UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Performance Modelling for High Order Finite Difference
Methods on the Connection Machine CM-2

Yu-Chung Chang
Tony F. Chan

March 1993
(Revised December 1993)
CAM Report 93-04

Department of Mathematics
University of California, L.os Angeles
Los Angeles, CA. 90024-1555

PERFORMANCE

MODELING FOR
HIGH-ORDER FINITE
DIFFERENCE
METHODS ON THE
CONNECTION
MACHINE CM-2

Yu-Chung Chang

DEPARTMENT OF APPLIED
MATHEMATICS

CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORN{A 91125

Tony F. Chan

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA,

LOS ANGELES

LOS ANGELES, CALIFORNIA 90024

Summary

This paper is concerned with modeling the perfor-
mance of high-order finite-difference schemes for hy-
perbolic preblems on the Connection Machine ChM-2.
Specifically, we would fike to determine whether the
higher communication cost of higher-order methods
makes thern less favorable in a parallel setting than in
a sequential setting. Since most difference methods
are implemented using the cshift operator, we first de-
rive & timing model for it in CM-Fortran under the new
slicewise compiler model. This model is then used to
predict the performance of the difference methods
with different orders applied to the 2D Blrgers’ equa-
tions. In addition, we study the effect of varying differ-
ent machine performance parameters, such as the
communication time and floating-point operation time,
as well as problem parameters such as mesh size. Our
analysis and numerical results indicate that among
high-order finite difference methods, the fourth-order-
one is the most efficient method in that it achieves a
moderate error folerance (a few percent) with least
running time.

The international Journal of Supercomputer Apphi-
cations, Volume 9, No. 1, Spring 1935, pp. 40-57
© 1995 Massachusetts nstituse of Technology.

Intreduction

There are many physical problems whese solution re-
quires large-scale computations. The computation of
turbulent flows is one example. Typically, these com-
putations demand an extremely high numerical resolu-
tion to resolve the physically interesting small-scale
structures. Naturally one would like to perform such
calculations on a computer that can provide both ex-
tremely high speed arithmetic operations and large
memory storage. A massively parallel supercomputer
exhibits both of these features. By dividing the compu-
tational work into many individual processors, a parallel
computer can, in effect, achieve a very high speed-up
over conventional sequential machines. The result is a
very powerful addition to our arsenal of computational
environments, one that makes many difficult computa-
tional problems more tractable.

In practice, the actual performance of an applica-
tion running on a massively parallel computer can de-
pend in crucial ways on the communication overhead
and on the data layout (see Leiss and Lee, 1991), and in
some cases, the communication time may even exceed
the time it takes to perform the arithmetic operations.
For a given computational problem, the algorithm
should be designed in such a way as to minimize the
communication time. Very often this time is problem
dependent. ¥rom a general user’s point of view, it
would be very desirable to have a timing model that can
predict the overall performance by taking into account
both the volume of arithmetic operations and the inter-
processor communication time. The design of such a
timing model is the subject of this paper.

Finite-difference methods are perhaps the most
commonly used numerical methods in computational
fluid dynamics. A higher-order method achieves a
given error tolerance with fewer grid points than a
lower-order method, but requires more computations
per grid point. The interesting question is to decide
what is the optimal order in the sense of achieving a
given error tolerance with maximal computational effi-
ciency. In Chang (1992) and Chang and Kreiss (1392),
the performance of different finite-difference methods
was compared with the pseudo-spectral method for
computations with strong shear layers. It was observed

that on a sequential computer (SUN SPARC) the
fourth- and sixth-order finite-difference methods are
more efficient in achieving a given error tolerance, say

PP S A OBl

1%, than the pseud(‘)—apcﬁxa} method. ;Lm;mma}}'y, a
similar comparison result was observed on the Connec-
tion Machine CM-2. In this paper we will undertake a
more systematic and more quantitative study of the per-
formance of finite-difference methods with different
arders for these types of calculations on CM-2. For this
purpose we develop a timing model for a basic commu-
nication kernel using the nearest-neighbor NEWS com-
munication network, cshift, which is used in most finite-
difference codes. We develop this using the current
slicewise model of CM-2. In deriving our timing model
we propose a method of estimating both the purely in-
ternal communication time and the purely external
communication time. One new feature of our model is
that it accounts explicitly for the startup time in the
internal communication which depends on the geome-
try of the data. Our numerical experiments indicate
that the relative error of the cshifi timing model is less
than 15% in the three-dimensional geometry on a 16K
CM-2 and less than 20% in two- and three-dimensional
geometries on an 8K CM-2.

Although there do exist timing models for the CM-
2, these were designed for the older compilation model,
namely the fieldwise model (e.g., Levit, 1988; Pozo,
1991). Recently, Thinking Machines Corporation de-
veloped a new slicewise model based on the slicewise
storage strategy as a way of speeding up the floating-
point operations. Because of differences in the data
mapping strategies, the timing model developed for the
fieldwise model cannot be applied directly to the slice-
wise model. A new timing model for the slicewise model
is, therefore, needed. To the best of our knowledge, no
such timing models for the slicewise model now exist.

We use our timing model to perform a number of
studies. First, we use it to predict the performance of
high-order finite-difference methods for an interesting
model problem that arises in the study of high Mach
number flow, namely, the 2D Biirgers’ equations. The
results validate the observation in Chang (1992) and
Chang and Kreiss {(1992) that, for the case of solutions
that develop stnall-scale structures, the fourth-order

“ Finite-difierence methods are per-

haps the most commonly used nu-
merical methods in computational
fluid dynamics. A higher-order
method achieves a given error toler-
ance with fewer grid points than a
lower-order methed, but requires
more computations per grid point.”

method is the most efficient in terms of reasonable er-
ror tolerance, say 1%, with least computational effort.
Next, we use the timing model to explore the effect of
varying different machine and problem parameters in
our model, e.g., communication startup tirne, internal
and external communication time, floating-point oper-
ation time, and the mesh sizes of the problem. Our
study seems to suggest that the fourth-order method
remains the best one assuming reasonable variations of
these parameters.

In the next section we give a brief introduction to
the architecture of CM-2. Then we develop the cshift
timing model. In the following section we develop a
simple timing model for arithmetic operations on CM-2
after which we apply the timing model to the finite-
difference code presented in Chang (1992) and Chang
and Kreiss (1992) and perform a parameter study. The
final section of the paper summarizes our main
conclusions.

