that the algorithm is balanced, in the sense that
a 2 x 2 update costs approximately twice as much as a | x 1 update. Thus there is no
significant efficiency advantage to be gained by chosing T x 1 or 2 x 2 steps. Finally,
we note that when 4 and B are symmetric, and rg = 75, then, zz = #, pr = Pk,
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ete., and algorithm CSBCG can be simplified to a composite step conjugate gradient
algorithm, saving about half of the computational work.

Before preconditioning, we scale the right hand sides such that the vector precon-
PRI, [ Sy M

ditioned by 3 has unit length. We do this in a simple attempt o keep the compouents
of the direction vectors near the center of the Hoating point number range. The math-
ematical theory is clearly independent of such scalings.

We next consider the issue of deciding between 1 x 1 and 2 x 2 updates. Qur goal
is to choose the step size which maximizes numerical stability. We have experimented

with several decision processes based on the sizes of the elements in the 2 x 2 matrix

[ Tk —Ory1/px }

—Ori1/pr Crit

and deciding locally whether to choose the 1 x 1 pivot o or to use the matrix itself
as a 2 x 2 pivot. Such schemes usually make reasonable decisions with respect to
the matrix factorization, but, based on our numerical experience, are somewhat less
satisfying with respect to the behavior of the CSBCG algorithm itself. Thus we are
led to develop a heuristic based on the magnitudes of the residuals. If the (potential)
residual from a 1 % 1 update satisfies || 71 [|<|| 7&~1 |}, then we choose a 1 x 1 update.
Otherwise, we consider the (potential) residual ry.qy for a 2 x 2 update, and choose a
2 x 2 update if || rp41 ||<]] 75 |- We don’t directly compute r and rpyq but rather
scaled versions to guard against small pivots. Thus we have || vy || |ox] = & | 741 {]
is not immediately available, but we compute (as necessary) a scaled version, where
the scaling factor is the determinant of the 2 x 2 pivot. The following code fragment
implements our test:

If & < tfp-1|or], Then
1 x 1 Step
Else
8 = opCrpr — (Brgr /o)’
Vgl =i Orres ~ PrChgi@r — Orprvrta ||
If vgy1ion]| < Exlds|, Then
2 x 2 Step
FElge
1 % 1 Step
End If
End If

This test mathematically simplifies to choosing a 2 x 2 update when

(50) [l 75 (1> max {] 7= 1,1 v (I3

When (50) is satisfied, taking two 1 x 1 steps would result in a “spike” in the conver-
gence history of the residual norm. By making a 2 x 2 update in such circumstances,
we effectively cut off such spikes. We emphasize that CSBCG does not make the
residual norm decrease monotonically, i.e. it can’t eliminate all spikes, only those
that are due the small pivots in T%.

A second implementation issue concerns the choice of basis vectors for the two
dimensional subspaces used in 2 x 2 update steps. The “natural” choice is (pg, Zx41)
and (P, Zr+1) that we used in algorithmm CSBCG. This basis consists of the k-th
direction vectors for the biconjugate gradient iteration, and the (k + 1)-st Lanczos
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vectors. However, there is clearly a great deal of freedom is choosing the basis for
these spaces. One interesting class of basis vectors the we have considered are those
of the form (py + 72441, 241 + wpr) and (Pr + 75k41, Fep1 + whr), where T # w™!
U E . D I e IS . T § T .. DU T ST NR e T I o RO b I | 1 |
15 CLRUBCEH SUCH bitdkb LIC FESUILIILE 4 X & INabFiX 1E ATROMULIHL WO DA Wil DE diggoital.

This requires that
(Br + T Y Alzp gt +wpi) = TCeq1 twop — (1 + 7wyt /e = 0

giving a one parameter family of basis vectors.

One member of this family corresponds to the choice T = 0, w = et /{prow)-
For this choice, the basis vectors are (pg,pr+1) and (g, Pry1), the direction vectors
for the standard biconjugate gradient method. Using this choice of basis vectors,
algorithm CSBCG becomes

Algorithm CSBCG/BCG:
o =[| o |}
Bpy =ro/vo; B = o/t
g =Ap;;  G=A

pr = Piro
k1
Begin LOOP:
o = P
Sk = OpPr—1— Prdk; Sk = OpPr—1 — Ppir
& =l sx ||

Bz = si/€k;  B'Zng = & /&

Oxq1 = 2} 45

el = Bres1/on

Oy = Pk+1/PA-.

