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ABSTRACT. We investigate the technique of combining solutions of the Prandt] equations with
solutions of the Navier-Stokes equations to compute incompressible flow around two dimensional
bodies, We present computationsal evidence which shows that if the “obvious” coupling is used to
combine the solutions, then the resulting solution is not accurate. We describe an alternate cou-
pling procedure which greatly improves the accuracy of the solutions obtained with the combined
equation approach.

1. Introduction

'Ihe purpose of this paper is to discuss the accuracy of a procedure used in the
computation of the motion of a viscous incompressible fluid past objects in two di-
mensions. In particular, we will focus on those methods where the Prandtl boundary
layer equations are used to describe the flow near an object and the Navier-Stokes
equations are used to describe the flow away from an object. A schematic diagram

+ of the situation is presented in IMigure 1. In this figure, corresponding to the domain
for the computation of flow about & eylinder, the Prandtl equations are solved in
an inner region from r, < r < 7, -+ § = rs while the full Navier-Stokes are solved
in the external region r > 5.

One may wonder why a dual equation approach is considered, One reason is
that the Prandt]l boundary layer equations have a simpler structure than the fall
Navier-Stokes equations, and so it may be easier to obtain accurate solutions. An
example where this aspect has been exploited is in the vortex sheet/vortex blob
method [3],{4], [5]. This method is a Lagrangian scheme in which small segments of
vorticity (or sheots) are used to approximate the vorticity distribution in the bound-
ary layer region and vortex blobs are used to approximate the vorticity distribution
in the external region. The sheet discretization of the Prandtl equations was intro-
duced in order to remove inaccuracies near the boundaries present in vortex blob
discretizations of the Navier-Stokes equations.

Another example where a combined equation approach has been used are vortex
sheet/potential flow methods. In such methods the flow field is represented as an
irrotational flow with embedded vortex sheets. A component of such methods is the
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Fig. 1. The decomposition of the domain for the computation of flow about a circular
cylinder using a Prandtl/Navier-Stokes equation procedure.

necessity to determine the point at which the vortex sheet attaches to the body (or
alternately where the boundary layer separates). Techniques for determining the
separation point often utilize solutions of the Prandsl boundary layer equations.

Aside from questions about specific methods, there is the general question about
the validity of a procedure which utilizes s combination of the Prandtl and Navier-
Stokes equations. This is an interesting question because in many problems of two-
dimensional fluid flow the boundary layer separates, and thus the solutions violate
the assumptions which are used to derive the Prandtl equations. The fact that
the flow separates does not necessarily invalidate the combined equation approach
(the Prandt]l equations may be applicable even if their method of derivation is
inappropriate) but it does suggest that the accuracy is questionable.

To investigate the combined equation approach we first constructed a finite
difference method for solving the complete Navier-Stokes equations for flow about
a circular cylinder. The solutions obtained with this code served as benchmarks. We
then constructed a finite difference method which utilized the combined equation
approach. Specifically a finite difference method which solved the Prandtl equations
in the inner region was coupled to a finite difference method which solved the Navier-
Stokes equations in the external region. There was the issue of how one couples the
solutions to these two sets of equations. Our initial coupling procedure was that
used in the vortex sheet/vortex blob method. (This coupling is the “obvious” one.)

We found that the solutions obtained with the combined equation approach
differed from those obtained with the full Navier-Stokes equations. {The solutions
in both cases were fully converged.) We also found that the solutions obtained
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with the combined equation approach depended significantly upon the size of the
domain where the Prandtl equations were solved. Since the size of the inner region
is somewhat arbitrary this behavior was undesirable. For both of these reasons we
could only conclude that as implemented, the combined equation approach is not a
good idea. After reaching this conclusion, we began to examine procedures which
could possibly remove this inaccuracy. We discovered that if one changes the way in
which the coupling is performed, then the dual equation approach yields solutions
which are close to the solutions of the Navier-Stokes equations. We now provide
some of the details of this investigation and indicate how we changed the coupling
to yield more accurate solutions. For more information on this investigation one
should see [6].

2. The Test Problem and the Results

Our test problem was that of the fluid motion induced by an impulsively started
circular. (At ¢ = 0 a cylinder at rest is accelerated to unit velocity.) The Navier-
Stokes equations were expressed the vorticity form and polar coordinates were used. .
The equations were thus
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for r > 7, and 0 < 8 < 27. Here (u, v) are the radial and tangential components of
the velocity respectively, w is the vorticity, and ¥ is the stream function. The non-
dimensionalization is based on the cylinder diameter 2r, and the velocity at infinity;
Re = kﬂgﬂ Initial and boundary conditions for ¥ and w which corresponded with
the problem of an impulsively started cylinder motion were used.

We computed solutions with a range of Reynolds numbers between 500 and
9,600. Since the conclusions we reached did not depend upon Reynolds number, we
choose to report those at Reynolds number 1000. (At this Reynolds number much
of the complicated boundary layer features seen in higher Reynolds number flows
are present. However it is still possible to resolve Re 1000 flow using a reasonable
number of grid points and computing time.)