Brief Introduction to CM-2 and the
Slicewise Model

The Connection Machine Model CM-2 is a massively
parallel computing system, of the single-instruction,
multiple-data (SIMD) type, with a distributed memory
hypercube structure. The CM system consists of a par-
- allel processing unit containing thousands of data pro-
cessors each with its own memory and all acting under
the direction of a serial processor, called the front end.
There is also an I/0O system that supports mass storage
and graphic display devices and other types of periph-
erals. CM-2 supports this with three kinds of interpro-
cessor communication: Nearest-neighbor (NEWS) com-
munication, General-purpose (router) communication,
and Global communication (scan) (see CM Fortran Ref-

1. We are interested in the Jarge time behavior in turbulent flow
calculations. The solutions here have many different scales, and, in
general, it is not possible to resolve all the details. Therefore, we
will be interested only in the qualitative behavior of the solutions.
In such situations an error tolerance of a few percent is good
enough from a practical point of view. Throughout this paper, our
comparisons of the performance of calculations assume an error
tolerance of 1-2%.

erence Manual, (Version 1.0) 1991, and CM Fortran
Optimization Notes: Slicewise Model, {Version 1.0)
1991).

There are two execution models that a program-
mer can choose from when compiling a CM Fortran
program, the Paris (fieldwise) model or the slicewise
model. These differ in the way the compiler maps CM
arrays onto the underlying hardware.

Our timing model is established based on the new
slicewise model. This model performs much faster than
the standard fieldwise model. In the fieldwise model,
storage of a 32-bit word is allocated in 32 consecutive
bits of a physical bit-serial processor's memory. In each
clock cycle a bit-serial processor can send out only one
bit of a single-precision (32-bit) floating-point value.
However, the Weitek 3132 floating-point unit (FPU)
can operate on a 32-bit word in each dlock cycle, which
means that it takes 32 cycles for a bit-serial processor to
send out the whole value of a 32-bit floating-point num-
ber to FPU. T'o balance the bandwidth between these
two processors (32 to 1), each pair of CM chips (total 32
bit-processors}) is designed to attach to one FPU. Thus
these 32 bit-processors send out 32 single-precision
words in 32 clock cycles, which, on average, means one
single-precision word per clock cycle.

However, in this manner of storage the 32 bits sent
out by the asscciated 32 bit-serial processors in each
clock cycle do not represent any single precision num-
ber. Each bit just comes from a different bit-serial pro-
cessor. Therefore, an interface is required to transpose
these 32 bits into a proper format for ¥PU. This inter-
face between the common processor memory and FPU
is called the “Sprint Chip.”

In practice, it is not very efficient to store the data
fieldwise and then have to do transposition back and
forth between the common memory area and the
Weitek FPU. Recently, CM architects have designed a
new slicewise model to view processors arranged in a
slicewise configuration. A 32-bit word is stored in a 32-
bit slice across the memory of those associated 32 phys-
ical bit-processors in the processing node (a processing
node consists of 32 bit-serial processors sharing a single
FPU). In other words, each bit of a 32-bit number is
stored in a different processor associated with the par-

ticular processing node, one bit per processor. There-
fore, in the slicewise model FPUs actually access data
from their associated processors in each clock cycle.

That i, in each clock cycle a 32-bit slice across proces-
sors is read into FPU. Thus the slicewise model makes it
unnecessary to implement transpositions between the
main memory and the Weitek FPU. This distinctive fea-
ture of the floating-point architecture represents a sig-
nificant improvement on the floating-point computa-
tional power of the CM.

Although it may appear that the only difference
between the fieldwise model and the slicewise model lies
in the performance of floating-point operations, it is not
clear whether fieldwise timing models can be used for
computations under the slicewise model. In the field-
wise model, a special Paris function call can be em-
ployed to specify the number of virtual processors sim-
ulated by a bit-serial processor in each dimension. The
specific description of each bit-serial processor may
then be referred to in order to estimate the communi-
cation time. Appropriate parameters can be obtained,
for example, by a least-square fit. On the other hand, in
a slicewise model each floating-point number is stored
slicewise across the memory of the associated 32 bit-
processors at a single floating-point node. There are no
data completely stored in any single bit-serial processor,
and it is irrelevant to speak of the subgrid sizes of each
bit-serial processor. Clearly, it is more appropriate to
view a floating-point node as the basic unit in the slicewise
model of CM-2. Thus a 64K CM-2 should be viewed as
one with 2,048 floating-point nodes and an 8K CM-2 as
one with 256 floating-point nodes. The VP ratio®
should be defined in terms of the number of virtual
processors in this basic element. Therefore, the field-
wise models provided by Levit (1988} and Pozo (1991)
cannot be applied directly in the slicewise model. New

2. The ratio of the number of virtual processors required by the
application to the number of physical PEs (processing elements) is
called the VP ratio. PE is the basic element. For the fieldwise
maodel, a PE is a bit-serial processor. For the slicewise model, it is a
processing node consisting of 32 bit-serial processors with a float-
ing-point chip. The VP ratio indicates how many times each PE
must perform a certain task in order to simulate the appropriate
number of virtual processors.

 Althraink i oy annsnar that tha anhs
ﬂlill’l.l’llyll L4 ll‘lar ﬂp’.’ﬁ'ﬂl ARG UMW U

difference between the fieldwise
model and the slicewise model lies
in the performance of floating-point
operations, it is not clear whether
fieldwise timing models can be
used for computations under the
slicewise model.”

“To account for the dependence of
the data on the geometry for the
internal communication time, we
propose a more sophisticated model
to correct for the discrepancy in the
previous moedel. The idea is to sepa-
rate the study of the internal com-
munication from the external
communication.”

timing models for both the communication operations
and the arithmetic operations are required in order to
study the performance of the slicewise model. These
will be derived in the next two sections.

Performance Model for
Grid Communication

Now we would like to study the communication part of
the timing model, For a typical finite-difference code
running on CM-2, the main communication can be
done via the cshift (circulation shift) function, This is one
of the nearest-neighbor communication functions that
is naturally used for periodic boundary-value problems;
it can be also used for nonperiodic boundary-value
problems. There also exists an eoshuft (end-off shift)
function that can be used for boundary-value problems.
Since eoshift is not as fast as cshift and since many bound-
ary-value solvers can be programmed so as to make use
of ¢shift, we will concentrate on the communication tim-
ing model for cshift.

To derive the timing mode for communication, we
first need to know the data layout and the size of the
chunk of data in each processing element. In addition,
we need to know how much of the data movement in a
cshift operation is internal (within the same node) or
external (between two different nodes).

NEWS GRID COMMUNICATIONS AND

DATA LAYOUT

Unlike the fieldwise model, in the new slicewise model
there are fewer layout directives for specifying a data
structure. In the fieldwise model, the way in which the
dimensions of a data structure are to be mapped to the
CM processors may be specified by calling the Paris
subroutine CM _creat detailed geometry(). However,
this cannot be done in the slicewise model. The CM
Fortran compiler uses a canonical layout, called the
NEWS layout, to allocate arrays in order to achieve
nearly optimized performance. We need only use
CME_DESCRIBE ARRAY{() to find out how the data
have been distributed to those floating-point nodes (for
examples, see Chang, 1992),

The NEWS grid communication can be decom-
posed into two major parts:

@ On-Node communication: Communication between
two virtual nodes on the same physical node. Since
there is a common memory area for a node, it only
costs memory moving (copying) within the same
node. We denote the time required for transferring a
32-bit word within the same node by {,;.

