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Abstract

An overview is given of recent research (jointly with Charles Kenney and others) on
the solution of large-scale algebraic Riccati equations by means of iterative LmaEme for
computation of the matrix sign function. Riccati equations, which lie at the heart of control
theory, E.nuna many challenging 3933:8& Eoznam. ?naw: Lmo:?n.m wg& o_. :

uvan_& case, is described. _Other op.
i gealing strategies for the .RE:E; and: En erro E&wzu. nn_E__uw a-dis uuu.o
- ‘possibility of chaotic behavior." . :
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Title and Abstract

Author: Steven L. Lee
Email: sleedcs.uiuc.edu
Title: A new and sharp upper bound for departure from normality

The nonnormality of a matrix adversaly affects the convergence
behavior of Krylov subspace methods and the accuracy of eigenvalue
estimation methods. The departure from normality of large matrices
is impractical to compute if the eigenvalues are unknown.

A new and practical formula for computing sharp upper bounds

for departure from normality is presented.
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On Eigenvalues of
Rayleigh Quotient Matrix Pencils
of a Definite Pencil
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Ertended Abstract

Let A — AP be a definite matrix pencil of order n, i.e., both A and B are
n x n Hermitian and

. H .
umﬂﬂw__»u_ J=7 (A +iB)z| > Q.

(4,B)¥
Suppose Y is an n x £ matrix with full column rank whose column vectors span
an approximate invariant subspace for A ~ AB. This paper investigates the
relation between eigenvalues of A — AB and those of Y# AY - AY¥# BY , which is
termed the Rayleigh Quotient Matriz Pencil of A — AB with respect to Y. Our
result for the spectral norm improves Sun’s { Linear Algebra Applic., 139:253-267
{1990}). We also present a bound in Frobenius norm which is new.
For two nonzero number pairs {a, 8) and (&, #), the chordal distance will be
used throughout: .
" |aB - fa| .
VIRFF B I&12 + |Bi2

For two {-dimensional subspace X and X spanned by the column vectors of

o{(a,8),E5) ¥

X, and X, both having fuil column rank, respectively, the distance between

them will be measured by [|sin ©(X;, X,)|] where || - || is & matrix norm and
e(X), X)) ¥ arccos( X X 0X 5 X10)*/2 2 0,

where N.S = uﬂuﬁsﬂnhknwl:u. N.l—a = MZMWM;|-\». It has been —unoeom that

H
if (X1,X3)"t = A “Mﬂ , where X, Wr e C"*("-%) and W, e ﬁaxn. then

po(1, %) ¥ (Isin 00Xy, Xy)lp = WEF Wa) P WF KB ||, ¢}]

forp=2F.
Our main results are the following:

Theorem 1 Let A~AB € D(n) with the generalized eigenvalues set {(aj, 5;), j =
1,---,n}, and let Xy be the eigenspace of A — AB, spanned by the column vec-
tors of Xyo, essociated with {(a;,8;),§ = 1,---,£}, where X190 € C**¢ and
XEXwo = 1. Assume M_ is an approzimate o-.mnau.u.ann of A— AB spanned by
the column vectors of M:_ such that

e 1 Bl

c(A, B)

where X1 € €**¢ and X8X=1 Le ﬁm....m.h.v_u. =1,---,¢ be the general-
ized eigenvalues of XBAX 0i — AXEBX10. Then there is o permutation T of
{1,---,£} such that

i, &) <1, @

uno—nuu.ﬂ.nxn E:Qh ) b.‘.v. AmﬂQu. Wﬂ@uuv £  max \:9-.. “—v. AD&. ' uu Vw * au . va
<Ig 16t

L+155€n
Theorem 1 improves Sun’s theorem (Lincar Algebra Applic., 139:253.267
(1990)) in two aspects:

o Instead of (2), Sun assumes

max{\/[i(41, Bz, 1} . A, BMz - . =
minV (A £ BD.1) (A, B) 2P <1,

which is stronger than our assumption (2) and where Agin(-} denotes the

smallest eigenvalue of a Hermitian matrix; 4; = XFAXjp and B, =
XEBXq.



o Our inequality (3} improves Sun’s by a factor _.M.N-lw#m

Theorem 2 Under the conditions of Theorem 1. There is a permutation w of
{1,---,£} such that

i
Y o((es, 80 (Butin o))

j=1

< 3 (o gyl Bz &
- mnM-BMunh ﬁﬁﬁﬁ-pv.ﬁ ._.uuvv hﬁh.@v 3. Aﬁv

{+1gj<n

] ~ -~
where § = A__.M.ﬂu%mfv pa{ X1, X1)pr(&y, X)), and n is define by (28).



An Easily-Updatable
Approximate Generalized Singular Value Decomposition
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Abstract

A recurring matrix problem in signal processing concerns generalized eigenvalues:
A# Az = A\B" B2,
where the matrix B has full column rank. Often, the generalized eigenvalues, call them
mw.m. satisfy this property:
G232 2d ,>> & = md). (1)

The k-dimensional subspace spanned by the eigenvectors corresponding to the k emallest
generalized eigenvalues is called the noise subspace. We are interested in the problem of
computing an orthonormal basis for the noise subspace.

‘This problem has a known solution for the special case where B = I, where I, denotes
a p % p identity matrix. Compute a singular value decomposition (SVD) of A:
A=UD,VH, _
where U is n % p and orthonormal, i.e., V¥V = I, V is p x p and unitary, D, is diagonal
and D, = diag(dy,...,dy). From (1) we get that that the desired orthonormal basis is
given by the last k columns of V. However, the SVD is not amenable to efficient updating
when a new row is added to A. A clever procedure was devised by Stewart in the form of
the ULV decomposition (ULVD):
A=ULWVH,

where U is orthonormal and V unitary as in the SVD, but the Bi&m matrix L4 is lower
«triangular and essentially block diagonal. In particular,

Fnﬁm. 2 @

where

-

(i) L4 and K are lower triangular and L4 is (p - k) x (p - k);
(i8) Omin(La) = dpy and JE|F + |K|} = 2 yy + -+ + &2

Essentially, Stewart showed that to separate out the noise subspace from the signal subspace,
it suffices to reduce A to the 2 x 2 block lower triangular form L4, where both E and K

are very small in norm. The last & columns of V' then provide an orthonormal basis for the
noise subspace.

In this talk we consider the noise subspace problem for the general case where B # .~u
First, the problem may be solved via the generalized SVD (GSVD):

A=UsDpLV¥ and B=UsLVE,

where Uy is n X p and orthonormal, Ug is m x p and orthonormal, V is p x p and unitary,
L is px p and lower triangular, and D4 = diag(dy,...,d,). If the generalized singular values
d;’s satisfy (1), then the last & columns of V provide a basis ».o_. the noise subspace. We
propose here a generalized ULVD (ULLVD):

A=ULyLVE and B =Uglv¥, (3)

where Uy, Ug, V and L are just as in the GSVD. The new middle matrix I 4 has the same
form as in (2) and the desired orthonormal basis is given by the last k columns of V.

An important advantage of our new decomposition lies in updating. As in signal pro-
cessing, we incorporate a forgetting factor 8, where 0 < § < 1. Assume that we are given
an n X p matrix A™), an m x p matrix B(™), and an ULLVD of these two matrices. Define

;DA-.-: - A_Q.ﬁ?-w V and .WA:—.._‘: = Aumﬁa—v v
al+u e§+u !

where z1 | denotes a new row for A, and %41 8 new row for B. We will show how to
update the ULLVD in enly O(p®) operations when a new row is added to either A{™ or
B™), je., how to quickly compute an ULLVD of either the pair A™*!) and B(™) or the
pair A and Bim+1),

This work is joint with Sanzheng Qiao of McMaster University, Canada.



Eigenvalue Perturbation Theory and Stability of
Hamiltonian Systems
John H. Maddocks and Michael L. Overton
Ertended Abstiract for Householder Symposium, 1998

An autonomous Hamiltonian system of ordinary differential equations is of
the form
2= JVH(z). )

Here VH denotes the gradient of the Hamiltonian H{z) with respect to the
variable z, the matrix J is skew-symmetric, and solutions z(2) of (1) are curves
in phase space. In the classical setting

nu—uﬁw w_ and () € R, @)

i.e. J is the standard skew matrix and the phase space is R3", with n degrees of
freedom. Because J is nonsingular, the equilibrium solutions of (1), i.e. trajec-
tories satisfying z,(1) = 0, are precisely the critical points of the Hamiltonian,
i.e. those points in phase space salisfying

VH(z,) =0. 3

At an equilibrium point z, there are two eigenvalue problems bearing upon the
stability of the dynamical system. The firat is a nonsymmetric problem obtained
by linearizing the dynamics (1) and separating out time:

JLu = Au, 4)

where L = V3H(z,). Because of the special sfructure of the matrix JL, which
is the product of a skew-symmetric and a symmetric matrix, it is easy to show
that the eigenvalues of (4) have four-fold symmetry in the complex plane, i.e.
they are symmetric with respect to both the real and imaginary axes. If they are
all imaginary, the system is said to be linearly stable; otherwise, the system is
unstable. The second eigenvalue problem is a real symmetric problem associated
with the second variation of the Hamiltonian at z,:

Lv = pv, (5)

The question of interest, which was investigated by Krein and others as early as
the 1950’s, is whether an analysis of (5) can provide the information required
for determining (linearized dynamic) stability, i.e. whether or not there is an
eigenvalue of (4) in the right half-plane. It is easy to show that when (5) has
only positive eigenvalues, (4) has only pure imaginary cigenvalues. However it
is possible that (4) has only pure imaginary eigenvalues while (5) has negative
eigenvalues, which allows the poesibility that linearized stability may occur even

at critical points of the Hamiltonian which are not minima. Thus, there is not
s sharp correspondence between the two problems.

We show that a sharper correspondence is possible if we modify the original
problem to include some damping. One way to do this is to consider dynamics
of the form

i = (J - eD)VH(2), 6

where D is a positive definite matrix and ¢ > 0. Then the linearized dynamic
eigenvalue problem becomea

(J — eD)Lu = Au. )

We show that, for ¢ sufficiently small, positive (negative) eigenvalues of (5) cor-
respond to eigenvalues of (7) in the left (right) half-plane. Thus, siable equilibria
are minima of the Hamiltonian. Furthermore, the following results describe the
limiting process as ¢ — 0. Suppose that all eigenvalues of (4) are imaginary and
none are zero. Let A be an eigenvalue of multiplicity m, and let Z beannxm
matrix whose columns span the corresponding invariant subspace.

Theorem 1. Suppose X is semisimple, so that the columns of Z are all eigen-
veciors. Then Z can be chosen so0 that .

ero_wr_| 4 0
ziz=K=|, w \
(the identity blocks need not be the same size}, with the cigenvalves of (7) asso-
ciated with X given by

A+ e+ OTV. Amv

where &4, k=1,...,m, are the cigenvelues of M = -KZ*LDLZ.

Noting the positive definite factor in M, we conclude that the derivatives of
the eigenvalues (8) with respect to € are real, with signs determined by the sign
pattern in K, which also defines the inertia of Z*L2Z.

Theorem 2. Suppose ) is nonderogatory, so that only one veclor in the invars-

ani subspace, say z, is an eigenvector. Then Z can be chosen so that its first
column is z and

o
-
2°LZ =& o
where

1 mmodd=1
_ i mwmod 4 =2 . T
o= -1 mmodd=3 [° i=v-1

~i mmodd=0

2



with the cigenvalues of (7} associated with X given by
A+ /7 4 ofe/™), ©)

twhere 2+ 2k — Daki
ﬁk"‘u\sgﬁ + Aal wﬂ.vu- *“H-.-a

and pe'? is the polar form for —xGz*LDL:.

In this case, we see that the ineriia of Z* LZ is highly restricted. If m is even,
Lalf of its eigenvalues are positive and half are negative; if m is odd, the sign
of the extra eigenvalue is determined by & and «. Furthermore, the eigenvalues
(9) bave a nonlipschitz dependence on ¢, aplitting from X at angles of 2x/m,
with half of them in the right half-plane and half ic the left if m is even. f m
is odd, the behavior of the extra eigenvalue is again determined by ¢ and «.

If A is simple, i.e. m = 1, both Theorems 1 and 2 reduce to precisely the
following: the corresponding eigenvalue of (7} is

A—xz*LDLz ¢+ of¢)

where z, the eigenvector of {7) corresponding to A, is normalized so that 2*Lz =
x = 1. The sign « is sometimes known as the Krein signature of the eigenvalue.
The proof of these results uses two powerful branches of matrix theory:
analytic perturbation theory for eigenvalues, and the theory of indefinite inner
products. Extension to the general derogatory, defective case is under study.



