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Abstract

Numerical solutions of the Navier-Stokes equations for the initial mo-
tion of a two dimensional bubble due to the buoyancy force are calculated.
The dynamics of the gas inside the bubble is ignored but surface tension
and viscosity effects are included. The results of the numerical calculations
are compared with the theory and experiments of Walters and Davidson
and are found to be in good agreement with the experiments, despite the
fact that due to numerical difficulties the calculations are done with lower
Reynolds numbers than the Reynolds number of the flow in the experi-
ments. The position of center of mass of the bubble is calculated over a
range of viscosities and is found out not to be very sensitive to the Reynolds
number of the flow. The shape of the bubble and the size of the small bub-
bles that separate from the original bubble depend strongly on the Reynolds
number. The numerical method is a modified volume of fluid (VOF) al-
gorithm for solving two dimensional free-surface viscous flows. The VOF
method is specially suited for continuing the solution even after the change
of topology in the shape of the bubble and separation of the small bubbles.

1 Introduction

This paper deals with numerical calculation of the initial motion of a two dimen-
sional bubble in a liquid. When a circular bubble is suddenly formed in a liquid
it tends to rise under the buoyancy force. The shape of the bubble gets distorted
during the rise and a jet of liquid from the bottom of the bubble is projected into
the bubble. As the bubble moves upward two small bubbles are separated from
the sides of the bubble. The separation of the small bubbles is the mechanism
for change of flow from the initial irrotational motion to the fully separated flow.

This work was motivitaed by the experimental work of Walters and Davidson
(1962}, where they photographed the initial motion of a two dimensional bubble
in water. Their theory was based on assumption of irrotational motion in the
liquid and expansion of the potential as a series of harmonics, Surface tension was
neglected and therefore pressure on the boundary was taken to be constant. Their
theory, valid only for small displacements from the cylindrical form, predicts an
initial upward acceleration of g and the original shape of the tongue projected
from the bottom of the bubble.

In this work we solve the full Navier-Stokes equations using a VOF method.
The dynamics of the gas inside the bubble is ignored, but effects of surface tension
and viscosity are included. Reynolds number of the flow in the experiments was
around 1000, but unfortunately that high Reynolds number is not achievable by
our numerical method. We are able to calculate up to Reynolds numbers 100 and
the results both qualitatively and quantitatively are very close to the experiments.
We find that the theoretical predictions of Walters and Davidson are valid for




smaller time intervals that they have assumed. We suspect that this is partly
because their theory is based on assumption of viscosity coefficient being zero.
We have found out that distortion of the bubble is sensitive to variations in the
viscosity coeflicient.

2 Governing Equations

The Navier-Stokes equations describing the dynamics of incompressible fluids
consists of conservation of momentum equations and incompressibility condition.
In two dimensional space and including the gravitational force, the system in the
scaled form is written as the following.
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The independent variables are time, £, and spatial coordinates, z = (z,y). The
dependent variables are velocity vector field, v = (u,v), and ratio of pressure to
density, p. Here we have used o to represent the stress tensor defined in terms of
the first derivatives of the velocity vector field. The non-dimensional parameters,
Reynolds number( Re), and capillary number( Ca), are defined in the usual way.
Here we have taken the gravity to be in the y direction.

The system has to be augmented with the boundary conditions for the solid
boundaries and the free surfaces. At the solid boundaries we specify the normal
velocity of the fluid to be zero, also we specify the tangential component of the
stress vector to be zero (free slip boundary condition). We specify kinematic
boundary condition,

8.1 = u.n, (5)
and stress boundary conditions,
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The curvature of the boundary is denoted by «, the unit vector normal to the
boundary of the fluid is denoted by n, and the velocity of the boundary is denoted
by s. The numerical method for tracking the boundary relies on a volume of
fluid function, 1. The function ¥ is one inside the fluid and is zero outside. The




boundary is the level set defined implicitly by the equation ¢(z,y) = 0.5. The
evolution of i satisfies conservation of mass equation.
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In our scheme the kinematic boundary condition is automatically satisfied if equa-
tion {7) for ¢ is discretized in a conservative form. The above numerical scheme
for tracking of the boundary allows for changes of topology to be handled auto-
matically.

3 Numerical Scheme

A modified volume of fluid technique is developed for solution of the Navier-
Stokes equations and calculation of the free boundary. The VOF method has
it roots in the original Marker and Cell method (MAC) developed by Harlow
and Welch (1961). In the original MAC method marker particles are inserted in
the the fluid and are moved with the velocity field of the fluid. The boundary
is defined implicitly as the boundary between the regions where there are no
particles and where particles are present. This algorithm was extended to flows
of two fluids separated by an interface and applied for calculation of the Rayleigh-
Taylor instability by Daly (1967). Later Hirt and Shannon (1968) improved on
the free surface boundary conditions by including the stress boundary conditions.
An improved implementation of the free surface stress boundary condition by
including the tangential stress condition was introduced by Hirt and Nichols
(1971). Later the MAC approach was abandoned by them in favor of a marker
function for tracking the position of the fluid (1981). To control the numerical
diffusion of the marker function a donor-acceptor scheme was used by Hirt and
Nichols (1981). Computer codes SOLA-VOF and NASA-VOF3D are written
based on this algorithm.