¢ Off-Node communication: Communication between
two different physical processing nodes. This re-
quires moving {or memory copying) data to a tempo-
rary buffer and transferring data through the off-
node hypercube network, We denote the time re-
quired for transferring a 32-bit word off-node as

torr

Since we now view an ensemble of 32 bit-serial pro-
cessors sharing a single FPU as the basic unit of the
slicewise model of CM-2, the communication mecha-
nism becomes much simpler than in the fieldwise
model. Suppose we would like to compute the finite-
difference operator, dx or dy, on a 2D 512 X 512 data
grid on an 8K CM-2. In the slicewise model, an 8K
CM-2 becomes 256 floating-point nodes. By calling
CMFE DESCRIBE ARRAY(), we find that the data lay-
out is a two-dimensional 16 X 16 hypercube that pre-
serves the nearest-neighbor property, Each physical
processing node gets a chunk of data with subgrid size
32 X 32 and simulates 32 X 32 virtual processing nodes.
A simple first-order, forward-difference approxima-
tion for u, with periodic boundary, at grid (3,7, is giv-
en by

doj =~ 1,n
doi=1n—1
ux (L)} = Wi+ 1. — ulij/nh
end do
ux () = (w1.) — unl) ¥h
end do

where h is the mesh size. In the CM-Fortran command,
this is translated into the following operation using the
cshift function:

{cshift {u.dim = 1,shift = 1) — ul/h

This means that each grid point must send data to its
nearest-neighbor node® with distance one along the
first dimension.
this difference operation is as follows. Suppose we need
to perform the NEWS communication with distance
one along the first axis, assuming that every (virtual)
node wishes to communicate one floating-point value
(82-bit) to its left neighbor. Those virtual nodes located
in the left boundary have to be sent out sequentially
through the off-node (external) hypercube network to
its left neighbor. Therefore, there is a total 32 X 1 of
external communications. The other virtual nodes are
sent to their destinations within the same physical node,
and this only involves memory moving {or memory
copying) within a node, which is very fast. Finally, there
are 32 X 31 internal memory movings (memory copy-
ing). By a straightforward calculation, we would expect
that the overall communication time is given by 32 X
torr T 32 X 31 X t,;, as in the fieldwise models used by
Levit (1988) and Pozo (1991). However, the drawback
of such a communication model is that it ignores the
startup time in internal memory moving. As will be-
come apparent, the startup time in the internal com-
munication can grow proportionally to the product of
the second and third subgrid dimension of the data set
in the layout (:serial, :news, :news).

MODEL FOR INTERNAL COMMUNICATION

To account for the dependence of the data on the ge-
ometry for the internal communication time, we pro-
pose a more sophisticated model to correct for the dis-
crepancy in the previous model. The idea is to separate
the study of the internal communication from the ex-
ternal communication. For this purpose, we use the lay-
out (:serial, :news, :news) or the layout (1000:news,

3. Because the data are mapped into the hypercube in the NEWS
ordering so as to map all neighboring grids into the neighboring
nodes of the hypercube.

0,025

015 1024.1024)

k,512.512)

Time{scc) along tst Dimension

0.005 -
(b, 128,128}

,64.64)

1] 2000 4000 6000 B8O0C 10000 12000 14000
Total VP Ratio Per Processing Node

Fig. 1 NEWS Communication on
€M-2 tor 3D (:serial, ;news, ;news)
data.

:news, :news)? with different data sizes as test cases. We
perform the eshift operation of distance d along the first
dimension. Because of the special layout this corre-
sponds to purely internal communication. For simplic-
ity, we consider the case d = 1, where d is the distance;
other cases can be treated similarly. For measuring the
time, we use the function call cm_timer read cm busy.

One important observation in our study is that the
startup time in the internal communication depends on
the geometry in a subtle way. In Figure 1 each line
corresponds to a set of data with similar geometry. For
those data of size £ X 128 x 128, with layout (:serial,
mews, :news) and k& varying from 4 to a few hundred,
the performance of cshift of distance 1 along the first
dimension is linear with respect to the total subgrid size
of data. We observe the same behavior for data of size
kX 256 X 256,k X 512 X 512, and k£ X 1024 x 1024,
respectively. The corresponding startup times are also
different in each case.

A caretul study shows that the startup time of internal
communication of each data set depends on its geometry. Con-
sider a data set with layout (:serial, :news, news) and
subgrid size v; X vy X vs. A serial array dimension 1s
always allocated entirely within {never across) process-
ing nodes. Therefore, the ¢shift along the first dimen-
sion takes place within each processing node.

Roughly speaking, our internal communication
model can be understood as one in which memory
moves as a “do loop” process. 'T'o make a ¢shift on such
a data set along the first dimension, we first perform a
memory copying {or memory moving) operation along
that dimension. In this operation there is a basic startup
cost, C1, and a memory copying rate, £,;. But we have to
repeat the same comtnunication procedure vy times
along the second dimension for each memory moving
along the first dimension. Thus the accumulated time is
T = (Cq + (C, + tyy X v) X vp), where Cy is the startup
time along the second dimension. Finally, we have to

4, Dimension one, with weight 1000, is to be favored for interpro-
cessor communication over dimension two or dimension three,
which gets default weight 1. With such a high weight on the first |
dimension and no specification of weight on the rest, this layout
gives the same subgrid size as does the Iayout (:serial, inews, :news).

repeat the same memory moving procedure for the
first two dimensions a total of v, times along the third

dimension. Therefore, the overall internal communica-

hnhhmpmm\rphi’an_P L AO. (0 F XY
fion fime 18 gaven by Al T AL Ty ;)

vg) X vy, where Gy is the startup time along the third
dimension. Clearly, the startup time for the internal
communication is now given by Cy + C, X v X v3 + Cy
X vy. However, the C, term, which does not depend on
the subgrid size, is negligible. Therefore, we can sim-
plify the model for the overall internal communication
time to

T = {Cy + (Cy + 4 X v} X vg) X vy,

From a least-square fit of the data in Figure 1, we get #;
= 0.52 x 107 ° sec/per 32-bit word, €, = 1.52 x 10~
sec, and C, = 5.8 x 107°

MODEL FOR EXTERNAL COMMUNICATION

To develop the model for the external communication,
we construct several purely external communication
cases. Consider a data set with the layout (:serial, :news,
:news) or {1000:news, :news, :news), and move the data
along the second or the third dimension with distance
equal to the subgrid size of that dimension. This causes
the entire chunk of data in a node to move to its nearest
node. For example, if we consider a data set of size 128
% 128 x 128 with layout (:serial, :news, :news), its sub-
grid size is v, X vy X v3 = 128 X 8 % 4 for each floating-
point nede on a 16K CM. To perform communication
along the second dimension of distance 8, all the data
within a processing node must be moved out to its near-
est-neighboring node. This means that there are (128 x
4) X 8 external {Off-Node) communications and no in-
ternal communications. In general, the external com-
munication time is given by

T = Cpx + lopr X vy X vy X g,

where Cgy is the startup time for external (Off-Node)
communication, From a least-square fit of the timing
data, we get Cpy = 2441 X 107° sec and an external
communication rate topp = 8.736 X 107° sec/per 32-bit
word. In this case, the startup time does not depend on
the geometry,

REMARK: For distances of powers of 2 which are

larger than the subgrid size of the communication axis,
we nieed only take twice as much time as is needed for
the case of communication with distance equal to the

cthorid cize nf tha cromminicatinn avie 1 view nf tha
SUUL I GRAL UL L VUMM GUGEIUIE Al 11l Vi Y UL il

binary-reflected Gray code ordering of the off-chip bits
in the grid address (see Johnsson, 1987).

