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Abstract

Given any scheme in conservation form and an appropriate uniform grid for the numer-
ical solution of the initial value problem for one-dimensional hyperbolic conservation laws
we describe a multiresolution algorithm that approximates this numerical solution to a
prescribed tolerance in a more efficient manner. To do so we consider the grid-averages
of the numerical solution for a hierarchy of nested diadic grids in which the given grid is
the finest, and introduce an equivalent multiresolution representation. The multiresolu-
tion representation of the numerical solution consists of its grid-averages for the coarsest
grid and the set of errors in predicting the grid-averages of each level of resolution in this
hierarchy from those of the next coarser one. Once the numerical solution is resolved to
our satisfaction in a certain locality of some grid, then the prediction errors there are smnall
for this particular grid and all finer ones; this enables us to obtain data compression by
setting to zero small components of the representation which fall below a prescribed toler-
ance. Therefore instead of computing the time-evolution of the numerical solution on the
given grid we compute the time-evolution of its compressed multiresolution representation.
Algorithmically this amounts to computing the numerical fluxes of the given scheme at the
points of the given grid by an Lierarchical algorithm which starts with the computation
of these numerical fluxes at the points of the coarsest grid and then proceeds through
diadic refinements to the given grid. At each step of refinement we add the values of the
numerical flux at the center of the coarser cells. The information in the multiresolution
representation of the numerical solution is used to determine whether the solution is locally
well-resolved. When this is the case we replace the costly exact value of the numerical flux
with an accurate enough approximate value which is obtained by an inexpensive interpola-
tion from the coarser grid. The computational efficiency of this multiresolution algorithm
is proportional to the rate of data compression (for a prescribed level of tolerance) that

can be achieved for the numerical solution of the given scheme.



1. Introduction

In this paper we present a class of multiresolution algorithms for the numerical solution

of the initial value problem for hyperbolic conservation laws in one space dimension
(1'1) wy + f(w)l‘ =0, w(:c,()) = wﬂ(m)'

Here w(z,t) is a vector of ¢ components and we assume that the Jacobian Jf /0w has ¢
real eigenvalues a3y < -+ < a4, and that the corresponding system of right-eigenvectors
{r1,...,r4} spans R?. To simplify our presentation let us assume that wq(z), and conse-

quently w(z,t) are periodic with a period 1.

Let zj =7+ h, 0 <3 <N, be a uniform partition of [0,1] into N intervals of size h. We

consider the numerical solution of (1.1) by the explicit conservative scheme

(1.2a) vitt =} = X(fj - fi-1), A=1/h,

3
where
(1.2b) fi= f—‘(U?—K-}-la e ViK)

is the numerical flux of the scheme. Here v} is an approximation to the average of the

solution w(z,t) in the cell [z;-1,2;] at time ¢, = n7, ie.

(1.3) v}~ E/x w(z,ty )dz.

ji—-1

The numerical flux function f(ui,... ,u2x) is a function of 2K arguments which is con-

sistent with the flux f(w) in (1.1) in the sense that

(1.4a) Flu,u,. .. u) = flu).
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f; in (1.2) is an approximation to the time average of the flux of the solution f(w(z,t)) in

Hnntn+1}a$ Tj

_ tnt1
(1.4b) fim: j Fw(e;, 8)dt

n

(see [11] for more details).

We consider now a situation where the solution w(z,t) is highly nonuniform in its be-
" havior as a function of z, i.e. it varies strongly in some subintervals of [0, 1] but is a lot
smoother in the rest of the interval. If we use a uniform grid with spacing h sufficiently
small so that the strongest variation of the solution is resolved to our satisfaction, then the
numerical solution is necessarily over-resolved in some parts of the computational domain.
In order to improve the efficiency of the numerical solution in this situation i1t 1s a common
practice to use an adaptive nonuniform grid in which the spacing of the grid is dynamically
adjusted to the local variation of the solution. In this paper we present a multiresolution
alternative to the adaptive grid methodology in which we perform the uniform fine-grid
computation to a prescribed accuracy but reduce the number of arithmetic operations and
computer memory requirements to the level of an adaptive grid computation. The main
advantage of the multiresolution approach over that of an adaptive grid is its simplicity of

programming,.

In [4] Daubechies combined Mallat’s multiresolution analysis [14] with the construction
of a compactly supported mother wavelet function ¢(z) to obtain an orthonormal basis

for Lo-functions

(1.5a) w(z) =Y di(uppk(z), ¢E(z) =27 T2k —j)
hE

where the coefficients d;“(u)

(1.5b) B = u,0h) = [ u(@)s o),
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measure the size of the k-th scale component of u in the neighborhood of z = 27Fj.
This representation leads to a data compression algorithm by discarding coefficients d;“(u)
that fall below a suitable tolerance. Since the transformation between the function and
its wavelet representation is computationally fast, the attractive proposition of perform-
ing numerical operations in their multiresolution representation becomes computation-
ally feasible. Beylkin, Coifman and Rokhlin [3] used the wavelet transform to design
fast multiresolution algorithms for matrix-vector multiplication and showed that it is an
O(N log N) algorithm in the case of Calderon-Zygmund operators and pseudo-differential
operators. Engquist, Osher and Zhong {6] have used [3] to obtain fast algorithms for
the time-evolution of solutions to linear hyperbolic and parabolic initial value problems.
Liandrat and Tchamitchian [12] and Madday and Ravel {13] have used wavelets to de-
rive a Galerkin-type scheme for the computation of the multiresolution representation of
the solution to fﬁhe viscous Burgers equation. Barcy, Mallat and Papanicolau [2] devel-
oped a wavelet based space-time adaptive methods for parabolic and hyperbolic problems,

including Burgers equation.

In [8] and [10] we used Mallat’s multiresolution analysis to design a general class of data
compression algorithms which includes Daubechies’ algorithm as a particular case. Two
subclasses of such algorithms are descri‘bed in the present paper: In Section 2 we describe
multiresolution representations which are suitable for applications where the solution is
discretized by pointvalues and in Section 3 we do the same for discretization by cell-
averages. In Section 4 we show how to use the multiresolution representation of cell-

averages in order to obtain data compression.

The richness of this class enables us to outperform the wavelet based algorithms in many
applications. In {10] we design general fast multiresolution algorithms for matrix-vector
multiplication and show that they are more efficient than the fast wavelet transform of [3].

In [1] Arandiga, Candela and Donat use the multiresolution representation of [10] to design
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fast algorithms for the time evolution of solutions to linear hyperbolic and parabolic initial

value problems and show that they compare favorably to the wavelet based algorithm of

[5].

