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Abstract. We consider the problem of solving the very large systems of symmetric and semi-
positive definite algebraic equation, arising from the discretization of elliptic problems with Neumann
boundary conditions by finite differences or finite elements. The preconditioner developed by I.H.
Bramble et al. and based on the domain decomposition method is modified so that the resulted
preconditioned conjugate gradient method can be used to solve these singular discrete systems. The
condition numbers of the modified methods have been shown still to be C{1+In{H/R))? in R*. We have
tested the several approximate edge matrices, such as probing technique and Fourier approximation, in
the numerical experiment. The numerical results have been reported for Neumann boundary condition
problems with various coeflicients, such as highly varying and jumping coefficients. The results show
that the estimation of condition number is fully realized in practice. The modified BPS algorithm is
highly parallelizable,
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1. Introduction . The purpose of this paper is to construct a preconditioner
for the symmetric and semi-positive definite systems of linear algebraic equations,
which result from finite element approximation of elliptic problems with Neumann
boundary condition or from the finite difference scheme of pressure in the Navier-
Stokes equations. We modify the domain decomposition method which is developed
by Bramble, Pasciak and Schalz (BPS) [3]. The modified BPS methods still have
the condition number C(1 + In(H/h))? for elliptic problems with Neumann boundary
condition in R%. The way of modifying BPS method described in this paper can be
used to extend several other parallel algorithms, such as vertex-based method [14] and
wirebasket-based method [13, 18, 4, 21], for elliptic problems with various boundary
conditions, such as Neumann and mixed boundary conditions. Even though some of the
basic idea of the extending way may be found implicitly in {19, 21], explicit expression
of the idea and implementation details is needed so that the domain decomposition
method can be easily applied to the Neumann boundary problems. Our motivation in
modifying BPS method is to design parallel algorithm for Navier Stokes equation. It
is well known that we have to solve Laplace equation with 'Neumann like* boundary
conditions in each time step, when our scheme for this nonlinear system is based
on the velocity and pressure formulation [1]. Without loss of generality, we restrict
ourselves to the Neumann boundary value problems in R%. For this kind problem,
the difficulty is how to obtain approximate solution which is orthogonal to the null
space (usually consisting of constant functions on the whole domain}). The application
of an iterative domain decomposition to this singular problem has been discussed in
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Nepomnyaschikh’s paper [20]. The iterative method in his paper has convergence rate
of geometric progression. A direct parallel algorithm has been developed by Anderson
[2] which is only suited to Laplace equation with "Neumann like” boundary condition
on the rectangular domain. The extension of general unified theory [15, 14] and vertex
space {22} method to this kind singular problem will be discussed in another paper.

There are several difficulties we should overcome when the BPS method is applied
to solve Neumann boundary condition problems. In each preconditioner step of BPS
algorithm, we first reduce the semi-positive definite problem on the connected domain
Q2 to Schur complement systemn on the union of boundaries of non-overlapping sub-
domains through solving small size Dirichlet boundary problems on these sub-domains
in parallel. Note we let the unknowns on the whole domain boundary be part of
unknown of Schur complement system since we would like all subproblems to have
the same kind of Dirichlet boundary condition so that the programming can be made
easier. This Schur complement system is still singular and the new right hand side still
satisfies compatible condition. Then we solve all subproblems obtained by restricting
the Schur complement system on all the edges of substructures (exclude of vertex
points). All these subproblems have unique solutions. In this paper, we use Bramble
[3], Dryja {12, 10] or probing [7, 8, 9] approximate edge matrix. At the same time, we
should calculate the approximate solution of symmetric semi-definite problems on the
coarse grids with the sub-domains as the elements. This coarse problem results from
restricting the Schur complement system on the coarse grid. Note this coarse problem
may not be well defined if the right hand side is not properly chosen. In BPS algorithm
we have to guarantee that the right hand side satisfies the compatible condition so that
we can find the unique coarse problem solution which has zero mean value on the coarse
grid. Extend this solution to the edges and the extending result has zero mean value
on the whole edges. By extending these two kind solutions of edge subproblems and
coarse problem harmonically to the whole domain and summing over all solutions
together, we obtain an approximate global 'solution’ which is not orthogonal to the
null space of the original problem. We subtract the mean value of the approximate
global ’solution’ from the ’solution’ to make its mean value zero. Such modification of
BPS remains condition number proportional to (1 + In(H/k))? in R* which has been
proved successful in theory and numerical experiment.