COMBINING INTERNAL AND

EXTERNAL COMMUNICATION

In this section we combine the results on internal com-
munication with external communication to form a
general model of a complete communication model. As
an example, consider a data set with layout (:news,
:news, :news) and subgrid size v; X v X g, so that a
single processing node simulates v; X vy X vy virtual
processing nodes. A cshift along the second dimension
of distance d, with d <X v,, consists of both internal and
external communication since under the NEWS order-
ing data are allocated across different processing nodes.
Suppose that all virtual processing nodes communicate
a distance d to the right along the second axis, There are
d layers of data to the rightmost side requiring off-node
communication, while the remaining v, — 4 layers only
need to do memory moving internally. Thus the total
communication time T(d, 2, v,, ¢y, v4) is the sum of both
internal and external communication time because
CM-2 cannot perform both internal and external com-
munication instructions simultaneously due to its SIMD
architecture. We thus have

T(d,?,v;,vg,vg) = Tim'errral + Texternab

Tinternat = (Cg + {C1 + tyg X {vg — d)) X vy}

X ug,
Tosternat = GEx + torr X vy X d X v,

We can further decompose the external communica-
tion f,pp Into two parts. One part is the unit time for
memory moving to a temporary buffer, &, and the
other the unit time for sending out through the exter-
nal hypercube wire, gy, i.e., lopr = By + fzy. Then we
can simplify the formulas so that the total communica-
tion time it takes for a data set of subgrid size v; X vy X
vy to perform a eshift of distance d to the right along the
second axis can be written

T(d,?,”i!],'uz,vg) =

TfﬂternaLMemorLMouing + TExternaL_Sendi-ng:

TImcmal_MemarLMoviﬂg =
(Co + (Cy + ty X v9) X v1) X vs,

TEx!emaLSending =Cpx + tex X v1 X d X vs.

In general, along the j-th axis, 1 < j =< 3, the total com-
munication time T{d, j, v,, va, v5) it takes for a data set of
subgrid size v; X vy X vy to perform a eshift of distance
d < v; is given by

T{d,j,v1,v9,u5) =

TlmernaI___Memory_Mam‘ng + TExte:'riaLSe:idireg:

T[mzmal_Memory__Mow'ng =
(Co + (C1 + ta X) X Ugjet)mods) X ¥(j+1mod3

TExtemaL_Sending =
Cex + fEx X U(-Dimods X d X 0(ji 1jmod3-

More generally, the communication for an m-di-
mensional data set is performed in a similar manner.,
Suppose we want to perform a cshiff operation along the
j-th axis in which data are distributed in the NEWS
ordering (j < m). If the dimension m > 3, data of sub-
grid size V = v) X v, X ... X v, is considered a three-
dimensional set with V = V| X Vy X V5 = (IE_} 1) x
v; X (G4 vy). If the dimension m < 3, the data is
padded out to a three-dimensional set and the commu-
nication is performed in the same way as for the three-
dimensional data sets. In summary, combining the in-
ternal and external communication times, a general for-
mula for the total communication time of a cshift of
distance d performed along the j-th dimension is giv-
en by

T(dsj»VbVa’Vs) = (Cp + (O + 1y X Vj)
X Vi~ Dmods) X Vit imods
+ Czx + fex X Vi hmoas
X d % V(j+ DHmed3d:
fl=sd<V, (1)
= Cgx + topr ¥ V) X Vy X Vs,
ifd="V;
= 2 X (Cgx + topr X V| X Vo X V),
ifd>V,d= 2 pEN,

where G, = 1.52 X 1075 sec, C; = 5.8 X 1075 sec, #y,
= 0.52 x 1079 sec per 32-bit word, Cpyx = 24.41 X
10 °sec, and tyy = fopr — by = 8.736 X 1078 — 0.52
X 107% = 8.216 x 1075 sec per 32-bit word.

ACCURACY OF THE COMMUNICATION
THVIING MODEL

To test the accuracy of our communication model, we
use it to predict the time needed to perform one cshift of
distance d along the j-th axis. We then compare the
predicted communication time with the measured time
obtained by averaging over 1000 direct implementa-
tions of the cshift operation. Here we summarize the
main results. We perform cshift on the 8K CM-2 with
different distances along the first axis on a 2D square
data with layout (:news, :news). The relative errors are
quite uniform with respect to the distance and are all
less than 20%. We also perform the cshift operation
along the second axis. Again, the maximum relative er-
rors are less than 20%, but the relative errors are more
spread out and centered around zero for different data
sizes. If we perform the cshift operation along the first
and second axis on the 3D data with layout (:news,
news, ‘news) on the 8K CM-2, the relative errors will
still be less than 20%. On a 16K CM-2 for the 3D data,
the relative errors are less than 15%.

Timing Model for
Floating-Point Operations

In the previous sections, we developed a timing model
for grid communication on the current slicewise model
of CM-2. In order to predict the time for a finite-
difference program we also need a timing model for
the arithmetic operations.

The floating-point operation can be decomposed
into three parts: (1) sending data from the common
memory area through the Sprint chip without transpo-
sition to the FPU; (2) performing the computation in
FPU; (3) sending the result through the Sprint chip
without transposition back to the associated bit-
processors. Therefore, a reasonable floating-point op-
eration performance model consists of a startup time
needed to fill the pipeline of the floating-point vector
co-processor unit and a linear growth rate once the

pipeline is full. This is confirmed by our experiments in
which each basic floating-point operation was com-
puted 1,000 times and the measured time averaged for

different data sizes. Therefore, we will use a3 thminge
GLOCTU dadild 51405, ALTCIOIC, WL Wil 150 a4 (ilGing

model of the form T(n) = ¢ + «*n, where T{(n) is the
time needed to carry out a floating-point operation, o
(i secs/VP) is a pipelined rate for each basic floating-
point operation, and » the VP ratio per processing
node. By using a least-square fit, we obtain estimates for
¢ and a for several basic floating-point operations (see
Fable 1}. Note that the time required for vector division
or scalar division is about 2.5 times that required for
vector addition, subtraction, or multiphcation.