The numerical method for the full Navier-Stokes eguations was a fourth order
finite difference scheme. The convective derivative terms and the Laplacian were
approximated with fourth order centered differences. (Sufficiently many grid points
were used so that the problem of spatial oscillations of the computed solutions was
avoided.) The grid was a uniform polar grid from » = r, to r = ry. 7, was chosen
so that the vorticity, except for an exponentially small amount, was contained
within the region r, < r < rp, over the times which we computed. We implemented
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Fig. 2. Solutions of the Navier-Stokes equations at Re = 1000. Solid contours indicate
negative vorticiy, dashed contours positive vorticity.

“infinite domain” boundary conditions for the determination of the stream function
(these are described in [2]) as well as high order vorticity boundary conditions at
the surface of the cylinder (extending the procedure of [1] ). The time-stepping
method was explicit fourth order Runge-Kutta. The cylinder radius was 0.5. For a
full description of the method and verification of its accuracy, see [6).

The development of the solution for this problem can most easily be seen by
considering the dynamics of the vorticity. In Figure 2 we show contowrs of the
vorticity at times ¢ = .75, 1.0, 1.25 and 1.5. Since the flow is symmetric and the
most interesting part is near the rear of the cylinder, we just show the upper rear
corner. In this figure, and in all the remaining figures, the solid lines correspond
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to negative vorticity and the dashed Iines correspond to positive vorticity. At time
t = .75 the vortex sheet which forms along the cylinder is just beginning to separate.
This process continues as time evolves, and by ¢ = 1.5 the boundary layer has clearly
geparated and acts as a source of vorticity for the interior flow. At this later time
we also see the roll-up of the vortex sheet occurring behind the cylinder.

The method utilizing both the Prandtl and Navier-Stokes equations was based
on a decomposition of the domain as indicated in Figure 1. In the region external
fo the boundary layer region the Navier-Stokes equations were approximated in the
same way as the full Navier-Stokes equations. In the boundary layer region, that
region with r, < r < 74 the equations solved were the vorticity form of the Prandt]
boundary layer equations,

Bw v, 0w dw 1 Jw
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dr * a6~ 0 (6)

ilere v is the normal velocity and » the tangential velocity. These velocity fields are
determined from the vorticity by calculating the integrals

o

v(r, 8) = v5o(8) +] wir, ) dr (7
u(r, ) = —-?1: f 6”;:; 9 g (8)

0

The discretization of these equations was similar to that employed for the full
Navier-Stokes - ie. a fourth order centered difference appreach. The boundary
conditions for the vorticity at the cylinder surface were also discretized in a similar
fashion (again see [1}).

An important aspect of the combined equation approach is the determination
of the coupling between the two solutions at the interface r = r5. When solving the
Navier-Stokes equations in the external region one must specify the vorticity at the
interface r = r5 as well as decide where to specify the stream function boundary
condition. When one solves the Prandt! boundary layer equations one treats r = r;s
as infinity, and thus one needs to specify v, the tangential velocity there. One
also needs to specify the boundary conditions for the transport and diffusion of
vorticity.

Our initial approach to the coupling was that implicitly used in the vortex
sheet/vortex blob method. In such an approach one assumes that the vorticity is
continuous across the interface so that any data necessary to close the equations for
the transport and diffusion of vorticity for either equation is obtained by using the
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L_ While each solution

solutions were obtained with a value of § = % ~ 1.5

exhibits a vortex sheet which forms and leaves the surfa.(?e there are significant
quantitative differences. Most noticeable is that the vortex sheet associated with the
Prandtl/Navier-Stokes equations separates from the body earlier in time, separates
at a different angle, and induces a much larger amount of opposite signed vorticity
beneath it. They are clearly not the same solution.

In Figure 4 we show a comparison of the solutions to the Prandtl/Navier-Stokes
equations at a fixed time t = 1.5, but with values for the width of the inner region
of § = 523, 534—, and %. The large scale features do not change much for this range
of 8, but the small scale features do - in particular the structure of the vorticity
which forms beneath the separated sheet. For reference purposes, the cylinder is of
radius 0.5, and so each of the tick marks on the figures represent a distance of %.
At 6= % the width is equal to 2.5 tick marks. With larger values of § the solutions
differed even more (in fact with § = £ ~ -2~ the solution “blew up” and the

~ VRe
computation could not be contirned).