In {7] we extended the notion of multiresolution analysis to nested unstructured grids.
Given cell-averages of a function on the finest grid we show how to determine the minimal
level of resolution which is needed at each locality in order to approximate the finest grid
data to a preseribed accuracy. The computation of the numerical solution of hyperbolic
conservation laws by a Golunov-type scheme on any given grid amounts to the evaluation
of numerical fluxes at the boundaries of the cells. Our goal is to reduce the number of
numerical flux évaiuations to what is actually needed in order to resolve the solution to
our satisfaction. The numerical flux of a Golunov-type scheme is an approximation to the
time-average of the normal component of the flux of the solution along the boundary of
the cell. If the grid is unstructured, then the normal direction at the boundaries of the
cells, and consequently the numerical flux, cannot be thought of as discrete values of a
piecewise smooth function. Reduction of computational effort in this case can be obtained
by using at each time-step a composite grid which consists of patches of cells from the
appropriate level of resolution as determined from multiresolution analysis of the solution
at time t,. However, if the grid is rectangular and uniform (or can be obtained by a
piecewise-smooth transformation from such a grid) then the numerical fluxes of each of
the space directions can be thought of as pointvalues of a piecewise-smooth function, and
thus can be sucéessfully operated upon by a pointwise multiresolution algorithm for data

compression.

This observation suggests the following multiresolution algorithm for the approximation
of the numerical fluxes of the finest grid: We consider a sequence of nested diadic grids
{G*}f_, where k = 0 is the finest and k = L is the coarsest. We start by computing

the values of the finest grid fluxes at the few grid points of the coarsest grid G¥. As we
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proceed from G* to the finer grid GF~! we calculate finest-grid fluxes at the gridpoints
of GF~1 as follows: Values at the common points G¥ N G*¥~! are transferred from G*;
at each point of (G*)¢ N G*~1 we either interpolate the value of the flux from GF or, if
this is not accurate enough, we compute it directly from the finest grid G°. The local
decision whether interpolation from the coarser grid G¥ is accurate enough is thus the
heart of this algorithm. As pointed out in [7] this decision can be made by examining the
multiresolution analysis of v™, the numerical solution at the beginning of the time-step,
which is readily available to us. Roughly speaking, numerical fluxes of the finest grid G°
can be interpolated from G* if the same is true for the cell-averages of v™ at the same
locality, i.e. if finest-grid cell-averages of v™ can be accurately computed from the averages

of v™ over the larger cells of G*.

In Section 5 of the present paper we follow an idea of Liandrat and Tchamitchian [12]
in order to formulate a simple criterion for this decision. In Section 6 we present a sample
of numerical experiments which indicate that this multiresclution algorithm is a viable
alternative to the adaptive grid approach. In Section 7 we make some observations about

the accumulation of error in the multiresolution algorithm and draw some conclusions.

2. Multiresolution representation of pointvalues
In this section we consider a situation where we are given Ny = 2™ values
N,
(2.1) u’ = {u3}i2

which we interprete as pointvalues of some function u(z) corresponding to a uniform par-

tition of [0, 1],

(2.2a) G = {a:?-}j-\g’m 2} =j-ho, ho=1/Ny,
(2.2b) u) =ufz]), 1<j<No.
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To simplify our presentation we assume that u{z) is periodic with period 1, so that its

values outside (0, 1] are known by periodic extension, i.e. u = u?vo, etc.

We consider the set of nested diadic grids G¥, 0 <k < L,

(2.3a) G* = {13k, b = ha, by =2%Ro, Ny = Ny/2%,

jmﬂ)

where k = 0, the original grid (2.2a), is the finest in the hierarchy and k¥ = L, L < ny, is
the coarsest. Note that G* is formed from the finer G¥~! by removing the gridpoints with

odd indeces, i.e.
(2.3b) GFl - GF = {xé_;;_jl };V=k1
and that G*~1 N G* = GF,

(2.3¢) zf =27t 0<j <Ny

Interpreting the given sequence u® (2.1) as pointvalues of a function u(z) (2.2) we define

for the k-th grid a sequence u* = {uf}ﬁ“l by

(2.4) uf = u(a:;“) = U(mgkj) = ugkj, 0 <7 < N

thus u* is formed from u*~! by setting

(2.52) uf = ufit, 1<) < N,

and removing the values of ¥~ with odd indeces

(2.5b) Wb b = (bt
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Let I{z;u*) denote any interpolating function of the k-th grid, i.e.

(2.6a) I(zh;u )H uf, 0<j <Ny,

and use it in order to obtain approximate values ugj 1, 1 €7 < N, to the “missing

values” in {(2.5b),

(2.6b) ﬁgj_—ll —I(ng 5 ut).

Let us denote by DF(u®) = {Df};’v:‘l the sequence of interpolation errors

k k=1 ~k—1 k-1 k=1, k .
(2.7a) D =gy = Ugjiq = Ugj_q = (3323 U ), 1<7 < N,

and observe that knowledge of (u*, D¥) is equivalent to knowledge of uk—1
(2.7b) w1 o (D* R

in the sense that there is a one-to-one transformation between the two sets (note that both

sets have the same number of elements Ny_; = 2Ny ):

T (DFu)

(1) Define

(2.8a) uf =us;’, 1<) < Ny

(ii) Compute

(2.8b) Dt = ’LLQJ L I(wg‘}_ll; M), 1<j <Ny



(D, u®) — uk-1

(i) Define

(2.9a) up; ' =uf, 1<7 < Ny

(ii) Compute
(2.9b) ”%;—11 = I(wg;—11 ; Uk) + D;‘c'
Using (2.7b) for 1 <k < L, we get

(2.10)
w® o (DY u") & (D', (D% u?) = (DY, D*u?) & --- & (D', D%,... , Dl ul) = (up)?;

where upy,
(2.11) uy = (D, D%,... DY ul)T

is the multiresolution representation of u°. Relation (2.10)} shows that there is a one-to-one

transformation between u° and wjs which we denote by

(2.12) upy =M u®, u® =M1 uy.