Assume that the connected polygonal domain £ is the union of disjoint regions
;,, which are either quadrilaterals or triangles;

=% and O;NQ; =0 if i # 4.
k

Denote T' = | J, 8§, . Let T'y;; be the straight line edge of ; with endpoints v; and v
which are vertices on 9€;. As a model problem for the second order elliptic equation
with normal derivative boundary condition, we shall consider the Neumann boundary
value problem.

(1) Lu=f in Q and 2% =0 on 99
where
2, 8 dv
Lv= —%} a_a:,-(“""%;)
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v 2 dv -
W = ‘Zja,‘j (.’I})a—m: COS('A"L, B,‘)

with a;; uniformly positive definite, bounded and piecewise smooth on Q , and 7 the
external normal direction of boundary of £ and €; the unit direction of the ith axis.

This paper is organized as follows. In section 2, we describe the modified BPS
algorithm for the Neumann boundary condition problem. We show the condition
number of this method grows as C(1 + In(H/k)?) in the following section. In the last
section we use Bramble, Dryja or probing edge approximate matrix in the modified
BPS method and compare their numerical results. The results of numerical experiment
show that the theoretical estimation of condition number for this modified method is
correct in practice.

2. The modified BPS method for Neumann boundary problems . In the
Sobolev space H'(Q) , we introduce a symmetric semi-positive definite bilinear form
A(+,+) and the inner product (+,-) in L*(£2) space;

@ A= [ ¥

ff=1

du Ov
au(m)a—mta—w:‘dw

(3) (f,0) = fnfvdm.
Dencte
KerA = {ulu € HY(Q), A(u,v) = 0,Yv € H'(Q)}

For any constant C, it is true that C € KerA . Without loss of generality, we assume
KerA = {c|c is any constant} and that the compatible condition is satisfied

(f,v)=0 Yo € KerA,

i.e. f has zero mean value.
The weak corresponding form of Neumann boundary value problem (1) is to find
u € H'(1) and u L KerA such that

(4) A(u,v)=(fv) Vo H(Q) .

which has unique solution, under certain conditions on the bilinear form 4 and f .
Usually u L KerA means that the mean value of u is zero.

For problem (4), we introduced two levels of triangulations of 2. One is the coarse
triangulation defined by the substructures §; of diameter 0(H). The other is the fine
triangulation defined by further dividing the substructures into elements of diameter
0(k) . Assume that these triangulations are shape regular in the semse common to
finite element theory; see Clarlet [11].

Let V() be the finite element space of continuous, piecewise linear functions
defined on the fine grid. Define a null space by using the same notation

KerA = {v)v, € V*, A(v,u) = 0,Yu € V*{Q)}
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It is still true that every constant C belongs to this KerA. I‘}'h(ﬂ) is the orthogonal
complement space of KerA in V*(Q) , i.e.

7R(Q) = {up|un € VH(Q) and fn up(e)dz = 0}.