Reducing the number of floating point operations
~ in the Jacobi method ;
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We present a simple new strategy for reducing the numbes of floating point operations
(flops) required by the clasical Jacobi method for finding eigenvalues of syminetric ma-
trices. Similar ideas can be applied Lo one sided Jacobi methods. We assume that the
reader is familiar with the Jacobi method. Our strategy is based on the fact that, for
matrices of the same size, onc sweep of the Jacobi method requires twice as many flops as
matrix multiplication. In crder to describe our strategy we need the concapt of principal
submatriz. We say that & & x & matrix B is principal submatrix of a n X n matrix A
if B can be obtsined by choosing a set D € {1,...,n} with n — & indices and deleting
the rows and columna of A4 with index in D, Our strategy consiets in roughly halfing
the operation count for the Jacobi method by decomposing the matrix in principal sub-
matrices, accumulating the rotatione with pivots in these submatrices and using matrix
multiplication to apply these rotations to the rest of the matrix. By analogy with the
traditional block Jacobi methods, we call auch strategy & submatriz Jacodi method. We
discuss how (o implement submatrix Jacobl methods in serial and vector machines and
preseat experimental seaults about Lheir performance and accuracy.



The Stability of Parallel Prefix Matrix Multiplication

With Applications to Tridiagonal Matrices

Roy Mathias®

Many algorithiras can be reduced to the problem of computing the partial products
My, MiM;,..., MiMy--- M, [$3]
where the M;,i=1,...,n are 2 x 2 matrices. We will define
Mij = MiMipy-+-Mj, i<]

The n products in (1) can be computed by parallel prefix in time O(log, n) in parallel using Ofn) processors.
Although this technique has been known for some time there has been little work done on its stability. ._._u
general one is interested in the components of M;.; rather than the matrix itaclf so we require component-wise
bounds.

Let ¢ denote the arithmetic precision. We do not assume the use of a guard digit, nor iocw._ it’s use -.__qa
us to strengthen the results. Let the eigenvalues of & symmetric madrix be ordered in decreasing order; i.e.,

- Ad4) 2 Aipa(4).

1 General bounds

Let hw....« denote the value of My computed by parallel prefix in floating point srithmetic. We show that
there are indices i; < § < ki, j=1,...,n~1 such that

n—-1

|y — Myl € 3¢ Y Mg 1M 01 IMp005] IMig42m] +O(E) 2
F=l
andforr=1,...,n=1
r-1
_>N-“-. - Ml < Man ubﬂnaum “h&...._.+mm_ _$+nnruqz “b&.-m..;n:.q + ohnuu 3
{31

where %V = min{r,k;}. The additional cost of computing the bound (2) is sbout the ssme a4 that of
computing the My, j = 1,...,n. But if we want to compute the bounds in (3) for allr = n... S 1 using
O{n) processors it takes longer than O(logy n) in general. Never-the-less there are some real situations !__nmn
the bound (2) gives » bound on the error in My, r = 1,...,1n — 1 at no extra cost and we present these in
the paper.

2 Leading Minors of Symmetric Tridiagonal Matrices

Let T be a symmetric tridiagonal matrix, Jet dy =1 and let d;,i=1,...,n be the rw&:m principal minors
of T'. It is well known that the number of sign changes in the sequence do, dy, ..., dn is equal to the number

*Institute for Mathematios and its Applications, 514 Vincent Hall, 206 Churck St. SE, Uni ver! ity of Mi 1 W_m e
lis, MN 55455. On leave from Department of Mathematics, College of Wiliam & Mary, Williamsburg, VA 23187 e-mail;
na.mathine@na-net.oenl.gov. Research supparted in part by National Science Foundation grant DMS-9201586.Additional P
port was provided by from a contract bet the Army R 4 Office and the Univensity of Minnesota for the Army High
Pedc Computing R h Center.

of negative eigenvalues of T. By In computing the eigenvalues of T by bisection one computes the d;’s
associated with T — AJ for various values of A. So parsllel prefix allows one to parallelize this bisection
algorithm.

It can be shown that the d; can be computed in time O(logyn) in parallel by parallel prefix. Deter-
mining the accuracy of the d;'s computed by parallel prefix is important in determining the accuracy of the
eigenvalues computed by bisection with parallel prefix. This open problem was raised by Demmel in [1].

Let d; denote the computed value of d;. We show that if 7' is positive definite and if we use parallel prefix
then

dy — & | 128(r ~ 1)e
& | = XA @A)
where A = DTD and D is s diagonal matrix chosen so that A has main diagonal entries equal to 1. The
corresponding bound if the d;’s are computed serially is
d, —d,
dr

+0(e*), r=1,...n “)

A

4re
S’ 0(e). {5)

We present examples for which the bound (4) is attained. Thus one can see that parallel prefix can be
considerably less accurate than serial computation of the d;’s. This means that the eigenvalues computed by
bisection with parallel prefix can be rather inaccurate. For example, we present a 16 x 16 positive definite
matrix T with &(T) = 10¢ for which bisection with parallel prefix computes & negative eigenvalue when the
computations are done with arithmetic precision ¢ s 2 x 10~%. That is, the relative error in one of the
computed eigenvalues is greater than 1. Any norm-wise backward stable method (e.5., QR,, scrial bisection,
Jacobi) would compute the eigenvalues 1o & relative nccuracy of approximately ¢ - x(7) s 2 x 101, which
is much better.

We also give a bound that is sironger than (4) and is applicable to possibly indefinite tridiagonal matrices.
This bound is emsily computable in the positive definite case, but unfortunately, is rather expensive to
compute in the general indefinite case. .

Another approach is to consider the backward error in the d;'s rather than the forward error. We show
that the backward error in the di’s is p = max{n;} where

= id; - i .
laedics ]+ 282, dical’

Here o;,i = 1,...,n are the main diagonal entries of T, b;,i = 1,...,n — I are the off diagonal entries of
T and by = 0. Note that each iy can be computed independently, and that we are nt assuming the T is
positive definite. Comparing n with ¢, the arithmetic precision, one can see how reliable the computed d;%s
sre. I ni,i = 1,2, ...,k are small then it follows that the d;,i = 1,2,..., k are reliable, regardiess of what
the di,i = k+1,...,n are. So if we use parallel prefix to compute the d; and then use the 5 to check
their backward error, even if-the whole sequence d;,§ = 1,...,n is not reliable we need only recompute
di,i=k+1,...,n This can result in considerable computational savings. We also discuss how to correct
large backward errors cheaply.

This technique also enables one to determine, in less time than computing the d;’s, the reliability of an
.u.._mn_woa of an eigenvalue of s symmetric tridiagonal matrix. This partially answer to another question raised
in (1}

sad Dy =adiy - 8. dica. U]

L]

3 Other Applications

‘The parallel prefix operation can be used o paraliclize many other algorithms in numerical linear algebra.
We use the techniques of Sections 1 and 2 to analyze the accuracy of parallel prefix when used to evaluate
a linear fractional recurzence, to compute the Cholesky, LDLT, LU, and QR factorizations of a ridiagonal
matrix, and to implement the differential qd algorithms of [3].
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ABSTRACT

AN ERROR ANALYSIS OF THE
AGGREGATION/DISAGGREGATION PROCESS

Carl D. Meyer
North Caraline State University

Aggregation/Disaggregation is & numerical procedure designed to provide approxi-
mations to the solution of linear systems or to approximate eigenvectors of large-scale
problems which are often intractable by other means. A/D schemes have been proposed as
accelerators to standard iterative methods, and there are iterative A/D algorithms based
on successive applications of A/D procedures.

The most succeasful application of A/D techniques bas been to problems which have a
nearly uncoupled structure—i.e., problems for which the states or variables can be grouped
into clusters in which there exist relatively strong interactions within each cluster, but
the clusters themselves are only weakly connected to each other. In particular, aggre-
gotion/disaggregation has become a popular method by which to solve problems from
applications which can be placed in the context of large-scale nearly uncoupled Markov
" chains. Problems ranging from economic modeling to the analysis of large-scale queueing
networks are known to fall into this category. In the Markov chain setting, A/D begins with
an initial spproximation 37 to the normalized left-hand eigenvector =7 associated with
the unit eigenvalue of an irreducible stochastic matrix P. If Paxs and &T are partitioned

™
W: Pz - W:_
Pax o+
m.nnﬁ il . "u._ sod o7 = (s, 7, -, 5]),

Piy Pu - Pu
then A/D returns » new approximation to %7 in the form

&7 == (a7, o8], -+, Easi)

in which the £;’s are biﬁoﬁnnS of the dominant left-hand ommﬁ:._onoo« of & smaller matrix
Cixk = LixnPRaxs where LR = I;. Different choices of L and R lead to different
slgorithms—the most standard choice is to take

7/ i, y ] et 0 e mu e O

0 2 aes 0 M ... 0

B LR U qu o
0 0 oo mpf sl 0 0 . e®

where e} is an sppropriate sized column of 1's.

Several variations on this basic scheme have been proposed to create iterative A/D
algorithms, and esror analyses for some of these variations have been givea by P.J. Courtois,
G.W. Stewart, F. Chatlin and W.L. Miranker, and M. Haviv. Notwithstanding the past
attention, there are s variety of detailed insues involved, and bringing all facets together
to produce a clear picture seems to be less than straightforward. The purpose of this work
is to take another look at A/D error from » different point of view,

Past researchers have relied more on spectral perturbation theary or else standard
perturbation techniques from the theory of linear systems in order to produce norm-based
error estimates. Furthermare, past work does not completely capitalize on the special
properties enjoyed by stochastic matrices. Our approach differs from that of the past in
the sense that we bring to bear tools which are specific to the analysis of Merkov chain
problems. In particular, we show how to use results concerning standard coefficients of
ergodicity in conjunction with perturbation results specific to Markov chains to move
sway from traditional norm-based inequalities ic order to produce relatively simple error
estimates for the standard A /D procedure.



Matrix Algebra and Mappings of Signal Processing
Algorithms on Array Processors

George J. Miel
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Summary

Array processors, made possible by very large scale integration (VLSI) and wafer scale inte-
gration (WSI) technology, provide effective paralie] architectures for computationally inten-
sive applications such as signal and image processing {3]. In this type of parallel computers,
the cells of the array operate in Single Instruction Multiple Data (SIMD) mode and algo-
rithms are executed in systolic or cellular fashion. Many linear algebraic procedures have
properiies of locality, recursiveness, and regularity that match well the local connectivity
and fine-grain parallelism of array processors. It is well-known, for example, that many
real-time signal processing tasks (such as adaptive filtering, beamforming, cross-ambiguity
calculations, data compression, etc.) map well onto arrays because they may be reduced to a
common set of linear algebraic operations [9]. There is considerable ongoing research aimed
at further applications of linear algebraic techniques in array processing, see, e.g., Miel {4].

Our purpose here is to explore linear algebraic structures, not of the objects of algorithms,
but in the actual process of mapping certain algorithms onto array processors. Two case
studies are investigated. First, it is shown that a factorization of the perfect shuffle permuta-
{ion specifies a mapping of such permutations onio rectangular array processors. Secondly,
factorizations of unitary matrices are derived, based on Kronecker products and direct sums,
that result in sparse factors with useful patteres and redundancies. Such factorizations ef-
fectively define the mapping of certain fast transforms by specifying both the concurrent
execution of specialized matrix-vector products as well as the data movement among the
processing cells of the array.

Our results can be summarized as the following theorems, in which S, denotes the perfect
shuffle permutation of order n and Rp denotes a general type of P-point unitary transform.
The family of transforms for which our analysis is applicable is engendered by a single recur-
sion formula, formulated in terms of a generalized Kronecker product of matrices, presented

1

by Regalia and Mitra [8].

Theorem 1. Let P=2MNs where M,N,s are powers of £ with nonnegative integer ezponents.
Then
Sp = G100 (1

where Moo
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Theorem 2. Let P =2, where p is a positive integer. Then
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Theorem 3. Let P =2, where p is a positive integer. Then
Rp = ANC... AlC ACC, (3)
where

it W
AB= B DHBY C=S5s
p=l =0

The matrix factorization (1) in Theorem 1 engenders a parallel SIMD algorithm for executing
& perfect shuffle permutation on an M x N rectangular array processor. The resulting
data movement is realized in parallel as relatively small perfect shufftes along each row and
column and inside each local memory of the array processor, represented by the matrices
Co,C3,Cy respectively, without requiring that the complete array itself have the shuffle-
exchange network. The algorithm engendered by matrix factorization (1) is the corner

2



stone to a parallel algorithm recently presented by Miel [6] for executing a P-point constant
geometry Fast Fourier Transform (FFT) on a rectangular M x N array processor. Theorem
3 above can be used to extend this result to the class of unitary transforms of type Rp.