We note that the above relations hold for any interpolation technique in (2.6)-(2.7)
and that for purposes of pure data compression it is advisable to use an adaptive (data-
dependent) interpolation (see [8]), in which case M is a nonlinear operator. In the appli-

cation of this paper (as in [10]) we elect to use the simplest central interpolation where

9



the value at a:2 i !, is computed from the (r — 1)-th degree polynomial that interpolates

(U?ms, . :“j+s—1)’ r = 2s. In this case

(2133’) ”’263 11 = I(‘rEZJ 1y U ) = Z ﬂf(u?-!-ﬂ—l + u?—-ﬂ)’ r—= 23)

r=2= 51 = 1/2
(2.13b) r=4= f=09/16, B =—1/16
r—6= f=150/256, (B, = —25/256, B3 = 3/256,

and M is a linear operator which can be represented by an Ng x Ny matrix. Without

writing the explicit form of this matrix, it follows from (2.8) and (2.9) that
upr = Mu® (Encoding)
can be computed by the algorithm

DOfork=12,...,L
(2.14) uf = ufy 1<j <Ny

DY =gy~ Ty Be(ufpey +uf_y), i<j <Ny

and that

u® = M~1uy; (Decoding)

can be computed by the algorithm

DOfork=L, L-1,...,1
(2.15) ug; = uf, 1<j <Ny

ugily = Yoomy Be(whpey Huf_) +Df, 1<5 < Ne
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Note that the encoding algorithm (2.14) goes from fine to coarse while the decoding
algorithm (2.15) goes from coarse to fine, and that both operations are inexpensive O(Ng )

algorithms

3. Multiresolution representation of cell-averages

In this section we consider a situation where we are given a sequence of Ny values

(3.12) ' = {al} i,

which we elect to interpret as cell-averages over the grid G° (2.2a) of some function u(z)

(3.1b) I

P = T u(e)dz, 1 <3 < Nq.

We consider now the set of nested grids G¥, 1 <k < L in (2.3) and define the sequence
b= {ﬁ?}j\iﬁ b
(3.2a) k=

It follows immediately from this definition and (2.3c) that

(3.2b)
k k—1

_k 1 5 de — 1 Taj—1 p d B

Uy = Tor o u{z)de = Y- L u{z)de + u(m z| = (“23 1_|_ 2; .
Je1 - -

Therefore {uk}

it 1 <k < L, can be computed directly from the given data @, without

any explicit knowledge of the function u(w), by the following algorithm
DO for k =1,2,...,L
(3.3) DO forj:l,...,Nk
(“2; 1 +u21 )
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We turn now to consider the pointvalues Uf = U(:cf) of the primitive function of u

(3.4) U) = ] " u(y)dy

k

and observe that knowledge of the cell-averages u" is equivalent to knowledge of the point-

values U* of the primitive function (3.4),
. : = k1 N,
(3.52) UF={UF}j2 o @t ={al}l,

as is evident from the following two relations:

J

(3.5b) UF=U@)=h > af,
(3.5¢) i = [U(ef) = Uaf_;)}/he = (U = UFy)/he
k

Hence knowing the values @* we can compute U* and use (2.6) to approximate the “missing

values” Ufj__ll, 1<j < Ngby ﬁzkj_——ll
s O3, = Ik

Recalling that U;" = Uz'l‘"j_1 (2.5a) we use (3.5¢) to get an approximation #*~! for the

cell-averages #* ™1 of the finer grid by
(3.6b)  aby = (U — Ul e, a7t = (UF = U5775) hk—a, 1< 5 < Nie
We note that

1, ke . 1 _
(3.60) 5 (a5 + a3 = 5p—(Uf —~UfLy) = a5,

12



1

therefore ﬁf{; can be computed from knowledge of ﬂ;? and ﬁgj__ll by

(3.64) iyl = 2uf — a5

Next we denote by d*(@°) = { d"} the sequence of approximation errors in predicting

{ak i 1} | from the cell-averages u* of the coarser grid

(373‘) d.’; - ﬁg_',v 11 ﬂgg_—ll = ﬂ';cj'_ll [I( 23 1? Uk) — 1]/}”0*-“11 1 SJ S Nk7

and observe that knowledge of (d*, u*) is equivalent to knowledge of @*~1
(3.7b) a1 e (dF aF)

in the sense that there is a one-to-one transformation between the two sets:

=1 _, (d*, 7*)
(i) Define
(3.8a) i ( as: ) + s ), 1< < Ny
(i1) Compute
(3.8b) df = ug; ) —~ Iy}, 11=‘Uk) UF /-1, 1 <j < Ng.
(d*,a*) — ak!
Compute

ﬁrzcg 2= [I(‘?’z; L UF) - 1]/hk—1 +df,

(3.9) iy; ' =2uf — gl 1<j < Ni

13



As in (2.10) we conclude that there is a one-to-one transformation between @° and its

multiresolution representation iy

(3.10) uy = (4, d?,... ,d" a7

which we denote by

(3.11) ay = Mia®, @ =M"uy.

When we use the central interpolation (2.13) in (3.8)-(3.9) we get that M is a lincar
operator which can be expressed by an Ny x Ny matrix, and that the transformations in

(3.11) can be performed by the following algorithms:
iy = Mi" (Encoding)

DO for k=1,2,...,L

(3.12) af = L(ust +ugt),  1<j <Ny,
k- —k wa—1 _ — .
dfv'c = ulzcj—11 - “;‘ — 21 ’Yf('“'?q-e - u?—e)a 1 <7 €Ny

i1 = M~ (Decoding)

( DOfor k=L,L—1,...,1

DO for 3 =1,... ,N;

(3.13) < A )
A= e85 — W_y) + df
| uhi =ab 4 A, at =ab - A

Here the order of accuracy is ¥ = 25 — 1, and the corresponding coeflicients v, are

(3.14)

14



We remark that since 4" is equivalent to U? ((3.5a) with £ = 0) it follows immediately
that tias is equivalent to Ups, the multiresolution representation of the pointvalues of the

primitive function
(3.15a) iy o Uy = (D, D2,..., DY URT.

The transformation between #” and U’ is given by (3.5b)-(3.5¢) with ¥ = L. The trans-

formation between df(ﬂﬁ) (3.7a) and D (U°) (2.7a) is given by
(3.15b) d¥(u") = DEU®)/ha-a.

This relation follows immediately from (3.7a) by using (3.5¢) for u2 3_1 and recalling U}“_l =

U;j-—"_lz (2.5a), i.e

d.’;(ﬁﬂ) = (Uzkj_—ll - Uifj_—12)/hk”“1 [I(CEQ] 13 ) - U2kj_—12]/hk—1

z[Uffjwﬁ I( Toj— 1:U N/ b1 —Dk(UO)/hk 1

4. Regularity analysis and data compression

In this section we use the multiresolution representation 4 s to obtain a data compression
algorithm of cell-averages and then study its application to the numerical solution v™ of

the conservative scheme {1.2).