Since the ratio of the number of floating-point op-
erations to the computational time is n/(c + an) = /(o
+ ¢fn}, itis clear that a higher VP ratio (n) gives a better
Gflops performance of floating-point operations. This
is also confirmed by the results of our experiments as
shown in Figure 2, where we have plotted the Gilops
performance versus the VP ratio for each processor
node on an 8K CM-2. The different curves in Figure 2
correspond to the different basic floating-point opera-
tions listed in Table 1. The Gilops performance curves
overlap for several of the operators since these opera-
tors have very similar performance parameters.

Next, we look at more general floating-point oper-
ations. The Weitek FPU has one pipe for multiplication
and another for addition, so that both operations can be
performed in a unit clock cycle. Thus, complicated
arithmetic expressions can be performed at a faster rate
than the basic operations. As we can see from Table 2,
which lists the computational time of several triad vec-
tor operations, the time per floating-point operation for
these triad operations is almost twice as fast as that for
the basic floating-point operations of Table 1.

For more complicated arithmetic expressions, it is
thus clear that the execution time is not proportional to
the number of arithmetic operations. Figure 3 shows
the performance (on an 8K CM) of several commonly
used arithmetic expressions for the second-, fourth-,
and sixth-order finite-difference schemes for U, and
U,,. For example, the curve at the bottom corresponds
to a simple arithmetic expression, @ + Py{u; — ug)} +
pb), and the curve on the top to a more complicated

Tabie 1

Performance
Parameters for
Basic Floating-Point
Operations. a, b and
x Are Vectors, While
% ia a Scalar

¢ @
Operation {nsec} {psec)

Xx=a+b 99928 1.1556
=a+y 95606 08233
=x—b 10.1604 1.1667

10.3266 1.1212

95659 0.8233

10.1588 1.1557

axbh 103123 1.1212

axy 9.6001 0.8233

= afb 94306 2.7644

= aly 93962 2.4302

[
S
[
- o

DX WL oX DY XD
i
%
*
o

Gilops

100

Wi* ratio each Floating Point Node

Fig. 2 Some Basic Fiosting-Point
Operations Performance an CM-2.

arithmetic expression, a + Bly(u, — ug) + w{v; — vg)
+ miw, — wy) + vb), where a, b, uy, us, vy, vy, wy, and wy
are vectors and B, v, p, m and v are scalars. Each curve

Table 2 represents a different arithmetic expression, with the
Performance Parameters for Triad Floating- complexity increasing as we move up in the figure. We
Point Operations. a, b, ¢, and x Are Vectors, can see from Figure 3 that the Gflops performance in-
While y and 8 Are Scalars creases as the arithmetic expression becomes longer.

Operation ¢ {psec) a (pusec) In principle, we can develop a timing model for
a=-vyla+b) 10.4871 1.3475 each of the'dif.ferent i'dnds of .ariFhmetic expressions
x=ysxla+ b 10.6963 1.3819 that may arise in a typical application code. However,
¢=cxtat b 8.8799 1.3885 this policy may prove to be too cumbersome and prob-
x=cxla+b) 9428 14210 lem specific. Instead, we shall take the following ap-
x=cwa+h 9.2841 1.4996 pecthic. » We Sl g ap
c=csat h B.7737 1.4616 proach in order to obtain a simpler model for practical
x=aty*b 10.6234 1.2338 use. We derive an “average” arithmetic operation rate,
: - Z I :12 :g‘gjgz g;gg; which we call ¢,, by performing several different kinds
b=B+vy*b 11.7802 0.8979 of combinations of floating-point operations that are
a=pB+axb 10.6656 1.1977 similar to the expressions occurring in finite-difference

codes, on several data sets of various sizes, and then take
the average. This “average” arithmetic operation rate ¢,
can thus be viewed as the rate for a generic arithmetic
operation. It is thus independent of the length of the
expressions, the startup time, and the type of the oper-
ations (whether scalar operation, scalar-vector opera-
tion, or vector-vector operation). This produces a
model of the form:

Total estimate for arithmetic time = {, X n

aq a’r

(2)

where n, is the total number of arithmetic
operations done on each processing node,

— Our experimental results produced the value®: ¢, =
8.379- 1077 sec. Note that in this model we have ig-

- nored the startup time for arithmetic operations. The
numerical experiments we shall now describe show that
o Y T) this time is negligible for arithmetic operations.
Applications

In the previous sections, we developed two timing mod-
] els, one for grid communication and the other for float-
e ° 100 1o 200 250 200 ing-point operations, for the current slicewise model of

VP ratic each Floating Point Node

Fig. 3 Gfiops performance of
finite difterence floating-point 5. This rate was determined with the hardware and sofiware in

operations versus VP ratic on CM-2. Fall 1991. The rate of the arithmetic operations is faster now.

o

CM-2. Given a finite-difference numerical scheme with
periodic boundary condition, we can predict its total
running time by properly adding the time required for

ynotie Ararnben o Frav o L e e e

a1 lthxllbuh WLl auviiie alld Lh\., TILLIC 1) LUllllllLllllL,a.[.lU].lD
To validate our timing model, we predict the perfor-
mance of high-order finite-difference methods for the
2D Biirgers’ system and compare our results with the
actual measured times in Chang (1992) and Chang and
Kreiss (1992). Our timing model could also be used to
predict the general performance trend of high-order
finite-difference methods on SIMD machines with ar-
chitectures similar to CM-2. For this purpose, we also
study the sensitivity of the performance to several hard-
ware parameters.

TIMING MODEL FOR DIFFERENCE METHODS

We apply the timing model developed in the previous
sections to predict the performance of high-order fi-
nite-difference methods for the following 2D viscous
Biirgers’ equations:

u,+ o, + VU_«,: = e{(Uy + Uy,

(3}
Vi+ UVy + VV, = e(Vy + V).

The study of this model problem is motivated by po-
tential applications to high Mach number flow calcula-
tion (see Chang, 1992, and Chang and Kreiss, 1992). A
p-th order central-difference scheme requires /2 grid
point shifts for both sides. Therefore, a higher-order
finite-difference scheme takes more time not only be-
cause it requires more arithmetic operations but also
more communications. Note that if an expression ap-
pears several times in a program, the CM compiler rec-
ognizes it and executes it only once instead of several
times. For example, in the following excerpt from our
finite-difference code, cshift(u, dim = 1, shift = 1) is
computed only once, even though it appears twice
explicitly: .

