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ABSTRACT

A kinetic theory for incompressible dilute bubbly flow is presented. The
Hamiltonian formulation for a collection of bubbles is outlined. A Vlasov
equation is derived for the one-particle distribution function with a self-
consistent field starting with the Liouville equation for the N-particle dis-
tribution function and using the point-bubble approximation. A stability
condition which depends on the variance of the bubbles momenta and the
void fraction is derived. If the variance is small then the linearized initial-
value problem is ill-posed. If it is sufficiently large, then the initial value
problem is well-posed and a phenomenon similar to Landau damping is ob-
served. The ill-posedness is found to be the result of an unstable eigenvalue,
whereas the Landau damping arises from a resonance pole. Numerical simu-
lations of the Vlasov equation in 1-D are performed using a particle method.
Some evidence of clustering is observed for initial data with small variance
in momentum.
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1 Introduction

Bubbly flows. appear in many physical systems, such as pipes in chemical
plants or nuclear reactors. One of the main objectives of research in this
field is the derivation of effective equations that describe the bulk behavior
of such systems. A typical procedure consists of taking space or ensemble
averages of the bubble distribution. The system of conservation laws is then
closed by constitutive relations. _

Bubbly flows can be quite complex and much work has therefore been
focused on dilute, inviscid, irrotational flows with massless bubbles (which
we shall call an ideal bubbly flow). There are two reasons for this: first, it
represents a good approximation of some physical systems (for example, void
wave propagation of millimeter-sized air bubbles in water) and second, it is
mathematically much simpler than the case where viscosity, compressibility
and turbulence can play a role. The main physical process present in ideal
bubbly flows is momentum exchange between the bubbles and the liquid, the
so-called virtual mass effect.

Despite the restriction to ideal bubbly flows, there is little agreement
in the literature on the form these effective equations should take (see, for
example, Wallis {1] or the recent discussion between van Wijngaarden [2]
and Geurst {3]). The main source of disagreement arises from the choice of
constitutive laws used to close the system. It is most common to spatially
average the fluid equations and close the system using results concerning
single bubble motion in an arbitrary flow. Biesheuvel & van Wijngaarden
[4], Drew & Wood [5], Lhuillier {6] and Pauchon & Banerjee [7], amongst
others, have derived effective equations in this manner for bubbly flow.

Other approaches have also been used; van Beek [8] obtained effective
equations by ensemble averaging, and Geurst [9] derived effective equations
by volume averaging the energy; he then used a variational principle with the
volume averaged energy as the Lagrangian. Wallis [1], Pauchon & Smereka
[10], and Smereka & Milton [11] have made several observations concerning
Geurst’s equations.

A kinetic approach has been used by Biesheuvel & Gorissen [14] and van
Wijngaarden & Kapteyn [15] to study void waves in bubble flows. Biesheuvel



& Qorissen start with a conservation law for an N-particle distribution func-
tion. They derive effective equations by taking moments of the distribution
function. They are forced, however, to close their system using physical in-
tuition. They obtain results similar to those found by Batchelor [16] in his
study of fluidized beds. van Wijngaarden & Kapteyn considered a suspen-
sion of bubbles using pair-wise interactions. They focused their study on
steady traveling waves and performed experiments which were found to be
in reasonably good agreement with their theory.

More recently, Sangani & Didwania [12] and Smereka [13] performed nu-
merical simulations of bubbles in a periodic box where the box contained an
inviscid and irrotational liquid. In both studies it was found that when the
bubbles were given similar velocities, they would tend to form clusters similar
to the ellipsoidal clusters suggested in [11]. One of us [13], however, found
that if the variance in bubbles’ velocities was sufficiently large the clustering
was inhibited. Both studies also found that the addition of gravity and liquid
viscosity would result in pancake-shaped clusters for large time.

In this paper we give a kinetic formulation of rarefied bubbly flow. We
derive an equation for the density function analogous to the Vlasov equation
for plasma. Closer analogies can be found, however, in the work of Liboff [30]
who used a Vlasov equation to study gas-liquid condensation, and in works
about a kinetic description of a gas of vortex dipoles [31, 32]. The Hamil-
tonian formulation that we derive has some analogies with the Hamiltonian
formulation of incompressible fluid dynamics [33, 34].

We consider a set of identical bubbles in an incompressible, irrotational
liquid. The bubbles are considered incompressible. There are regimes in
which this model is a good approximation of an actual physical system.
We neglect collisions; their effect will be considered in a following paper.
We neglect the effect of viscosity and gravity, because we are interested in
describing the collective effects due to the interaction with the fluid. As
we shall see, this interaction will give rise to a Hamiltonian system for N
interacting particles. The Hamiltonian structure will be the basis for the
derivation of a kinetic description of the flow. The effect of gravity and
viscosity could be added later to the model. The main result of the paper is
the derivation of a Vlasov equation for the density of bubbles in phase space,
f(z,p,t).

The Vlasov equation with a self consistent field describes collective behav-
ior of a large number of particles subject to long range interactions. Typical
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examples are given in plasma physics and in astrophysics. In the first case
the interaction is a Coulomb force, and in the second it is given by Newton’s
gravitational law [36, 35]. In both cases the force decays as 1/r? (in the
plasma case it is repulsive, while in the gravitational case it is attractive).

As we shall see, in the case of dilute bubbly flow the interaction is given
by a dipole field. In spite of the fact that this interaction decays faster than
the Coulomb force (1/r?)}, still it may be considered long-range, and collective
behavior due to the mutual interactions of the bubbles can be observed.

One of the main points of this paper consists in the derivation of a kinetic
theory for particles that have a dipole interaction. In this respect the interest
of the paper is not confined to people working in bubbly flow.

The plan of the paper is as follows. In the next section we consider
the problem of the motion of a set of N identical bubbles in an inviscid,
incompressible, irrotational fluid. We derive a Lagrangian that describes the
dynamics of the system with 3N degrees of freedom. We write then the
Hamiltonian formulation for the motion of the N bubbles. The Lagrangian
and the Hamiltonian of the system are complicated functions that can be
computed only by solving a Laplace equation for the stream function. In
Section 3 we make use of the point-bubble approximation; that is formally
based on an asymptotic expansion in terms of the void fraction. This gives
us a simple approximation for the Hamiltonian of the system.

In Section 4 we derive the Vlasov equation for bubbly flow, starting from
the Liouville equation associated to the Hamiltonian flow. We then make
use of the BBGKY hierarchy and the assumption of molecular chaos to write
the Vlasov equation for the density function in phase space. An expres-
sion is given for the coeflicients of the Vlasov equation as functionals of the
distribution function.