The discrete formula of problem (4) is of the form: Find u, € V5 such that

(5) Alup,vp) = (fvn) Vo, € VA(Q)

This problem is symmetric and positive definite in V,(€2). Hence, we can use pre-
conditioned conjugate gradient method for this kind problem in the space V,(§2). As
we know, it is very important to make a ‘good’ choice for preconditioner B in order
to construct an efficient PCG algorithm. The bilinear form B(:,) should have two
properties, Firstly, it should be easy to obtain the solution w,; € V*(£) of

(6) B(wy,vs) = (9, 04), for all v, € V*(Q)

for a given function g. Secondly, the bilinear form B(-, -} should be spectrally equivalent
to the bilinear form A(:,-), i.e. there exist positive constants Ay and A; such that

{7) AoB(vn,v) < A(vn, vn) < A B{vs, vp), for all v, € 17}’(9)

The first property guarantees that the computational work in each iteration step is
small. The second property implies that the condition number & of corresponding
PCG method is less than A;/Ay . It is well known that the number of steps required
to decrease an appropriate norm of the error of a conjugate gradient iteration by a
fixed factor is proportional to the condition number &; see Golub and Van Loan [17].
Therefore, if the condition number & is a small positive number and slightly depends on
the size of grid and substructure, then the resulting algorithm is an efficient method.
We are going to construct a preconditioner B so that above two properties could be
satisfied in some way. We first introduce an approximate bilinear form A by

duy, 0
Ak(uhﬁvh) f 1kJ 3uh thd

"13"1

for each k and then define
fi(um vy) = Zﬁk(uka V)
P2

Here ai“j can be chosen as piecewise smooth uniformly positive definite for each £2; so

that the inequalities
C'Dfl(u},,uh) < A(up,up) < lei(uh,uh) for all u, € V*(£2)

are satisfied for positive constants C and C; (independent of A, H, £} ) and the prob-
lem (6) should be easily solvable. From these inequalities, it follows that KerA =
KerA. Thus, the problem of finding a preconditioner for A is the same as finding one
for A.

Denote a subspace

Vo' (Q,T) = {unlus € VH{Q), u(z)=0on I'}
4



which can be represented as the sum of orthogonal subspaces
V(R T) = V(@) + VB Q) + -+ + VHS)
where
V(%) = {uplus € VHQ), up =0, 2 ¢ O}

To construct a preconditioner B of 4, we first decompose the functions u in ‘[7"‘(52)
as uy, = uh + uf where uf € V{#(Q,T') satisfies

Ay(uh, ) = Ay(un, v4) for all v, € Vi ()
for each k , and uf = u; on ' and
ﬁk(u}?,vh) =0 for all v, € V5 ()

for all k& . We refer to such a function u? as ‘discrete Aj-harmonic’. It is obvious that
such decomposition of function is orthogonal in the A-inner product

-A'(uha uh) = A(ui + uh yuh + '”'h) = A(“h? uh) + A(uh ’ uh)

So we will define B(-,-) by replacing the A(uf,uf) term in above equation. We next
further divide the uf as the sum of two functions 42 = uf + u} where uf € V*(Q) is
the discrete A, -harmonic function with zero values at the vertices and uj € V*(Q) is
also the discrete Ay-harmonic with linear function values along each edge Ty; and with
the same values as u; at the vertices. Before defining the preconditioner B , we denote
V& (T.;) as the subspace of trace space Vo (0€2;;) whose functions have the supports on
the edge I';; and introduce an operator I, defined on each V! (Ly;) by

< a Yuy, v, >, =< @y, Vi >1y; for all v, € V(L)

where the prime denotes the differentiation with respect to the arc length s along T';;,
and the inner product < -,- > on the edge I';; is defined as

< Up, Uy >I‘s,-=] vy ds.

if

By denoting the vertices as v; or v;, we could define the preconditioner B by

(8) B(up,v) = Alup,vh)+ Zaij < a” ' *uf  of >ry
ri;
+ 3 agp(aui(v;) — uh(v;))(wh(:) — vh(9;))-
i

Now we present a detail description of the process used to solve problem (6) for
any given function g 1. KerA ( the mean value of function g is zero ). In fact, solving
the problem (6) is equivalent to ﬁnding the corresponding decomposition functions u}
and u¥. The restriction of function uj on £2; could be uniquely determined by solving
the small size Dirichlet subproblem with zero boundary condition on £;:

(9) Ak(“iavh) = (g,’l)h) for all vy €& %h(ﬂk).