The shuffle-exchange network has wide applicability in parallel processing, including bitonic
sorting, polynomial evaluation, matrix {ransposition, and linear transformations [10]. Hence,
implementation of the perfect shuffle represented by matrix factorizations (1) can be put
to good use for such applications on rectangular array processors. Moreover, assuming
bidirectional links in the shuffle connections, we also have access to the inverse perfect shuffle
for executing on such arrays algorithms based on recursive doubling {2].

Matrix factorizations (2) and (3) in Theorems 2 and 3 represent parallel algorithms for the
class of discrete unitary transforms engendered by the Regalia-Mitra recursion formula. Ma-
trices of this type possess properties that match requirements for a wide range of applications
in signal processing. Examples include the FFT used in filtering and frequency domain anal-
ysis, the discrete Cosine transform in data compression, the Haar and Hadamard transforms
in dyadic-invariant signal processing, the Slant transform in image coding, and these and
others such as the BIFORE transform in generalized spectral analysis, see [8].

In matrix factorization (2), each C®) is a P x P permutation matrix and each A® is a
block-diagonal matrix
Pl
AR = @ W..E- @
inD
in which each of the P/2 blocks B{® is a 2x2 complex matrix. Each permutation matrix Cl)
causes a rearrangement of the data and each 2 x 2 matrix B{® denotes a butterfly operation.
From the point of view of mapping the transform onto an array processor, the matrices O
represent communication operations that move data among the cells of the array, while the
matrices A represent arithmetic operations for SIMD execution of butterfly operations.
Thus an algorithm for computing in accordance to matrix factorization (2) the transform
Rpz of an input P-vector z proceeds as follows:

for £=0,1,...,p—1do:
z 1= AMCH),;
end for
z = QW)
The symbol “:=" denotes a vector overwrite operation. Analogously to a radix 2 FFT each
sweep of the for-loop represents one of logs P stages in the computation, with each stage
consisting of & rearrangement of the data followed by P/2 butterfly operations.

The effectiveness of a mapping of a matrix factorization (2) onto an array processor depends
primarily on two items. The first item concerns the data movement represented by the
permutation matrices C*), specifically, the efficiency with which the interconnection net-
work realizes the data transfers required by the permutations. The second item involves a

3

divide-and-conquer strategy for the SIMD evaluation of specialized matrix-vector products.
Suppose that a product Az, where A = A js block-diagonal matrix of type (4) and zis &
P-vector, is to be computed on an erray processor with Pf2 cells. The vector is first divided

into P/2 ordered pairs

= AMQ_ Mu. b Muu\utuwn. 5= AN&-._ Z3i41 V.

each cell computes in parallel a butterfly operation B;%;, and the subvectors are then con-
catenated to get the result. Whereas the first item deals with the communication complexity
of the mapping, the second item pertains o jts parallel arithmetic complexity.

Matrix factorization (3) in Theorem 3 deserves special consideration. It yields a so-called
constant geometry algorithm because its communication pattern je kept the same from stage
to stage. This means that the addressing of operands for the butterfly operations is identical
for every stage. The general factorization contains as a special case the factorization obtained
by Pease [7], in kis modification of the Cooley-Tukey procedure, for parallelizing the FFT
on linear arrays. As for the particular case, the most natural mapping of the general P-
points factorization is onto a linear array architecture with P/2 cells and a shuffle-exchange
interconnection network [10]. However, matrix factorizations (1) and (3) in Theorems 1 and
3 can be combined to yield parallel algorithme on a rectangular M x N array processor,
for Pease's constant geometry FFT in specific [6], and in general for unitary transforms

- Rp that satisfy the Regalia-Mitra recursion. In Theorem 3, we in effect used the matrix

approach pioneered by Pease in his parallelization of the Cooley-Tukey procedure as a means
to characterize a wide class of constant geomeiry algorithms,

Miel and Yfantis [5] used matrix factorizations (2) and (3) in Theorems 1 and 2, combined
with abstract constructs that link linear algebraic concepts to a high-level mode} of a given
array processor, to obtain the mapping formalism of an interactjve software tool that helps

the user map discrate unitary transforms onto the array.
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A problem of vital importance in Control is the stabilization of Dynamic Systems (mathematical
models that describe time changing physical phenomena). A popular method that stabilizes Linear
dynamic systems js Figenvalue Assignment (Pole Placement is a better known terminology
amongst control engineers). The problem of stabilizing linear dynamic systems may be briefly
described as follows. Consider the continuous time system

Ei(f) = Az(t) + Bu(l} {1)

¥(#) = Cz(1) )

where E€ IR"™", A€ IR™™", B € IR**™ and C € IR"™". Also z(t} € IR", y(t) € IR* are the state
and the output of the system respectively, and u(t) € IR™ is the input or control to the system
at time ¢. If we choose the input as u(t) = — Fy(t), with F € IR™*" we have the so called feedback
approach, for determining the input to the system. In this case (1) because of {2} gives the following
equation

Ei(1) = (A - BFC)z(t) (3)

It may be shown that, if E is nonsingular (3) is stable when the eigenvalues of the pencil [A—~BFC, E]
have negative real parts. The Eigenvalue Assignment Problem may then be described as follows.

Problem: Given Baulﬁu.m. A, B ond C and a self conjugate set of numbers A, compule matriz
F such that the aet of the eigenvalues of [A — BFC, E] iz equal to A.

The above problem has a aumber of versions according to the following:

E # I, Descriptor systems c # I, Output feedback
= I, Nondescriptor systems °’ = [, State feedback

Although each of the above versions has its own peculiarities which may justly tlassify each version
as & research problem of its own; there is definitely some common ground among them. For

.1

& sumber of years control engineers have been producing numerically unstable algorithms for the
above problems. These algorithms were also totally anrelated of one another. The approach we
have employed has been, to apply techniques from the QR or the QZ algorithms op the above
Figenvalue Assignment problems. We call this a QR-like approach. As a result we have managed
to apply numerically powerful techniques like Deflation, so that, as the solution progresses we
work with smaller problems, Double Steps so that only rea! arithmetic is used, and Orthogonal
Transformations to facilitate Numerical Stability. We have therefore produced Numerically
Efficient algorithms for each of the above Eigenvalue Amignment Problems. The Numerical
Stability of most of these algorithms has been shown. We have also shown that each of these
algorithms may been derived by appropristely “fine tuning” a Generic algorithm. The existence
of such a generic algorithm proves our “common ground” claim among the different versions of
Eigenvalue Assignment Problems.

To give some insight to the above approach we present an application of the Generie algorithm on
the [A ~ BF, F] {C = I} Eigenvalue Assignment Problem when E is not singular,

1. Compute an eigenvector z, of {4 — BF), E| corresponding to, say A; € A, with jjz;]; = 1.
2. Compute a unitary matrix Q = (x,,).

3. Fx, is computed so that the sigenpair (1;,7,)} is assigned.

4. A unitary matrix U = (g, ) with g, = 1#5y; is computed.

5. Perform the transformation

Q
UT{4 - BF),E) AITL

where o = yF Ez, £ 0.

6. The assignment continues with the pencil [[#(A - BF)Q, T# EQ).

I this paper we will present the double step version of the Generic algorithm on a specific Eigen-
value Assignment Problem. We will also show how we may “fine tune” it to produce a Numer-
ically Efficient algorithm. From this, it will become apparent how to use the generic algorithm
on the other eigenvalue assignment problems. )

A package of MATLAB programs, named PolePack has been produced, with the implementations
of our QR-like algorithms on all the above Eigenvalue Assignment Problems. The package will be
briefly presented and it will become available to all those wha may be interested.



What is a good (7
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Abstract. Consider the linear system of equations Ar = b, where A is a regular and
normal matrix. We are concerned with polynomial iteration methods. These are methods
whete the iterates z, are implicitly definded by

rpn="b— Ax, = ﬁam\ﬂu ‘o, Pn € uz. haﬁaw =1

To estimate the convergence rate we introduce the following constraint approximation
problem
Irallz = min lip(A)rollz £ min max [p(A) - lirellz-

PEMEN rEHn  AED
(D)=l p{0)m=1

Here, ] is a set containing all eigenvalues, but not the origin. It is a realistic bound, if the
eigenvalues are fairly uniformly distributed in Q.

Now, one may ask, what sets {2 lead to small convergence bounds? In the talk we
will discuss a variety of possible sets. For instance, we will demonstrate that it is not
advisable, despite popular believe, to precondition an indefipite gystem such that the
resulting system has a symmetric spectrum with respect to the origin. The most delicate
situation for nonsymmetric systems occurs, if the origin is contained in the convex hull of
the cigenvalues. Here, same sets ) produce a reasonable convergence rate, while others
won’t. We will present examples for both situations.

To solve the resulting approximation problems we use COCA, a MATLAB program
package for solving COmplex Chebyshev Approximation problems, recently developed by
Fiacher and Modersitzki. This COCA package is publically available via the netlib facility.
The program is very easy to handle and the interested audience may try their favourate )
after the talk.

The COCA program package is also capable of handling weight functions. So, if time
pertnitting, we will also discuss weigthed approximation problems,

min max| w(})-p(d) ;
FIGTH

where the weight function w is designed to reflect the eigenvalue distribution.
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1 Abstract for the Householder meeting 1993

Fast Poiston solvers is a family of direct algorithms for solving certain classes of
constant coefficient elliptic PDE’s. These algorithms were originally introduced
by G. Golub and R. Hockney in 1965 and further developed by several su-
thors, among them O. Buneman (1868), P.N. Swarztrasuber (1974-1977) and U.
Trottenberg/ J. Schroder (1973-1976). The main techniques being used in Fast
Poisson Solvers are cyclic reductions, totel reductions and fast Fourier irans-
Jorms (FFTa).

In this talk we will show that the classical theory of fast Poisson solvers
may be formulated within the framework of group theory, in particular firifely
generated Abel groups and crystallographic symmetry groups. The Abel groups
arise because of local commutativity of the differential operators involved (due to
constant coefficients) and the crystallographic groups enter the theory because
of the boundary conditions. The theory permils a systernatic study of different
reduction schemes, where cyclic reductions and total reductions are special cases
of more general reductions. The FFTa appear naturally as a dual approach to
cyclic/total reductions.

Classical fast Poisson solvers are restricled lo very simple geometries and
boundary conditions, such as circles and rectangles. By investigating the crys-
tallographic symmetry groups, we show that the techniques may be extended
to other geometries, such ax e.g. isosceles and equilateral triangles in 2-D and
tetrahedrons in 3-D.

Finally, we will discuss the relevance of this theory in the design of iterative
preconditionets for more general efliptic problems. Our theory provides us with
exact expressions for the spectra of the reduced operators, extending well known
results for the (3-way) classical cyclic reduction to more general (2-way} total
reduction schemes. Whereas the condition number of the cyclically reduced
operator ia knowa to be increasing exponentislly (in the explicit version), the
total reduction schemes are known to be stable. A betler understanding of these
phenomena is of importance in the design of iterative preconditionern.



An Implementation of the QMR Method
Based on Coupled Two-Term Recurrences

Noél M. Nachtigal

Recently, we proposed a new Krylov subspace iteration, the quasi-minimal
residual (QMR) algorithm, for solving general nonsingular non-Hermitian lin-
ear systems. The original QMR algorithm relies on the three-term look-ahead
Lanczos process to generate the basis vectors for the underlying Krylov sub-
space. It then constructs iterates defined by a quasi-minimization property,
which leads to a smooth and nearly monotone convergence behavior. The
quasi-minimization property is also strong enough to enable one to obtain
theoretical results describing the convergence of the method.

However, empirical observations indjcate that, in finite precision arith-
metic, three-term vector recurrences are less robust than the mathematically
equivalent coupled two-term recurrences. We therefore propose an imple-
mentation of the look-ahead Lanczos algorithm using coupled iwo-term re-
currences. We then derive a new implementation of the QMR algorithm, and
present some of its properties, as well as numerical examples.