In Section 5 we perform a linear analysis of the kinetic equation. We
find that the well-posedness of the initial value problem for the linearized
equation depends on the relation between the void fraction and the variance
in momenta of the bubbles. If the variance is large enough, the linear modes
are damped. This effect closely resembles Landau damping found in a plasma
[17]. If the variance is small the initial value problem is ill-posed. In Section
6 we will present some numerical results that use a particle-in-cell method.
In the unstable case the bubbles tend to cluster; this is in agreement with
other results in the literature [12], {13].



2 Hamiltonian Formulation

We will consider a collection of rigid, massless bubbles of identical size that
are initially at rest in an inviscid, incompressible, and quiescent liquid in
three dimensions. The dominant physical effects that we ignore are gravity
and liquid viscosity. We plan to add those effects in a future model.

We shall use bold-faced characters to denote 3-D vectors. The bubbles
are impulsively set into motion, thereby giving rise to an irrotational flow.
. The velocity of the liquid, v,, is therefore the gradient of a velocity potential,
. ¢, hence,

Vg = V¢, T e V,

where V is the domain occupied by the liquid. The velocity potential satisfies
the following elliptic problem:
V=0, zeV, (1)

with boundary conditions on the bubble surfaces being,

9
‘a‘g‘:uk'n: z€S,k=1,...,N, (2)

where m is the outward drawn normal from the liquid surface, u; is the
velocity of the k-th bubble and S; is the surface of bubble k. The condition
at infinity is

V¢ =0, (3)
which corresponds to the zero volumetric flux frame of reference. Because
Egs. (1), (2) and (3) are linear in ¢, we can write

N
¢ = E Uy - 'ﬂ["k: (4)
k=1

where 1), is a vector valued function that depends only on the positions of
the bubbles. The boundary conditions are then satisfied by taking

% _J m on the k-th bubble
6n | 0 on the other bubbles.




In order to write the Hamiltonian of the system we need to find the kinetic
energy. The total energy of the system is entirely contained in the liquid
since the bubbles have no mass. It is given by

1
T =3 [ IVolda, (5)

where p; is the density of the liquid. This expression can be written in an
alternate form using Green’s Theorem:

P d¢
T“ngsk #5-dS. (6)

The contribution to the energy at infinity vanishes by virtue of (3). We
substitute (4) into (6) to obtain

1 N
= EplZng (;W 'd)t) Uy -ndSk,

k=1

which can be written as

1
3
where
it is shown [13] that the matrices A;; satisfy
A; = Ay
and
ij

It follows from the definition of %; and from (8) that A;; depends only on
the positions of the bubbles, therefore

A,‘j s A,-j(ml, e ,:BN),

and the kinetic energy T is the Lagrangian of a system of 3NV degrees of
freedom with coordinates {z,...,zy} and velocities {u,,...,uy}. The
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equations of motion are consequently given by the Euler-Lagrange equations;
the generalized momenta are given by

aT

P = ou, = JEAkjuj- (9)

Substituting (8) into (9), we obtain
Py = pf/ ¢ L dSka
Sk

which is the well-known expression for the impulse associated to the k-th
bubble. To write this system in Hamiltonian form, we solve (9) for u; in

terms of p;,, to obtain
Uy = Z By;pjs (10)
2

with
> AuBy; = 16, (11)
- ,

where [ is the 3 x 3 identity matrix and §;; is the Kronecker delta. Equation
(11) can always be solved for B;; because it can be written in the {orm

AB =1, (12)
where 7 is the 3N x 3N identity matrix,
An - Ain
A= =+ ... 1 ],
Avi - Anwn

and B is similarly defined. It follows from (5) and (7) that 4 must be positive
definite and therefore invertible; hence B is well defined. We substitute (10)
into (7) to obtain the Hamiltonian of the system:

1
The equations of motion are therefore
) oH
Ty = Do = ZBMP;:
Pi i (13)
. OH 1 Z 0By
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The starting point of the kinetic theory is Liouville’s equation for the
N-particle distribution function associated to the Hamiltonian system (13),

SO @y, ., @y Py -5 Py ). 1t is given by

N N N
2%14-; Uk‘ag;k)+Fk'aéf;k} =0, (14)
where
o M
. Bk a'Pk’ (15)
F, = -2
g oz,

An inspection of (10) reveals that &, is not simply proportional to p; as in gas
dynamics. For this reason, it is not equivalent to choose the momentum or the
velocity as an independent coordinate in the derivation of this kinetic theory.
A similar lack of proportionality also appears in other physical systems. In
semiconductors, for example, the velocity is a function of the wave vector.
The wave vector is used as an independent variable in the kinetic description

[19].

3 Point-Bubble Approximation

There is no simple analytic expression for A and B for a generic distribution
of bubbles. Here we will make use of the point-bubble approrimation. In this
approximation the contribution of a single bubble to the velocity potential
is given by a dipole field. This dipole field is an exact solution for a single
bubble moving in an unbounded fluid. For the case of two bubbles this
approximation is valid to O({a/r;;)¢), where a is the bubble radius and ry,
is the distance between the bubbles {20]. The point-bubble approximation
for A [13], is:

T . .
PE'Q_[ t=1
A:'j = 3r a 3 T,‘j’f':tr. ) o (16)
pio () (T-3728) i#j
4 "rijl trijl

8



where 7 is the bubble volume and r;; = x; — ;.

Formally we can expect (16) to provide a good approximation as long as
the bubbles are well-separated. Nevertheless, using a result due to Basset
[21], it has been shown [13] that (16) provides a very accurate approximation
even when the bubbles collide. Therefore we expect (16) to give a good
approximation for dilute bubbly mixture even in presence of some clustering.

In recent work Kim & Prosperetti [22] and Sangani & Didwania [12]
present schemes for an accurate numerical simulation of the motion of mass-
less rigid spheres in a potential flow. These schemes can be used in connection
with our theory for three different purposes: i) as a check of the validity of
the point-bubble approximation, by comparing the field computed by an ac-
curate numerical solution with the field due to a family of dipoles; ii) as a
test for our theory (predictions of our theory can be compared to an accurate
numerical simulation using a large number of bubbles); iii) as a guideline for
the development of a kinetic theory that is valid for denser bubbly flows.