Therefore, u could be obtained on the whole domain £ by solving subproblems on
each sub-domain. Since all these subproblems are independent of each other, they can
be solved in parallel, With u) now known, the problem reduces to finding uf from
following equation:

Zaij < ﬂ_iﬁ"guf,wf >+ Zaij(“iﬁ(”-’) — uj (v;))(wh () — wh(v;))

Tis Tij
(10) = (g, ws)— A(uf, w})
(g, ws) ~ A(uh,wy) for all w, € V().

Denote
(5'3 wh) = (g:wh) - A(“i}’wh) for all wy € Vh(ﬂ)

Then § is obviously orthogonal to the subspace KerA. Note that the value of (§,w;)
only depends on the value of w, on each Ty;. Let wj, be in the subspace of V*(Q2)
whose elements vanish in the interior mesh points of every ;. and all vertices. Then
the problem (10) decouples into the independent problems of finding uf € V3*(Ty;)
guch that

(11) o < a—-lj’éﬂuf, Wy >p,;= (g, ws) — A~(ui{s Wy ) for all w, € Vﬁh(rij)

on each Ty;. All these subproblems have unique solutions and could be solved con-
currently. In practice we use Dryja approximation matrix {12, 10] or probing edge
matrix [7, 8, 9] instead of i/* in above problem. Right now only function uj is left
unknown. To determine the function 4} , we introduce a subspace of V*(§) consisting
of functions which are linear between the endpoints of each edge I';; and vanish at the
interior mesh points of each §,. It is clear that for each w, € V{ in this subspace, the
corresponding wE should be zero, In this subspace, the problem (10) reduces to the
problem

(12) Zaﬁ(uﬂ(v.—) — uf () (wh(m) — wh(2)) = (g, ws) — Auf, ws)

which only has u} as the unknown function. Choose a basis ®,,®,,---,®y, in this
subspace where N, is the number of vertices on I' and ®;(v;) is one if i = j and
zero otherwise. Under this basis, problem (12) reduces to a difference equation on the
coarse mesh for the elliptic problem with Neumann boundary condition. Therefore,
problem (12) has many solutions when the restricted § on the coarse grid satisfies
compatible condition. To find an appropriate solution, we look for the unique solution
4% which has zero mean valne. Then the values of @} at vertices uniquely determine
its values on the edges. Note this extension method should change constant function
on the whole coarse grid to the constant function on the whole edges T'. Extend the
sum if = 4Y + uf’ into substructures {; so that

A (B, v) =0 VYo, € VHQ,) VE
By subtracting the mean value ¢ of 4, = @ + uf from i,, we obtain

~ ~B I
Up = U — €= Up, +Up ~C
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which has zero mean value. Hence, for any given function g, the solution u; of (6) is
unique and belongs to V*. Then a preconditioner for the problem (5) in V" has been
well defined.

Note that problem (11) and problem (12) are independent. Hence, these two kind
subproblems can be solved at the same time. Because all the subproblems have almost
the same small size and the computational work for obtaining the solutions to these
problem is almost the same small, we have good balance on the working load for each
processor when this method is used on the multi-processor computer.

To make the proceed of the inverse of preconditioner B clear, we outline the steps
of calculating u, € V() such that

B(uy,v) = (g,v) Vo, € fﬂ'(ﬂ)-

where g satisfies compatible condition.
Algorithm:
1. Find uf € V{(§2,T) such that

Ay(uh, ) = (g, valVon € V3 (4 )VE.
2. Find «f on each T';; by solving one dimensional problem
a;; < a5 uE v, >r,;= (9,vn) — A(ub, o)V, € Vi (Ty;).

3. Solve coarse problem to get &) with zero mean value such that equation (12)
is true under the same coarse base functions, i.e.

> e (uh(w) — uR(v))(wh(w) — wh(v;)) = (g, wn) — A(ui, wp).

i

L

Extend the &% to the edges piecewise linearly.
5. Calculate @#f such that 4f|p = @ + uf and

A@B, o) =0  Vu, € VP(Q)VE.