The main jdea behind the coupled two-term variant of the look-ahead
Lanczos process is to construct a factorization of the Lanczos block tridiago-
nal matrix and to use the factors to define two auxiliary sequences of vectors.
The basic recurrences constructed by the Lanczos algorithm can be written
as

AV, = VouH,, -
L#a..d\—ﬁ- = $\=+um=.
WiV, = p,,

where V, and W, are the matrices containing the left and right Lanczos
vectors after n steps, respectively, H, is the (n + 1) x n block tridiagonal



How dense is sparse orthogonal factorization?!
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Let A be an m % n matrix with m > n, and assume that A has full column rank.
We consider the orthogonal factorization of A when it is large and sparse.
Denote the orthogonal factorization of A by

A=QR,

where @ is m x n with orthonormal columns and R is n x n upper triangular. If
the computation is organized so that the diagonal elements of R are positive, then
the factorization is unique. The decomposition can be ohtained by applying either
Householder transformations or Givens rotations to annihilate the nonzeros in the
strictly lower trapezoidal part of A.

There are two ways to represent the orthogonal factor Q. It can be represented
implicitly as a product of Householder transformations or Givens rotations. For def-
initeness, assume that Householder transformations are used. Then ali we need to
store are basically the nonzeros in the vectors that are used to form the Householder
transformations. These vectors can be conveniently represented by an m x n lower
trapezoidal matrix H, which will be referred to as the Householder matrix. Alter-
natively, the orthogonal factor can be formed and represented ezplicitly asan mxn
matrix.

When A is sparse, fill occurs in the QR factorization; that is, some of the elements
that are zero in A becomes nonzero during the computation. George and Ng (1987)
have provided a way to bound the sparsity structure of the Householder matrix H,
which relies on the so-called elfmination free associated with the upper triangular
factor R. In this talk, we extend the results due to George and Ng. By examining the
sparsity structures of R and H, we construct a generalized elimination tree. Using
the generalized elimination tree, we are able to bound the sparsity structure of the
explicit orthogonal facter . By making use of a recent result which is due to Hare,
Johnson, Olesky, and Driessche, we prove that the bounds on the structures of H
and Q are tight when A is a strong Hall metriz. Moreover, we show that the lower
trapezoidal parts of Q and H have identical sparsity structures, When A is a Hell
matriz, similar results can be obtained if A has been permuted into block upper
triangular form, where the diagonal blocks are strong Hall.

}Joint work with Barry Peyton.
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The talk describes a new approach to construction of efficient parallel solu-
tion methods of large sparse SPD linear systems. The source of parallelism
is mostly related to the basic iterative scheme and not to the precondition-
ing strategy. This approach is based on the so called Variable Block CG
methods, a generalization of the standard Block CG method {1}, where it
is possible to reduce the jteration block size adaptively {(at any iteration)
by construction of an A-orthogonal projector without restarts and without
algebraic convergence of residual vectors. The general iterative scheme can
be written as follows:

Given an initial guess z° and an initial block size 8(0). Construct a
right hand side matrix B € R"**®) and an initial guess matrix X° € R***(0
whase first columns coincide with b and 2°, respectively, while other columns
are chosen arbitrarily to produce & full-rank matrix B® = B — AX®,

Initial stage : Set. R° = B — AX" and P° = M R°, where M is a SPD
preconditioner.

For k=10,1,... iterate :

1. B**! = R* - AP*a; and X** = X* 4 P'ay, where o, € R**")x*(¥)
are determined so that R¥/TP* = 0,

2. Choose with respect to some criterion a positive integer s(k+1) < a(k)
and a matrix ¢, € R*V00+) go that renk(R*t1¢) = s(k + 1..

3. Set B = R¥Hg, XM = ¥ and P* = Praye.

4. I d(k) = s(k) ~ s(k 4 1) > 0 then choose H* € Rxd¥)
so that

(i) apan(P*} = span(H*) @ span{F*),
(i) PPTAR*=0 ad H'TAR'=1I

5. Update the block direction P*+!

[}
P = MR 4 P+ Y B,

[

whese the coefficients §, and 4} are computed so that PHHTAPE =
and PPHTAR = 0 fori < k.

The following theorem establishes VBPCG properties similar to the orthog-
onal and conjugate properties of the BPCG iterates.

Theorem 1 For j < k the VBPCG method iterates satisfy the following
conditions

RTME =0,
PTAPI =,
R'TPi =0,

The minimization properties of the VBPCG algorithm are stated in the
following theorem. ’

Theorem 2 Let @, denote the conjugate projector with respect to A on
H, = span{H°, H,...B*} ond Q, = I - Q,.

Then X**! from the VBPCG method minimizes te( X - X* )T A(X -~ X*}]
over all X € RP** (1) yych that

X-X'€ h‘ﬁﬂﬂ@w&%.b-&bbwzg. sy Aowahvr O-Emwcw @ H,,
where X* = ;&!umnnm—.!mr.

The convergence analysis enables one to find the constructive compromise
between the required resource of parallelism, the resulting convergence rate,
and the serial arithmetic costs of one block iteration to minimize the total
parallel solution time. The results of numerical experiments with large FE
systems coming from h- and p-approximations of 3D equilibrium equations
for linear elastic orthotropic materials show that the convergence rate of
the Variable Block PCG method is comparable with that of the standard
Block PCG method even when utilizing a large block size, while the total
serial arithmetic costs of the Variable Block PCG method are comparable or
even smaller than those of the corresponding point PCG method. Moreover,
the Varjable Block PCG method has been proven to moze reliable than the
corresponding point PCG method.

References
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The purpose of our talk is to present recent developments of strategies to be used in
the implementation of MIC preconditiongs.

MIC preconditioning is often presented, discussed or even criticized in the literature
on the basis of an erroneous presentation of the philosophy behind (the successful use of
the) method, such as : using extensively the unperturbed method even in cases where jt
does not lead to a positive definite preconditioner, or using uniform perturbations where
they should be modulated, considering arbitrarily as negligible the influence of strong
local perturbations.

We feel therefore necessary to first summarize the basic principles of the analysis of
MIC methads, stressing their potential sensivity to various features such as ordering and
{modulated) perturbations.

We next present recent results obtained in this field.

First, we discuss anisotropic problems. The original conditioning is then potentially
so bad that one may obtain disastrous results when applying straightforwardly some
perturbation strategies proved robust for isotropic problems. We suggest the use of a
recently developed technique, which reproduces the behaviour of the former methods in
isotropic cases, but which compensates their weakness in the anisotropic cases by taking
benefit of the smali size of the fill entries.

Besides, we analyse how these neglected entries may be further reduced by allowing
more fill-in. This depends heavily on the ordering and we prove that reverse Cuthill-Mc
Kee orderings are efficient in this respect; for instance, considering the 5 point finite
difference approximation of the constant coefficient PDE

-K.8%u -Kdu = f,

we show that all discarded fills are reduced to O(£?), where ¢ = min{K./K,, K,/K,),
while the total number of nonzero offdiagona] entries in the triangular factors is kept
less than 4n, where n is the number of unknowns. Using the above mentioned method,
the approximate factorization turns then out to be nearly exact in strongly anisotropic

1The present work was supported by the “Programme d'impulsion en Technologie de I'Information”,
financed by Belgian State, under contract No. IT/IF/14.
2Supported by the “Fonds National de la Recherche Scientifique”, Chargé de recherches.

regions, and, as these strategy choices are also worthwhile in isotropic regions, we have
there a robust method which may be proposed as reference for MIC preconditioning.

The next point under consideration is the application of incomplete factorization
preconditioning to positive definite matrices with offdiagonal entries of arbitrary sign.
Indeed, the main limitation of the MIC theory is that it requires the input matrix
to have nonpositive offdiagonal entries (i.e. to be a Stieltjes matnx). We discuss the
reduction techniques that allow to deduce a Stieltjes approximation of the system matrix,
and especially the “diagonal compensation method”, according to which the positive
ofidiagonal entries are discarded and added to the diagonal so as to preserve the row
sum. A combined use with a more direct approach is also considered, and a connection
made with the methods based on hierarchical bases. ‘

Considering the finite element context, we prove that these techniques are reliable if
and only if the elementary submatrices satisfy some given spectral properties. This is
mostly the case for second order elliptic problems, but not for e.g. coupled systems of
second order PDEs such as those encountered in structural mechanic. In the latter case,
it is better to first deduce a block diagonal approximation based on the decoupling of
the different PDEs, and use the diagonal compensation method only as complementary
technique. We present some application results obtained in this field for unstructured
grid problems, in collaboration with P. 5t-GEORGES within the framework of the de-
velopment of the code PCGELFIN.

Finally, we discuss the ordering problem for approximate factorization precondition-
ers in connection with their parallel implementation. As is well known, parallelism may
be increased by reordering, but this may imply a deterioration of the convergence prop-
erties. Returning to the conditioning analysis, we examine how ordering requirements
are expressed in the latter and to what extent they are compatible with paralle! order-
ings. Further, we deduce the cheapest way to introduce more parallelism and estimate
the corresponding increase of the number of iterations. This results in a family of order-
ings with increasing parallelism and decreasing convergence propetrties, with at one end
standard natural orderings and at the opposite end the red/black ordering.

Acknowledgements. We thanks Prof. R. Beauwens for useful comments and P,
Saint-Georges for its kind help in the preparation of some numerical tests.
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Abstract

It is nearly a quarter of a century since Chandler Davis and William
Kahan introduced the basics of what Stewart later developed into the
CS decomposition of a partitioned unitary matrix. Since then many
users of the CSD have recognized it as one of the major tools of matrix
analysis. This talk outlines some germane points in the history of
the CSD, pointing out the contributations of Davis and Kahan,and
Stewart, and the relationship of the CSD to Davis’ "direct rotation”™.
The talk next suggests a motivation for the CSD which emphasizes
how generally usefu} it is. It provides an easy to memorize constructive
proof of the CSD and reviews some of its diverse uses. It then points
out some useful but previously unnoticed nullity properties one form
of the CSD trivially reveals, and so extends its area of application.
Finally it shows how via the QR factorization, the CSD can be used
to obtain interesting and nontrivial results for partitioned nonsingular
matrices, thus emphasizing yet again the power of this decomposition.

Key words: CS decomposition, unitary matrices, direct rotation, angles be-
tween subspaces, nonsingular matrices.

AMS Subject Classifications: 65F25, 13A23, 15A57

*This tesearch was partially supported by NSERC of Canada Grant No. AB236.
tComputer Science, McGill University, Montreal, Quebec, Canada, HIA 2A7T,
(chris@cs.megill.ca).
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Abstract

In many numerical linear algebra applications, estimating the gaps between two consecutive
singular values of a given matrix without actually computing them is of essential interests. For
example, this estimation can be used to replace the SVD in sclving the rank determination problems,
column selection problems, and matrix approximation problems.

A recent work by Hong and Pan!!l shows that the rank-revealing QR factorization, or pivoted
QR factorization provides us with a tight estimation on the gap between any two a priori~chosen
consecutive singular values. This is a first rigorous proof for the existence of the rank-revealing
factorizations. However, since the proof atilizes a set of right singular vectors to decide the column
permutation needed, it does not serve directly for the purpose of estimating the gap withont knowing
the SVD of the given matrix.

It turns out that such a pivoting strategy totally depending on the norms of the columas
or partial columns of the given matrix, like the well-known column pivoting strategy proposed by
Golub in 1965, does exist, and it identifies the column permutation needed for obtaining the bounds
on the gaps of two consecutive singular values. Furthermore, the bounds so obtained is exactly the
same bounds obtained earlier in our existence proof.

In more detail, a recent report of Pan and Tang!¥ introduces a pair of dual concepts, pivoted
blocks and reverse pivoted blocks. These blocks are the natural generalization of the Golub’s
eolumn pivoted magnitudes and the Stewart's reverse column pivoted magnitudes respectively.

We define the pivoted magnitude of a given matrix A, n(A), as the largest column norm
among all the columas of A. We define the reverse pivoted magnitude of a given matrix 4,
7{A), as follows:

T(AYE min {jrll)] : Al = QURO, 1 = 1,2,...,n}

where II;; is the permutation such that AII;; interchanges columns £ and § of 4 and GUVR( s
the QR factorization of Allj,.
Now we define what we mean by & pivoted block.
Let Iz, { = 1,2,...,k be the column permutation matrices just defined. Consider all the QR
factorizations, -
k n-k

" g g
mu;noﬁ_SsnosA 1 B v

(]
0 Ry

y, Hong and C.-T. Pan, "Rank-revealing QR factorirations and the Singular Value Decomposition,” Math.
Comp. 58 (1992), 213-232.

BIC.~T. Pan and P.T.T. Tang, *Bounds on singular values revealed by QR factorizations,® Tech. Report, MCS
Argonne National Lab., MCS-P332-1092.