By inserting (16) into (12), we obtain, to the same order of approximation,
the following expression for B,;:

2
Pe
Bij = 3 ( a )3 (I rt-jr:g.) # ' (1?)
—_ -3 : 1#
PeT ]Tij| |7'£j[2

In the analysis that follows it is useful to note that the Hamiltonian and
the force can be written as

1
Hz_z—zpk'uh
k
and
= Fo= 0 S pu (18)
P = k= 2amk ipi [3]

where uy, is given by (10). Let us consider the term

Bu,- 0

= — S B.p,
o, } iP;




which, by virtue of (17), can be written as

Bmk

3u; 3 8
= ( oz, E; Bej?j) i + EZ:IBikpk' (19)

Upon substituting (19) into (18}, we find

pp=Fi=3 Fy, (20)
i#k
where 3
Fy; = —H(Pkaij)- (21)
The velocity of the k-th bubble can be written as
2
Uy = Py + 2w, (22)
Pe itk
with
Uy, = By;p;. (23)

It should be noted that both F';; and u,;; depend only on p;, p; and (z, —=;).
By using (22), Eq. (20) can be written as follows:

d
Fp= —'5;:(1’;;' " Uy). (24)

Eq. (22) has the following interpretation: u,; is proportional to the contri-
bution to the liquid velocity at the center of the k-th bubble due the j-th
bubble. It follows from [13] (see Eq. 3.29) that (22) can be written as

U, = -+ Ju°
k Epk k!
where -vkoo is the so~ca.lled ambient 'DEIOCity Of the h(}llld at .
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4 Vlasov Equation for Bubbly Flow

In this section we derive a self-consistent Vlasov equation for bubbles in-
teracting via a dipole field. We start from the Liouville equation for the
N-particle distribution function. We then make use of the BBGKY hierar-
chy to derive a self-consistent Vlasov equation for the one-particle density
function in phase space. For convenience, the BBGKY hierarchy is closed by
the assumption of molecular chaos.

For a description of the BBGKY hierarchy and the approximations en-
tailed in the Vlasov equation see, for example, Chapman & Cowling [23] or
Liboff [24]. In those cases the Vlasov equation is derived for particles inter-
acting with a Coulomb field. Our case is quite different, since the particles
interact with a dipole field which decays faster and is more singular at the
origin. In spite of the faster decaying rate, however, the field may still be
considered long-range, and collective behavior are described in terms of a
self-consistent mean-field associated to the Vlasov equation.

We begin by writing the Liouville equation (14) in the form

afN) d a
A + 3 g (SO g (P =0, (20

This is possible because of Hamilton’s equations (15). Integrating the
Liouville equation over

dQl Edmz"'dmN dp2"'de,

we obtain

a (N)
an+/m,%?dm—o (27)
1

o) )
ot +/m'aﬁ

where

f(l}(mhpl’t) - /f(N)(m] s TNy Py - 'pN:t) dnl

is the one-particle distribution function. Using equations (20), (22) and (24)
for u, and F'; in (27) we obtain

afrm 2 9w afm BN
ot +TPep1. oz, ;](‘Uu' O, T op, )dnl*ﬁ
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By using the indistinguishability of particles (2,...,N) and the fact that u;
and F';, depend only on x;, x;,p;, and p,, we write the above equation as
afy 2 afm
+ —p;-
ot Tp dx,

af® of@
+(N - 1)] (“12 : 3_:31 + Fy,- 3_'}31) dz,dp, = 0, (28)

where

f(z)(wla m2aphp2?t)
=-/f(N)(mz,...,wN,pI,...,pN,t)d:r:a,...,d::cN,dps,...,de

is the two-particle distribution function. We write the two-particle distribu-
tion function as

f(z)(wla mihp],pzs t) = f(l)(ml,pla t)f(l)(wi’:pza t) + Cg. (29)

where ¢, is a measure of the correlation between bubbles 1 and 2. When
¢y = 0 then the bubbles are uncorrelated and we have molecular chaos.

Here the assumption of molecular chaos was used for convenience. We
believe that it is not strictly necessary and that a rigorous mathematical
derivation of the Vlasov equation can be obtained under more general as-
sumptions, in the so called mean-field limit, as is done, for example, in the
case of plasma [28]. Such a rigorous treatment, however, is beyond the scope
of our analysis, and may be the subject of further research.

We substitute the expression (29) with ¢, = 0 in equation (28) to obtain

af) 2 o
—_ — (1) .
5 + lTngl +(N-1) (/ uf (mz,pz,t)dmzdpg)} 9z,

afw
+HN ~1) (/ F mf“’(wz,Pz’t)dm?dp?)' 81;1 ="

It is convenient to use the density function in phase space,

f(=,p,t) = NfO)(z,p,1), (30)
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which has the properﬁy
ff(m,p,t)dp = n(wz, ),

where n(z,t) is the number of bubbles per unit volume. For large N the
equation for f(z,p,t) is

af of af
- i L B o—— =10 1
3t +UI 3:131 + 1 6}31 ’ (3 )
where
2
ul(wlspl’t) = ;_";;pl +fu]?(mlapl}w2:p21t)f(whpmt)dw?dpz& (32)
Fl(“’uppt) = /sz(mxapn Ty, Py, ) f (25, Py, t)d2,dpy. (33)

In order to evaluate the integrals contained in (32) and (33), we make use
of expressions (21) and (23) which we rewrite here:

U, = Bpop,, (34)
aB 0
Fy = "‘Pl'éjlzpz = —‘5;]‘(?1 : u12)' (35)

From (17), it follows that

9 J? 1

B =
)
4pm 02,077, 7121

where o, f = 1,2, and 3 denote the cartesian components. From (32), (34),
and (35), the expression for F'; can be written as follows:

0
F, = _'5':;1’(?1 'ul)'

To develop the expression for u,, it is useful to introduce the momentum
density:

§(@2,t)= [ Pof(@2p,t) dps
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Then (32) and (33) become

2 9
U = —p® — —J%(x,, 1), 36
1 TPy 1 Pe ( 1 ) ( )
d
an ) . a ,
Fl :pla_m;,‘] (mht)a (37)
h
e Ja 1) = 1 f 62 jﬁ(mz?t)d 38
(ml‘.‘ ) b —47?' aa’:;’amf 1;‘1}1 — .’,ﬂzl Ly. ( )

(Here and in the sequel, we assume summation over repeated Greek indices).
The integral in (38) is the continuous limit of the sum in Eq. (22). It repre-
sents the field created by a dipole distribution.