These figures lead one to conclude that if one has separated flow, using a com-
bined Prandtl/Navier-Stokes equation is not appropriate. A question remains how-
ever, “Can this approach can be fixed 7. After some experimentation, we concluded
that the error was in large part due to the manner in which the solutions were cou-
pled at r = rz. To obtain better solutions we therefore changed the way in which
the solutions were coupled. The coupling described above enforced a continuity of
the vorticity and a contimiity of tangential velocity. While this coupling is simple
and easy to implement, it gives velocity fields whose normal component is not nec-
essarily continuous across the line r = rg. It is clear that a continuous velocity field
is a reasonable requirement, and we therefore determined a coupling of the two cal-
culations so that both the normal and tangential components of the velocity would
be continuous at the interface. The technique for deing this is similar to that used in
domain decomposition procedures for solving elliptic partial differential equations.
(See the proceedings where [2] appears for references). Essentially, given s vorticity
distribution and a tangential velocity along r = rs one can compute a velocity field
in the inner region using {7)-(8) and a velocity field in the external region using
(2)-(3) with a normal derivative boundary condition on ¥ at r = rs. The resulting
velocity field will have a confinuous tangential velocity by construction, but not
necessarily a continuous normal velocity. However, we can ask “Is there a tangen-
tial velocity at r = rg so that, after the velocity fleld is constructed we also get a
‘continuous normal velocity?”. It turns out that the answer to this question is “yes”
and in fact one can construct a linear system of equations to find it. Our procedure
was therefore to construct and solve the set of linear equations which determine this
special tangential velocity at r = rs. With this tangential velocity one uses (7)-(8)
and (2)-(3) to compute the velocity field in the inner and external regions. The
net result of this process is the determination of a velocity field which satisfies the
differential equations (5)-(6) in the inner region and (2)-(3) in the external region.
At the interface, both the tangential and normal velocities are continuous.

The results of this approach are seen in Figure 5. It is clear that the improved
coupling removes much of the error seen previously. While there are still slight dif-
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Fig. 5. A comparison of the solutions of the Navier-Stokes equations (left) with the
solutions of Prandtl/Navier-Stokes equations (right) at Re = 1000 with § = . The
Prandtl/Navier-Stokes equations were coupled so that both components of the velocity
field were contimious across r = r;s.

ferences, there is good general agreement. Moreover, as can be deduced from Figure
6 we see that the improved method has only a weak dependence on the thickness of
the inner region. With large values of § the solutions were still significantly different
from the Navier-Stokes equations, but this is to be expected, because, away from
the body, the terms neglected in the Navier-Stokes equations in order to derive the
Prandtl equations become important.
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Fig. 3. A comparison of the solutions of the Navier-Stokes equations (left) with the solu-

tions of Prandtl/Navier-Stokes equations (right) at Re = 1000 with § = 2.

vorticity on “the other side” of the interface. This external velocity was obtained by
differentiating the solution to {3) with the boundary condition ¥ == 0 at the cylinder
surface r = r,. The tangential velocity v.. needed for the Prandil equations was
just taken to be the external velocity evaluated at the point r = rs. The net result
of this process was a velocity field which satisfies the differential equations (5)-(6) in
the inner region and {2)-{3} in the external region. At the interface, the tangential
velocity is continuous,

One free parameter in this Prandtl/Navier-Stokes approach is § the width of
the inner region. In our experiments we used values on the order of —i—, the

vRe
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Fig. 4. Solutions of the Prandtl/Navier-Stokes equations for values of the inner region
width 6 = &, &, and &

order of the size of the boundary layer [7]. This choice for § is that which has been
previously used in calculations with a vortex sheet/vortex blob method.

At early times the solutions for the Navier-Stokes equations and those obtained
with the combined Prandtl/Navier-Stokes equations did not differ appreciably. This
is to be expected since the boundary layer had not separated, and it is reasonable to
expect that approximations made in deriving the Prandtl boundary layer equations
are appropriate. At later times the situation is rather different. In Figure 3 we show
a comparison of the vorticity distributions obtained with the Prandtl/Navier-Stokes
equations verses the solution obtained with the full Navier-Stokes equations. These
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Fig. 6. Solutions of the Prandtl/Navier-Stokes equations for values of the inner region
width & = 6—";, 6—2;, and 64—4. The Prandtl/Navier-Stokes equations were coupled so that
both components of the velocity field were continuous across r = 75.

3. Conclusion

We have described an investigation in which we sought to determine the accuracy of
using a Prandtl/Navier-Stokes equation approach to computing flows about bodies
in two dimensions. From our initial experiments in which a simple coupling was
used, it was clear that when separation is present, the combined equations yield
solutions which are significantly different from those obtained with the Navier-
Stokes equations. We have also shown that if one improves the coupling, then the
solutions to the Prandtl/Navier-Stokes equations appear to be acceptable, even in
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cases in which there is separation. The computational experiments we presented
were carried out at Re=1000, but experiments at higher Reynolds numbers indi-
cate that our conclusions are not sensitive to the Reynolds number. Another aspect
of this work is that it provides evidence that the linaccuracies incurred with the use
of a Prandtl/Navier-Stokes approach are problem specific. (When the flow wasn’t
separated the simple coupling approach was ok..} Since this is the case, we can-
not immediately generalize this work to Prandtl/Navier-Stokes approaches to flows
where separation ocours at a sharp edge. It is our expectation that simple matching
is sufficient, but further numerical work (which we are in the process of carrying
out) should provide information regarding this question.
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