The algorithm used for our calculations is the VOF method with a new method
of implementing the free-surface stress boundary conditions. Hirt and Shannon
(1968) implemented the stress boundary condition by assuming the boundary in
the surface cell to be horizontal, vertical, or with 45° angle. They specified the
pressure in the boundary cell to be equal to the normal viscous stress. Hirt and
Nichols (1981) improved on that implementation by approximating the velocity
just outside the boundary by using the tangential stress condition. In this work
we do not specify the pressure in the boundary cells but we solve for the pressure
in the boundary cells. The stress boundary conditions are treated as numerical
boundary conditions for the momentum equation. Our method is close to the
methods developed by Tryggvason and colleagues (1992) in the way that the free-
surface stress boundary conditions are implemented, except we do not smooth
out the jump in the viscosity or density over several grid points. In our algorithm
the jumps are over one grid point.




We review the scheme for solving the Navier-Stokes equations and the equa-
tion for the volume of fluid function briefly here. The computational domain is
divided into a uniform mesh of size Az x Ay. A staggered grid is used; ¢ and p
are defined in the center of the computational cell and « and v are defined at the
middle of the cell boundaries. The values of 4 at the grid points are interpreted
as the volurne of the fluid in each cell. Components of the stress tensor are evalu-
ated by finite difference formulas from u and v. ¢'2 and 02! are evaluated on the
corners of the cell. 011, and 022 are evaluated in the center of the computational
cell. Explicit time stepping is used to calculate the time dependent solution. One
cycle of the computation starts with known values of ¥, and (u”,v"). In the first
step 1m+1 is evaluated using the conservation of mass equation. The velocities
in the newly filled cells are adjusted to satis{ly incompressibility condition. From
values of 4 and v” intermediate values v* and u* are calculated by solving con-
servation of momentum equation without pressure terms. Pressure is calculated
by imposing incompressibility condition on u™*! and v»+!, Finally unt! and v+l
are evaluated using u*,v*, and the calculated pressure, pnt+i. The cycle is thus
closed.

Solution of the conservation of mass equation, equation 7, requires special
treatment to control numerical diffusion. Numerical diffusion is controlled by
using limiters for calculating mass fluxes of the continuity equation. This scheme
is known as donor-acceptor scheme and was designed by Hirt and Nichols (1981).
The flux is defined such that the amount of fluid leaving the donor cell is equal
or less than the available fluid. The above procedure introduces upwinding in
the opposite direction and reduces numerical diffusion, thus the profile of the
function stays sharp during the calculation,

Imposing free-surface stress boundary conditions requires computing curva-
ture of the boundary. For computation of the curvature we perform an extra
computational step to reconstruct an approximate boundary. The boundary is
not defined uniquely from the volume of fluid function. For our calculations we
reconstruct three points on the surface using the algorithm used by Hirt and
Nichols (1981). In their approach two approximate boundaries are constructed,
one treating the boundary as a function of x and the other treating it as a func-
tion of y. The choice between the two is made by comparing the slopes of the two
reconstruction. The reconstruction with the smallest absolute value of the slope
is chosen. This is equivalent to deciding whether the surface is closer to vertical
or horizontal. The slope contains information about position of the fluid with
respect to the boundary and also sign of the curvature. If our surface is closer
to horizontal, we choose the x reconstruction, otherwise the y reconstruction is
chosen.

The curvature is evaluated by using the coordinates of the reconstructed
points on the boundary. Consider the boundary to be a curve, z(s), parame-
terized by s. Then the unit tangent vector, T, is defined as T = % /|9|. We




compute the curvature using the following formula.
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In addition to the above, variety of different approaches were tried for calculating
the curvature. The above simple discretization is superior to other formulae.
Intuitively we suspect this is because the discretized version is coordinate free
and also the discretized form is similar to central differencing of a second order
differential operator.

The stress boundary conditions are implemented by adding a source term
in the momentum equation for calculation of u* and v*. The pressure in the
boundary cells is then calculated in the next step of the algorithm. The viscous
part of the stress is automatically included in the calculation. There is inaccuracy,
proportional to the mesh size, from implementing the boundary condition at
the center of the boundary cells rather than exactly at the boundary. A more
accurate implementation requires subcell resolution of the boundary which was
not attempted.