The velocity field generated by one bubble decays as 1/r3, and the force
between two bubbles decays as 1/r4. This does not preclude the possibility
of the force having a mean field description which is clear from (37). A
mean field description can be expected under general circumstances, however.
This point was made by Vlasov ([29], pg. 19) who argued that a mean field
description was necessary whenever one wishes to capture collective behavior.

Liboff [30] made this point clear in his work on phase transitions. He
considered an interaction force that decays as 1/r™ with n = 2,3,4,... and
showed that there was collective behavior for all finite n. In the limit n — oo
the collective behavior disappears.

In what follows we shall develop a mean field description for (36) and
(37). The integrand of (38) has a nonintegrable singularity and the integral
is therefore taken as a principle value integral. This corresponds to the
exclusion of all the bubbles within some small spherical volume around the
bubble at x,. In dielectric theory this corresponds to the Lorentz sphere.
Therefore, the principle value of (38) corresponds to its mean field and we
write

J = Jmeau + Jlocal (39)
where
1 62 J"G(%:t)
Jo  (my,t m—lim—*f dz,. 40
mean( 1 ) 0 477 [Ty ~pl>e amfamf le - 332| ? ( )
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and J,.,; is the contribution of the bubbles within the Lorentz sphere.
In Appendix A we prove that

,. 1.
Jmean(mht) = J(:‘B],t) - §J($1,t), (41)
where
o __2 8 d 42
To(nt) = gomg [ Glenen)i?(@s i, (12)
and 1
G(zy, ) = pyTTP—

is Green’s function of the Laplacian. In dielectric theory J corresponds to
the macroscopic electric field and (41) is known as the Lorentz relation. A
discussion of these matters can be found in a textbook of electromagnetic
theory, see for example Reitz & Milford ([26], pgs. 68-96). As a result, the

equation for u; becomes
2 . .
Pty = ;pl - 9.](:[!1, t) + 3.7 (mht) - gjloca.l‘

Substituting the expression for J into (37) combined with (31) gives

af af af _ af
at+“'am+F'ap*(at),m,’ (43)
with o
Pt = ;p - 9Jmean (44)
and
F=-V(p-u (45)

where the expressions for v and F now contain only the mean field con-
tribution of J. The right hand side of (43) takes into account the local
effects, which are the short range forces experienced by the bubbles inside
the Lorentz sphere. In addition to the dipole force between bubbles (and
possible higher order terms), actual bubble collisions are also contained in
this term. The effects of collisions are small when the Knudsen number, x,
given by
mean free path

k=
macroscopic length scale

15




is large. For bubbly fluids we do not know the Knudsen number a priori so
we will consider two limits: £ — oo, which corresponds to the collisionless
case and k& — 0, which corresponds to the fluid dynamic Limit. For the rest
of this paper we shall focus on the case £ — oo so we assume

ary  _ (¥ —0
ot {ocal ot collisions

Just to see the order of magnitude of a possible Knudsen number, we
consider a typical case. A simple analysis shows that the Knudsen number is
given by & = (4/3)a/(Ley), where a is the bubble radius, L is the macroscopic
length scale (for example, the wavelength of a void wave), and &, is the void
fraction. In the case where the bubbles have a radius of 1 mm with L =1
to 10 cm and the void fraction is g5 = 0.01, it would be in the range £ =~ 1
to 10.

To derive the self consistent field we introduce a potential, @, that satisfies

Ad=V.j,
and we write Eq. (42) as _
J=Vo.
We observe that
VxJd = 0,
vV.-J = V-j,

therefore the vector J is the projection of j into the space of curl-free vec-
tors. In summary, the Vlasov equation for an ideal bubbly fluid with a self
consistent field is given by

of  of af
Gt g tF g, =0 (46)
with
2 .
pew=—p —3(3V® —j), (47)
and
F =-~V(p-u),
A‘I’ = V 'j, (48)
i=[pidp.

16



As in the discrete case (see Eq. 25), the second term on the right-hand side
of equation (47) is proportional to the ambient liquid velocity, 1.e.:

1 .
ve° = ——(3VO - j).
Pe
Notice that the vector field, 7(x, 1), is not necessarily irrotational, in spite of
the fact that the original liquid flow is irrotational.
In one dimension the Vlasov equation reduces to

af  af af

E-i-ub“;-!-F%:O, (49)

2 :

pu = —p—06y,
T
6p 07

F = e 50
pe 0z’ (50)

j = fpfdp,

where f(z,p,t) = [ f(z,y,2,p,p,, P, t)dp,dp, is assumed to be independent
of y and z. The ambient liquid velocity is

2
v = ——7,
% (51)
We make a remark about the validity of a kinetic model. The kinetic
approach can give a good quantitative description of the behavior of the
bubbles only if the total number of bubbles is large enough. By considering
a typical macroscopic size of the bubble channel (a few meters long and
a fraction of a meter wide), some typical bubble radius (of the order of a
millimeter) and a void fraction of about 1%, one can check that we are in
a region where a one-particle distribution function can provide a meaningful
description (see Ref. [27], pg. 19).

5 Linear Analysis in One-Space Dimension

In this section we study the stability of the Vlasov equation linearized about a
spatially homogeneous stationary solution. We shall prove that the stability
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depends on the void fraction and the spreading in momentum of the bubble
distribution. If the spreading is large enough, the initial value problem for
the linear Vlasov equation is well-posed, otherwise it is ill-posed. In the
well-posed region we observe an effect similar to the Landau damping for the
Vlasov-Poisson system in plasma physics.

We consider the one-dimensional Vlasov equation (49), and observe that
any time independent, spatially homogeneous density function, fy(p), is a so-
lution of Eq. (49). We shall now write the equations in nondimensional form
(the nondimensional variables are denoted by an asterisk). The independent
variables are

_ Tpetg

L
— s = L * = — 1t 2
p 5P @ z ” (52)

and the dependent variables are

. TPeUg .
](.’L‘,t) = il *(:I:*,t*),

flz,p,t) = ( )f*(m*,p*,t*)-

TpeugL?

