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A FINITE VORTEX STREET MODEL
CHRISTOPHER R. ANDERSON*

Abstract. In this paper we describe a set of equations {based on the incompressible twe dimen-
sional Euler equations) whose solutions provide a vortex street of finite length, We describe a second
order accurate numerical procedure for solving these equations. In our description we introduce a
technique for incorporating point sources within a vortex blob method and a technigue for remov-
ing vorticity “gracefully” from the computation. The solution of the equations is easily and quickly
generated, thus providing a computational useful simulation of a finite wake.

1, Introduction. This work was motivated by the desire to have a numerical
simulation of a vortex sireet, or wake, which forms behind a blaff body as it is moved
through a fluid. We did not want to assume that the flow was periodic, and so the
common method for generating a vortex street could not be used. {One just perturbs
a two dimensional shear layer composed of oppositely signed vorticity) Also, for sim-
plicity, and because we were only interested in wake phenomenon, we did not want to
use a full simulation of the Navier-Stokes equations {or other model equations) for flow
past a blunt body.

The simulation that we present is based on using a vortex blob method to solve
the incompressible Fuler equations in which there are point sources of vorticity. The
equations will be described in section 1, but one can understand the idea without the
equations. Given a uniform background velocity (say ¥ = (1,0)) we use two point
sources of vorticity that contribute oppositely signed vorticity. When implemented
numerically, the introduction of vorticity is accomplished by introducing vortex blobs
{or point vortices if you like) at the source locations at each time-step. After vortices
are introduced into the flow they move according to the equations derived from the
inviscid Euler equations. With an appropriate choice of numerical parameters the
motion that the vortices exhibit has many features in common with a vortex street.
To limit the number of vortices that participate in the simulation, we remove vortices
that have existed for a prescribed length of time. See Figure 1 for a schematic of the
simulation,

The primary purpose of this paper is to describe the two aspects of the simulation
that have to be treated carefully - how one creates vortices and how one removes
vortices. Both aspects have to be done carefully to preserve time accuracy in the
stmulation. In the first section we give the relevant equations, in the second section
we describe a numerical procedure to solve these equations, and in the third section
we give computational results.

2. The Equations. A vortex blob method for solving the vorticity form of the
incompressible Euler equations in two dimensions consists of identifying a collection
of N vortex blobs and evolving their positions and their strengths. (From the po-
sitions and strengths of the blobs we can obtain a vorticity distribution that gives
an approximate solution of Euler’s equations.} If the ith vortex blob is at the point
Z;(t) = (2:(t), »:(¢)) and has strength o,(t}, then these quantities evolve according to
the ordinary differential equations
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Vortex motion based on Euler equations
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FiG. 1. A schematic of a vortex simulation of a finile vortex street.
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where i s is the velocity field induced by the collection of vortex blobs ;

N
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Here K} is a mollified version of the Biot-Savart kernel

e (=1 @)
KE=2) = o a1

and § is the smoothing parameter. The specific formula we use for K5 will be given in
section 2. The velocity 7() corresponds to a potential flow - i.e. a time independent
solution of the Euler equations with no vorticity., In our simulation, this will be a
uniform flow in the z direction, i.e. (&) = (1,0).

For a pure initial value problem associated with the Euler equations the function
fi(t) in (2) is identically zero, and the value of o; for each vortex is just its initial value.
In our simulation we are interested in a solution for the incompressible Euler equations
that has a time-dependent source, and thus we will use an f;(f) that accounts for this.
We also will use f;(¢) to force the vortex strengths to decay after a certain period of
time. (We then remove the vortices whose strengths have decayed to zero.) For a
more thorough discussion of the derivation of the equations for vortex methods and a
convergence analysis one can consult (2] as well as the references contained therein.
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Vortex Trajectories
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F1a. 2. (a) Vorter trajectories passing through the support of the vorticity source function and accu-
mulating strength. (b) Vortices passing through o point source and accumulating strength.

To motivate our treatment of the source term, we consider the form that fi(#)

takes when the source is not a point source, but one that is non-zero over a region of
a finite size. If s(&,t) is the source function, then by considering the Euler equations
written in Lagrangian form, f;(t) = s(#;(t},{) and so we have the equation
% = 8(%;(t),1).
Thus, as a vortex passes through the support of the source (where the source is non-
zero), its strength accumulates corresponding to the value of the source at the vortex’s
instantaneous location. A diagram of the situation is presented in Figure 2(a). For
this figure we have assumed that the support of the source is contained inside a disk
of finite size. The change in the strength of vortices is indicated by their trajectories
changing from dashed to solid lines. To capture accurately the effect of a source one
must have many vortices pass through the source. One mechanism for ensuring this
is to introduce vortices with zero strength just upstream of the source and have them
flow through the source region (for example see [3]).