6. Compute the mean value ¢ of ul + @ on Q and let uy = ul + 42 — ¢ € VH(Q).

3. Theoretical Results. In this section we estimate the condition number of
the modified BPS method for Neumann boundary value problem through proving the
inequalities in (7). We will use Bramble and others’ {3], and Dryja and Widlund, [15]’s
approach to prove inequalities in (7).

Since there exist positive constant Cy and C; such that

Cgfi(uh,uh) S A(uh,uh) S C’lfi(uh,uh) Vuh = V"(Q),

it suffices to compare A{uy,u,) with B(u,,u;). We decompose u, € V5(Q) into
uy, = uf + uf as the previous section where vf = @f — c¢. Then, we have

A, up) = A(ul, ul) + A(uf,uf).
From the equality

B(up,up) = fi(u{,,uﬂ) + B(uf,uf),
i



the proof of the inequalities in (7) will be obtained if the following inequalities are true.

(13) A(uf ,uf) < CB(uf ,uf)
and
(14) B(uf ,uf) < C(1+ In(H/R)) A(uz , uz).

In order to prove these inequalities, we further decompose uf into uf + uj with v} =
4} + ¢ . Hence, if these inequalities

(15)  Ap(up,uf) S C D ay(< a 1B2YE >r; F(uh(v) — uh(7;))?)
i €Lk

and

(16) Z a; (< a‘ifllzu,,,uh >p; o (un(v) — up (o )
ij €0n
< (1 +]n(H/h))2Ak(uf,uf),

are satisfied on each substructure, then summing these inequalities with respect to &
gives the inequalities in (13) and (14). On each substructure £, using Bramble and
others’ [3] results leads

A, uf) < C E aq;(< a™ i uf , uf >ry; H(@(0) ~ @h(v;))?)
i5 €Lk

and
Z CE,?j(( a_lf‘l’rzuh,uh >1" + (ﬁ‘j:('i},) — ﬁ}i(ﬁj))z)
i €8
< (IR (i, ).

For any constant ¢, we can prove that

Ak(uh + ¢, ﬁ'h + C) <C E az}(< a_l‘%/zuh auh >PIJ (ﬁz(vi) +c— (ﬁz(vj) + c))2)
iieBk

and

Y e(<a b uf >r, + (@) + e — (@ (v) + )°)
if €0
< (1 +ln(H/h))2fik(ﬁh + ¢, @y + ¢).

Therefore, it is obvious that the inequalities in (15) and (16) follow from these in-

equalities. Summing the inequalities in (15) and (16) over all sub-domains gives the

inequalities in (13) and (14). Hence, we have following estimation on condition number.
THEOREM 3.1. The above preconditioner B satisfies : for all u, € V*(Q)

G
(1+4+In®*(H/R))
for positive constants Cyy and Cy which are independent of h and H. Thus, the condition

number of corresponding preconditioned conjugate gradient method grows at most like
x < C(1+1n*(H/h)) as h tends to zero.

Bug,uy) < A{ug, uy) < CyB(uy, up)

(17)



4. Numerical Experiment. In this section, we will replace the preconditioner
by some approximate matrices and show numerical results of such modified BPS algo-
rithms for a scalar, seconder order, self-adjoint elliptic equation with Neumann bound-
ary conditions on square domain £ = (0,1) x (0,1).

(18) { ~V - (e(z,y)Vu(z,9) = f(z,y) inQ

=0 on 9§l.

As we know, the stiffness matrix of edge problem (11) could be specirally approx-
imated by Bramble matrix [3], by Dryja matrix [12, 10] , by Golub and Mayers matrix
[16], by Chan’s exact matrix [5], or by probing matrix [6, 7, 8, 9]. All these spectral
approximation matrices except probing matrix are only suitable to piecewise constant
coefficient elliptic problems. Extending these approximate method to variable coefli-
cient elliptic problems needs to multiply these matrices by the square root of diagonal
matrix of stiffness matrix on the right and left. The two approximation edge matrices
we consider here are Bramble matrix and probing matrix.

