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ABSTRACT

A Vlasov equation for bubbly flow is modified to account for local interac-
tions between bubbles. Fluid equations are deduced in the limit where local
interactions cause the system to become locally Maxwellian. The resulting
fluid equations are well-posed for sufficiently large temperature. We compute
void wave speeds that are found to be in agreement with experiments. In
the limit when the temperature is zero, we recover fluid equations previously
derived by other investigators. In this limit there are solutions of the equa-
tions that blow-up in finite.
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1 Introduction

In a previous paper [1], hence forth denoted Paper I, we derived a Vlasov
equation for bubbly flow. The interaction between the bubbles was described
in terms of a self-consistent field, the effect of the local interactions was
neglected. Local interactions consist of actual collisions (the bubbles touch)
and close encounters (their distance is close compared to the average inter-
bubble distance). The field during the close encounters is the difference
between the actual field and the mean-field. This avoids the double counting
of the dipole field. The field responsible for the local interaction decays much
faster than the mean field.

In this paper we consider the situation in which these local interactions are
important. The effect of collisions relaxes the distribution function to a “local
Maxwellian”. The system is therefore in local thermodynamic equilibrium
and its behavior will be described by a set of fluid equation. As pointed
out in Paper I, many investigators have derived fluid equations for bubbly
flow by various methods. Quite often, however, they were forced to close the
system by physical intuition or ed-hoc arguments. Here we shall close our
fluid equations with the assumption of local thermodynamic equilibrium.

The plan of the paper is as follows. In Section 2 we discuss the general
properties of the collision operator and write a Vlasov-Boltzmann equation
for bubbly flow. The fluid equations are derived in Section 3 by taking
moments of the Vlasov-Boltzmann equation. The equations are closed by
assuming that collisions are dominant and the distribution function is locally
Maxwellian. In Section 4 we write the equations in conservation form in one
space dimension. We also show that the equations are hyperbolic provided
the “temperature” is sufficiently large. By temperature we mean the variance
in the bubbles momenta. We conclude this section by comparing a lower
bound on the speed of void waves to the experimental results of Biesheuvel
& Gorissen. The agreement is favorable. “Frozen” bubble flows are studied
in Section 5. Frozen means that the variance of the bubbles momenta is
zero. We show that our fluid equations agree with equations derived by
Geurst [3], and Pauchon & Smereka [5]. It is also demonstrated that these
fluid equations have a similarity solution that blows up in finite time.




2 The Vlasov-Boltzmann Equation

In Paper I, we derived a Vlasov equation for a dilute bubbly fluid that de-
scribed how the bubbles would move in a self-consistent field; the result was
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Here f(z,p,t) is the density function in phase space, x and p are the position
and momentum of the bubble, and p, is the liquid density. The velocity, w
and the force, F', are determined by a self-consistent field which satisfies
equation (4). As previously mentioned, Eq. (1) ignores local interactions,
which we shall call collisions henceforth. Our goal here is to modify Eq. (1)
to include these effects. The resulting equation will be
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where the term on the right-hand side accounts for the collisions. The velocity
and force given by (2) and (3) are still operative.

Under the assumption that only binary collisions are relevant, the effect
of collisions is completely described by a differential cross section,

o', =), p',p| — x,21,p,P),

where @', !, p’, p| are the position and momenta of two bubbles before the
collision, a,nd x, ¢y, P, p; are the position and momenta of the same bubbles
just a,fter the collision.




This function is proportional to the transition probability between the
two states. The rate of change of the density function due to collision is
given by

(%{-)c = f o(@, @, p',py = &, @, p, p (' [ — [ )da'dw) dp'dp) e, dp,,
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Since the force between two bubbles is a short-range force then the interaction
distance can be considered small compared to the length scale of the variation
of f(m,p,t), and only particles at the same position interact. In this case the
collisions are described by

d
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which we recognize as a Boltzmann-type collision operator. We shall refer to
(6), with the collision term given by (7), as the Vlasov-Boltzmann equation.

2.1 Collision model

There are two kinds of local interactions experienced by the bubbles, namely
close encounters, which we model as the difference between the actual field
and the mean field, and collisions, that we model as elastic hard sphere
collisions. This means that the local interaction conserves both energy and
momentum. A complete description of the collision operator is obtained by
determining the differential cross section. This could be done, in principle,
by solving the equations of motion of two bubbles in the presence of the local
field (including elastic collisions). However this task is formidable, even if a
crude approximation for the local field is used, and it is not necessary in the
analysis that follows.