We choose the length scale to be L3 = 7, and the velocity uy, so that

TP
LN 2 ? = NP = /PfO(P)dP:

where ny = [ fo(p)dp. With the nondimensional variables, Eqgs. (49-50)
become

af

5 +3pz 2= =0,

i(=z,t) = [ pf(=,p)dp,
where the asterisks have been dropped. The linearized equation for f; =
f=fois
af;

Y +(p- 330)"““;:‘ + 3?“‘“7 =0, (54)

?_i a5 af
dz (53)

where

@ty = [ fieptedy, o= [ L@,
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We take the Fourier transform in space, and the Laplace transform in time
of fi(z,p,t) to obtain

N ] a
— Fi(k,p,0) + ik(p — 30} F; + 3psz1-g;§’~ -0, (55)

where

+oo Fo0 .
Fi(k,p,s) = /_w d:c_/[: dt e~st—ik= f (z, p, t),

and Jy = Jy(k, s} is analogously defined. f1(k, p,0) is the Fourier transform
of the initial perturbation. We solve (55) for F} and obtain

1 fo(p)
s +ik(p — 3jo) op |’

We multiply by p, integrate both sides of the above equation and solve for
J; to obtain

(56)

1....._....

hwm,)3maw)

f+°° fi(k,p,0 pdp
zk

J......

N Foo P afo
1+3/ .

(57)

where A = 3j, + is/k.

Let 7,(k,t) be the Fourier transform of j;(z,t). Its time evolution is
determined by taking the inverse Laplace transform of J;. Formally J,(k,s)
is defined only for Re(s) > 0 (Im(A) > 0} by computing the integrals that
appear in (57) along the real axis. Following Landau’s analysis, we perform
analytical continuation for Re(s) < 0 (Im(A) < 0) using the path shown in
Figure 1.

Next, we consider spatial homogeneous solutions of Eq. (49), fo(p), that
have the following properties:

1. fo(p) is either an entire function of p or has a finite number of poles,
none of which is on the real axis.

2. fo(p) is a unimodal distribution symmetric around its mean.

If the mean of fo(p) is nonzero, we scale p so that the mean is unity. We
shall denote by ¢2 the variance of the distribution f5(p), hence

eoo? = [(p - 12 fo(p)dp,
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where

e = [ fol)dp

Let us consider the expression (57) for J;. We shall consider initial pertur-
bations, f(z,p,0), which are either entire functions of p or are of the form
fi(=,p,0) = ¢(2)fo(p). From the assumptions on fy(p) and f(z,p,0), it
follows that the poles of the numerator are also poles of the denominator;
therefore, the poles of J, are given by the zeroes of the denominator. The
denominator of (57) is denoted as H(A):

p2 8
A)—1+3] Aaﬁ) p)dp. (58)

Let ), denote a generic root of H(A) = 0 and Ay, the root with the greatest
imaginary part. The poles of J, are then located, in the complex s-plane, at

s = —tk(A, — 370). (59)

The long time behavior of j, is determined by sy = —tk(Ays — 375), since
this is the pole with the largest real part. If Re(sy,) < 0 then j, will decay to
zero exponentially. This decay is analogous to Landau damping in a plasma
[17). If Re(sps) > O then j; grows exponentially. It is evident from (59) that
the growth rate is proportional to & indicating that the initial value problem
is ill-posed. R

The behavior of f; can be obtained from Eq. {(56). In addition to the

poles present in (57), F, has a pole on the imaginary axis located at
s, = tk(35, — p).

This indicates that when Re(sy;) < 0, the long time behavior of fi (z,p,t)
will be

Filk, p,) ~ explik(3jo — p)t],
and when Re(sy;) > 0 then

fl(krp: t) = exP[ik(BjO - "\M - p)t].
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5.1 Transition curve

The transition between the stable and unstable regimes given by Re(ss) = 0,
is equivalent to

Im(Xys) = max Im(};) = 0. (60)
J
The solution f(z,p,t) = fo(p) is stable if

The A,’s are functions of ¢, and o, therefore (60) represents a curve in the
€q — o plane. In this section, we shall derive an expression for this curve of

the form
o = op(&)-
We recall that the integral in (58) is taken along the real axis when
Im()) > 0 and along the path shown in Figure 1 when Im(} < 0). Equation
(58) is rewritten as

> *(p—Ar) 0fo
H(N) =1+3 / LI
MY =14 (p— An)2 + A7 dp
: p? afu
+3i) f %o g,
N R YR
where A = Ap + i\;. We are interested in roots with zero imaginary part

and therefore take the limit as A; — 0 of H{A). We observe that for any
continuous real function, (z),

. 1 £
El—rrltlivr a:2+£2(p

(z)dz = ¢(0)

Le. &f(m(z? + 52)) converges to the Dirac delta function as £ — 0; we obtain

3fq 3fo
li A =1 ——dp + i AL
,\I‘_f‘é HA) +3./—oop—)\R3p +3imXh g, r)
where the integration is along the real axis. Setting H(A) = 0 implies
P2 dfo
1 3 —=dp = 0 61
d

by f“( Ag) = 0. (62)

Rap
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Equation (62) has two solutions, namely A\g = 0 and Ag =1 Qg = 11s
a solution because f, has a maximum at 1). For Az = 0, Eq. (61) will be
satisfied only if 5 = 1/3, which is well outside the validity of our model;
consequently, we will not consider this case further, Note that, in view of
our hypothests, the integrand of the above equation is a smooth function.
By virtue of the second hypothesis on fu(p) assumed in the previous

section, we can write
€ p—1
o) =20 (7). (63)

a

where g(z)} has zero mean and unit variance. Substituting (63) into (61), we

obtain the relation
_ 3egl (64)
TLENVT 3e,

I=—f_°° g'g”)dmw. (65)

where

To summarize, we have shown that when o = op(g), A = 1 is a root of
H(A) = 0. In other words, (64) is a curve in the o — &, plane in which a root
of H(A) = 0 has zero imaginary part. To prove that (64) is the transition
curve we must prove that there are no other roots of H(A) = 0 with Im(A) > 0
when o = o7(go). This is achieved with the theorem below which is proved
in Appendix B.

Theorem. The equation H(\;ep,0) = 0 with e, < 1/3 has only one root
with Im(A) > 0 when 0 < o.(ey), and has no root with Im{A) > 0 when
o > op(eg)-

In view of (59) this theorem shows that if o > o7 (ep), the initial value
problem for the linearized equation is well-posed and if o < o(gg) it is ill-
posed. In Appendix C it is shown that a resonance pole arising from the
analytic continuation of the resolvent is responsible for the Landau damping
and when o < g}, the resonance pole becomes an unstable eigenvalue.