The treatment of a point source or collection of point sources is analogous to the
treatment of a spatially distributed source. If the position of a point source is Zsource
then fi(t) is given by

(4)

S(fscmrce; t) if & = Fsource
filt) =
0 if fq: 7é Fsource
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Figure 2(b) illustrates the accumulation of vortex strength by vortices that pass
through the source. While we only show a discrete set of vortices in this figure, the
correct situation is one in which a continuum of vorticity passes through the source.
The result of such a source is the generation of a vortex sheet.

As one can infer from the above discussion, the mechanism by which vortices are
“created” consists of vortices of zero strength (or just Lagrangian particles) passing
through a source and accumulating strength. Since one does not need to track vortices
of zero strength (they do not contribute to the velocity field and therefore do not
influence the fiuid motion), one need only track vortices after the time that they first
encounter a source. In a calculation, the identification of a vortex that is encountering
a source consists of adding that vortex to an existing collection of vortices. We will
refer to this identification as the “introduction” or “creation” of vorticity by the source.
However, precisely speaking, we are not creating a vortex, we are merely identifying
it.

In the simulation we would like to have a finite number of vortices to keep the
computational cost down. To do this we modify f;(t) to cause the strength of any vor-
tex that is sufficiently “old” to diminish, and then remove any vortex whose strength
has become sufficiently small. Qur particular construction of an f;(¢) for this purpose
this does not correspond to a term in the Euler equations, and it is just a mechanism
by which we remove vorticity. In our simulation every vortex that we introduce will
have a time ¢} associated with it that indicates the time at which the vortex was
generated. (Or, with regard to the discussion above, t; is the time that the vortex
first, passes over a source location.) For the ith vortex and ¢ > ¢ we use

(5) fi(t) = plt ~ 1) ou(t)

where a single function p(s) is chosen to be zero if s < t7qq. and chosen to have non-
zero values for s > trede. Here trqq. 18 the age at which a vortex’s strength starts to
diminish. The values of p(s) are chosen to ensure that the strength o;(t) tends to zero
for 5 = trode-

If we incorporate the above specification of f;(¢) in (2), then the equation for the
change in the strength of vorticity becomes

S(fsomr'ce) t) if i"q‘, = :Esmj!.rce
do; ' . for t—1 <trade
(6) e 0 if % 7 Beource

p(t — t*) o4(1) for t—1} > trade

where Fgource 18 & source location and ;' is the time at which the ith trajectory first
passes though a source location.

3. The Numerical Method. In this section we describe the numerical method
for solving the equations (1) and (6) as well as give formulas for our choice of Ks and
the function p(s) used to enforce vortex decay.

We will describe two numerical procedures. Both of the numerical procedures are
based on the method of fractional steps. Essentially we solve for the change in the
vortex strength for one fractional step and for the movement of the vortices during the
other fractional step. If one alternates these steps the resulting method is first order
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accurate in time. To get a second order accurate method we use the idea of Strang
splitting [5]. The fractional step method is particularly attractive for this problem
hecause it decouples the change in vortex strength from the vortex movement. This
decoupling proved to be extremely useful in the derivation of a second order method.
If one doesn’t decouple these two components, then one gets complicated procedures
because the vortex creation (necessary due to the sources) is intertwined with the
vortex movement,

The first fractional step consists of solving (6) for a timestep At. At the beginning
of this step we introduce new vortices with zero strength at the polnt source locations.
(One could think of this introduction as identifying vortices that have travelled from
upstream and just landed at the source points.}) For each of the newly introduced
vortices, the function f; will be non-zero, and thus the strength of the vortices will be
non-zero at the end of the fractionsl step. With each new vortex we associate a time
of introduction t}* with it. The differential equation (6) that governs the strength of
the new vortices is particularly simple — the right hand side is the prescribed function
of time s(Tsource,t). Thus, to solve the differential equation one just integrates this
source function over a length of time Ai. We used the midpoint rule - so that for a
new vortex at a source point Fsource,

At
(7) G':L+l P O’z-n ~+- At s(a_:rswrcg,tn + ?).

For those vortices whose age, ¢ — t7, is less than ts.4, the function f;(t} is iden-
tically zero, and so their strengths are unchanged during this fractional step.

For the vortices whose age is greater than tyqg. their strength must be modified
by equation (6). For such vortices equation (6) can be solved exactly. Since p(s) =0
for s < Lfade, for the ith particle for which t — ¢} > traze,

t—t;
f plu)du
(8) oi(t) = Fie'fode

Here &; = 0i(tsade + ) 15 the value of the strength just before the decay process
begins.