Using standard interpolation results and recalling that the primitive function U{z) (3.4)
is smoother than u(z) we get from (3.15b) the following qualitative description of the be-

havior of d;?(ﬂo): If u(z) at = T has p—1 continuous derivatives and a jump-discontinuity
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in its p-th derivative, then for :}:f near %

(hk)P[u(p)] for 0<p<r

(4.1a) d?(ao) ~ { ;

(hk)’_"u(’?) for p>¥#

here 7 is the order of accuracy of the approximation (F = r — 1) and | | denotes the

jump at the discontinuity. It follows therefore that
(4'1b) |d§3—1] ~ 2-13!(1?" p= min(p, 'F):

provided that the k-th grid is fine enough for the asymptotics to hold. This shows that
away {rom discontinuities of the function, the coefficients d;? (%) diminish in size as we
go to a finer grid with a rate which is determined by the local regularity of the function
and the order of accuracy of the approximation. In the neighborhood of a discontinuity of
u(z)} the coeflicients d;?(ﬁo) remain of the same size independent of the level of refinement.
Conversely, the above relation between rate of decay and regularity also enables us to
estimate the local regularity of the function by studying the local rate of decay of its
coeflicients df(ﬁ,b). In this respect the process of finding the multiresolution representation

of i can be viewed as performing analysis of its local regularity.

We turn now to discuss data compression of #°. In [10] we showed stability of the
decoding algorithm with respect to perturbations in the multiresolution representation.

Let iy,
(4.2a) dy = tro(iy) = (d', d%,... ,d" a")7
denote the result of the following truncation operation on ias:

7

. a5 i |dE] > ey
(4.2b) d’-‘:{ ! !

0 if |d¥| <ey
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and let 4% denote the result of applying the decoding algorithm to the truncated data ias
(4.2¢) 20 = M.

Using the results of [10] we get that

(4.3) [ = @%)l = {IM ™ [@ar — tre(@a)]

can be bounded by

(4.42) la—-a’l <C Y e

where C' is independent of the number of levels L, for both the L; and L norms (here

we use Jul]]; = hoé"l [u?]). Taking

(4.4b) £ = _kE/C
we get from (4.4a) that

(4.4¢) | |2° — @°) <e.

Hence given &, a prescribed tolerance for error, we can achieve data compression by trun-

cating the multiresolution representation (4.2) with truncation levels g determined by

(4.4D).

Let D, denote the set of indices (j, k) of the significant coefficients df in the multireso-

lution representation of @, i.e.

(4.5) D, = D(a°) = {(5,%) | 1d§| > ex},

17



and let |D| denote the number of elements in D. Taking into account the number of

elements in the coarsest level a”, the rate of compression is thus

Mo __
!fDSI + NU/QL.

(4.6) rate of compression =

Next we apply data compression to the numerical solution (1.2) and examine its relation
to the regularity of the solution. In the following experiments we take (1.2} to be the first

order upwind scheme {6]

(4.7a) Flug,ug) = Z[f(ur) + fuz) — [a(ua, wa)l(u2 — u1)]

D]

where

(4.7b)

H

a( _ { [£(u2) - flun)]l/(uz — u) w1 # Uz .

f’(u’l) U1 = Uz

this scheme is the scalar version of Roe’s scheme [15].

In Figures 1a, b, ¢ we show the numerical solution v and its data compression D.(v")

for n = 25, 75,125, respectively, for the initial value problem

1 |£L'|§*é‘

(4.8) we+ (w?2)e =0, w(z,0) = x[_y,31(=) = {
' 0 1>z > 1

with periodic boundary conditions at z = =15 here Ny = 256 and CFL = 0.8. Each figure
consists of 2 parts: The diagram at the bottom displays D.(v™) in the z — k plane by

drawing a circle around (mg;_li ,k) for each element (7, k) in the set.

The plot at the top displays v™ by asterisks and ©", the decoded values (4.2¢) by circles.

In Table 1 we show the compression rate and the errors e, = |[v™ — ", p = 1,2, 00, for

18



the above calculations

(4.9a) €oo = max |vl — o7,

N :
(4.9b) epm{mz zv?wﬁmp} L p=1,2

In Figures 2a, b, ¢ and Table 2 we repeat the above for the numerical solution of
(4.10) we + (w?/2)e =0, w(z,0)=2+sinrz, —1<z<1,

for n = 25,150,400 respectively.

In both cases 1 and 2 we applied the data compression algorithm (4.2) to the numerical
solution with L = 5 levels of resolution and e = 107%/2% 1 <k < L, and used (3.12)-

(3.13) with 7 = 3 (s = 1).

The solution of (4.8) starts with two discontinuities at = £0.5; the one at z = 0.51is a
shock and that at @ = —0.5 is a centered rarefa,ctlion wave with discontinuous derivatives
at its endpoints (corners). We observe that D.(v") in Figures la, b, ¢ has three spikes
corresponding to these irregularities of the solution: The spike corresponding to the shock
remains of the same shape throughout the evolution of the solution; the one corresponding
to the right endpoint of the rarefaction wave is becoming lower due to the expansion
of the wave and the numerical rounding of the corner; the spike at the stationary left
endpoint ¢ = —0.5 retains its shape, which indicates a shock-like behaviour. Indeed a
closer examination of the numerical solution shows a small stationary “negative shock” at
the foot of the rarefaction wave at z = —0.5; this is due to the fact that Roe’s scheme

(4.7) does not enforce the entropy condition at sonic points.
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The solution of {4.10) starts with smooth periodic data with extrema at = = £0.5.
The segment which has the maximum on its left and the minimum on its right is being
compressed into'a, shock; the segment which is initially between —0.5 < 2 < 0.5 expands to
fill the space between the shocks, thus forming a decaying N-wave. In Figure 2a (n = 25)
the solution is still smooth; note that D.(v") in this figure does not have points at the
finest levels 1 and 2. Comparing Fig. 2b for n = 150, which is just before tﬁe formation of
the shock, with Fig. 2a we see the addition of finer scales at the shock and the elimination
of scale 3 at the rarefaction wave due to its expansion. In Figure 2¢c (n = 400) we see an
N-wave structure and observe that D.{(v™) has the typical spike for the shock, while the

rarefaction, which is almost linear by now, is described by the coarsest level 5.

In Tables 1 and 2 we see that the error in all norms is well below the prescribed toler-
ance. The Ly-norm measures the smallest error and indeed it is the most appropriate for

discontinuous functions.

REMARK: Figures 1 and 2 demonstrate that the location of irregularities in the numerical
solution is shown by spikes in the D.{v") diagram. This information about the local
regularity of the solution, which is available to us at the beginning of each time-step, can
be used to trigger special procedures at shocks and discontinuous derivatives. For example
one can use the inexpensive central stencil for ENO schemes [11] except at the “spikes”,

and only there to use the more expensive procedure of an adaptive stencil.