We call Ry, a pivoted block of A, if
=gy foi=1,2,....%

where fy; is the (n ~k 4 1)-by-(n - k + 1) trailing prineipal submatrix of R.
It is proved in the report that if Ry; is the pivoted block, then the same R;; and the corre-
sponding Ry, are the blocks which guarantee a RRQR factorization and satisfy the inequalities:

1 R2allz < /k(n ~ ) + min(k, n — E)ossa(4),

and

1
=D rontka=h A
For defining the reverse pivoted block, consider the column permutations II; k. l=k+1,k4
2,...,n,and

Omin{R1s) 2

E n-k
(1) ()
Allzp; = QORD = QO Aa: By v
0 Ry
We call Ry2 a reverse pivoted block, if
R =l pnl  fori=k+1,k42,....n,

where Ry, is the (k 4 1)-by-(k + 1) leading principal submatrix of R.

It is shown in the report that Ry, is a pivoted black of R if and only if Ry; is a reverse pivoted
block of A.

The following algorithm does the column pivoting (we call it cyclic pivoting) and finds a pivoted
block at the end. We use the notation R(M) to denote the R factor of a matrix M.
Algorithm. Given an integer &, 1 € k < n, this algorithm produces a column permutation I sach
that All = QR and Ry; is a pivoted block.

Step 0. Initialization: R := R(AI) with (Golub) column pivoting, where II is the
column permutation. Set i =k~ 1.

Step 1. Iteration; cyclic pivoting

Step 1.1. If § = 0, exit algorithm.

Step 1.2. Set R:= R(R-T;); M= B 1.

Step 1.8. If [rei] = n(Rsy), then set § := i — 1, Otherwise, perform exchange
as follows: Find an I, k+ 1 <! < n, such that

2(Ra) = Mlriss rests- Pl

Set R := R(RMyy), M= M- Myy, and i = k- 1,
Step 1.4. Go back to Step 1.1,

The jteration will terminate, because whenever an exchange takes place in Step 1.3, the value
|det{R )} strictly increases. Therefore, this exchange can happen only a finite number of times.
Then, at most k — 1 iterations can take place after the final exchange. Clearly, at termination, Ry
is a pivoted block by our definition.

We implemented this algorithm in MATLAB 3.5i, on a SUN SPARC IPC at NIU. The numerical
experiments confirm the tight estimates that our theory asserts.
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Abstract

Brent's scheduling principle provides a general
simulation scheme when fewer processors are
available than specified by the fTastest parailel
algorithm. Such s scheme preserves the actual
sumber of ezecuted operations, and when appli-
cable, it provides a processor balancing technique
that significantly reduces the work, expressed as
the number of executable operators. In this pa-
per we discuss a Bew technigue, called supere/-
Jective slow-down, that yields quite fast an algo-
rithm with work significantly émaDer than that of
the fastest algorithm for the same problem. This
technique can be viewed as a work-preserving ac-
celeration of an existing recursive sequential alge-
rithm for the considered problem. The presented
examples include the compuiation of path alge-
bras in graphs and digraphs and various compu-
tations in linear albegra. Sotuwe of the pew al-
gorithms may bave practical value; for instance,
we substantially improve the performance of the
known parallel algorithms for triangular linear
systems of equations.

Key words: Parallel algorithms, processor of-
ficienty, linear system of equations, path algebras,
paths in graphs.
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1 Introduction

The primary objective of parallel computation,
which more sharply contrasts it against sequen-
tial computation, has traditionally been the min-
imization of computation time ¢, i.e., of the pum-
ber of paraliel steps required to solve a given prob-
lem; a secondary, but still very important, crite-
riop is the size of the equipment, expresszd as the
pumber of processors used in the computation.
When 1 is the performance criterion, frequently
the resulting algorithms involve very large num-
bers of processors (all assutned to be identical and
capable of executing one arithmetic operation in
unit time). It is reasonable to assume that very
rarely will the bumber of usable processors match
the requirements of the fastest algorithm for a
given problem instance; typically, instead, there
will be situations where the number of available
processors is fixed, and its choice is dictated by
economic as well as engineering reasons.

Thus the typical situation is one where we have
for use far fewer processors than are pecessary
to achieve the minimum computation time; this

. situation is dealt with by means of the so-called

Brent's scheduling principle [Br}, (KR}, which em-
badies a general simulation scheme of a system
with sufficiently many (m) processors by one with
a fixed number p such that

l€psm

of such processors. Specifically, if ¢ is the total
numbet of operations executed by the former sys-
tem in time {, then the latter system can accom-
plish the same task in time

slow-down, the computation is much faster than
that of the best known sequential algorithm. This
technigue has been implicitly wsed in [BPa] for
polyncmial division and in [BPb] for computing
modulo z™ the square toot {and similarly the m-
th root for any integer m > 2) of a polynomial
plz).

A complementary viewpoint is to consider su-
perefective slow-down of parallel computation as
an “effective” paralle]l acceleration of an efficient
(not pecessarily optimal) sequentia! aigorithm for
the given problem, i.e., a parallelization that pre-
serves (or slightly increases) the total potential
work 1; typically, bowever, the acceleration will
pot achieve the best known parallel time. Prob-
lems that lend themselves to this treatment — as
our examples suggest — are those solvable by a
sequential recursive algorithm, whose task s to
reduce an instance of size n to an instance of size
n = 1. If such an algorithm exists, then the trick
is 10 replace the sequential nonrecursive portion
of the algorithm acting on & subproblem of size
1, with a parallel subroutine acting oz size s 2 1,
and to seek the Targest  for which w is maintained
constant.

Our objective is 10 extend this approach to
a large class of computations, in particular, to
some fundamental computations with matrices
and graphs. Qur study shows that the supereffec-
tive slow-down is possible for sumerous parallel
computations that may fast extend the solution
of a problem of size 2 to one of size ks for any
positive integers s and k.

We only demonstrate our techniques for few
computational problems, in particulat, for the in-
version and quasi-inversion of matrices and for
solving structured systems of linear equations,
but these problems are fundamental and bave
numeérous applications to livear algebra compu-
tations (matrix inversion), to path algebras in
graphs and digraphs {quasi-inversion), and Lo var-
jous areas of symbolic computations {structured
linear systems).

We believe that some of our algorithms have
practical value. In particular, for computations
in pumerical linear algebra, such as solving trian-
gular linear system of equations, these algorithms
run faster than the known customary algorithms,

even when the number of processors is reason-
ably bounded. Furthermore, our algorithms in-
tensively use block matrix computations, which
cat be effectively implemented on loosely cou-
pled multiprocessors. Finally, we refer the reader
to [UY], (5] asd [S.a) for some alternate nonal-
gebraic techaniques oo supereflective slow-down of
graph algorithms.

We will organize our paper as follows: After
some definitions and preliminaries in Sections 2
and 3, we show how to apply a supereffective
slow-down to quasi-inversion of matrices over the
semirings and to their inversion over the fields.
In Section 5, we treat the inversion of triangu-
far matrices and solving {riangular Linear systems
of equations. In Section & we consider the same
computations in the case of Toeplitz-like iaput
matrices, having further extension to polynomial
computations.
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We present an accurate algorithm for downdating a row in the rank-revealing URV
decomposition, which was recently introduced by Stewart [5]. By downdating the full
rank part and the noise part in two separate steps, the new algorithm can produce
accurate results even for ill-conditioned problems. Other possible generalizations
of existing QR decomposition downdating algorithms for the rank-revealing URV
downdating are discussed.

The singular value decomposition (SVD) is of great theoretical and practical im-
portance [3]. However, the SVD has the drawback that it is computationally expen-
sive. Especially when the problem is of recursive nature, the SVD requires O(n?)
flops for a matrix of order n even for a simple update such as adding a new row,
Thus, efficient algorithms that utilize the existing results for incorporating changes in
data are desired. The two-sided orthogonal decompositions, called the rank-revealing
URV and ULV decompositions (RR URVD and RR ULVD) due to Stewart (4,5],
have been shown to effectively exhibit the rank and the basis for the null space, and
can be updated in O(n?) flops. They are compromises between the SVD and a QR
decomposition with some of the virtues of both.

For recursive problems, there are two common ways for incorporating changes in
data, which are the sliding rectangular window method and the exponential window
method. For phasing out the old data, one or more rows are deleted explicitly in the
sliding rectangular window method, and a forgetting factor is multiplied to existing
rows to damp out the effect of the old information in the exponential window method.
After an update in the exponential window method, the numerical rank can increase,
decrease, or stay the same. The sliding window method can track the change in the
information statistics more accurately than the forgetting factor method when there
is an abrupt change in data such as when signals are turned on and off, or outliers
are removed {1,6].

Our new algorithm for modifying the RR URVD uses the sliding window methad
with downdating instead of the exponential window method that uses a forgetting

IThis work was suppotted in part by the National Science Foundation grant CCR-9209726 and
also by a contract DAAL02-89-C-0038 between the Army Research Office and the University of
Minnesota for the Army High Performance Computing Research Center.

This is a joint work with Lars Eldén, Department of Mathematics, Link&ping University, Linkaping,
Sweden.

factor [5]. An advantage of the sliding window method is the a priori information
on the rank after the modification: mathematically, after adding a row, the rank can
only stay the same or increase by one, and, after deleting a row, the rank can only
stay the same or decrease by one. Thus, the indefinite steps of deflation in using the
forgetting factor that results from not having any similar a priori information on the
rank of the modified matrix can be eliminated.

The new algorithms are partly based on the algorithms for downdating the QR
decomposition described in [2], the LINPACK algorithm, the corrected semi-normal
equation (CSNE) method, and a hybrid method between the LINPACK and the
CSNE downdating algorithms. It is necessary to use accurate algorithms, since the
downdates in rank deficient cases can be very ill-conditioned. A two-step procedure,
where the downdating of the signal and noise parts are performed separately, enables
us to obtain accurate results using the LINPACK/CSNE hybrid algorithm for the
ill-conditioned downdates, which occur when the numerical rank is decreased. Also,
we show how the noise part can be downdated in a robust way, even in the case when
the noise part is numerically singular.

The numerical tests show that the two-step algorithm based on the hybrid algo-
rithm for the signal part downdating combined with the new downdating algorithm
for singular noise block produces particularly accurate results in computing the basis
for the null space and the numerical rank even for ill-conditioned downdating.

1. M. G. Bellanger. The Family of Fast Least Squares Algorithms for Adaptive
Filtering. In Mathematics in Signal Processing, ed. J. G. McWhirter, Clarendon
Press. Oxford, 1990, 415-434.

2. A. Bjérek, H. Park, and L. Eldén. Accurate Downdating of Least Squares Solu-
tions. SIAM J. Matriz Anal. Appl., to appear.

3. G. H. Golub and C. F. Van Loan. Matriz Computations. 2nd ed. Johns Hopkins
Press, Baltimore, MD., 1989.

4. G.W. Stewart. Updating a rank-revealing ULV decomposition. Tech. report,
. Dept. of Computer Science, Univ. of Maryland, CS-TR-2627, 1991.

5. G.W. Stewart. An updating algorithm for subspace tracking. IEEE Trans.
Signal Proc. 40{1992), 1535~1541.

6. G. Xu, H. Zha, G. Golub, and T. Kailath. Fast and Robust Algorithms for
Updating Signal Subspaces. Submitted to IEEE Trans. Circuils Systems.



PRECONDITIONERS FOR LEAST SQUARES ITERATIONS
Robert J. Plemmons

Least sguares problems occur freguently in science and
engineering. In many cases the systems are large and dense, in
which case iterative methods of solution are of prime importance.
Often the characteristics of the underlying physical problem will induce
some structure on the least sgquares system. For example the generating
function £ for the matrix A of coefficients may be periodic in nature, as
in image restoration procblems. In other situations it is known
that the entries of the matrix are generated by a "smooth" function f on a
regular grid, as in problems in potential theory and in signal compression.

For such important situations our purpose is to describe the use of
transform-based preconditioned conjugate gradient iterative
methods of solution for these large dense least squares problems,

A variety of preconditioners are considered for the problems
described above. The methods include the use of preconditioners based on
the fast Fourier transform for problems with periodic-type
generating functions, and the use of fast wavelet transforms for
problems with generally smooth generating functions. These
decompogitions and subsequent iterations can often be done in
O(M log N} or even O(M) operations. for M-by-N least squares problems.



HIGHLY PARALLEL SPARSE TRIANGULAR SOLUTION *
ALEX POTHEN!