Pe+l = Zhgl + Belrs Prt1 = Zns1 + Bubr
Q1 = Aprsr; G = A'Brp

If 1 % 1 step, Then

ar = pr /o
g = Tp—1 +oppr;  Ep = Bp-g + onpr
Ph = Th—1 — QpQk; Tk = Fr—1 — 2
=l 7 |
k—k+1
Else

_

Tkl = Pry19k+1
f S| Pk
7y
g 41 Bt/ o4t

Erp1 = g1+ (oxpy +opp1Prp s Ergr = Fro + (b + orp1Prsr)
Pt = re1 — (0 @k + O 1@r41); Frpr = Fre1 — (008 + 01 Geg)
Y1 =l k41 |}
Bzpyo = req1/¥rsr; B'Ergs = Frpr /e
Pran = EEH PE41
Br+1 = Prta/ pry1
Peiz = Zrg2 + PetiPrss Prgo = Zeao + Bra1 Dt
fire = Aprez;  Grye = A'Prae
Ee—k+2
End If
End LOOP
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Initially, this may appear to be a poor choice. After all, pry1 and pryq are
computed using the small pivot oy, and it is the division by o) we seek to avoid
in making a 2 x 2 update. Furthermore, since (50) is satisfied for a 2 x 2 update,
there is certain to be strong cancellation in the computation of opgr + opy1¢r41
in the 2 x 2 update step in algorithm CBBCG/BCG. At the moment we do not
have a theoretical justification for this choice, but can only say that despite our own
misgivings, empirically it has proven to be a very robust choice. We will present
some empirical evidence of this in the next section. In any event, the simplifications
afforded by this choice of basis vectors help make clear the connection between the
CSBCG method and the standard biconjugate gradient method.

Another set of basis vectors corresponds to the choice w = 0, 7 = 11/ (prley1)-
We will call this the Look Ahead Lanczos basis. A version of algorithm CSBCG using
this baais is given below.
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Algorithm CSBCG/LAL:
o =l 7o |
Bpt = ro/o;
p=Ap; =A%
p1 = piro
E—1

Begin LOOP:

O = ﬁz%

Sk = OpTk—1 — Prdk;

& =1l s ||
Biagyr = sif€;
Yet: = Azpg;
9;,4_1 = E{T+18k
Cra1 = Fy1¥bpt
If 1 x 1 step, Then

oy = P/ ok
o+t = Oegr /o
Br = prs1/px

Tp = Tp—1 + Xk Pr;

P =Pp—1 — 4k,

¥ =] 2 |

Pi+1 = Zk41 + Brpr;

Qo1 = Y1 + Brdri
Else

Thyl1 = 9k+1/(Pka+1)

Fro = pr+ T 8ne;

e = gk -+ Tep1Ye41;

e = fign

o = piof ik

Zpi) = Tp—1 + opfr;

Phtt = Th—1 — Grfr;

Perr =l e ||

Bziys = 1/ Vrts;

Prys = bl

[ﬁfil}:[

qri+2 = Apryo;
ke b+ 2
End If
Fnd LOOP

This choice has several interesting properties. First, for 2 x 2 update steps, the
residuals are updated using only one of the basis vectors. In some sense this minimizes
the potential for cancellation, in contrast to algorithm CSBCG/BCG. Also for this
choice, as well as other cases where p; and P are not chosen as basis vectors, the
matrix ApT} in (18) becomes truly block tridiagonal, with an additional off diagonal

Bpy = Fo /4o

B = opfrmt = PrG

Blzyy = & /&
Jr4r = At

Ly = Bp—1 + apbp
Po = Th—1 — aifs

Pr41 = Zrq1 + Brbr
Grt1 = o1 + Budr

fi = e + Thg15rq
Tt = 0k + To31 P41

Fri1 = Fp—1 +anfe
Frpl = Pe—1 — Qs

B'Z 0 = Frg1 /e

Prt2/ Pk ]
Priatin/Ors1

Prez = 2tz + Befr + By zeg;
Frra = A'Prya

Prrr = Eede + Befr + Brs1Zei
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entry (bulge) in the second co-diagonal band to mark each 2 x 2 update. This is a
characteristic property of the Look Ahead Lanczos method, and helps make clear the
connection between CSBCG and the Look Ahead Lanczos process [19], [17], {9].

6. The Effect Of Roundoff Error. In this section, we will present a few nu-
merical results for the CSBCG methods discussed in section 5. Here we will focus
mainly on one aspect of the numerical behavior, the properties of CSBCG with re-
spect to roundoff error. In exact arithmetic, CSBCG computes selected iterates of
BCG and hence has the same convergence rate as BCG. Several more general illustra-
tions of the effectiveness of the CSBCG method are given in {4]. In [22], biconjugate
gradient and many related methods [21], [23], {17), [8] [7], [9], [10] are compared on a
series of test problems.