It was our desire to choose p(s) so that the vortices would have zero strength after
some finite time tsqg.. To do this we picked p so that the exponential factor in (8)
simplified a polynomial that had the value one at ¢ = tzqq. + ¢ and decayed to zero
at t = tfage + 17 + Otrage- We used

L tade Ctrn iy
o - () R O
Btroae) 1~ [ 6(%Ha)® — 15 (L)t + 10 (tee) |
and so
e—t*
f plu)du
I edes S bjadeya $ —ttade 3
10 etfade =1 - g (5 fade g (8= braae s 108 ~tate
” [ e Chtrase ) Cotfua )

where s = t — t*. This latter function is twice continuously differentiable for s €
[tfade: tfade + 6tfade]»




To update the strength of the vortices that should decay, we evaluated the exact
solution (8). When a vortex had zero strength (i.e. its age was greater than fsade +
6t fade) then the vortex was deleted from the computation. A benefit of using the exact
solution is that the time-step difficulties associated with solving (6) numerically are
avoided. Numerical problems would arise because of the singular nature of p(s). (p(s)
must be singular so that the vortices decay to zero in finite time.)

The second fractional step consisted of moving the vortices using equation (1)
with their strengths fixed. The velocity field @s(&) is evaluated explicitly using the
formula (3). The formula we used for K5 was that obtained by mollifying the kernel
K with the function

- @<
(11) Ys(T) =
0 2 > 6

(or equivalently, 15(Z) is the form of our vortex blobs). The resulting expression for
K§ is

Ro(#— ) =
(12) ﬁsﬁ(w(y —y), z—x) (4 —6 (%)2 +4 (94 — (%)6) r<é
& (2, 25E) r>s

Here r = /{z —a")? + (y — ¢')*

A first order numerical method consists of solving the vortex strength equation (6)
for At followed by a solution to (1) for At . The combination of these two fractional
steps is one timestep of the whole solution. In the first fractional step new vortices
are created at point source locations. To carry out the second step one can use any
standard numerical solution procedure — we used forward Euler.

A second order numerical method can be obtained by using Strang splitting [5].
The method consists of solving the vortex strength equation for %35 {with vortex
creation), solving the vortex transport equation (1) for At and then solving solving
the vortex strength equation for % (again with vortex creation). These three substeps
combine to yield one timestep in the solution of the whole system. For the solution
of (1) we used a second order Runge-Kutta method (Huen’s method). Also, when
carrying out the solution of the vortex strength equation in the third component of the
calculation, the time at which the integration of the source term begins is {™ + %, not
t"*. By doing a Taylor series analysis one finds that this splitting strategy is formally
second order accurate. The computational results presented in the next section also
demonstrate the second order accuracy.

Since there are two steps of the vortex strength equation in the second order
method per timestep, it appears that the second order method will introduce twice
as many vortices as the first order method. This can be avoided. In the second order
method the vortices don’t move between the end of a timestep and the beginning of
a new timestep, so, at the beginning of the first substep one can use the vortices that
are already at the source points from the previous substep. Therefore, similar to the
first order method, one introduces just one new vortex per source point per timestep.
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4, Numerical Results. The numerical results that we present show the ac-
curacy of the numerical procedures and that with an appropriate set of numerical
parameters the solutions to equations (1) and (6) have the qualitative features of a
finite vortex street. In all our computations there was a prescribed background flow
velocity #(Z) = (1,0) and two point sources of vorticity located a unit distance apart
on the y-axis, at (0,1) and (0,—3). The size of the smoothing parameter § for the
vortex blobs was .5.

In our computations we wanted to have a source that was a smooth function of
time so we used

O![ 6( : )5 - 15( : )4 + 10( : )3] tststm‘tup

tsta’rtup tatartup tstmr'tup

(13)s(t) =
a t > tstartup-

The polynomial function occurring in this expression is one that provides a smooth
transition from zero to one over a time interval of length tyariup- The value of teiartup
was 0.4 and the strength of the source o was -4.0 for the point source at (0, 3) and 4.0
for the point source at (0, —%). To make the solution non-symmetric (and therefore
more interesting) we included an initial vortex of strength 1 located at the point (0,2).
For the decay parameters we used, {fqge = 1, and tfeqe = 5. The accuracy of the
solution was assessed by considering the behavior of the vertical velocity at the origin,
i.e. (3) evaluated at (0,0). In Figure 3(a) and Figure 3(b) we show the vertical velocity
obtained using both the first order and the second order method for ¢ € [0,2]. These
results were computed with timesteps At = .1, .05, and .025. With a timestep of
At = .05 we find that the second order method has captured the solution over the
interval ¢ & [0, 2], while the first order method has not. In fact, the timestep that
must be used with the first order method to obtain solutions close to those obtained
with the second order method was on the order of At = .0015.