5. Multiresolution scheme

In this section we apply data compression to the numerical solution (1.2) and show how

to compute its evolution in the compressed multiresolution representation. Our goal is to
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calculate the numerical solution of the given fine grid

(5.1a) vt =0 A (fF — Fl_y) = (Bo - 0™%);, 1< < N,

(5.1b) 7} = Tl i),

within a prescribed tolerance in an efficient manner; here Ay = 7/hg and Ey is the numerical

evolution operator of the given scheme.

We use the notation v;-”k for the cell-averages of the numerical solution (5.1) in I Jk =

{$ffk1, :t:;“], the cells of the k-th grid, and ff for the pointvalue of the numerical flux (5.1b)

at xf,

(5 2 ) nk 1 n,k—1 n,k—1
nod vyt = 2(“2;‘—1 +uyy )

(5.20) 7=

Note that the numerical flux is generally a nonlinear function and that the values in
(5.1b)-(5.2b) are computed on the given fine-grid; savings in computation will be achieved
by calculating these fine-grid fluxes at fewer points. Let v}y denote the multiresolution

representation (3.10) of the numerical solution v™* (5.1a),
(5.3) vl = Mo™® = {d*(v™),... ,d"(v™), o™}, m=n,n+1.

Writing (5.1a) in vector form and operating with M on both sides we get Ejz, the mul-

tiresolution form of the scheme Ey
=K
(5.4) vﬂ'l = vy — M =ME, -(M‘%&)EEM oYy
f ?\Te - fT 1{?\70 -1
Note that Eas is equivalent torEg and that both are nonlinear operators.
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In Appendix A we show that the mul‘tiresoiution scheme (5.4) can be expressed by

5 { dé(o™H1) = d¥(o™) — Aoy DE(FY), 1< <N, 1<k <L,

1,L L 3 3 . .
vt = oY AL (FF - FE), 1<j < Ng;

here D¥(f°) is the interpolation error (2.7a)
(5.6) | D) = faith — I(e5;20s %),

and Ag—y = 7/hg—1.

We introduce data compression into the multiresolution scheme (5.4)-(5.5) by applying
the truncation operator tr, (4.2) to the numerical solution at the beginning of each time-

step
(5.7) vt =M Eo - [MMr.(v}y)] = By - vl

observe that for € = 0 (no compression) ES, = Ep. Given a tolerance £ and Ey which is
a monotone scheme, we show now that by chosing appropriate ¢ in (4.2) we get for any

Ly, §
(5.8&) “E?M’UM —EM-UM”1 SE.

Thus we can eontrol the deviation of the compressed solution from the fine-grid solution
per a single time-step. To prove (5.8) we recall [9] that if E¢ is monotone, then it is

Li-contractive, i.e. for any 4° and ©°

o - & — By - 0°flx < f|a° — 5"
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This implies that

857 - v — Enr - onfla < M1 {[Eo - M7 re(var)] — Eo - (M omn)lls

< M M7 tre(var) — valifs-

Using in (4.4)

(5.8b) e = %s/zk, M|, < &

we get that the RHS of the above inequality is smaller than & which proves (5.8a).

We turn now to consider computational aspects of the multiresolution scheme (5.7).

Since v} is about to be truncated at the beginning of the next time-step, only d;-“ (v™t1)

which are above tolerance, i.e. for (j,k) € D(v™1) (4.5), need to be calculated. At the
beginning of the n-th time-step we only know D.(v™) and not D(v" ). In Section 6 we
show how to use knowledge of D.(v") in order to obtain an estimate Dl 4o D (o)

which satisfies

(5.9a) D D D (v™) U D (e,

In this case, if (7, %) is in (D**1)°, the complement of D**1, then both
(5.9b) {d?(v")| < &g, |df(v”+1)| < Ek,

and therefore it follows from (5.5a) and (5.8b) that

(5.90) MolDA(F) < a% e for (j,k) € (D").

This shows that for (7, k) € (D"H1)°, the numerical flux f;-“_l can be interpolated from f*

within a prescribed tolerance.
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Next we describe our algorithmic implementation of the multiresolution scheme (5.7).
Given v}y (5.3)

oy = {d'(v"),... ,dk ("), v )T

n--1
M

we compute v by the following steps:

Multiresolution Algorithm
Step (i) Truncate
(5.10a) 87, = tr.(vl)
and calculate ‘JNJ"”“H (details are given in (6.1) of the next section).

Step (ii) Prepare fine-grid values for numerical flux calculations

(5.10b) " = M~15%,.
Step (iii) Coarsest grid calculations:

Calculate
(5.10c)  FF=f(0F _gror 0% 4xc)y Jo=204, 1<G <Ny

and update

(5.10d) v;+1’L = ’U?’L — /\L(JFJL — ;‘-5_1), 1< < Np.
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Step (iv) Computation of {d§(v" )} ; 4y cpnsil

( DOfork=L,L-1,...,1
DO for j=1,... ,N;

(5.10e) fz’“j—l = fF
(5.10£) fzkj_ ( Toj— 1,f’°)~2e-1 ﬁf(fJM 1+f _e)-
IF ((j,k) € D**)
< THEN
(5.10g) fg, v = F0% s s 0 qk)y Jo= (27 —1)28
(5.10h) d’“( nHy = dE (o) — Mo (Fah ffj_—ll)
ELSE
(5.104) f2J ] = fZJ 1
(5.103) s S di (o) = 0.
.

Our basic assumption in designing this algorithm is that a call for a numerical flux
calculation (5.10g) is considerably more expensive than interpolating the flux from a coarser
grid (5.10f). Therefore we measure the efficiency of this algorithm by the ratio g of Ny,
the number of flux calculations in the fine-grid scheme (5.1), to the actual number of calls

for a numerical flux calculation in (5.10¢) and (5.10g), i.e.

Ny _
|Drtt] 4 Ny /2F'

(5.11&) H=
since from (5.9a)
(5.11b) D™ > 1D (v U D (v,

we get that the efficiency p is dominated by the rate of data compression for the numerical

solution (4.6).
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We observe that (5.10c), (5.10e)-(5.10g) is basically a decoding of the fine-grid fluxes
from its compressed multiresolution representation via the pointvalue dlgorithm (2.15),
except that the coeflicients D}( F?) are computed “on the fly” and only where needed. The
decision whether D;‘( f%) is to be computed is made indirectly from the multiresolution
analysis of v™, which is readily available to us. Therefore the multiresolution algorithm
(5.10) can be viewed as a modified version of the given scheme in which the numerical
fluxes are computed in an hierarchical way from coarse to fine, and the modification is
that direct evaluation of the numerical flux is replaced by interpolation wherever this can
be done to a prescribed accuracy. We describe this version of the multiresolution scheme

in Appendix B.