All of our examples conecern the model convection diffusion equation

—Au+Pu, =1

in @ = (0,1} x (0, 1) with the Dirichlet boundary condition ¥ = 0 on Q. This prob-
lem is discretized on an adaptively created triangulation with 492 vertices [2] using
continuous piecewise hnear finite elements and Petrov-Galerkin methods based on the
divergence-free upwinding scheme described in [3]. The standard nodal basis func-
tions were used for the finite element space. We consider the cases f = 10, leading to
a relatively easy problem, and f = 100, leading to a more difficult problem. Although
many good precanditioners ave available for this problem, because we are inferested
in studying the effects of roundoff error, we have elected to have no preconditioning
(B=1).

For each problem (f = 10 and § = 100) we generated six different minimum
degree orderings [11] of the equations using the minimum degree routine from [2].
Hecause of the wide variety of tie breaking strategies and the nonuniqueness of a min-
inmum degree ordering, a minimum degree code called with a minimum degree ordering
often won’t recognize it as such, but instead will return with a different mintnmuim de-
gree ordering. This property was used to generate the six different orderings. One
linear system differs from another by a permutation make P which converts Az = »
into (PAPY)(Pz) = (Pr). Since B = I, such permutations can have no effect on the
preconditioning. The only significant effects are on the ordering of the caleulations
in forming the products Av and A, and in the ordering of the sums in the inner
products used in computing parameters for the algorithing. To enhance the effect of
roundoff, all caleulations were performed in single precision arithmetic, except where
otherwise noted. All calculations were done on a DECstation 5000/240 using the
standard F77 compiler.

We compared four different algorithms: the composite step methods CSBCG,
CSBCG/BCG, and CSBCG/LAL as given in section b, and the standard biconjugate
gradient method (BCG). The algorithm BCG was implemented using the same code
as for CSBCG/BCG, with the pivot test modified to always choose 1 x 1 update
steps. Mathematically, the three CSBCG variants should produce identical iterates,
and these should be a subset of the iterates produced by BCG. Any further differences
must therefore be attributed to roundoff.

We chose to measure error in the H'(2) norm, given by

| ||3:= f |Vul? + u” de.
2
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It 7 € R™ corresponds of the finite element function up, then there is an n x n
(stiffness} matrix M such that

fo . . .
[ IVwl* +uide = UMY = Ul
Q

We begin with the initial conditions &g = &o = 0 and rp = 5. We iterated cither
200 steps (where a step could be either 1 x 1 or 2 x 2) or until the error z; —
satisfied
[| 2k — Too |0 < 107 || oo |[ar -
We measured the number of correct digits by the formula

| ™ HM}_

51 digits = —lo
In Table I, we record the results for the case g = 10.

Taniw 1
Results for B = 10.

i BCG CSBCG CSBCG/BCG CSBCG/LAL
iterations  digits | iterations digits | iterations digits | iterations digits
1 41 4.48 23/9 4.48 23/9 4.48 23/9 4.48
2 32 4.48 23/9 4.43 23/9 4.48 23/9 4.48
3 32 4.48 23/9 4.48 23/9 4.48 23/9 4.48
4 32 4.48 23/9 4,48 23/9 4.48 23/9 4.48
5 32 4.48 23/9 4.48 23/9 4.47 23/9 4.47
B 32 4.48 23/9 4.48 23/9 4.48 23/9 4.48

The index 1 refers to different minimum degree orderings. For the composite step
methods, under the column labeled “iterations”, we record the total number of steps,
and the number of 2 x 2 steps. In this example, all the composite step methods took
23 steps, of which 9 were 2 x 2 steps, for the equivalent of 23 + 9 = 32 steps of the
standard biconjugate gradient method.

There is really not much surprise in these results. All six problems were the same
system of equations up to the application of a permutation matrix. All methods did
approximately the same amount of computation and all obtained essentially the same
answers, the sole exception being the BCG method for the first ordering.

Tn Table 2, we present the results for the case f = 100, the more difficult problem.

Here we note that there are substantial differences in the behavior of the algo-
rithms. In the cases when an algorithm took 200 steps without satisfying (51), we
included, in parenthesis, the number of correct digits at the 200-th step. In these
cases, the procedure had stalled sometime before step 200, and was no longer making
significant progress towards a solution.