If we have n — 1 nodes on one edge F;;, Bramble matrix corresponding to the edge
stiffness matrix resulted from Laplace equation could be written as

P T
I

& 7 = 2 t
(19) Sp; =DWDW™D  where W,, = \/% sin(%)
and where D is a diagonal matrix with entries

D = (2 — 2cos(ms/(n))}(4+ 2cos(ws/(n))
&8 6 )

Here positive diagonal matrix D is determined by the square root of the diagonal
elements of the stiffness matrix resulted from discrete problem (5) on the fine grid.
Note that W is a discrete sin transform, and so § g, can be inverted in 0(nlnn)
operations.

In the probing method, we assume that the restriction of Schur complement on each
edge E;; can be approximately represented by a tridiagonal matrix, since the coupling
value between two nodes on the edge will quickly decay to zero when the distance of
the two nodes on the edge increases. On the other hand, it is well known that the
multiplication of capacitance matrix with vector can be easily implemented. However,
it is very expensive computational work to find each entries of Schur complement
matrix. Hence, we construct an approximate symmetric tridiagonal matrix for the
restriction on the edge of Schur complement through multiplying the stiffness matrix
{restriction of capacitance matrix on the edge E;; ) with zero extension vectors of two
vectors (1,0,1,0,--)7 and (0,1,0,1,-)7 . The following matrix multiplication gives
us an intuitive idea how the probing method works:

a0 bl 1 0 ay bl

by @ b 01 by + by @y
by as bs 10| = ag by + b

b3 b4 01 bs + b4 g




a=300 |a=10"%lec=31400| a=2>5

o =0.05 a=0 a=007 |a=2700

a=10° | a=0.1 | a =200 a=9

=1 a = 6000 a=4 |a=140000

F16. 1. Discontinuous Coefficient Function a(z,y)

The detail description of probing technique can be found in [8]. It is well known that
the computational work for inverting the symmetric tridiagonal matrix with size n x n
is about 0(n) or 0(nlnn) when we use forward and backward substitution method.

The problem (12) on the coarse grid can be simply replaced by the original prob-
lems (5) discretized on the coarse grid. Since the problem is on the coarse grid, the
number of unknowns is much less than that of unknowns on fine grid. Hence, it will
not need much computational work to get the approximate solution with zero mean
value on the coarse grid for problem (5).

We use the modified BPS method for this problem with Bramble matrix or prob-
ing matrix as approximation to the edge stiffness matrix. These two modified BPS
algorithms will be denoted as BPS and P-BPS methods respectively. In the follow-
ing tables we list the condition number & calculated by approximate method and the
number of iterations required to deduce the 2-norm of the residue by a factor of 107°
for various grid size h = 1/N and sub-domain sizes H = 1/N,. The initial guess was
chosen to be zero vector, and the right hand side was chosen to have zero mean value.
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Example 1. Let a(z, y) = 1 on the whole domain 2. The operator L becomes Laplace
operator —/A. In table 1, we summarize the numerical results of the modified BPS
algorithms for this simple problem. We consider these results as the benchmark of
these modified BPS algorithms. From table 1, we notice that BPS algorithm and P-
BPS algorithm have alimost same condition numbers for various sizes of fine and coarse
grids. This result shows the probing edge matrices are as good as other approximate
edge matrices.

TABLE 1
The Modified BPS Algorithms for Laplace Operafor —A

Fine Grid | Coarse Grid | Rate BPS P-BPS
N xN N, x N, H/h | Tter. K Iter. K
32 x 32 2x2 16 19 | 18.05| 16 | 12.16
32 % 32 4x4 8 17 | 12.15 | 14 | 8.00
32 x 32 8x8 4 14 | 7.22 12 | 5.46
32 x 32 16 x 16 2 11 | 4.02 9 3.09
64 x 64 2x2 32 21 (24491 19 | 17.91
64 x 64 4x4 16 19 (1799 16 | 12.34
64 % 64 8x8 8 17 [ 1236 14 | B8.42
64 % 64 16 x 16 4 14 7.23 12 5.44
64 x 64 32 x 32 2 i1 4.08 10 3.11