A characteristic length associated to the collision process is the “mean
free path”. When it is large compared to the size of the physical system
under consideration, the collisional effects are then negligible and the flow
can be considered collisionless. When the mean free path is much smaller
than the macroscopic length scale, then the flow is strongly collisional.



These regimes are characterized by the Knudsen number, &, given by

mean free path

(8)

K= - .
macroscopic length scale
The collision rate is inversely proportional to &, and therefore equation (7)
can be written as

(&) -eu.n ©)

where @) is the Boltzmann collision operator.

As mentioned previously in Paper I, we do not know the Knudsen number
for bubbly flow and therefore consider two limiting cases; £ — 0 and &£ — oo.
The latter case represents the collisionless case and was considered in Paper
I. In the discussion that follows we consider the case ¥k — 0. In the regime
where £ — 0, the behavior of the system can be described by fluid dynamic
equations {8, 9]. A formal way to deduce these equations is through the
Chapman-Enskog expansion (see, for example, Ref. [9], Ch. 7). Before we do
this it is convenient to write the Vlasov-Boltzmann equation in the following
form:

where 9 9 3

2.2 Chapman-Enskog Expansion and Detailed Balance
We expand f as follows

f=ht+efitefat (12)

and substitute it into (10). By equating powers of & we find
7 Qfer o) =0, (13)
K0 D fo =2Q(fo, f1)- (14)

A solution of (13) is called a local Maxwellian. It is defermined by the
principle of detailed balance and the collision invariants [8]. The collision
process that we consider conserves momentuin, energy, and parficle number.
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Conservation of momentum is expressed in the form
pi+p -p—p=0. (15)
The energy associated to a bubble of speed u and momentum p is given by
e = 1p - u (see Paper I), where pyu = (2/7)p — w(z) and w(z) is a mean
field (descrlbed below). Conservation of energy is therefore written as
plrui4+p v =p -y +peu (16)

From the expression of u, this equation can be written as

pil* +1p'? ~ [pu* — Ipl® = 0, (17)

since w(x) is the same for each bubble before and after collisions. Under
very general conditions on the scattering cross section, the following relation
holds for a local Maxwellian f(z, p,):

fo(a::p;)fo(wap’) = fﬂ(mapl)f(}(w:p)a (18)
when p, p', py, and p! satisly (15} and (17). Relation (18) is usually referred
to as detailed balance (see, for example, Ref. [8], pg. 242) . It follows from
(18), (15), and (17) that a local Maxwellian has the form

n lp—pP
fo(z,p,t) = B2yl X l— 57 ] ,

(19)

where n = n(x,t), p = p(w,t), and 0 = o(z,1).

To the lowest order in &, the evolution of n, p, and o is obtained by taking
moments of the Vlasov-Boltzmann equation. The system is closed using Eq.
(19). The equations obtained in this way are the bubbly flow analogue of the
Euler equations derived from the Boltzmann equation in gas dynamics.

3 Euler Equations

We rewrite Eq. (1) in nondimensional form using the same variables as in
Paper I, and make use of the the fact that the vector field (u, F') is divergence
free. The Vlasov-Boltzmann equation in this form is

3f 3 1
6t ) apa (fFa) = EQ(fa f): (20)
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where

Uy = Po= Was (21
F, = pﬁg:’f, (22)
with
W, = %(3%—]@), (23)
X |
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We have used Greek letters for Cartesian components and summation 1s
implied over repeated indices.

We multiply (20) by 1, p.,P.p, and integrate over dp. The collisions
conserve bubble number, momentum, and energy so

[ @t fedp =0 (26)
if ¢g=1,p,, or p,p,. Therefore we obtain the following equations:
on a
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ne,t) = [f(e,p,t)dp, (30)
i@ 1) = [paf(e,p,t)dp, (31)
nﬁa = ja_nwa) (32)
Bup(@t) = [ppsf(e,p,t)dp, (33)
and




Vo(z,t) = f PaPpPsf(, p,t)dp. (34)
We also point out that (28) can be put in conservation form

dje 0
o7 T ggten =0 (35)

with
9 - - = _— 3. .
Faﬁ = Eaﬁ+§(Ja']ﬁ"']a3,6_]ajﬂ)+_2—-7“jﬁ
3 .o vy
-+ 1503(3.7"3‘1']%

where J = V& (see (24)).
The constitutive relations are obtained by substituting Eq. (19) for f in
(33) and (34). We find

E.p = n{Pabs + 0%8,p), (36)
and
‘I"a - n(ﬁﬁﬁﬁ+5dz)ﬁa, (37)

with ng, = j,. Equation (27), (28), and (29) can be written, using (36) and
(37), as follows

L (38)
Dt oz,

Diﬁa n | B(TLT) _ 3’11)5

Dt " n 0z,  PPaz.’ (39)
and DT 2 P
i
SR Ll . 40
Dt + 3 Oz, 0 (40)
where 4, = p, —w,, I =02, and
D g 0
—D—E = '55 -i* uag. (41)

o

Equations (38-40) combined with (21), (23), (24), and (32) constitute a
closed system of equations for the unknowns n, @,, P,, w, and 7. Eq. (38)
is a statement of bubble conservation. Eq. (39) describes the time evolution
of the bubbles’ impulse. Finally, (40) is the energy equation.