Example. If the spatially homogeneous distribution is a Gaussian, then

g(z) = \/Iz—;eXP (—%2)

and therefore
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3eg
oy, = .
L 1 -3¢

We also mention that Sangani & Didwania [18] have also examined the
stability of homogeneous bubble arrangements by computing the gradient of
dispersed phase stress tensor with respect to the void fraction. They found
that this quantity was negative in a number of circumstances indicating an
instability. In these cases the bubbles were given identical velocities, therefore
the variance of the momentum is small and their observation of instability is
consistent with the results of this section.

" Finally, we observe that our theory, and in particular the results of the
stability analysis, were developed under the assumption that viscous eflects
are negligible. We expect that a model that takes into account the viscosity
would have similar stability properties (in particular, that the some linear
modes will be amplified if the variance in momentum distribution is small
enough), provided the viscous time scale is much larger than the time scale
of the instability.

5.2 An explicit solution

We construct an explicit solution to Equation (54). We consider the following
spatially homogeneous distribution:

2e40°
m(o?+ (p— 1P

fo= (66)

which has the properties
f Jodp = €,
f plodp = &,
f (p — 1) fodp = €0,

To compute the transition curve corresponding to the stationary solution
(66), we note that

2 1
glz) = RyTprpIrE
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and therefore,
£o

1—3ey
Next we consider an initial perturbation of the form
fi(z,p,0) = p(z) fo(p)-
The integrands that appear in (57) now have three poles given by
p=2A, 1lzio,
and no poles at infinity. This means that the integral along the real axis
(Im(A) > 0) or the path shown in Figure 1 (Im()) < 0) is always given by
27ri[a'1 + a?])

where a; and a, are the residues of the integrand at p = A and p = 1 + 10,
After a simple calculation, we find

0'L=3

(s —ikA)(s — ik B)
I, (s — ikw;) ’
where fi(k,p,0) = 3(k)fo(p), A =3jo— 1 + 02+ 2io, B =3j, — 1 + 40, and
w; = 3jg — A;. The A;’s are the roots of the following polynomial:
P(X) = X =3)%1-2¢,—10)
+3A(1 — 3g)(1 — ¢0)2 — (1 — 3eo)(1 — i0).
The inverse Laplace transform of (67) is
3
i o= eoqg(k);ag exp(tkw,t)
w?—(A+ Blw,+ AB
(WE - wn)(wl? - wm)

and (£, m, n) is a cyclic permutation of (1,2,3). The time evolution of j; is
given by the inverse Fourier transform, therefore

. I foo :
o) =5 [ dkjulk, et (68)

T J—0

Jy = —iggp(k) (67)

where

ay H

We shall make use of this formula later when comparing the results of linear
analysis with numerical computations.
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6 Numerical simulation

In this section we show some numerical solutions of the one-dimensional
Vlasov equation (49-50). We use a particle-in-cell method, which is quite
standard for equations of this type [35, 36]. We consider the initial value
problem for the one dimensional Vlasov equation (53):

of af dj af _
ot oz + 3p =0,

_ 3
j(m,t) = [ pf(z,p, )dp, (69)
f(z,p,0) = folz,p).
We use periodic boundary conditions in # with period L. The density func-
tion f(z,p,t) is approximated by a set of equally weighted particles:

F(o,p,8) % fl(zp,1) f""zsmmm.(t V6(p—pt)),  (70)

where €, is the mean void fraction. The space is divided into N, cells of size
H = L/N,. The flux, j, is computed at the center of the cell and stored in
the vector J using the following weighting:

— X3

= _Zpt ( ) )
1=1

where X, = (k — 1/2)H is the center of cell k£, and

-z iflz]<1
A(m)z{ 0 ifle]>1

is the “tent function” [36]. The vector JX containing the derivatives of j(x)
is obtained by centered differencing:

Jius — I
Jkau-‘f-ﬂ-é-H—H, k=1,...,N..

where Jy ., = J; and Jo = Jy. The particles satisfy the equations of motion:

Ly = Uy,

n = F

17

(71)
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with u; = p; — 3FNJ(z;) and F; = 3p; FNJX(z,). The functions FNJ and
FNJX are obtained by interpolation using the same function in the weighting
step, hence

FNJ(z) = EJ,. ( X"’)

k_-l

FNJX(z) = ZJX;, (x "HX")

k=1

The equations of motion are then solved by a forward-Euler scheme.

In order to complete the description of the scheme, we have to specify
how to approximate the initial conditions (i.e., how to determine the initial
position and momentum of the particles). One possibility would be to extract
N random points in phase space with probability distribution proportional
to fo(z,p). This procedure, however, would introduce undesired and unnec-
essary statistical fluctuations. To avoid this problem, the initial condition is
chosen in such a way so that the discrete measure (70) is a good approxima-
tion of the continuous measure (69). This is achieved in the following two
steps:

Step 1. Approximate the uniform distribution in the unit square with NV
points, {(£;,7:), ¢ = 1,...,N}. The quality of the approximation can be
measured by the so-called discrepancy between the two measures. There
are several sequences for which the bound in the discrepancy is close to the
optimal one. We used the van der Corput sequence in our calculations. For
more details on the subject, see, for example, Refs. [37] and [38].

Step 2. Consider a mapping T : [0, L] x IR — IR?, from phase space to
the unit square, whose Jacobian is the function fy(x,p). This will map a
measure with density fy(z,p) into the Lebesgue measure in the unit square.
An example of such a mapping is given by:

Jo da' [27° dp fo(e', p)
Jy do' [*2 dp fo(a',p)’

[P it fol, )
1=NEP) = e )

{=T(e) =
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If fo(z,p) > 0 this mapping is invertible. Let -1 : [0,1)? — IR? denote the
inverse mapping; then the initial conditions are obtained from

(m?,P?)"—‘T_l(fn’?i)» i=1,..., N

It is possible to show that in an appropriate metric space the distance between
the discrete and the continuous measure satisfy the following bound:
log N

N H]

d(fo, fn) < CV(fo)

where C is a constant of order unity and V{(-) denotes the variation of a
function [38].

Numerical results

We present the results for a few runs of the numerical scheme just outlined,
in both the stable and unstable regimes. We consider an initial distribution
of the form:

flon,0) =0 {1+ asin (257)) st

with fy(p) given by (66). In the first run we choose ¢, = 0.01,0 = 0.5
and a = 0.6 (this is in the well-posed regime). The results are reported in
Figures 2 and 3. Figure 2 shows a sample of 2,000 particles in phase space
for different times. Figure 3 shows the momentum flux, j(z,t), for the same
times. The circles are the result of the particle code and the continuous
line represents the exact solution of the linearized equations, Eq. (68). The
parameters used in the computation are L = 100, N, = 20, and N = 65,535.
The time step is At = 0.1 and the output time interval is At = 80. The
agreement between the linear theory and the numerical results is good even
if the initial amplitude of the perturbation is not small.