One rather striking feature of the results is the extent to which convergence de-
pends of the ordering of the equations. Different orderings introduce different roundoff
errors into the computation of inner products, which in turn influences the update
coefficients based on those inner products. This seems to have affected all the algo-
rithms.
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TABLE 2
Resulis for g == 100.

g BCG CSBUG CSBCG/BCG CSBCG/LAL
iterations digits | iterations  digits | iterations digits | iterations  digits
1 T2 4.21 200/21  (2.9T) 58/18 4.01 200/24  (1.49)
2 7 4.05 200/28  {0.89) 46/19 4.07 200722 (1.38)
3 71 4.07 200/39  (-0.26) 56/24 4.26 200/17  (0.32)
4 96 411 71/26 4.04 92/31 412 200/17  (-1.53)
5 75 4.16 200/17  (-0.15) b4/17 4.11 200/26  (-1.02)
6 120 4.34 200/28  (-0.62) 54/20 4.15 200/9 (-1.78)

For this example, the standard BCG algorithm looks surprisingly good. Despite
a very erratic and oscillatory convergence behavior, it is in fact working steadily
toward convergence. This observation is consistent with the behavior of the BCG
algorithm in the extensive tests of Tong in [22]. It is unknown to us how the iterates
of the algorithm compate to those computed in exact arithmetic, but we doubt that
they are close. On the other hand, failure to compute accurate direction vectors,
poor approximation of a Krylov subspace, loss of orthogonality and near failures in
the Lanczos process do not necessarily translate into failure of the BCG algorithm,
since the only guantity of interest obtained form the caleulation is the solution vector
2. And it scemns, at least in this case, the BCG does a good job of computing an
approximation to x, while perhaps doing a poor job in other respects.

Among the CSBCG algorithms, the CSBCG/BCG variant seems to be the mast
robust on this problem. We attribute this to the fact that this implementation is
closest to the standard BCG algorithm in its computation of subspaces, and whatever
good properties are inherent in these spaces seem to be inherited by the CSBCG/BCG
variant. On the other hand, the convergence history of the CSBCG/BCG algorithm,
while not monotonic, does not have the severe oscillations of the BCG methed; the
spikes have been clipped by the criteria (50).

The other two CSBCG variants do not perform well on this problem. The reader
should not infer from this that these algorithms are inferior. With good precondition-
ers, double precigion arithmetic, etc., one would expect them to perform comparably
to CSBCG/BCG. Since this is the scenario in which such procedures are typically
used, the effects of roundoff error will tend to be minimized. In Table 3, we report
the results for the second problem using double precision arithmetic.

Here we see that all methods solve all problems in the equivalent of 51-52 BCG
steps. However, the convergence histories differ for different orderings, and between
different variants for the same ordering, so roundoff error still is having some influence.

it is also likely that the behavior of all methods with respect to roundoff error
could be improved. For example, in the CSBCG/LAL algorithm, the coefficient By
for 2 x 2 update steps is computed by the formula

(52) Breyz = priatie/Frt1-
We experimented with replacing (52) with the mathematically equivalent formuia
(53) Brya = prt20i/Orst — prabesn/ (PiCesn)-

leaving all other aspects of the implementation unchanged. The results of this single
change, which affects only the 2 x 2 updates, are reported in Table 4.
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"TABLE 3
Results for # = 100, double precision

{ BCG CSBCG CSBCG/BCG CSBCG/LAL

iterations digits | iterations digits | iterations digits | iterations digits
1 51 4.39 37/14 4.13 39/13 4.39 37/14 4.47
2 51 4.39 37/14 4.10 37/14 4.34 34/17 4.21
3 51 4.41 38/14 4.42 39/13 4.36 35/16 4.35
4 51 4.42 36/16 4.00 37/14 4.29 35/16 4.08
5 51 4.32 37/14 4.22 38/13 4.43 37/14 4.40
6 52 4.42 36/16 4.17 38/13 4.35 36/15 4.39

ThBrE 4
CSBCG/LAL using different formulae for Biio
i CSBCG/LAL CSBCG/LAL
using (52) using (53)

terations  digits | iterations digits
200/24  (1.49) | 200/42  (1.73)
200/22  (1.38) 58/20 4.40
200/17  (0.32) 51/19 4.04
200/17  (-1.53) 57/24 4,22
200/25  (-1.02) 53/20 4.00
200/9 (-1.78) 55/20 4.26

e O o GO BS

Here we see a decided improvement in the behavior of CSBCG/LAL. We do not
know if (53) is generally better then (52) with respect to roundoff exrvor. Indeed,
out initial intuition suggested that (52) would be superior. However, the point of
this demonstration is less to suggest a particular algorithm or formula than it is
to illustrate the sensitivity of BCG-like algorithms to roundoff error, with slightly
different implementations producing drastically different results in situations where
roundoff error plays a significant role. CSBCG algorithms are especially vulnerable
because of the large number of choices one has in their implementation. One has the
choice of criteria for deciding between 1 x I and 2 x 2 update steps, the choice of
basis for the 2 x 2 updates, as well as a multitude of reasonable looking formmlae for
computing the update coefficients. As in the case of the BCG algorithm, it might be
that the “best” algorithm is not one which necessarily produces the “correct” sequence
of direction vectors, good approximation of the Krylov spaces, or even satisfies the
biorthogonality properties best; it is the method which produces the best x at the
least cost.
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