4 Properties in One Space Dimension

The fluid equations for bubbly flow in one space dimension in conservation
form are

aa_? + a(;f) 0, (42)
%(np) + ;—w(nT +npu - g-n2ﬁ2) =0 (43)
;%(nﬁﬁ +3nT) + (%[nﬁ(ﬁ?(l ~6n)+5T)] =0, (44)
and
@ = (1 — 3n)p. (45)

An important property of these equations is hyperbolicity, which is de-
duced by writing (42), (43), and (44) in the form

ou ou
— + AU)—=0 4
where U = (n,5,T)T and
2—3np n(l—3n) 0
A= | T/n—3p* a@—-3np 1 |. (47)
—2pT  2T(1-3n) u
The eigenvalues of A are:
A = p(l—3n)=1i
1 B ) (48)

X1

Az = p(1—6n)k KgT - 3n;32) (1- SH)}

The system is hyperbolic if (3T —3np?)(1 —3n) > 0, which for dilute bubbly
flows, (n < 1), is satisfied if

T>1T,= gnﬁ2. (49)

This result shows that our bubbly flow equations are hyperbolic provided
that the “temperature” is sufficiently large. This result is in qualitative
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agreement with the stability condition found in Paper I, which, using the
present notation, can be written as

3p*n
1-3n’
where we have used a Gaussian distribution as unperturbed solution of equa-

tion (1). It is clear that, for a given p and n, T, > T,. This indicates that
collisions have a stabilizing effect.

T>T, = (50)

4.1 Comparison with Experiment

The eigenvalues of A given by (48) are interpreted as follows: A\ = 1 is the
speed of the material wave and Ay, if they are real, correspond to prop-
agation of void waves. Experiments that measure void wave speeds using
correlation techniques typically measure the fastest wave [2]. In our model
the speed of void waves depends on the “temperature”, which is not directly
available from the experiments; however, it follows form (48) that

¢ = (1 — 6n) (51)

is a lower bound on the speed of the fastest void wave. Eq. (51) can be

written as
(1-6n)

= — i,
(1—3n)
In order to compare (52) with experimental data, we must recall that our
theory has been developed in the zero volumetric flux frame of reference (see

discussion in Section 5). In a frame of reference where the volumetric flux is
g, Eq. (52) becomes

(52)

c

¢=a+ (1 op) @ -0 (53)

where ¢/ and @’ are the velocities in the new frame of reference.

We shall compare (53) to the experimental results of Biesheuvel & Goris-
sen [7] who measured void waves of bubbly flows in stagnant water using
correlation techniques. They report that the water was stagnant, therefore
the volumetric flux is

q = €d, (54‘)

10




and therefore (53) is
(1 — 6e + 3e2) _
C, = e
(1 -3e)
where we have returned to dimensional variables. The speed of the bub-
bles was also measured by these investigators and was found to obey the
relationship

(55)

i = uo (1 — € (56)

where u,, is the rise speed of a single bubble. Using (56}, our expression for

(55) becomes
Lo (1 —6e+3e2)(1 —5)2. (57)
U (1-3¢)
This expression is plotted along with data from [7] in Figure 1. This curve
shows that the expression for ¢, lies below all the experimental data in agree-
ment with our theory.

It is remarkable that the experimental data are so close to this curve. It
implies that the “temperature” of the bubbly liquid will adjust so that it is
close to the transition between well-posed and ill-posed. This suggests that
the bubbly mixture is an example of self-organized criticality.

The result of the comparison with the experiment is encouraging, but it
lacks a lot of information, such as, for example, an estimate of the “tem-
perature” of the bubble cloud. It would be desirable to make a comparison
with other experiments and to check, for example, the range of validity of
the kinetic and fluid dynamic models.