6. Numerical Experiments

In solving hyperbolic conservation laws there are two effects that have to be taken
into account: Finite speed propagation and compressibility; by the latter we refer to
convergence of characteristics which is responsible for creation of shock waves. In order to
illustrate the role of these effects in estimating D"t! we show the relation between D, (v™)
and D, (v*T!) in two typical situations. In Figures 3a, b we present results of a fine-grid
calculation by Roe’s scheme (4.7) with Ny = 256 and CFL = 0.8. Each figure consists
of two parts: In the upper part we plof; values of v™ and v™1! for a particular n; values
of v™ are marked by circles while those of v™¥! are shown by asterisks. In the diagram
at the lower part of the figure we display the corresponding D.(v™) and D.(v™*1}, the
first by circles and the latter by asterisks; here we use 7 = 5,L = 5 and g, = 1073 /2% for
1 <k < L. In Figure 3a we show the results at n = 100 for the initial value problem (4.8).
Here we see instances of an asterisk to the right of the circles — this is due to propagation.

In Figure 3b we show results at n = 99 of the initial value problem (4.10). Here we have
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an example of an asterisk above the circles, i.e. a creation of a finer scale — this is due to

a compression wave which is on its way to turn into a shock.

Taking into account these effects of finite-speed propagation and compressibility we
suggest the following algorithm which combines the calculation of D+ with the truncation

operation in (5.10a):

(1) Set

(6.1a) i(j,k) =0, 1<j< Ny, 1<k<L

r DOfor k=1,...,L
DO for j=1,...,Ng
IF (Jd§(v")] < ex)
THEN
df(v”) =0
{ ELSE
G-k =1 -KE<{<K
IF (|dk(v™)] > 2PFey and k > 1)
THEN

1(2j —Lk—1)=1,

125,k —~1)=1

(iii) Define D*+! by

(616) ®n+1 = {(J:k) I ;(jak) = 1}
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The matrix 2(7, k) of 0 and 1 serves as a flag; the check whether (j,k) € DrH1 in (5.10) is

replaced by a check whether 7(j, k) = 1. The range of the parameter K in (6.1c) is
(6.2a) 1<K<K

where K is the support of the numerical flux function (1.2b). The choice K = K cor-
responds to the maximal speed of propagation in the numerical scheme. However, since

n

propagation of “real” information is limited by the CFL condition, we expect the choice

K =1 to be sufficient in most cases. In the numerical experiments of this paper we use
the Roe’s scheme (4.7) where K = 1 and thus K = 1 from (6.2a). The parameter p in
(6.1d) corresponds to the regularity analysis (4.1b) and is derived from mesh refinement
considerations, i.e. we estimate [d5;_;(v™)], [d5;(v™)| by 27P|d¥(v™)], and check the latter
w.r. to €x_1 = 2¢1,. Hence p = min(p, 7) is determined by the regularity of the solution at
a:;-“. We observe that at shocks all scales are present initially (see Figures 1 and 3a); new
finer scales are created where the solution is smooth during a process of shock formation

(see Figures 2 and 3b). Therefore we consider the range of p in the algorithm (6.1) to be
(6.2b) 1<p<r-1,

where the upper limit of (F — 1) is set in order to take into account the effective loss of

smoothness in the final stages of the shock formation.

In Figures 4, 5 and 6 we present results of the multiresolution scheme (5.10}), (6.1)
with Roe’s numerical flux (4.7} for the periodic initial value problem (4.10). Each figure
consists of 3 snapshots at n = 25, 150, 400 which are denoted respectively by a, b, c. In these
calculation we used Ny = 256 and time increment 7 which corresponds to a CFL = 0.8

for the finest grid, i.e.

T " ' _
(6.3) g mex |f'(we)] = 0.8.
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In the upper part of each snapshot we compare the solution of the multiresolution scheme
(circles) with the solution of the uniform fine-grid scheme (5.1) (asterisks) which is com-
puted independently. In the lower part of each snapshot we display D.(v") for the solution
of the multiresolution scheme (circles) and its corresponding estimate by (6.1) D" (aster-
isks); here we use L = 5 levels of resolution and & = 1073/ 2F 1 < k < L. In Tables!
4, 5 and 6 we show the corresponding factor of efficiency g (5.11a) and the L, difference
(4.9) between the numerical solution of the multiresolution scheme (5.10), (6.1) and the

fine-grid solution (5.1).

In Figures 4 we show the resulis of the multiresolution scheme (5.10) with 7 = 3 where
D+ ig calculated in the same way as in the wavelet algorithm of [2], i.e. if (4, k) € D.(v™)
then we include the points (27 — 1,k — 1) and (25,k— 1) in D+l this is done by using

the algorithm (6.1) with p = —1 in (6.1d).

In Figure 5 we repeat the calculation of Figure 4 except that now we take p=7—1 =2
in (6.1d). Comparing the corresponding Tables 4 and 5 we see that the error in all norms
is about the same, but the efficiency factor for p = 7 — 1 is considerably larger than that
of p = —1. Comparing D" in Figures 4 and 5 with D.(v™) for the fine-grid solution in
Figure 2, we see that D™ in both cases is an overestimate, and that the one for =7 — 1
is more accurate than that for p = —1. Comparing the efficiency factors of Tables 4 and 5

with the compression ratio of Table 2 we can quantify the extent of this overestimate.

In Figure 6 we repeat the calculation of Figure 5, except that now we take ¥ = 5; as
before we take p = ¥ — 1 = 4 in (6.1d).  Comparing Table 6 with Table 5 we see that the
errors are about the same; the factors of efficiency for # = 5 is significantly larger than

those of # = 3 whenever the numerical solution has large segments of smooth variation; on

1In this paper we use the convention that the tables are numbered as the figures they correspond to; there

ts no Table 3
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the other hand the spike at shocks for # = 5 is wider by 2 points than that of 7 = 3 due to

the larger support of the stencil in (3.13) and (5.10f).

Next we show the results of the multiresolution scheme (5.10), (6.1) for a Riemann initial

value problem (shock tube) for the Euler equations of gasdynamics

Wy, <0

(6.4a) wy + fw)e =0, w(z,0)= { ,

WR x>0

(6.4b) w = (p,m, E)7,

(6.4¢) Flw) = ww + (0, P, Pu)T;

here p,m, E are the density, momentum, energy, respectively; u = m/p is the velocity
and P is the pressure which is related to w by an equation of state of polytropic gas with

+v=1.4

(6.4d) | P=(y-1) (E - %puz) ;

the states wy, and wg in our numerical experiment are those of Sod’s shock-tube problem
(6.4¢) wy, =(1,0,2.5)7, wg =(0.125,0,0.25)T.