C A segment of the code involving the computation for

Uxx

1 = f1 + epsilon s{
& s1+(cshift{u,dim = 1,shift= 1} + cshift{u,dim=1,
shift= — 1))

& + s2+(cshift{u,dim = 1,shift == 2} + cshift{u,dim = 1.
shift= — 2}))
& +83xu)

C A segment of the code involving the computation for
Vix

f1 = f1 — vl
& c1+{cshift{u,dim = 1,shift== 1) — cshift{u,dim =1,

shift= — 1))
& +c2«{cshiftiu.dim=1,shift = 2) — cshift{u,dim =1,
shift= — 2}}

&)

In our implementation, we use the fourth-order
Runge-Kutta method for the time integration, so that
we need to call the spatial difference operator subrou-
tine four times. For a p-th order central-difference
scheme, each call to this subroutine requires perform-
ing cshift once for both variables u and v in both the x-
and the y-directions with distance d and —d, whered =
1, ..., p/2. Thus the total communication time for each
of the two coordinate directions is the same as that for
calling each cshyft with distance d, d = 1,. .., p/2, a total
of 16 times (four stages in Runge-Kutta times two vari-
ables u and v times two shifts = d). By calling
CMEDESCRIBE ARRAY(), the geometry of an 8K
CM-2 1s determined as a two-dimensional hypercube of
dimension 16 X 16, and each processing node gets a
subgrid of size v; X vy = /16 X n/16. We extend this
2D data set to a three-dimensional set by setting vz = 1.
Finally, by counting the number of arithmetic opera-
tions in our code, we get the total number of arithmetic
operations done on each processing node in Table 3.
Combining our results, we arrive at the following tim-
ing model for a single time step of a p-th order finite-
difference method for the 2D Biirgers’ equations on a
2D n X n grid on CM-2:

T(?’L,P) = ta X na(vlivﬂxvf‘hp)
m=2 p/2

+ 16 D > T{ki,n/16,n/16,1),
i=1 k=1

where n, is the total number of arithmetic
operations performed on each processing
node and T'(k,7,v,,v,,v5) is given by Equation

(1).

Table 3

Number of Arithmetic Operations, n_,, Required for Several Central
Finite-Difference Schemes Ranging from Second to Tenth-Order

Order Secand Fourth Sixth

Eighth Tenth

n, 189 x 285 x 381X

3 3 3
l_lm=1vml E-lm=1) I—lm:1vm

437 X 573 x

3 3
I.[m:1 Ve l-1m:1 Ym

Table 4

Predicted Computational Time From Qur
Timing Model

Second Fourth Siuth Eighth Tenth
Size Order Order Order Order Order

128 x 128 0.0086 0.0192 0.0310 0.0440 0.0608
256 X 256 0.0286 0.0534 0.0824 0.312% 0.1530
512 x b2 0.0976 0.1715 0.2637 03306 0.4435
1024 x 1024 0.35693 0.6067 0.8709 1.0966 1.4498

Table &5

Measured Computational Time for One
Time Step

Size Second Order Fourth Order Sixth Order
128 x 128 0.0110 0.0221 0.0346
256 x 256 0.0329 0.0611 0.0911
512 x 512 0.1131 0.1981 0.2804
Table 6

Communication Part of the Timing Model

Second Fourth Sixth Eighth Tenth
Size Order Order Order Order Order

128 x 128 0.0066 0.0131 0.0228 00346 0.0484
256 x 256 0.0123 00287 0.0494 0.0743 0.1034
512 x 512 00322 00729 01219 01794 0.2452
1024 x 1024 0.0977 0.2122 03436 04917 0.6567

Note that for n = 128 and order of the difference
-method less than or equal to 10, we have d << v, and 4
< 1y, 30 that in Equation (1) the first case is always true.
In Table 4 we give the predicted times for several
high-order finite-difference approximations, ranging
from second- to tenth-order. In Table 5 we give the
actual measured times from Chang (1992) and Chang
and Kreiss (1992). We can see from Table 4 that the
ratio of the total times in the second-, fourth-, and sixth-
order methods is 1 : 1.76 : 2.60, respectively, in the case
of a 512 x 512 grid. This is basically consistent with the
measured time in Table 5, where the conquerable ratio
is 1: 1.762 : 2.479. In fact, the maximum relative error
in the predicted time is less than 15% for the second-,
fourth-, and sixth-order methods for all the data sizes.
This indicates that our timing model is reasonably
accurate.

In Table 6 and Table 7 we give the breakdown of
the communication and arithmetic time. We see that
the arithmetic time exceeds the communication time
for large data sizes. The communication time is signif-
icant only when the data sizes are small. The crossover
point depends on the order of the scheme. For exam-
ple, the arithmetic operation time for the second-order
method begins to dominate the total computational
time for data sizes larger than 128 X [28. By compar-
ison, the arithmetic operation time for the sixth-order
method begins to dominate the total computational
time only for data sizes larger than 256 X 256.

PREDICTED PERFORMANCE OF IMPROVED
COMMUNICATION STARTUP

Suppose that the communication startup time can be
improved by a factor of 10 while the other parameters

are kept fixed. For this case we obtain the performance
estimates in Table 8. By comparing Table 8 with Table
4, we see that the total times do not decrease very much,

n'vln-l]p tha ratin nf the tnia] fime n the cecond- anrf}_

ERaU Lanil f LA AL LIRS Fddd Laiaat and naail SUAASIERT, sirual vax

and the sixth-order methods for the 512 x 512 case 15
1:1.74 : 2,58, a result which is similar to the original
estimates in Table 4. This indicates that the overall per-
formance of the difference methods is not sensitive to
the communication startup time. This is to be expected
since the startup time is proportional to Vg X V3, which
is much smaller than the toral internal communication
time, which is O(V, X V, X V).

PREDICTED PERFORMANCE OF IMPROVED
COMMUNICATION RATE

We consider three cases. We first reduce the external
communication parameter {zy by a factor of 10, obtain-
ing the results shown in Table 9. Observe that the total
time does, in fact, decrease, but not by much. We also
see that the reduction in time is in the ratio 1 : 3 : 6 for
the second-, fourth-, and sixth-order methods, respec-
tively, since the external communication time is propor-
tional to the amount of data moving outside the pro-
cessing node and does not depend on the geometry.
For example, to approximate U, with periodic bound-
ary condition by a second-order central-difference
scheme, we need to do distance 1 and distance — 1 com-
munications. In the CM Fortran code, we do

s, X (eshift{u, 1, 1) — eshift{u, 1, — 1),

which requires one column, located at the right bound-
ary of 2 2D data set in one processing node, to move out
to its right neighbor, while a second column, located at
the left boundary, must move out to its left neighbor.
Thus, a total of two columns must move out. Analo-
gously, for the fourth-order scheme, we need to do dis-
tance 1, -1, 2, and —2 communications. In the CM For-
tran code, we do

s, X (eshiftlu, 1, 1) — cshiftlu, 1, — 1)} + s,
X {eshift{u, 1, 2) — cshift{u, 1, — 2},

which requires two columns of a 2D data set in one
processing node to be communicated to another pro-
cessing node at distance 1 away, and four columns to be
communicated to another processing node at distance 2