5 “Frozen” Bubbly Flows

In this section we will examine the properties of the fluid equations written
in Section 4 when T = 0. It will be first shown that they are identical to
equations obtained by Geurst [3]. We will then prove that these equations
have a self-similar blow-up solution.
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5.1 Comparison with Previous Work

In Paper I, it was shown that in one space dimension the ambient liquid
velocity is ‘
o = —-21, (58)
Pe
which shows that v = O(g), where £ is the void fraction. From (45) (in
dimensional form) and (58), we have

et = —v®(1 — 3Je) (59)
that can be written as
g+ (1 —e)o® = O0(e?) = 0, (60)

where v = O(e) has been used. We interpret v as the average liquid
velocity, o, and recognize the left-hand side of (60) as the volumetric flux.
Therefore we see that, within the approximations used in the derivation of
the Vlasov equation, we are in the frame of reference in which the volumetric
flux is zero. This is expected in view of the boundary conditions on V¢ at
infinity in Paper I (V¢ = 0 at infinity).

Pauchon & Smereka [5] have shown that the fluid equations described by
Geurst simplify greatly in the zero volumetric flux frame of reference. For
massless bubbles they show

de 3]
“5‘{ + %(QM):O, (61)
oM d .1 N
2 T 5, 5oeM) =0,
where
_e{l —e)(u—19)
M= gle) 7 (62)
nd L, (0
_ _Pe me)
rolal e A l (%)

Here the prime denotes differentiation with respect to g; % and ¥ are the av-
erage gas and liquid velocities respectively. m(e) is the so-called ezertia (see
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Wallis [4]), and for dilute homogeneous bubbly flows m(e) = Je. Equation

(58) can be written as
—2ep

5= : 64
TPe (64
which, combined with (59), shows
2p
4 -0=—(1—2¢); 65
21 -2) (65)
and it therefore follows that
= Z+0(eY), (66)

where m = J& has been used. The expression for ¢ is expanded for small ¢
to obtain

1
g(e) = ’—0—25(1 ~ 3e) + O(€?). (67)
¢
Therefore, from (66) and (67), neglecting higher order terms, it follows that
de d [2ep
R | R
9% 8 T/one (] —
b/t 0 (D) d=6e)) g
ot Jz |\7 Pe
which in nondimensional variables are
o 1 —3n) =0
ot oz T n) =0,
C _ (68)
%, 0P _gy—o
ot T aw2s VT

Equation (68) is readily seen to be equivalent to (42) and (43) with T' = 0.

5.2 Similarity Solution
We look for solutions to system (68) of the form

n(z,t) = (),

(69)
plz,t) = (~1)*p(f),

with
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T

£
and ¢ < 0. Equation (69) are substituted into (68) to obtain the ode’s
dn
EE = —ag(n)p/D, (70)
dp
7 apH|D, (71)

where

g(n) = n(1-3n),

1
D = [H?~peq"), (72)

H = g(n)p+(1+a)

In Appendix A we prove that there is a solution of these ode’s which has the
following properties when —1/3 < a < 0:

1. p has a single maximum and decays to zero as £ — too,
2. 5 is a strictly increasing function bounded between 0 and 1/3.

In particular this means, for a fixed negative value of ¢, that n(z,?) and
p(z,t) are positive and bounded functions of , and therefore they represent
an acceptable solution to system (68). The asymptotic behavior of p(¢)} and

n(€) is given by

plé) ~ g/t
77(5) o
nE) —1/3 “*exp[ua

/0]

where

YR (9

T et () - 1/3°

A typical behavior of 5(¢) and p(¢) is shown in Figures 2 and 3. Since a < 0
it follows that p(z,t) blows up as ¢t — 0.
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6 Conclusions

In this paper and its companion [1], we give a kinetic description of incom-
pressible bubbly flow in a liquid. Starting from the Laplace equation for the
velocity potential describing the liquid surrounding the bubbles, a Hamilto-
nian formulation is given describing the motion of N bubbles. The coefficients
that appear in the Hamiltonian are very difficult to compute, since they are
obtained from the solution of the Laplace equation in a complicated domain.
In order to proceed in the treatment an approximation is in order. The major
approximation of the model is the so-called point-bubble approximation, ac-
cording to which the velocity field generated by a bubble is approximated by
a dipole field, i.e. the bubble is treated as a point with negligible size, This
approximation is formally justified when the distance between two bubbles
is large compared to the bubble radius. There is some evidence, however,
that the approximation is good also when the distance between the bubbles
is comparable to the bubble radius [6].

The derivation of the Vlasov equation is obtained through the Liouville
equation and the assumption of total chaos, although we believe it should be
possible to derive the Vlasov equation under more general assumptions. The
final equation describes the evolution of the density function in phase space
for a set of bubbles and is a good approximation only if the total number of
bubbles is large enough.