In the second run, we choose ¢, = 0.01,¢ = 0.2, and @ = 0.1. (this is
in the ill-posed regime). All the other parameters are the same as in the
previous case. The plot of the points in phase space is shown in Figure 4,
and the value of the flux is reported in Figure 5. The continuous line is the
result of linear theory and the circles represent the numerical result. The
agreement with linear theory is good for short times; the nonlinear effects
then start to be relevant.
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As a last example, we consider a case in the strongly ill-posed region. We
take 0 = 0.1 and o = 0.4. The results of the calculation are reported in
Figures 6 and 7. The ill-posedness develops into oscillations which grow very
rapidly, but after a long time a single spike in the density propagates in the
fluid. This effect is numerical evidence of bubble clustering. The size of the
clustered region decreases when the variance o? gets smaller. This result is
in qualitative agreement with numerical simulations obtained by Sangani &
Didwania [12] and Smereka [13].

7 Conclusions

In this paper, a kinetic theory for an ideal bubbly liquid has been formu-
lated. The main ingredients of this theory are the Hamiltonian equations of
motion, the point-bubble approximation, and the use of a Vlasov approach
to reduce the N-particle distribution function to a one-particle distribution
function. The approach neglects the local interactions of the bubbles; these
are included in the sequel to this paper. Any spatially homogeneous dis-
tribution function is a solution of our Vlasov equation for bubbly flow. It
was demonstrated that if the variance of the bubbles’ momenta is sufficiently
large, the spatially homogeneous solution is stable and a phenomenon similar
to Landau damping occurs. On the other hand, if the variance is too small
the spatially homogeneous solution is unstable and the initial value problem
is ill-posed. We demonstrate that the “damping” does not come from a stable
eigenvalue, but instead, is associated with a resonance pole of the resolvent
of the linearized evolution operator. The ill-posedness, on the other hand, is
the result of an unstable eigenvalue. Numerical simulations are in complete
agreement with the linear analysis and suggest that the long-time behavior in
the ill-posed case results in bubble clustering. Our results are in agreement
with those of Sangani & Didwania [12] and Smereka [13] and provide further
insight into the results contained in these papers. Furthermore, the results
of this paper suggest that the variance of the bubbles’ momenta is a crucial

quantity that should play an important role in developing effective equations
for bubbly flow.
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Appendix A
We start from equations (36) and (38) with u® = u$, p* = p*, ¢ = x, and
Y= m2:
2
peus = —p% — gJ“a
T

1 0t jPy)
)=t L [ ,
me&ﬂ(m) 1}1% 47 Jiz—yl>e dzedxf [a’: - yl Y

and let s 5(y)
pe 1
JHz) = ~— Iy dy.
4w Oz*0zP J |z — y|
Here the dependence on time is not explicitly indicated since it is not relevant.
We prove the following:

Lemma 1

Proof

ey L0 [
T 4m §z00zP ) |z -yl

1 a r 0 jAly)
- "4w3xafamﬁ ;m_yldy'

The last equality is correct because the integrands have a singularity which
is integrable, We make use of the relation

& 1 9 1
dzle—y| By le—yl
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and obtain
~ 1 &8 o 1
= - — ] d
Jo(z) Mamaf(ayﬁ’m !)J (v) dy
138 f a [ 78(y) 1 6_75
= dndz \J 3yP \|z —y] g0y Y
The first integral in parenthesis vanishes, provided |y74(y)| — 0 as y — oo,
therefore

938

471' 6:1:“ ]w -yl 3J.G
_ 1 85 J
T 4n 33:“ |z — y| dyP y

1 8 1 \ o657
- E/(ay"lx-"yl) ay7 ¥

. 1] 5] 1 Bjﬁd
= m - 1
20 47 Jio—gl>e \ Oy [z — y| ) DyP Y

= lm7(e) +J5,..(2), (72)

J(z) =

where

1 a g 1
a 1B
Iole) = 47 /x~y1>e oy# ( (y)(?y“ |z~ yl) .

The integral J*(x) can be computed using the divergence theorem,

1 J 1
I°‘=——————/ 1By ————nnds
‘ 4m iw—y1=ej (J)ay“ lz—y| *

where ng is the normal directed out of the ball |z — y| < e. We obtain

1 Yo — 1o ds
limI* = —jf(z / n 3
Pt i’ (@) o—yl=e |z -y "z —y[? (73)
1 1
= s af, df) = —jo
411_3 (3:) €|=1£ gﬁ 3.7 (.’J:), (74)

as flii=1 £28d =0 if a= g and

1 ...l o “____f_l,
L fad =g | g dt=qr (75)
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From (72) and (74) the proof of Lemma 1 follows. Q.E.D.
Making use of Lemma 1, one also has
2
peu® = —p% 9 J(z) - "‘J

- o
Jo(e) = oz’

In one dimension it follows that J = j, therefore

and AP =V .g

2 .
pee = —p—6j(2).

Appendix B

Here we prove the theorem stated in Sec. 5.

Theorem. The equation H(A;ey,0) = 0 with g5 < 1/3, has only one root
with Im{A) > 0 when o < oy(ey) and has no root with Im(X) > 0 when
oc>ag L(EO)'

There are four steps in the proof. First, we show that H(A;g,, o) is an
upper analytic function of A. Next we see that for o = 0 there is only one root
with Im()) > 0. This means that as o is increased, roots can appear in the
upper half-plane only by crossing the real axis from below. Nevertheless, the
result of Section 5 shows that this can only happen at A = 1 for o = o (gg).
Then, we prove that

dr;

— <0,

do |\,
which shows that no roots come from the lower half plane as o is decreased.
We begin the proof with two lemmas.
Lemma 2.1. H()) is upper analytic in A, with only one zero for o = 0.
Proof. Integrating by parts, we write Eq. (58) as

350/pp 2X) (p;l)dp.

Since A; > 0, the integration is performed along the real axis. With the
substitution, p = 1 + o, the last equation can be written as follows:

o (14 g€){(1 +0f—2A
Heo,o)=1- 30, [ ST LT B g

31




where, as before, the integration is along the real axis. The integrand is
analytic for all real ¢, o, and for Im A > 0; the integral is finite for real ¢ and
Im A > 0. Therefore, H(); &g, o) is then an analytic function for Im A > 0.
With ¢ = 0, the above equation becomes

1—2X

(1=

which has only one solution in the upper-half plane, when ¢, < 1/3, namely,

A= 1 —3eg +1y/3eo(1 — 3eg).