We consider some recent developments in the solution of sparse triangular linear systems
of equations on highly parallel computers such as the Connection Machine CM-2. For con-
creteness, we consider a lower triangular system in the following discussion, but the results
apply to upper triangular systems as well. On highly parallel machines it is advantageous to
compute the sclution to a lower triangular system Lz = } by matrix-vector multiplication
Z := L~} when there are several systems (not all available at the same time) involving the
matrix L to be solved. This is because there ia much more parallelism to be exploited in
the multiplication approach than in the conventional substitution algorithm. H we can find
a factorization L = IIt_, P;, where each factor P; has the property that F; and F;* have the
same nonzero structure, then L-1 = II! !muu can be represented in a space-efficient manner,
storing the t factors ..Jl- in the space required for L. Furthermore, the vector z can be
computed by a sequence of ¢ matrix-vector multiplication steps, exploiting parallelism fully
within each step.

The number of factors ¢ in the factorization of L is an important measure since it
is proportional to the number of expensive router communication steps required by the
paralle! algorithm based on this approach; hence it is a good predictor of the running time
of triangular solution on machines like the Connection Machine CM-2.

It has been recognized that the triangular matrix can be symmetrically permuted before
factorization to reduce the number of factors ¢, and we consider the problem of minimizing
this number over several appropriate classes of permutations. We have also considered the
numerical stability of this approach. A survey of this approach, with computatjonal results
on the CM-2, is provided in [1}.

Partitioning problems. A matrix X is invertible in place if and only if (X-1); #
0 — z;; # 0. Since the elementary lower triangular matrices are invertible in place, there is
always at least one partition of L with factors that invert in place. A partition in which the
factors P, are invertible in place is called a re-fill partition. A no-fill partition of L with the
fewest factors is a best no-fill partition.

An admissible permutation Q of L is a symmetric permutation of the rows and columns
of L such that the permuted matrix QLQT is lower triangular. A best reordered partition of
L is 2 best no-fill partition of QLQT with the fewest factors over all admissible permutations
Qof L. : o

‘Alvarado and Schreiber [2] have designed an algorithm requiring O(nr) time and space
to compute a best reordered partition of L. (Here n is the order of the matrix, and 7 is
the number of nonzeros in L.) We have designed an extremely efficient O(n) time and
space algorithm for computing the best reordered partition of a Cholesky factor L [6]. This
algorithm makes use of the elimination tree data structure,

* Jan. 1993.
! Department of Computer Science, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
{2pothen@narnia.uwaterloo.ca, na.pothen®na-net.ornl.gov).

For Cholesky factorization, recently we have designed two algorithms that compute the
best reordered partition over all permutations Q that preserve the structure of L+ LT [4, 5).
The first of these algorithms makes use of the usual representation of the structure of L, and
takes time and space proportional to O{n + r) to compute the partition. The second makes
use of the more compact cligue tree data structure, and requires time O(n + g), where ¢ is
the size of the clique tree. For many practical problems, g < .

All the partitioning problems are solved by considering graph models of these problems.
These lead to problems of partitioning directed acyclic graphs (DAGs) and chordal graphs
into the fewest transitively closed subgraphs, while satisfying a certain precedence relation-
ship, over appropriate orderings of the graphs. While the graph partitioning problems are
quite challenging, they have solutions in terms of ‘greedy’ algorithms. This work has led to
new, interesting results about chordless paths in chordal graphs and the structure of vertex
separators in these graphs.

We have implemented the partitioning algorithms for computing the best reordered
partitions of L. We have also implemented a parallel triangular solution algorithm on the
CM-2 based on this approach. Qur results confirm the usefulness of these ideas in practice:
the matrix-vector multiplication approach outperforms s conventional triangular solution
algorithm by a wide margin on a Connection Machine CM-2. For the model problem (n x n
square grid, optimal nested dissection ordering), the complexity of parallel triangular solution
using the multiplication approach is 2log, n, while that of the substitution approach is 3n.

Stability issues. We have also performed a stability analysis of this approach to
triangular solution [3). We have shown that this approach is normwise forward and backward
stable when a certain scalar, that depends on the matrix L and the partition of L, is small;
this scalar is guaranteed to be small when L is well-conditioned. (This scalar can be loosely
described as a growth factor, since it is a measure of how elements grow in L-1.} Moreover,
when the factors of L are invertible in place (as we have chosen), then the backward error
matrix has the same sparsity structure as L.
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ITERATIVE SOLUTION TECHNIQUES FOR THE
NAVIER-STOKES EQUATIONS

ALISON RAMAGE® AND ANDY WATHEN 1

The efficient solutior. of large systems of linear (or linearised) equations is of
great practical importance in computational fluid dynamics as it is in many other
areas of scientific computing. A particular example frequently encountered in in-
dustrial applications is the case of the Navier-Stokes and continuity equations for
incompressible viscous fluid flow. Applying the usual mixed finite element method
and a standard nonlinear solver (for example the Newton-Raphson method) reduces
this problem to a series of nonsymmetric linear systems. These could be tackled
with a non-symmetric iteration: here, however, we adopt a different approach and
take advantage of the symmetry which arises naturally in a Lagrange-Galerkin finite
element discretisation.

The Lagrange-Galerkin method is » numerical technique introduced as an ac-
curate discretisation method for advection-dominated diffusion problems {see for
example [1]). When applied directly to the time-dependent Navier-Stokes equa-
tions, it removes the nonlinearity introduced by the advection term in such a way
that the resulting linear system is of the form

@ EINEHE

that is, it has the character of the Stokes problem for creeping flow. Here u and
p are the vectors of velocity and pressure unknowns respectively, The matrix A is
symmetric and positive definite and, under the assumption that the finite elements
chosen satisfy the Babuska-Brezzi stability condition, B is of full rank.

Various iterative methods which have been proposed for Stokes problems can be
applied here and in this paper we compare the performance of two different types.
Firstly, we consider a traditional pressure correction approach. This is equivalent to
applying block elimination to decouple the pressure and velocity equations, forming
two nested symmetric positive definite systems which can each be solved using the
preconditioned conjugate gradient methed. This two-level pressure correction tech-
nique is compared with solution of the original fully-coupled indefinite problem by
means of the preconditioned conjugate residual (MINRES) method. The question of
inner/outer convergence criiteria which has only been answered for simpler iterative
methods {[3]) is avoided in this one-level iterative approach.

* Department of Mathematics, University of Strathelyde, Glasgow G1 1XH, United Kingdom.
1 Schoo! of Mathematics, University of Bristol, Bristol BS8 1'TW, United Kingdom.
t

The relative performance of these algorithms will be examined both in theory
and in practice. Using eigenvalue estimates found by way of polynomial approxima-
tion problems on the eigenvalue spectrum [2}, asymptotic estimates for the amount
of work involved in implementing each method with various preconditioners can
be calculated: here we will present results for preconditioners based on diagonal
scaling and modified incomplete Cholesky factorisation. These estimates strongly
favour the use of the MINRES single level iteration method.

For ‘optimal’ preconditioners which can be employed in the pressure-correction
iterative approach, the corresponding preconditioned MINRES iteration also has a
convergence rate which is optimal, i.e. independent of any discretisation parameter,

In addition to theoretical estimates, we will present the results of practical
numerical computations carried out within the framework of an industrial fiuid flow
simulation program (Nuclear Electric plc.’s code FEAT). These experiments confirm
the superiority of the MINRES method.
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Generalized ADI Iteration
Lothar Reichel
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Abstract

We consider the solution of Sylvester’s equation AX — X8 = C,
where A € B**», B € R™*™, and C € R"*™ are given matrices,
and X € R"*™ is the solution matrix to be determined. The ADI
iterative method for the solution of Sylvester's equation proceeds by
strictly alternating between the solution of the two equations

(A=-8DNXepn = Xu(B-6D+C,
Xipa(B~nl) = (A-nDXen-C,
for k = 0,1,2,... . Here Xp is a given initial approximate solution,

and the 6, and n are real or complex parameters chosen so that the
computed appraximate solutions X; converge rapidly to the solution
of the Sylvester equation as k increases. We will discuss the possibility
of solving one of the equations in the ADI iterative method more often
than the other one, i.e., we relax the strict alternation requirement,
in order to achieve a higher rate of convergence. Our analysis based
on potential theory shows that this generalization of the ADI itera-
tion method can give faster convergence than when strict alternation
is required. We will pay particular attention to a special Sylvester's
equation that arises when applying a Wiener filter to reduce noise in
images. ‘The talk presents joint work with Daniela Calvetti and Norm
Levenberg.



ITERATIVE SOLUTION OF RECTANGULAR SYSTEMS
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Background .
LSQR is a conjugate-gradient-like method for solving the least-squares problem

min [|Az - b, 8y

while Craig’s method finds the minimum-length solution to undes-determined (but
compatible)} systems:
min fiz]] subject to Az = b (2)

Both methods use the Golub-Kahan bidiagonalization of A, with b as the starting
vector (see Paige and Saunders, ACM TOMS, 1982). When A is square and non-
singular, problems (1) and (2) are the same. Craig's method is then slightly simpler
and more efficient. Otherwise the two methods solve separate problems and cannot
be compared. .

-

Damping or Regularization

LSQR also solves the damped least-squares problem

min ||Az - bjj* + I6z° = min _A M.ﬂ vn - A “ v__. (3

where § is typically a small scalar parameter that regularizes the problem if A is
singular or ill-conditioned. Almost no additional work or storage are needed to
incorporate damping.

In order to extend Craig’s method to incompatible systems, we have studied the
problem

min [jz]? + |}s|® subject to Az 4 bs= b,

= min _“A”.v__ subject to (4 .&vﬁnvwr (4)

Some additional work and storage are required, but the extended methoed is straight-
forward and stable. .

A Surprise Equivalence

Problems (3) and (4) are both well-defined for any 4 as long as § is nonzero. Indeed,
(3) and (4) are unexpectedly the same problem when § # 0.

The extended LSQR and Craig algorithms may therefore be compared. We
explore the differences from this viewpoint.



*picGstab(ell): an efficient and stable solver
for equations involving matrices with complex spectrum"

Gerald L.G. Sleijpen
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Grant, CRG 92.03)

ABSTRACT

For a number of linear matrix-vector equations stemming
from realistic problems, the BiCGstab algorithm of van dex
vorst [4] to solve these eguations is an
efficient one. Unfortunately, specifically in case of
discretized advection dominated PDE's, BiCGstab stagnates
due to the fact that for this type of
equations the matrix has (almost) pure imaginary
eigenvalues. Here, we generalize the BiCGstab algorithm
and get rid of the stagnation. The BiCGstab(ell)
algorithm in (3] generalizes BiCGSTAB and gets rid of the
stagnation.

In exact arithmetic, if no breakdown occurs,

our BiCGstab(2) algorithm is equivalent to the BiCGStab2
algorithm of Gutknecht [1]. However, our version is more
flexible, more efficient, less sensitive to evaluation
errors and is less likely to suffer from breakdown.

Schemes of BiCGstab(ell) type combines Bi-CG and ell steps
of some minimal residual method as ORTHODIR or GMRES [2].
These method profit from both of its components.

{11 M.H. Gutknecht.
variante of BiCGStab for matrices with complex Spectrum.
IPS Research Report, No 91-14, 1991.

[2] G.L.G. Sleijpen and D.R. Fokkema.

Bi-CGstab{ell) for linear equations involving matrices
with complex spectrum.

Preprint 772, Dep. Math, Utecht University,

Uterecht, 1993.

{3] G.L.G. Sleijpen, D.R. Fokkema and H.A. van der Vorst.
Bi-CGetab{pol); a class of efficient solvers of large
systems of linear equations.

Preprint, 1993.

[4) H.A. van der Vorst.

Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems.

SIAM J. Sci. Stat. Comput., 13:631--644, 1952.



DERIVING GENERAL SPARSE SYMMETRIC AND QUASI POSITIVE DEFINITE QUASI-—

NEWTON UPDATES VIA THE ABS APPROACH

Emilio Spedicato, University of Bergamo

ABS algorithms have been introduced in 1984 by Abaffy, Broyden and Spedicato
for solving determined or underdeternined linear equations. They have been
then extended to the solution of linear least squares, nonlinear equations
and work js in progress for their application to optimization and ejgenvalue
problems, the number of parers in this srea wvvwomnznm now two hundred.