The first order upwind scheme of Roe for the Euler equations of gasdynamics can be
expressed by its numerical flux (4.7a) where @(u1,us) is Roe’s average Jacobian (see [15]

for more details).

In Figure 7 and Table 7 we present results of the multiresolution scheme (5.10), (6.1)

with Roe’s numerical flux. In these calculations we solved the initial value problem (6.4)
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in the interval [—1, 1] with Ny = 512 and a variable time-increment which corresponds to a
CFL = 0.8 for the finest grid at each time-step. We stopped the calculation at n = 250 in
order to avoid the question of boundary conditions. In Figure 7a we display D.(v") for the
solution of the multiresolution scheme at n = 250 by circles and its corresponding estimate
D" (6.1) by asterisks; here we used I = 6 levels of resolution and e, = 1073 /2%, 1 <k < L.

The algorithm (6.1) was used with the following definition of |df(v™)],
(6.5) |45 (v™)] = max(|d5 (p™)], |d5(m™)], 1d5(E™)])

where the quantities on the RHS are absolute values of the scalar quantities in (3.12)
applied to the density, momentum and energy with # = 3. In (6.1d) weused p =7 —1 = 2.
In Figures b, ¢, d we compare the solution of the multiresolution scheme (circles) with the
independently computed solution of the uniform fine-grid (5.1) (asterisksj for the density,
velocity and pressure, respectively. In Table 7 we show the factor of efficiency (5.11a) and

the difference e,,p = 1, 00 between the multiresolution solution and the fine-grid solution

at several times during the calculation. These differences are calculated by

(6.6a) €oo == 12}2}}{% max[e;(p"), ei(m™), e;(E™)],
No '
(6.6b) er = _J-\% Z[ei@n) + e;(m”™) + ei(E")]/3,

where e;(+) denotes absolute value of the difference at z{ between the two solutions. It is
interesting to note that the errors in Table 7 for the Euler equations of gasdynamics are
of the same order as those for the scalar case in Tables 4-6. Comparing D® to D. (v™) in
Figure 7a we see that the algorithm (6.1) allowed for refinement on level 2 at the rarefac-
tion wave and at the contact discontinuity; this is clearly unnecessary since both become
smoother in time as a result of numerical dissipation and expansion of the rarefaction wave.

To demonstrate this point we repeat the above calculation with p = 4 in (6.1d), which
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effectively eliminates most of this superfulous refinement, and show the corresponding re-
sults in Table 8. Comparing to Table 7 we see an increased factor of efficiency with no

significant change in the errors.

7. Accumulation of error and concluding remarks

Let v® denote the numerical solution of the compressed multiresolution scheme (5.7)
(7.1a) " = M~ o = Mol

and w™ the cell-averages of the exact solution w(z,t) at time t,,. Using (5.7) we express

the evolution of the error e®
(7.1b) e = vl —w"
by

et =ttt w" ! = [Bg - M Hr (Mo?) — Eq - v?] + [Eov? — Egw"]

(7.2) + [Bpw™ — w™t!]

and study its accumulation in the time-strip 0 < ¢ < T as hp — 0 and Ay = 7/ho = fixed,;

in this process we keep a fixed coarsest grid and let L — oo as hy — 0.

First let us consider the linear case and assume that Ep is a linear oeprator. In this case

we get from (7.2) and (4.4) that

(7.3a)
e < |Baflle™ ]| + [Eo M tre(Mo?) — v2|| + [ — Bow"|

< [ Bolllle™ [ + [l Eolle + 4]
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where § is a bound on the local truncation error

(7.3b) | 6= max ™t — Equw™|.

If we assume that

(7.3¢) ||E§]| <1+ C ho

then we get from (7.3a) the standard estimate

(7.3d) leM | < ST ef| + (eCT/ 0 — 1)[6 + (1 + C ho)e] /(C hg)

where 0 < N7 < T,

Next we consider the nonlinear case and assume that Ey is a monotone scheme. In this

case we get from (7.2), (4.4) and the Li-contraction of Ky that

T )
(7.4) el < el + e+ 8 < [lellu + (n +1)(e + 6) < il + 3~ €h+u ’

In both cases (7.3) and (7.4) it is clear that chosing
(7.5) e =0(8)

preserves the order of accuracy of Ey and the quality of the numerical results. We observe
that the data-compression algorithm (4.2) in this refinement process by — 0 is used with
a number of levels L which tends to infinity. Therefore stability of the data compression

algorithm in this context means that for any v

(7.6) M~ (Mo) — o] <C - ¢
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where the constant C is independent of L.

We remark that the numerical solution of the multiresolution scheme can be stored in
its compressed form and thus reduce the storage requirements for the problem. If memory
requirements pose a limitation on a satisfactory solution of the problem, we can replace
the global decoding (5.10b) by a more compact one which takes into consideration the

actual fine-grid values that are needed for the exact numerical flux evaluations in D"+,

The efficiency of the compressed multiresolution scheme (5.4} is very much problem de-
pendent and is determined primarily by the rate of data compression that can be achieved
for the solution of the given initial value problem. The algorithm in Appendix B is es-
sentially an hierarchical rearrangement of the fine-grid scheme where at the extra cost of
calculating D*+! (B.2a) and a check in (B.2b) we save the cost of numerical flux calcu-
lations wherever they can be accurately replaced by their interpolated value. We remark
that the cost of calculating D™+ can be reduced by keeping track of I'®, the boundary of
D.(v™) and restricting the operation of algorithm (6.1) to elements of the boundary I'". A
sharper estimate for D™t! can be obtained by limiting the refinement in (6.1d) to regions

where the solution undergoes compression.

The above analysis shows that the compressed multiresolution scheme (5.4), or (B.2),
is generally more efficient than the original fine-grid calculation. Since it is simple to

program, it can be implemented in existing computer codes with relatively little effort.
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Appendix A

In this appendix we show that the multiresolution scheme (5.4) can be expressed by

(5.5)
(A1) { Aty = db(v™) — M1 DE(F0), 1< <N, 1<k<I,
A . )
v;.‘-&-l,L = v;.‘,L _ ,\L(f;? - J.I;l), 1< 4 < Ny.