H(X;e,0) =1 —3¢q

Q.E.D.
Lemma 2.2.

almh
do

<0 at o=o0p(eq)-
A=1

Proof. We fix ¢, and consider H to be a function of ¢ and A, therefore,

dA oH [OH

90~ "0/ ox (76)
Computations similar to those in Section 5 show that
OH P 9
_ d
0o {,_, 3/;}—13})30 P
begd
= G‘; 0, (77)
where I is given by (65) and
p? 0
=3 /’ fo
(p—A)? Bp
Writing A = Ag + 24, we find
to gD 0 f
m(HA) = —3r oo 6}) B 2 P
h
where A

D

Tl — P + N1
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Integrating by parts, we find that
0 dfo
1 =3 f D= (p=2Y g
mrh) =37 [ P, (p dp )
Taking the limit as A; — 0 and considering that D — é(p — Ag), we obtain

2
Im('HA) = 3 ?__Ji(l

5| < (78)

p=1
Lemma 2.2 follows when (78) and (77) are substituted into (76).  Q.E.D.

Proof of the Theorem. From Lemma 2.1 it follows that there is only one
root of H(A) = 0 for ¢ = 0. Since H is a continuous function of o, the
number of roots in the upper half plane can only change by roots crossing
the real axis. In Sec. 5 we proved that when a root crosses the real axis, it
does so at A =1 for o = a(e,).

By Lemma 2.2 the root can only go from the upper-half plane into the
lower-half plane as o is increased. This means that for o < o (&), there is
only one root in the upper-half plane. This root crosses the real axis at A =1
for ¢ = o,(g,) and it remains in the lower-half plane for o > o). Q.E.D.

Appendix C

In this appendix we examine the spectrum of the linearized evolution operator
and discuss the relationship of Landau damping to resonance poles. Much
of this appendix is motivated by the work of Pego & Weinstein [40].

To begin, we take the Fourier transform of (54) to obtain

Oh

o = Lh (79

where

\ \ af, w
Efl(k,p,t)=ik(3jo-~p)f1(k,p,t)—3ikp-%;;£)'/+ qfi(k, q,t)dg. (80)

-0

We fix k # 0 and consider £ to be an operator on L2(IR). We then let y be
an eigenvalue of L, i.e.

£f1 =Ff1- (81)
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The essential spectrum of £ is the imaginary axis; since for |p| large, £ is
dominated by ikp (see Crawford & Hislop [41]). To determine the point spec-
trum, we perform manipulations, similar to those used to arrive at Eq. (57),

on (81) and obtain
A =0, (82)

+eo P’ dfo
A(,u,)=1+3/_m p*3j0m%apdp.

If we set ip/k + 3j; = X then (83) it is identical to (58) except for one
important difference: the integration in (83) is always along the real axis. It
follows from (82) that u is an eigenvalue of £ if

where
(83)

A(g) =0, (84)

It also follows that if g = up + 1y is a zero of A(y) so is g = —pup + 1.
Combining this result with the results contained in Sec. 5, we can conclude
that if ¢ > o}, the spectrum of £ is the imaginary axis, and if o < o a pair
of eigenvalues appear, one stable and the other unstable. If is easy to verify
that the eigenfunction for the eigenvalue, g, is

_ P 0 fo

The above calculation shows that Landau damping cannot be associated with
an eigenvalue of negative real part. In fact, the spectrum of £ is entirely on
the imaginary axis when Landau damping occurs. It turns out that the
damping is a result of a resonance pole. In order to observe this, it is useful
to introduce the resolvent of £, which is defined as

Ry = (L — ). (85)

In the stable case, ¢ > oy, this operator is well-defined and continuous
for Im(x) # 0. The resolvent is not continuous when Im(u) = 0 (see, for
example, Kolmogorov & Fomin [42]). This is because the spectrum is only
on the imaginary axis in the stable case. If R, is analytically continued
across the essential spectrum of £ (the imaginary axis) from the right-half
plane, a pole is formed in the left half plane and is called a resonance pole.
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This resonance pole is responsible for the Landau damping. As the o is
lowered past oy, the resonance pole crosses the imaginary axis and becomes
the unstable eigenvalue. A similar construction can be used to understand
the emergence of the stable eigenvalue, (see Pego & Weinstein [40], for more
details).

Let us construct this argument explicitly. We can rewrite Eq.(55) as

sk — fl(kapso) = LFI

which can easily be cast in the following form:

+oo -
h=— [ R(hkp0)pdp (86)
where the resolvent has been analytically continued in the manner suggested
by Landau and as described in Figure 1. It was found in Sec. 5 that when ¢
was lowered past o, the poles of J; moved from the right-hand side of the
complex s-plane to the left-hand side. Therefore, we see that the poles that
occur in R, when ¢ > o, are responsible for the Landau damping. Crawford
& Hislop [41] present a somewhat different approach.
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Figure Captions
Figure 1 Integration path in the complex plane that is used to define H(A).

Figure 2 Location of the points in phase space for the case gg = 0.01,0 =
0.5 and o = 0.6. The parameters used in the computation are L =
100, N, = 20, and N = 65,535; the time step is At = 0.1. We have
only plotted 2,000 points randomly selected from the 65,535 points used
in the computation. Figure (a) is at ¢ = 0 and the subsequent figures
are at time intervals of 80. '

Figure 83 This shows the momentum flux, j(z,t), for the same times as
in Figure 2. The circles are the result of the particle code and the
continuous line represents the exact solution of the linearized equations.

Figure 4 Location of points in phase space for the case g5 = 0.01,6 = 0.2
and a = (.1. The numerical parameters are the same as those given in
Figure 2.

Figure 5 This shows the momentum flux, j(z,t), for the same times as
in Figure 4. The circles are the result of the particle code and the
continuous lines represent the exact solution of the linearized equations.

Figure 6 Location of points in phase space for the case ¢g = 0.01,0 = 0.1
and « = 0.4. The numerical parameters are the same as those given in
Figure 2 and the time interval between successive pictures 1s 320. This
case shows the clustering of the bubbles in space.

Figure 7 This shows the momentum flux, j{z,t), for the same times as
those in Figure 6. The clustering is shown by the spike in j(z,1).
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