An interesting application of the ABS technique is the determination of

the general solution of the secant or Quasi-Newton equation B'd=y appearing
in the formulation of Quasi-Newton methods for nonlinear equations or
nonlinear optimization, coupled possibly with the additional conditions of
sparsity, symmetry and positive definiteness. The given conditions constitute
an underdetermined linear systems in the unkown B' whose general solution
can be expressed in a closed and simple form, even when sparsity and
symmetry are considered, using the ABS representation of the linear variety
containing ali solutions of an underdetermined linear system. The resulting
general formula, from which all previously considered formulas are easily
obtainable, leads naturally to consider some new formulas, e.g. a continucus
“"dogleg" update. The analysis of the general formula when spargity and
symmetry are present shows that, while positive deflinitenesa cannot generally
be forced, under a very mild condition on the sparsity pattern it is always
possible to construct, in a computationally simple way, formulas which are
quasi positive definite, in the sense that ‘the first n-1 principal submatrices
. in B' are positive definite. A new formulation is also given of the Marwil-

Toint formula.



Hybrid and Adaptive
Polynomial Iterative Methods
for Preconditioned Nonsymmetric
Systems of Linear Equations

Gerhard Starke
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Germany

In recent years, a lot of progess has been made in the field of polynomial
iterative methods for large nonsymmetric systems of linear equations,

Ax=b.

Most of the current research deals with extensions of the conjugate gradient
method to matrices which are not positive definite {1}. There are, however, also
reasons for studying Chebyshev-type algorithms, sometimes also called semi-
iterative methods. While CG-type methods are parameter-free, Chebyshev-like
methods require the computation of the iteration polynomial beforehand based
on some information on the underlying linear system.

One of the motivaiions to study Chebyshev-type methods comes from the
fact that inner products — which are an essential part of any CG-type algorithm
- constitute a potential bottleneck on certain parallel computer architectures.
Furthermore, CG-type methods for nonsymmetric systems, like (restarted) GM-
RES and QMR, have been noted to be susceptible to stagnation of the conver-
gence behavior. The goal is to avoid this with a Chebyshev-type method using
a propetly chosen iteration polynomial. In practice, Chebyshev-type methods
are implemented as hybrid schemes which coysizt of a beginning phase where
information about the matrix A is acquired, and a second phase where a polyno-
mial iteration designed with respect to this information is carried out. Closely
related, and sometimes advantagecus, is the approzsch 1o use the iteration poly-
nomial as & polynomial preconditioner for a CG-type method.

We present new techniques for both phases of & hybrid method for non-
symmetric linear systems. For Phase I, eigenvalue estimates constructed from
approximations to the fields of values of A and A~ turn out to be promising.
The fields of values are approximated in a low-dimensional Krylov subspace
associated with A using the orthonormal basis constructed by the Arnoldi pro-
cess. We prove that, in any case, the Arnoldi Ritz values are contained in the
approximate field of values corresponding to 4, Wa(A). Similarly, the roots of
the GMRES residual polynomial are contained in 1/W,(A~%). The resulting
polygonal set in the complex plane is guaranteed to exclude the origin and, in
addition, to include the entire spectrum of A if the dimension of the Krylov
subspace is large enough. Under the assumption that the complement of this
set is simply connected, i.e., the origin is not enclosed by eigenvalue estimates,
this ensures the existence of & convergent polynomial iteration, e.g. one based
on Chebyshev or Faber polynomials, for Phase 1T {3, 2].

For practical problems, it is essential that ilerative schemes are combined
with preconditioning in order to achieve faster convergence. The development
of efficient preconditioning strategies can benefit heavily from the underlying
physical model. In order to be more specific, we investigate preconditioning of
finite element discretizations of second order elliptic boundary value problems
by domain decomposition. In particular, we report on some computational ex-
periments with substructuring slgorithms based on non-overlapping subdomains
in connection with Chebyshev-like iterations.
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Optimal Backward Perturbation Bounds
for Certain Matrix Computation Problems
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ABSTRACT

It Is known that backward perturbation analysis is & very fruitful method in
matrix perturbation theory, and many problems in this field remain to be solved
(ref. [1), [2], [4]-{6], [10]). This talk will present a certain number of new results
related to the Lnear least squares problem, the eigenvalue problem, the generalized
eigenvalue problem, and the singular value problem.

1. The linear Jeast agquares problem

Let A be a1 n x n matrix, b be an m-vector, and £ be a computed solution to the
problem of minimizing ||~ Az|l3. We consider the following open problem [2],(5):
to find the smallest perturbation E of A such that the vector # exactly minimizes
[I5 - (A + E)Z|ls. This problem is completely solved when E is measured in the
Frobeniug norm [7], [8):

Let & be given, and let § = b~ AZ. Let A, be the smallest eigenvalue of

FH
A=At _
- =g’
and let u, be a unit eigenvector of the matriz H belonging to A,. Then the matriz
Fit ifi, >0
E, =
(F - vuf)izt —wiuld A, <0

is the smallest matriz measured in the Frobenius norm that ezactly minimizes
b~ {4 + E.)Z|l3, and
I #A20

1/

Em_wu + L if A < 0.

1

HE.lr =

The above result is an extension of the Rigal-Gaches Theorem on backward per-
turbations of the system Az = b {see [4]).

2. Certain Characteristic Subspaces

Let A be an n X n matrix. Let X, be an n x I matrix whose column vectors are
orthonormal and span a subspace #; which approximately is invariant for A. An
important problem is that what is the smallest matrix E measured in any unitarily
Invariant norm for which A; is an invariant subspace of A + E and how small jt
could be. The solution to this problem is given [8]

In the similar way, we study similar questions for eigenproblems of Hermitian
matrices, generalized eigenproblems of a regular matrix pair, and singular value
problems of a general matrix [8].

Further, applying our results on backward perturbation analysis for certain char-
acteristic subspaces, we derive residual bounds for certain eigenvalues, generalized
eigenvalues, and singular values. For instance, we get the following result [8):

Let A be an n x n Hermitian matriz, ..Mm be an n x1 matriz whose column veclors
are orthonormal and span o subspace Xy which approzimately is invariant for A.
Let

Lﬂn ﬂ.Nm-;u. b"*—hul;u.
If the eigenvalues of A are Ay 2 +++ 2 Ay, and the eigenvalues of A, ore 3; 2 -+ 2

A, then there are integers iy < iz < +++ < i) such that for any unitarily invariant
norm | ||,

__Ea.-»........r:ﬁ__m_ﬁm I3 v_ @
Moreover, let X3 be an n x (n ~ 1) matriz making (X, X,) unitary, and let 4; =
XPAX,. 1 )
2| &2

6 = sep(A1,42) >0, ms= 5 < 1, 2
then there are integers iy < i3 < -+ ~-< i; such that for any unilarily invariant norm
_m *_. . * .

s T 2 Rl K
diag(3s = Ao B = A € B, @®)
o

Kahan [3] proved that the inequality (1) holds for the spectral norm and the
Frobenius norm. The inequality (3) shows that taking inte account the situation of

2



the spectrum (2), we get & new bound of order [F:1E
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Inverse Iteration Method With A Complex Parameter

TOSHIO SUZUKI
Depariment of Mathematlics, Yamanashi University

In the paper{l] we introduced inlo the inverse iteration method for symmetric matrices
& new techniqoe, which is simple but effective in practical compuisions. Here I would like to
talk abou! onr new method of [1) and some propositions which suggest us some applications
of it.

Let A be o (n,n) matrix which is symmetric and has n different eigenvalues. Let
As,éu,k=1,2,...,n, be pairs of eigenvalues and the corresponding normalized eigenvee-
tors of A. First we describe our method to compute the eigenvector §; corresponding the
cigenvalue A; under the following assumption.

Assumnption H. Eigenvalues X3,k = 1,2,...,5 of A are known with the following ac-
euracy: There are three numerical constants ¢, £ and X such thet infay; [A; — Ay| > 2¢ and
A —A<eandd<c2<e

Let £ be an initial vector and let 1 be & zeal number whose absolute value is amaller
than ¢. Our ileration process proposed in [1] comsists of the following three steps where
«(™} and v{™) are real vectors.

1 (A=A - ¢/ 1rD)uk™) = ™) where 200 =g, A0 = 2
) il o ) where wl™) = (™) 4 4/ 1™

It

(A0 1) 5t [ > =)
A oihewise.

The most essential and characieristic feature of our process is the second step(2) where
the imaginary part of the solution of the linear equation (1) is taken as an approximating
cigenvector. In third step (3), we change ihe valne A 1o & betler approximating value,
obtained by Raileigh-Rits formula where 1he ineqnality |A; ~ A(™+1)| < ¢ also holds as s
seen in proposition 3 Ister. The following theorem guarantees that this iferation process
works well.

Tuenes 1. (Theorem 2.1 of {1]) I the assumption H is satisfied, the iterstion process (2.1)-
{2.1) excites the component of the eigenvecior ¢;,namely (™) w4 +4; m — oo, provided
Ir| <.

Before we stale the theorem of the error estimates and some propositions, we need
some prepararions to simplify the notstions. Consider the following equation with [jz|| = 1:

(%) Alm+)

) (A=~ —-y-1rDw=2
Let £ = 35, oy, then we have

= 1
P Dp ey )

_ " Ay = A \E hod T
T & a oy FTasht n...m oA s

Pui z; = ﬂ..ﬂv,»vnu».ﬂanﬁ_.r and g = roiwmrads. Let 2 = 350 20 and y = T0_, -

TuEoREM 2. (Theorem 2.2 of [1]) Put § = =m= Under the assumption H, the relative error
lly — will/liyll is estimated as il
V¥ < Hm.
loli ~e
The following proposition shows that in the jteration process {1}-{3) the inequakity

|A; = A| < € in the assumption H continnes to hold after the approximating eigenvalues are
replaced in (3) under the more relaxed criterion than that in (3).

PROPOSITION 3. Let x,y be the real and imaginary part of the solution of the equation(4)
with |A; = | < |7] £ ¢ under the sssumption H in which the inequality [A; = Af < |e] is
assumed. Put X = (Ay, 3)/Ipll*. K 3|lyll > 2zl then |2 - &) < |r}.

Proposition 3 gives & criterion when the approximating value A may be replaced by s
better approximating one. Moreover, throngh the following Proposition 4, we have anolher
criterion when the complex parameter r can be replaced by & smaller one if jt is neccessary.

PROPOSITION 4. Under the same assumption of Proposition 3, if {jyl| > Izl then JA; ~ i} <
L

Considering Proposition 3 and 4, we have an improvement of the iteration process{1)-
{3) by 1eplacing the siep(3) with the following (5) sxd by adding the next process(6).

A1) o (Am1) 5 (m400) g1 gatmy 5 glul=))
T iatm olherwise.

®

m)y2
) Ami1) o 3(r™) i#f ™ > [lu{m)].

<

Proposition 3 and 4 show that even if we do not have & so accurate value of ¢ o7 even if the
initial vector is not so well,A(™) in the improved process converges to the aimed eigenvalue
efficiently by using better parameters in each iteration. So we can have an application of our
method to get a rapid tool for computing eigenpairs combining the bisection method. The
idea of it is such that: get rough estimates of cigenvalues by the bisection method first, then,
apply our iteration process. The computing time 1o improve the accuracy of sn eigenvalue
by § decimal digits with the aid of the bisection method is comparable to that of fwo times
iterations of our method. So, for example, if stazting from the initial spproximating value
with the accuracy about 104, we could have the eigenvalue with {he accutacy 10-1F after
iwo times iterations, this method is an improvement of the procedure doae by only the
biseclion method. The test compulations of this example and of the others of this kinds
bave shown satisfactory results. We do not have the optimal of it yet but the above example
is at least one of the application of our method to get eigen-pairs more rapidly.
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Two-stage Iterative Methods

In applications it is not practical to perform large rumber of inner iterations,

. i.e., to wait until the assimptotic convergence is attained. The question is then,

Daniel B. Szyld - how does the method converge when a small number of inner iterations take

place. Examples will be shown in which for few inner iterations the two-stage
Temple University method fails to converge.

Conditions of the splittings are given that guarantee convergence for anp

number of inner iterations. If the matrix A is monotone, i.e., A~ > 0, the

Abstract appropriate conditions are that the outer splitting is a regular splitting and the

inner splitting is a weak regular splitting. Similar conditions are obtained for

Department of Mathematics

A talk is proposed in which two-stage iterative methods for the solution of
linear systems of the form Az = b are discussed. These are iterative methods
in which the linear system at each (outer) iteration is solved in turn by an
(inner) iterative method. If the number of inner iteration {s) iz fixed, it is

splittings of H-matrices. These matrices are not necessarily monotone.