The rate of convergence for each method was estimated using Aitken extrapolation
[1]. At a fixed time, the values of the vertical velocity were computed using three
different timesteps, say ¥, Y.os, a0d ¥ 505 The estimate of the rate of convergence is
given by

— Yo —Ta
Yoo — 705

The rates of convergence at times over the interval [0, 2] are presented in Figure 3(c).
For short times, the estimated rate of convergence for both methods coincides with
the expected rate of convergence. The rate of convergence fluctuates after time t=1.0,
but this appears to be caused by the fact that the stepsizes used are large and we are
not in the “asymptotic” regime which is necessary for the extrapolation estimate to
be accurate. If one chooses smaller stepsizes, then one can verify the order of accuracy
for longer periods of time.

The next set of results, presented in figures 4(a)-4(d}, show that the solutions of
these equations exhibit the behavior of a finite vortex street. In these simulations the
strength o in (13) was -0.85 for the point source at (0, %) and 0.85 for the point source
at (0,—3). Al80, tstartup = -2, lfade = 15.0 and 8tipuge = 5.0. In these calculations
there was an initial vortex of strength 1 located at the point (0, 2). This initial vortex
was included as a non-symmetric perturbation. Without such a vortex the solution
remains symmetric and does not develop into a vortex street pattern.
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(c)

Fic. 3. {a) Vertical velocity at the origin verses lime for the first order method. At = .1 : short dosh
line, At = .05 : short/long dash line, and At = .025 : solid line. (b} Vertical velocity ot the origin
verses time for the second order method. At = .1 : short dash line, At = .05 : short/long dash line,

and At = 025 : solid line.. (¢) Eriropolated rates of convergence. First order method ; short dash
line and second order method :solid line.
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F1q. 4. Vortez locations of different times. Vortices with negative strength are represented by circles
and vorlices with positive strength are represented by plus signs. (o}t =10.0, (b) £ = 20.0, (¢)t = 30.0
and (d) t — 40.0.
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Fic. 5. Vertical velocity at the origin as o function of time for the computation whose vortexr positions
are given in Figure 4.

In the figures the vortices with positive strength are represented by “+” signs
and those with negative strength are indicated by the symbol “0”. As one can see, a
pattern of large vortical structures with alternating signed vorticity forms behind the
source. The solution pattern shown in figure 4(d) is very stable. In figure 5 we show
the vertical velocity at the origin as a function of time. The periodic nature of the
flow is clearly in evidence.

While the vortex street pattern that is shown in figure 4 occurs over a wide range
of parameter choices, the parameters do have an effect on the solution. If one increases
the value of ¢f44., then a longer vortex street forms. If the magnitude of the vorticity
that is introduced per unit time is changed (« in (13)) then the distance downstream at
which the large vortices form into a vortex street is changed. For values of a above .85,
the vortex street forms closer to the source points than that shown in figure 4{d), and
for values of « less than this, the vortex street begins to form further downstream. If
the value of « is sufficiently large, then the vortices that form translate in the negative
x-direction and eventually pass the source location. In this case the solution is not
particularly well behaved. If the magnitude of the introduced vorticity is much smaller
than .85, then the vortices do not roll up appreciably before they are eliminated from
the computation and so no vortex street forms.

5. Conclusion. The main contribution of this paper is the demonstration that
there are solutions of the incompressible Euler equations with point sources of vorticity
that exhibit vortex street structure. If one uses a Lagrangian method to solve the
equations, such as we have done here, then one can truncate the solutions by discarding
“old” vorticity. In this way one can create a finite vortex street. With the numerical
method described here the solutions can be obtained with a modest computational
cost, and so the solutions can conveniently provide simulations of a wake for other
analytical or numerical investigations. Also, the numerical techniques for vorticity
elimination and inclusion of points sources presented here may be useful in other
vortex method simulations - for example those in which a bluff body is included (e.g.

[4).

10




REFERENCES

i1} K. E. ATKINSON, An Iniroduction to Numerical Analysis, Wiley, 1978.

{21 C.ANDERSON AND C.GREENGARD, On vorter methods, SIAM J. Numer. Anal., 22 (1985), pp. 413~
440,

31 G. CoTteT, Particle-grid domain decomposition methods for the navier-stokes equations in exte-
rior domains, in Vortex Dynamics and Vortex Methods, C. R. Anderson and C. Greengard,
eds., vol. 28 of Lectures in Applied Mathematics, American Math Society, 1990, pp. 100-118.

[4] T. SARPKAYA, An inviscid model of two-dimensional vortex shedding for transient and asymplot-
ically steady separated flow over an inclined plate, J. Fluid Mech., 68 {1975}, pp. 109-128.

[5] G.STRANG, On the construction and comparison of difference schemes, SIAM J. Num. Apal., 5
{1968), pp. 506-517.

11