The fluid equations that we derive in this paper are obtained under the
assumption of local thermodynamic equilibrium. The agreement with the
experiments on the determination of the speed of void waves is quite good.
Qur model clarifies some difficulties that arose in previous models. It is clear
now why some of the fluid models predict complex characteristics and do
not give an hyperbolic system of equations. The hyperbolicity of the system
depends on the values of the field quantities. In particular, we show that if
the variance in the bubbles’ velocities is neglected, the effective equations are
ill-posed and the zero-temperature case gives rise to a solution that blows-up
in finite time. These results are in agreement with previous bubble simu-
lations [6], where the equilibrium state consisted of bubble clusters all with
approximately the same speed (and therefore with “low temperature”).

It would be interesting to extend our theory to include several other effects
that have been neglected so far; one effect is viscosity. Viscosity should have
an effect that will take place on a much longer time scale. It should cool
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down the bubble distribution by releasing energy into the fluid. The overall
effect should then be the switching from the stable to the unstable regime and
the clustering, It would be interesting to devise a model that predicts this
effect, and possibly to compare the results with experiments. It would also
be worth exploring the effect of the bubble size distribution. This would be
particularly interesting when gravity and liquid viscosity are included since
the rise speed of a bubble depends on its size.

Acknowledgement

We thank B. Brown for reading over the manuscript.

Appendix A

Theorem Let us consider the system of ode’s (70-71) with the initial con-
dition )
p(0) = po,
73
=1 (7)
with py > 0. The system (70,71,73) has a unique solution (n(¢), p(¢)), £ € R,
such that

1. p(£) has a unigue maximum and vanishes at infinity

2. n(€) is a monotonic increasing function with

Jm (@) =020,  limn()=n, <1/3.

Proof From the smoothness of the right hand side of system (70-71) it
follows that the solution to the initial value problem (70,71, and 73) exists
unique in a neighborhood I, of £ = 0. Let I denote the largest of such
intervals. Let us consider first the interval I+ = I N[0, +oc). The derivative
of the function H defined in (72) is given by

dH 1
Do = ag'(mpH + (1 + a)H* — S(1 + 3a)gg”p’,
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where D is defined in (72). At £ = 0 one has

dp dH dn
H=-L=0 —>0, —=>0
dé- 07 d& > H d£ > ’
and
d?p 2a(1 + 3a)

—_—= < 0.
g2 pog(1/6)g"(1/6)
This means that at £ = 0 the function p(¢) has a maximum. In the interior
of a right neighborhood U of ¢ = 0 it is true that
dp dH dn
E’E < (0, E >0, EE > 0,

(74)
p>0, H>0, and 1/6<n<1/3.

Let U+ denote the largest of such right neighborhood for which conditions
(74) hold. We prove that U+ = I+, Suppose U+ C It, Ut #£ I+, and let
¢ € I+ denote the sup of U+, From the expression of H and dH/d¢ it follows
that H > 0, dH/d¢ > 0 at £ = £, since dH/d¢ = 0 would imply n > 1/3
or p < 0. From this it follows that D > 0 and the last inequalities are a
consequence of Equations (70-71). Let

H
C; = sup |al—.
1 fel}il ‘D

Then from Equation (71) it follows p(€) > pyexp(—C;€) > 0 and from (70),

dp _ an(l—3n)p
¢ D ’
it follows 1/6 < n{€) < 1/3 since —ap/D is a positive and bounded function
of ¢ in the closure UF of U+ (since I} > 0 and p < gq). Therefore for ¢ € [0,
all the conditions (74) hold and, by continuity, they can be extended beyond
£, i.e. Ut can not be a proper subset of I+, therefore U+ = [+. We proved
that in It it is true that p > 0, 1/6 < n < 1/3. From this it follows
that the local existence theorem can be extended indefinitely, and therefore
It = [0, 400).
A similar analysis can be extended in [~ = I N (~o00,0}, proving that
I = R. Furthermore a stationary point for p must be a maximum, since
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p>0and 0 < 5 < 1/3, therefore p(£) is a positive, unimodal distribution
and 5(£) is monotonic increasing. The bounds on the limits

(Jlim_n(¢)
are imposed by the uniform estimate on the function n(¢) in R. A simple
asymptotic analysis shows that

Jim p(§) =0.
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Figure Captions

Figure 1 The void wave speed for air bubbles rising in stagnant water. The
solid line is the lower bound on the wave speed given by Eq.(55) and
the circles are experimental date from Ref. {7].

Figure 2 The profile of the similarity solution, computed by the numerical
solution of Egs. (70) and (71). Here 5 is plotted against €.

Figure 3 Same as Figure 2 except here p is plotted against £.
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