To do so we express the fine-grid solution (5.1) in terms of the pointvalues ij’o of its

primitive (3.5) -

J
(A.2) Vi =he Y o 1< < No, V0 =0,

7 i
i=1
Summing (5.1) as above we get the pointvalue relation
(A.3a) VTH'U = an’o - ‘r(f](-) — ), 1<j <N
Recalling that ij’k = VJ”;’,?, m = n,n+ 1, we get for the k-th grid that

(A3b) T/}n—l-l’k = 1/]'71,’: - T(fjk - f_(?): 1 SJ S Nk'.'

where ff = ﬁ-’,z,;. Using the linearity of the interpolation I{z;-) in (2.13) as a functional

of the data, we get from (A.3) that
(A.4) I(a; VR = (e V) — r[I(e; *) - fo).

Subtracting (A.4) at 3153__11 from (A.3b) at the same grid-point we get the following relation

between the various interpolation errors:

(A.5) Di(V™y = DH(V™) - D§(f°).
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Dividing the above equality by hj—; and using (3.15b) and Agq = 7/hr—1 we get (A.1la).
Relation (A.1b) follows immediately from (3.5¢) and {A.3b) for k = L, i.e.

(A.6)

i 1 T = —
n+1,L n+1,L n+1,L L n,b L L
v; = "ﬁz([fj -V = 'ﬁz([’jn —‘/j—1)—E(fj - fit1)

- v;"L —AL(7F - R,
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Appendix B

In this appendix we present the multiresolution scheme (5.10} as an operation on the

given finest grid, in which the numerical fluxes of the given scheme are computed efliciently

within a prescribed tolerance by a combination of direct evaluation and interpolation.

Given o™

we calculate v+ 1.0 by the following algorithm

Step (i) Apply data compression and define D"+

(B.1)

Compute
570 = M~ tr, (M0™),
use algorithm {6.1) to define

Pt = {(35 k) l ;(J:k) = 1}'

Step (it) Compute approximate 7

(B.2a)

(B.2b)

Evaluate

~ 71,0 1,0 . . L .
Flo=J0 ey 0k ) i=14-2% 1< <N,

DOfork=L,L-1,...,1
DOforj=1,...,Ng
kaj—l:ﬂk
IF G, k) = 1)
THEN
23 = A ), i = (25 — 1) 2k
ELSE
f23 L = I(o5 5 %) = Y Be(Ffves + FE0)
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Step (iii) Update v™+10:

(B.3) vt = 0 = A (f) = fj-), 1<5 <N

Observe that if we skip part (i) of estimating D+ and instead set
i(j,k) =1, i<j< Ny, 1<k<I,

then the resulting algorithm is just a rearrangement of the given scheme in which the same

numerical fluxes
'Wf(UJ K- '7J+K) 1SJSN03

are computed ir_l a different order, except for the extra (now redundant) IF statement.
Therefore we can view the algorithm (B.1)-(B.3) as a modified version of the given scheme
in which the numerical fluxes are computed in an hierarchical way from coarse to fine, and
the modification is that direct evaluation of the numerical flux is replaced by interpolation
wherever this can be done to a prescribed accuracy. The primary role of multiresolution
in this algorithm is to supply the analysis whether the solution is indeed well resolved at
a certain level at a particular locality, so that the numerical flux can be interpolated from

the coarser grid to the specified accuracy.

Algorithm (B.1)-(B.3) is conceptually simpler than (6.1); in order to generalize it to

other situations one has only to generalize the estimate in Prtt,
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Table 1. Data compression of numerical solution (4.8)

No =256, f =3, L=5; e =1073/2% 1 <k < L.

n Compression oo €1 €2
25 5.56 4,65 x 10— 1.40 x 105 6.55 x 1078
75 5.22 2.38 x 10~* 1.54 x 1075 4.05 x 10™°
125 5.45 2.31 x 104 2.08 x 107° 4,37 x 107°
Table 2. Data compression of numerical solution (4.10)
No=256, F=3, L=5; g =107%/2% 1 <k < L.
7 Compression €oo €1 €2
25 4.27 1.52 x 10™¢ 3.78 x 1075 4.66 x 10~°
150 4.00 4.66 x 10~* 5.80 x 1075 9.07 x 1078
400 7.76 3.39 x 10~* 3.00 x 105 5.22 x 1075
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Table 4. Compressed multiresolution scheme

F=3 p=—1, Ng=256, L =5; p =1073/2% 1<k < L.

Efficiency p

) Coo €1 €2
25 2.44 3.68 x 107* 7.22 x 1078 1.08 x 1074
150 2.41 3.94 x 1073 3.05 x 104 6.89 x 10™*
400 4.74 2.33 x 1072 8.90 x 1072 2.18 x 10~*
Table 5. Compressed multiresclution scheme
Fe=3, p=rf—1=2, Ny=256, L=5; g5 =107%/2% 1 <k <L
n Efficiency p €oo €1 ey
25 4.06 3.57 x 1074 8.06 x 1075 1.11 x 10~%
150 3.56 4.28 x 1073 3.09 x 1074 7.43 x 1074
400 5.56 2.92 x 1073 9.62 x 107° 2.60 x 107*
Table 6. Compressed multiresolution scheme
F=b, p=iF—1=4, Ng=256, L ="5; e, =107%/2%, 1<k < L.
n Efficiency p oo €1 €q
25 9.85 3.40 x 107% 7.71 x 1078 1.17 x 1074
150 4.57 3.26 x 1073 2.82 x 107* 4,93 x 10~
400 4.65 2.74 % 1073 1.15 x 1074 2.53 x 104
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Table 7. Compressed multiresolution scheme for gasdynamics

F=3, p=2 Ny=512, L =6; g =1073/2F, 1 <k < L.

o) Efficiency pu €oo €1

50 5.75 1.44 x 1073 3.52 x 1075
100 4.92 2.23 x 1073 9.26 x 1073
150 4.61 3.25 x 1073 1.67 x 107
200 4.53 3.25 x 1073 2.09 x 1074
250 4.65 3.48 x 1073 2.54 x 107*

Table 8. Compressed multiresolution scheme for gasdynamics
F=3,p=4, Ng=512, L=6; g, =1073/2% 1 <k < L.

n Efficiency p €oo €1

50 6.40 1.90 x 102 418 x 1075
100 5.28 2.54 x 1072 1.02 x 10~*
150 5.50 3.71 x 1072 1.92 x 107%
200 5.22 3.71 x 1073 242 x 1074
250 5.22 3.96 x 10~* 2.95 x 104
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Figure 1b. Data compression of (4.8), n = 75.
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Figure 3a. D.(v") and D(v"+?) for (4.8), n = 100.
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