128 x 128 2% 2 G4 24 13279 21 | 33.69

128 x 128 4x4 32 21 12428 19 | 17.83

128 x 128 E8x8 16 19 11791} 16 | 11.8%

128 x 128 16 x 16 8 16 [ 11.95} 14 8.49

128 x 128 32 x 32 4 14 | 7.09 12 | 5.46

128 x 128 64 x 64 2 11 | 4.05 10 3.12

256 x 256 2x 2 128 | 24 | 4109 28 | 590.84

256 x 256 4 x4 64 23 | 3164 22 | 31.95

256 x 256 8§x8 32 21 12394} 18 | 17.69

256 x 256 16 x 16 16 18 11745} 16 | 12.22

256 x 256 32 x 32 8 16 {11.89}% 14 | 8.40

256 x 256 64 x 64 4 14 | 7.09 { 12 | 5.47

256 x 256 128 x 128 2 11 4.07 10 3.12
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Example 2. In this example, we choose variable coefficient a(z,y) = 1 + 10(2? + ¥?)
in Neumann boundary problem and show the numerical results in Table 2.

TABLE 2
The Modified BPS Algorithms for a(z,y) =1+ 16{(s* + 3%)

Fine Grid | Coarse Grid | Rate BPS P-BPS
NxN N,x N, Hfh | Iter. K Iter. K
32 x 32 2% 2 16 22 12251 17 | 14.61
32 x 32 4%x4 8 17 | 12,18} 14 8.31
32 x 32 8= 8 4 15 7.34 12 5.44
32 x 32 16 x 16 2 11 4.02 10 3.12
64 x 64 2% 2 32 25 | 3438 20 | 1941
64 x 64 4x4 16 20 | 1770 16 ¢ 12.03
64 x 64 8x8 8 17 12,15} 15 8.49
64 % 64 16 x 16 4 15 7.33 12 5.48
64 « 64 32 x 32 2 11 4,08 10 3.13

128 x 128 2% 2 64 24 | 3595 23 {3295

128 x 128 4x4 32 21 | 23.86 | 19 | 17.60

128 x 128 Bx8 16 19 1745 17 | 12.27

128 x 128 16 x 16 8 16 | 11.90 | 14 8.35

128 x 128 32 x 32 4 14 7.09 12 5.51

128 x 128 64 x 64 2 11 4.05 10 3.12

256 x 256 2x2 128 26 | 50.60} 28 | b8.48

256 x 2566 4x4 64 24 | 32.05} 22 | 32.10

256 x 266 8x8 32 21 {24.30] 17 | 17.30

256 x 256 16 x 16 16 i8 {17.51 | 16 | 12.16

256 x 256 32 x 32 8 16 | 1191 14 8.42

256 x 256 64 x 64 4 14 7.13 i2 5.46

256 x 2b6 128 x 128 2 11 4.06 10 3.12
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Example 3. More difficult problem is considered in this example. Table 3 gives us
the numerical results for Neumann boundary problem with highly varying coefficients
az,y) = ¥, Comparing table 3 with other tables, we found that iteration numbers
and condition numbers in table 3 are larger than that of other tables even though
condition numbers in table 3 satisfy the estimation ¢(1 + In*(H/R)). The reason for
this is the highly varying coeflicients make the preconditioner worse in a certain way.
Since the condition number and iteration number of P-BPS method are less than that
of BPS method, probing edge matrix is better than the other scaling Fourier edge
approximate matrices. Qur numerical experiment have been shown that our choice of
D in (25) is much better than «;;1 suggested in [3} for this kind problem.