Avrithmetic Part of the Timing Model

Second Fourth Sixth Eighth Tenth
Size Order Order Order Order Order

128 x 128 0.0041 0.0062 0.0082 0.0095 0.0124
266 x 256 00163 0.0247 00330 0.0378 0.049
512 x 512 0.0654 0.0986 0.1318 01512 (.1983
1024 < 1024 0.2616 03946 05273 06049 0.7931%

Table 8
Overhead Times Are 10 Times Faster

Second Fourth Sixth Eighth Tenth
Size Order Order Order Order Order

128 x 128 0.0082 00166 0.0268 0.0385 0.0539
256 x 256 00259 0.0480 0.0742 01012 01394
512 x 512 00922 0.1607 02376 03090 0.4166

. 1024 x 1024 03486 0.6852 0.8387 1.0636 1.3962

Table 9
External Communication Is 10 Times Faster

Second Fourth Sixth Eighth Tenth
Size Grder Order Order Order Order

128 X 128 00076 00132 00189 0.023% 0.0306
256 x 256 0.0246 0.0413 00682 0.071% 0.0926
512 x 512 0.0896 0.1473 0.2064 0.2501 0.3227
1024 x 1024 0.3432 0.5684 07743 0.9356 1.2083

Table 10

Internal Communication Is 10 Times Faster

Second Fourth Sixth Eighth Tenth
Size Order Order Order Order Order

128 x 128 0.0087 00177 00288 0.0414 0.0578
266 X 256 0.0260 0.0464 00723 0.0892 0.1374
B12 x 512 0.0828 0.1422 0.2106 0.2740 0.3740
1024 x 1024 0.2989 0.4869 06926 0.8608 1.1675

Table 11

Both Internal and External Communication Are
10 Times Faster

Second Fourth Sixth Eighth Tenth
Size Order Order Order Order Order

128 x 128 0.0067 0.0116 0.0168 0.0212 0.0277
256 x 256 0.0210 0.0344 0.0482 0.058% 0.0770
512 x 512 0.0747 0.1181 0.1623 0.1935 0.2533
1024 x 1024 0.2828 04386 05960 0.6998 0.9160

Table 12
Floating-Point Operation Is 10 Times Faster

Second Fourth Sixth Eighth Tenth
Size Order Order Order Order Order

128 x 128 0.0060 0.0139 00233 00358 0.0601
256 x 256 00144 0.0321 0.0540 0.0797 01103
512 x 512 0.0407 0.0865 0.1406 02017 0.2740
1024 x 1024 0.1316 02670 0419 05824 0.7735

away. Thus, there are a total of six columns to commu-
nicate. Therefore, the external communication for the
fourth-order approximation of U, is three times that
for the second-order approximation. Similarly, we can
deduce the reduced time for the sixth-order approxi-
mation of U,. Therefore, the reduced times of the ex-
ternal communication for the second-, fourth- and
sixth-order difference operators are roughly in the ra-
tio 1 : 3 : 6. The sixth-order method saves more time
when we reduce the external communication parame-
ter, but the actual amount saved is not substantial.

The second case is to improve the internal commu-
nication parameter £, by a factor of 10. The results are
given in Table 10, The total times do not decrease by
much. The ratio of the total time in the second-,
fourth-, and sixth-order schemes for the 512 X 512 case
1s1:1.71:2.54, whichis similar to the ratio 1 : 1.76: 2.6
for the unchanged case in Table 4. We also see that the
ratio of the time saved in the three schemes is about
1 : 2 : 3. This can be explained as follows. Once the
NEWS communication is required, data have to be
moved in the internal memory of a processing node, or
must be copied to some temporary buffer for external
communication (see the timing model of Equation (1)).
Therefore, all the data have to be moved in the mem-
ory. Since the ratio of the number of vectors involved in
the second-, fourth-, and sixth-order schemesis 2 : 4 : 6,
the ratio of the saved times is about 1 : 2 : 3.

We remark that although the sixth-order method
represents a considerable improvement over the un-
changed case, the fourth-order method is still more fa-
vorable, since even if the communication time is made
negligibly small, the operation time required by the
fourth-order method is still less than that required by
the sixth-order method. Results from Chang (1992)
and Chang and Kreiss (1992) indicate that the fourth-
order method can achieve roughly the same error tol-
erance as the sixth-order method with the same num-
ber of grid points.

Finally, simultaneously reducing the internal and
the external communication parameters ¢y and f,, by a
factor of 10 gives us the results in Table 11. The total
times decrease more but the ratio of the total times in
the second-, fourth-, and sixth-order methods for the

=

s

512 x Bi12 caseis I : 1.68 : 2.17 which is still not too far
away from the original ratio of 1 : 1.76 : 2.60.

We conclude that the fourth-order method re-
mains the hest method if we imprave the communica-
tion times, because the floating-point operation time is
dominant for the large grids.

PREDICTED PERFORMANCE OF IMPROVED
FLOATING-POINT OPERATION TIME

Next, we look at what happens when we improve the
floating-point operation parameter £, by a factor of 10.
The predicted performance of CM-2 is given in Table
12. As expected, the total times in this case decrease
much more than in all the previous cases we have con-
sidered. The reduced times are proportional to the total
number of floating-point operations, 1.89 : 2.85 : 3.81.
This shouldn't be surprising because the floating-point
operation time is dominant over the comimunication
time for larger VP ratios.

One interesting observation 1s that when we scale
down the arithmetic parameter by a factor of 10, the
second-order scheme with twice as many grid points in
each dimension becomes comparable with the sixth-
order method in terms of performance. However, the
second-order scheme requires four times as much
memory space in 2D calculations. Therefore, it is still
preferable to use the fourth-order scheme, which only
needs as many grid points as the sixth-order scheme to
achieve the same error tolerance and is also faster than
the second-order scheme with four times as many grid
points.