The VOF scheme is an explicit scheme and the time steps have to satisfy
stability conditions. Approximate stability conditions are obtained by consider-
ing stability of the corresponding linear problems. These conditions are as the
following.
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The first stability condition is the CFL condition necessary for stability of con-
servation of mass equation and the nonlinear part of the momentum equation.
The second criteria corresponds to stability of the viscous part of the momentum
equation and the third condition is to damp out spurious free surface waves. In
practice these criteria are used and are sufficient for stability of the numerical
calculations.

4 Numerical Results

For our numerical calculations we choose the parameters of the experiments of
Walters and Davidson (1962). We scale the problem using the initial radius of

the bubble , a, for length. Then we scale time with 7' = 1/a/g and velocity using




U = ,/ag. We use the following values from the experiments for our constants.
a=254cm, p=Ilgrfem, o=T4, g=980cm/sec?, u=0.013gr/cmsec

With the above values our non-dimensional parameters are:
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Re=9731, Ca=0008765, - = 0.01170.

Unfortunately we are unable to perform numerical calculations with Reynolds
number as high as 1000. The numerical scheme is unable to resolve all the
frequencies present at that Reynolds number and it becomes unstable. We are
able to do successful calculations up to Reynolds number 100, Qur calculations
are done with changing the value of Re while keeping the ratio 5k = oo
fixed. Physically this corresponds to changing the coefficent of viscosity only and
keeping all other parameters unchanged.

The first two figures show the computed boundary of the rising bubble for
Reynolds numbers 100 and 10. The computed boundaries for the Reynolds num-
ber 100 are in excellent agreement with the experimental results of Walter and
Davidson (1962). The computed shapes are in one to one correspondence with
plate one of the above paper. The computed results for Reynolds number 10 are
qualitatively different. The separation of the small bubbles is delayed and the
projected tongue of liquid in the bottom of the bubble is less pronounced. In the
next figure we calculate the position of center of mass of the rising bubble as a
function of time for Reynolds numbers 100, 50, 20, and 10. The dashed line is the
motion of a bubble with acceleration g upward. The results indicate that only for
the beginning of the motion the bubble is accelerated with acceleration g. The
results suggest that the motion of the center of the mass is not very sensitive to
the Reynolds number of the flow in the range that we considered.

In figure four we plot the position of center of the mass of the bubble for a
smaller interval of time and also the theoretical dashed curve, s = 1gt?. This
figure is in comparison with figure 4 of the paper of Walters and Davidson. Our
calculated result shows a regular departure from the dashed curve and is in agree-
ment with their experimental results. Walters and Davidson obtained closer fit
with assumption that the movement of the bubble is delayed due to the me-
chanical apparatus that was used for the experiment. Our numerical result is in
disagreement with their assumption and indicates that the theoretical curve is
only correct asymptotically.

In the next figure we show the position of tip of the bubble, tip of the liquid
tongue, and vertical diameter of the bubble as a function of time. Our calculated
results are in good agreement again with the experimental results of Walters and
Davidson except the motion of the lower part of the bubble is a little exaggerated
in our calculations. Our results can be compared with figure 3 of the paper
of Baker and Moore (1989) where they have performed similar calculations. In
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the last figure we show the time history of the vertical diameter of the bubble
calculated with different Reynolds numbers. The dashed line is the theoretical
curve for inviscid fluid calculated by Walters and Davidson (1962). The calculated
results indicate that the distortion of the bubble is sensitive to the Reynolds
number and as the Reynolds number is increased our computed curves approach
the theoretical inviscid limit. Again our calculated results are in agreement with
the experimental results shown in figure 5 of Walters and Davidson (1962).

5 Conclusion

A VOF numerical method was used to calculate the initial motion of a rising 2D
gas bubble in a slightly viscous fluid. The calculations are in good agreement
with the experimental results of Walter and Davidson (1962). The distortion in
shape of the bubble and the time of separation of small bubbles is sensitive to
the Reynolds number of the flow. The movement of center of mass of the bubble
seerns to be not very sensitive to the Reynolds numbers in the range that was
considered.
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Figure 1: Motion of the bubble for Re=100
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Figure 2: Motion of the bubble for Re=10
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RISE OF CENTER OF MASS
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Figure 3: Position of center of mass of the bubble, o, Re=10; +, Re=20; -, Re=50;
solid line, Re=100; dashed line, theoretical curve.
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Figure 4: Position of center of mass of the bubble, initial period.
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Figure 5: Position of tip of the bubble, tip of the liquid jet, and vertical diameter
of the bubble.
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Figure 6: Vertical diameter of the bubble, initial period, o, Re=10; +, Re=20; -,
Re=50; solid line, Re=100; dashed line, theoretical curve.
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