TABLE 3
The Modified BPS Algorithms for a(z,y) = ***¥

Fine Grid | Coarse Grid | Rate BPS P-BPS
NxN N, x N, H/h | Iter. K Tter. K
32 x 32 2x2 16 17 65.20 17 42.83
32 x 32 4 x4 8 17 17.97 14 11.63
32 x32 8x8 4 14 8.00 12 5.93
32x32 16 x 16 2 11 4,14 10 3.21
64 x 64 2x2 32 22 83.13 19 56.49
64 x 64 4x4 16 21 24,72 17 16.61
64 x 64 Ex8 8 19 13.30 15 9.11
64 x 64 16 x 16 4 15 7.48 12 .44
64 x 64 32 x 32 2 11 4.13 10 3.10

128 x 128 2x2 64 24 | 101.22 | 24 83.61

128 x 128 4 x4 32 22 31.72 17 22.36

128 x 128 8x8 16 20 18.78 15 12,92

128 x 128 16 x 16 8 16 12.07 15 8.72

128 x 128 32 x 32 4 15 7.40 12 5.59

128 x 128 64 x 64 2 11 4.08 9 3.09

256 x 256 2x2 128 32 1 119.78 1 27 | 141.88

256 x 256 4 x4 64 25 39.69 22 38.50

256 x 256 8 x38 32 22 25.00 17 18.60

256 x 256 16 x 16 16 20 17.69 17 12.28

256 x 2566 32 x 32 8 17 11.96 15 8.57

256 x 2566 64 x 64 4 15 7.29 12 547

256 x 2566 128 x 128 2 11 4.04 10 3.12
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Example 4. In this last example, the coefficient is a highly discontinuous function which
is piecewise constant on the sixteen regions pictured as Fig.1. This kind coeflicient was
considered in Bramble and others’ paper [3]. For this problem, we should divide the
domain into sub-domains in such a way so that the discontinuous should only happen
along the boundaries of sub-domains. We list the results in table 4 so that they can
be compared with the results in Bramble’s paper [3]. From results in table 1 and
table 4, we notice that the modified BPS methods for different coefficient have almost
same condition numbers and iteration numbers even though the coefficients change
drastically across the boundaries of sub-domains.

TABLE 4
The Modified BPS Algorithms for Discontinuous Coefficient

Fine Grid | Coarse Grid | Rate BPS P-BPS
NxN N, x N, H/h | Iter. K Tier, K
32 %32 4 x4 8 15 | 1259 14 | 8.84
32 x 32 8x8 4 14 7.17 12 5.60
32 %32 16 .16 2 11 3.99 9 3.04
64 x 64 4x4 16 18 | 1854 | 16 | 12.80
64 x 64 8§x8 8 16 [11.86| 14 | 8.84
64 x 64 16 %16 4 14 | 715 | 12 | 543
64 x 64 32x 32 2 11 4.14 10 3.13

128 x 128 4 x4 32 21 | 24.291 17 | 18.36

128 x 128 8 x8B 16 18 | 18.24 | 15 | 12.72

128 x 128 16 x 16 8 16 | 12.03| 13 | 8.58

128 x 128 32 x 32 4 14 7.20 12 5.46

128 x 128 64 x 64 2 11 | 410 | 10 | 3.12

256 x 256 4 x4 64 23 | 32560 22 | 32.92

256 x 256 8x8 32 21 | 2457 17 | 17.98

256 x 256 16 x 16 16 18 [17.44 | 14 | 12.05

256 x 256 32 % 32 8 16 [ 11.80| 14 | 8.50

256 x 256 64 x 64 4 14 | 7.10 | 12 | 5.46

256 x 256 | 128 x 128 2 11 | 4.06 | 10 | 3.12

i4




In summary, we note that the convergence rates of the modified BPS algorithms
keep almost same when we change the coefficient from constant to piecewise constant
in Neumann boundary problem. This phenomenon shows that the condition number
and iteration number of the modified BPS algorithms are independent of constant or
plecewise constant coefficient. These numerical results in all tables also demonstrate
that the condition numbers of modified BPS methods grow as C(1 + ln*(H/h)) with
C bounded by 5 at the most.
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