ASYMPTOTIC BEHAVIOR FOR VARIOUS
IMPROVED TIMING PARAMETERS

We tested our model by systematically reducing these
parameters, that is, the communication startup times
(C1, Cg, and Cgy), external communication time (tgy)
and internal communication time (¢,;), and floating-
point operation time (£}, by a factor of 5, 10, 30, 60 and
100, respectively. We illustrate this behavior in Figure 4
for the fourth-order finite-difference method as an ex-
ample. In this figure, we vary all the communication
parameters (C,, Ca, Cgy, txx, and t,) by the same factor
while keeping #, fixed. Each curve reaches an asymptote

very quickly. In fact, there is very little change for all the
data sizes after the communication parameter has been
reduced by a factor of 30 or more. In the extreme case
of zero total communication time, the total computa-
tional time is governed only by the arithmetic operation
time. This comparison result is the same as on a sequen-
tial machine. But as we know from Table 7, the second-
order method with twice as many grid points in each
dimension is more expensive than the sixth-order
method. So the fourth-order method is preferable since
both the fourth- and the sixth-order methods can
achieve the same error (a few percent) with the same
number of grid points. The behavior which results
from reducing the arithmetic operation parameter is
very similar. This we illustrate in Figure 5 for the
fourth-order finite-difference method. In this figure,
we keep all the communication parameters fixed and
vary the arithmetic parameter ¢,. Again, each curve
reaches an asymptote as the arithmetic parameter is re-
duced. In the extreme case of zero arithmetic time, the
total computational time is governed by the communi-
cation time. From Table 6, we know that the execution
time required for the second-order method with twice
as many grid points in each dimension is comparable
with the execution time in the sixth-order method.
Therefore, the simple second-order method with four
times as many grid points is competitive with the sixth-
order method in that it achieves the same error toler-
ance so long as memory storage is not a concern. As
before, the fourth-order method is still the best since it
can achieve roughly the same error tolerance with the
same number of grid points as the sixth-order method,
and is also faster than the second-order method with
twice as many grid points in each dimension.

Concluding Remarks

We developed a timing model for the slicewise model
on the CM-2. We also verified its accuracy and applied
it to predict the performance of high-order finite-
difference schemes for the 2D Biirgers’ equations. This
model should be easily extendable to other architec-
tures that are similar to CM-2.

Our study indicates that the fourth-order scheme
gives the best overall performance on the current CM-2

o7

o6k

10241024

04F

Time{sec)

0.2}
.,
- . 2
b b 0t bn < rree - oo AT

ol
. 256x256

L R N VS

O TG R e oo o s

o k3 i0 15 20

Reduction Facter For conunrunication pavanier

Fig. 4 Total time versus
reduction factor for fourth-order
method,

30

06

(33

04t

Time{sec)

03
024x1024

512x512

. 56; &
e Iaexton.

(4] 5 0 15

Redinction factor for ari

Fig. 5 Tetal time versus
reduction factor for fourth-order
methed

for the 2D Burgers’ system based on considerations of
computational efficiency and memory requirements.
This conclusion remains valid even when we reduce the
communication cost or improve the arithmetic opera-
tion speed by a factor of 10,

We also found that under the current CM-2 archi-
tecture communication dominates the arithmetic oper-
ation when the data size is small. But for large data sizes
the arithmetic operation tends to dominate the calcula-
tion. Only when the arithmetic speed is improved sub-
stantially can a significant speed-up be achieved in the
overall computational performance.

Our study shows that if the arithmetic operation
can be substantially improved, the second-order
method becomes very competitive with the higher-
order methods so far as computational efficiency is con-
cerned. However, the price we pay is to use more grid
points {e.g., four times as many as required for a sixth-
order scheme in 2D calculations}, When memory stor-
age is a concern, a higher-order method is still more
preferable. On the other hand, a lower-order method is
easier to implement and more flexible for mesh refine-
ment and treatment of boundary conditions. These
considerations may lead to the choice of a lower-order
method.

ACKNOWLEDGMENT search under contracts
ONR-N0014-92.]-1890,
and the National Science
Foundation under con-
tracts ASC 92-01266.

We would also like to
thank M. Bromley, S.
Duggirala, A. Greenburg,
and K. Mathur of Think-
ing Machines Corporation
for their assistance.

Both authors were sup-
ported in part by the Of-
fice of Naval Research
under contracts NO00O14-
90-J-1695, the Depart-
ment of Energy under
contract DE-FG03-
87ER25037, the National
Science Foundation under
contracts ASC 9003002
and BBS-87-14206, and
the Army Research Office
under contract DAALQ3-

BIOGRAPHIES
Yu-Chung Chang received

91.G-0150 and subcon-
tract DAALO3-91-C-0047.
The second author was

also supported in part by
the Office of Naval Re-

her Ph.D. degree in Ap-
plied Mathematics from
the University of Califor-
nia, Los Angeles in 1992,
From 1992 1o 1993, she

was a postdoctoral fellow
at the Courant Institute,
New York University. She
1s currently a postdoctoral
feliow at Caltech. Her
research interests have
focused on computational
fluid dynamics and paral-
lel computation.

Tony F. Chan, a native of
Hong Kong, received his
B.S. and M.S. degrees
from the Cailifornia Insti-
tute of Technology in
1973 and his Ph.D. in
Computer Science from
Stanford University in
1978. Afier a postdoctoral
fellowship at Caltech, he
joined the Department of
Computer Science at Yale
University as an assistant
professor and since 1986
he has been Professor of
Mathematics at the Uni-
versity of California at

Los Angeles. His main
research interests are par-
allel numerical algo-
rithms, iterative PDE al-
gorithms, and numerical
linear algebra. He is a
council member of SIAM
and an editor of SIAM
Review, SIAM Journal of
Scientific Computing, and
several other journals.

REFERENCES

Chang, Y. C,, and Kreiss,
H.-0O. 1992. Comparison
of finite difference and
the pseudo-spectral ap-
proximations for hyper-
bolic equations (preprint),

Chang, Y. C. 1992, Com-
parison of finite differ-
ence approximation and
the pseudo-spectral ap-
proximations for hyper-
bolic equations, and im-
plementation analysis on
parallel computer CM-2,

Ph.D. Thesis. CAM Re-
port 9202, UCLA.

Hockney, R. W., and
Jesshope, C. R. 1981. Par-
allel Computers. Bristol,
U.K.: Adam Hilger Ltd.

Johnsson, L. 5. 1987.
Communication efficient
basic linear algebra com-
putations on hypercube
architecture, J. Parallel
and Distrib, Comput. 4:133—
172,

Leiss, E. L., and Lee,

K. H. 199]. A CM-2 im-
plementation of 2D mi-
gration in the pressure of
anisotropy. In Expanded
Abstracts with Biographies,
61st Annual International
SEG Meeting, SEG,
Houston, Texas.

{evit, C. 1988. Grid com-
munication on the con-
nection machine: Analy-
sis, performance, and im-
provements. In Proc. Conf.

 on Scientific Applications of

the Comnection Machine,
edited by H. D. Simon.

NASA Ames Research
r'nnfnv’ Califnrnia, Waorld

Scientific Publishe.rs, PP
316-332,

Pozo, R. 1991. Perfor-
mance modeling of paral-
lel architectures for scien-
tific computing. Ph.D.
diss. Dept. of Computer
Science, University of
Colorado, Boulder.

Thinking Machines Cor-
poration, 1991, CM For-
tran Optimization Notes:
Slicewise Model, Version 1.0.
Thinking Machines Cor-
poration, Cambridge,
Massachusetts.

Thinking Machines Cor-
poration, 1991, CM For-
tran Reference Manual, Ver-
sion 1.0 Thinking Ma-
chines Corporation,
Cambridge,
Massachusetis.