Block two-stage methods will also be analyzed, in which the linear system
in each diagonal block, e.g. when the outer method is block Jacobi, is solved
iteratively. This case is particularly applicable to parallel computations. Some

called a stationary method. If the number of inner iterations changes at each
outer step (s = s(k)), then it is & non-stationary method. We will review the
literature including results by Nichols [5], Golub and Overton [2], [3} among Computational results jn sequential and parallel machines will be reported.

others, as well the work with coauthors {4}, [7], (1]. We will also present more In particular, the optimal number of inner iterations will be shown for specific
recent results including computational experiments illustrating the applicability examples.

of the methods.
During the talk, convergence of the non-stationary method will be shown if

of its convergence properties can be studied using the theory of convergence of
the multisplitting method of O’Leary and White [6].

the number of inner iterations becomes sufficiently large. The R,-factor (o) of References
the two-stage method is related to the spectral radius of the iteration matrix

of the outer splitting. In addition the following results holds. {1} Andreas Frommer and Daniel B. Szyld. H-splittings and two-stage iterative meth-
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1 [|M-1NY Jorall s 5. iterative procedure for solving systems of linear equations. In G.A. Watson, edi-
1+ MIN] = . tor, Numerical Analysis (Proceedings of the Ninth Biennial Conference, Dundee,
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Parallelizing Linear Algebra on the KSR1
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Introduction

We present the serial and parallel implementations of a complex matrix-vector multi-
ply on the KSR1. The implementation is in Fortran and we attempt to illustrate the
performance of the KSR on such linear algebra kernels and also some of the issues
that arise when parallelizing Fortran code on this machine. We have chosen this ex-
ample as it simple but effective at illustrating some of the features of the architecture
and wa believe gives a good indication of issues for higher lever linear algebra routines.

We give timings which indicate the scalabilty of the architecture for these types of
algorithms. We also discuss problem areas for the development of modular software
on this machine.

The KSR1

The KSR1 is a virtual, shared-memory parallel machine. It comprises individual pro-
cessors each with its own memory, but through the “ALLCACHE” memory system
it is presented to the user as shared memory. We show that in this shared memory
environment it is essential to consider the cache hierarchy in order to obtain good
performance and, as might be expected, data locality is very important.

One model for parallelizing a code on the KSR1 is to optimize the serial code on one
node and then to parallelize that code. So we first address the question of how to
obtain high performance on a single node.

The Serial Implementation

Figure 1a illustrates the Mflop performance for five versions of the code. Versions 1
and 2 are written in terms of complex arithmeiic and differ only by loop reordering
(as indicated by the KAP preprocessor supplied by KSR); version 3 is version 2 with
the arithmetic split into real components, version 4 is a hand unrolled version 3, and
version b is a hand unrolled version 1 (i.e. ignoring the advice of the preprocessor).

The plots are of Mflops versus n, where the matrix and vector are of sizes n x n and
n x 1 respectively.
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Figure 1b illustrates the percentage of peak performance obtained by each of the
versions.

Clearly all of the serial implementations shown have the problem that although they
have a relatively good peak performance, this is not sustained beyond the size of the
subcache. Even for the best implementation the performance drops to helow 50% of
the peak performance of the floating point unit. One might think that a better strat-
egy for blocking the data would yield a higher performance. However, this is not the
case and we cannot expect to achieve much higher performance than shown, for data
sizes beyand the size of the subcache,



The Parallel Implementation

There are four techniques for parallelizing a code on the KSR1: pthreads, parallel
regions, parallel sections and tiles. We show how each applies to our algorithm and
the performance that might be expected from each. The best parallel performance is
gained by using the parallel region construct which allows the execution of a single
piece of code on multiple processors. This feature allows the SPMD (Single Program
Multiple Data) programming style or concurrent computation on blocks of the data.

In our example we can utilize this form by considering the matrix vector multiply
block algorithm. We split the matrix into blocks of rows and also split the vector y
into the assosiated sections. The idea is to use the serial code on each processor and
have it operate on a block of the matrix.

Figure 2 shows the Mflcp rates for the parallelized version 5, using parallel regions,
These timings indicate that the locality of the data on calling the matrix vector mul-
tiply routine affects the performance enormously. Figure 2a shows the average Mflop
rate of 100 calls to the routine for a problem size of (15360,128) when the data is
already in the appropriate caches. There is linear speedup.

2a : ) 2b
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Figure 2b shows the timings for the same piece of code with the same data size but
the data is not resident in the appropriate subcache. The results shown are the worst
case where the data are accessed in a completely orthogonal fashion by the same

team of threads. There is far from linear speedup; in fact as the number of processors
increase the performance begins to drop off. If we were to shift data around in this
maanner on any distributed memory machine we would expect to see similar results.
However, the problem here is that there is no way of knowing where the data resides
and the movement of data is done by the memory manager, not the user. There are
prefetch and poststore facilities that may be used to ease the problem.

Conclusions

We show that getting a code to run in parallel fairly well on the KSR1 is reasonably
simple using the tools provided. To obtain better performance may require the use of
constructs not included in the preprocessing tools and in some cases ignoring advice
given by the preprocessing tool.

Our results indicate that:
+ at the present time complex arithmetic should be avoided when possible.

o For algorithms with the equivalent potential for data reuse, one can only expect
to obtain 80 to 90% of the peak performance of a single node when the data is
within the size of the subcache and at mosi 50% of the single node performance
otherwise.

e As with any cache based {or distributed memory) machine, data locality is very
important.

e For “nicely” located data our algorithm scales linearly with the number of pro-
cessors; otherwise the results are quite different. This could mean problems for
the design of modular routines.

We comment on how these conclusions relate to other parallel machines, in particular,
to the CM5.
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Zeros of polynomials and eigenvalues of nonsymmetric matrices are well-
known examples of problems whose answers may be highly sensitive to pertur-
bations. The sensitivity of these two problems was made famous by Wilkinson
in the early 1960s and contributed to his development of the notions of stability
and conditioning. And, of course, the two problems are related, for the zeros of a
polynomial are the same as the eigenvalues of the associated companion matrix.

Despite the classical nature of the subject, the relationship between these two
problems has received less study than one might suppose. Polynomial zerofinding
has been something of a backwater in numerical analysis, and it is probably fair
to say that although all numerical analysts know that one can find zeros via com-
panion matrices in principle, most assume that it isn’t a good idea to do so. The
goal of our work has been to take a new look at these problems and see whether
the use of companion matrices is or is not a good idea.

The approach we have taken is geometric. For a monic polynomial p(z}, let
Z(p) denote the zero set (= set of zeros) of p(z) in the complex plane, and define
the e-pseudozero set of p(z)} by

Z,(p) = {z€C: z € Z(p) for some p},

where p ranges over polynomials whose coefficients are those of p modified by
relative perturbations of size < e. (Precise details are omitted from this abstract.)
The relevance of such sets to the conditioning of the zerofinding problem has
been studied by Mosier. Analogously, for a square matrix A, let A(A) denote the
spectrum of A, and define the e-psendospectrum of A by

A(A) = {z€C: 2€ A(A+E) for some E with J{E||<¢}
= {2€C: (2T- A 2},
1

(The matrix (2] — A)~! is known as the resolvent; if zJ — A is singular, we de-
fine (2] — A)~}|| = 00.) Matrix pseudospectra have been studied by Trefethen,
Godunov, and others going back at least to H. J. Landau in 1975.

We have found that for most polynomials, Z,(p) and A (A) are quite close to
one another when A is a companion matrix of p that has been “balanced” in the
usual EISPACK sense proposed originally by Parlett and Reinsch. It follows that
the conditions of the polynomial zerofinding problem and the balanced matrix
eigenvalue problem are comparable. Therefore, finding zeros via eigenvalues of
companion matrices cught to be a stable algorithm. These results are empirical as
applied to arbitrary polynomials, but can be justified precisely in certain limiting
cases where the boundaries of both pseudozero sets and pseudospectra reduce to
certain generalized lemniscates in the complex plane.

To test this prediction of stability we bave compared the companion matrix
algorithm, which is the method used by the Matlab ROOTS command, with the
Jenkins-Traub code CPOLY and the Madsen-Reid code PA16. Our experiments
with a wide variety of polynomials suggest that all three codes are reliable, but
that on average, contrary to what one might have expected, it is ROOTS that is
the most accurate.

The figares on the next page show two examples of the approximate agreement
between pseudozerc sets and pseudospectra. The first example is a degree-21 Euler
polynomial whose zeros are modestly ill-conditioned (x = 0(10%)). The second is a
degree-20 Wilkinson polynomial whose zeros 1,2,3,...,20 are highly ill-conditioned
(x = O(10'7)).

The significance of pseudozero sets and pseudospectra is not just a matter
of rounding errors and stability. In any mathematical problem that apparently
depends on polynomial zeros, it is likely that what really matters is whether [p(z)|
is very small, not necessarily exactly zero. Similarly, in a matrix eigenvalue problem
what really matters may be whether ||(zI — A)™?|| is very large, not necessarily
exactly infinity. Thus the study of pseudozero sets and pseudospectra is a natural
one in its own right, having a bearing on the meaning of the zerofinding and
eigenvalue problems themselves, not just on associated numerical algorithms.
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EIGENVALUE AND SINGULAR VALUE DISTRIBUTIONS
FOR STRUCTURED MATRICES WITH APPLICATIONS
T0 CIRCULANT PRECONDITIONING TECHNIQUES

£.E.Tyrtyshnikov
Inatitute of Numerical Mathematics
Russian Academy of Sciences
Leninskij Prosp. 32-A, Moscow 117334, Russia
E-mail: teeladonis.ias.msk.su

A unifying approach is proposed to studying the distributions
of eigenvalues and singular values of Toeplit:z matrices associ-
ated with a Fourier series, and multilevel Toeplitz matrices
associated with a multidimensional Fourier series. Obtained are
the extensions of the Szegoc and Avram - Parter theorems, where
the generating function is now required to belong to L-two and
not necessarily to L-infinity. Analogous extensions are given
for muitilevel Toeplitz matrices. In particular, it is proved
that if f£(x1,...,xp) belongs to L-two, then the p-level
{complex ) Toeplitz matrices allied with £ have their singular
values to be distributed as ABS(£(xl,...,xp)}}. The distribution
results about the Cesaro (optimal ) circulants are granted even

if £ is from L-one. Also suggested are new theorems on cluster-
ing that have to do with the preconditioning of multilevel
Toeplitz matrices by multilevel circulants.

The approach is spread over to the case when a matrix family
is constructed from some Toeplitz matrix families via basic mat-
rix algebra operations, such as addition, multiplication, and
inversion. If function £ is obtained from the generating func-
tions (that correspond to the Toeplitz matrix families at hand)
with the help of similar but functional operations, then the
singular values of the new structured matrix family are distri-
buted as ABS(f), provided that certain conditions on the ini-
tial generating functions are fulfilled. The eigenvalues of
Hermitian components of the matrices from the new family are
distributed as Re(f) while those of the scew-Hermitian parts
do as i*Im({f), where i ia the imaginary unit. Among other
things, these results seem to give a simplest possible way
to explain nice properties of the circulant preconditioning.

Cireulant matrices are customarily used as preconditioners
for Toeplitz matrices. Previously known results that describe
the spectrum after preconditioning are based on the assumptions
that the generating function for Toeplitz matrices belongs to
the Wiener class, and is strictly positive. Both assumptions
are now weakened. Alsc proposed and studied the improved circu-
lants. It is shown that (improved ) circulants of Strang’s type
can be much more advantageous than optimal preconditioners.
This crucially depends on the smoothness properties of £.



An interior-point method for convex optimization
and its application to control problems

Lieven Vandenberghe* and Stephen Boyd!

Information Systems Laboratory, Electrical Engineering Department,
Stauford University, Stanford CA 94305

1 Motivation

Many problems in sysiems and control theory can be formulated (or reformulated) as op-
timization problems involving linear matriz inequalities, i.e., constraints requiring an affine
combination of symmetric matrices to be positive semidefinite. Reference [1] gives a broad
survey of such problerms.

These matrix inequalities are usually highly structured. One typical example is the
(convex) Lyapunov ineguality which has the form

APB+ BTPAT+ D >0,

where the square matrices A, B and D are given, D is symmetric, and the symmetric matrix
P is the optimization variable. Another important example is the {convex) algebraic Riccati
inequality:

ATP 4+ PA+ PBR'BTP+@Q <0,

where A, B, Q@ and R are given, @ is symmetric, R is positive definite, aid the matrix P is
the optimization variable. Lyapunov and Riccati inequalities arise, for example, in stability
analysis of dynamical systems. A typical optimization problem will have several matrix
inequalities as constraints.

2 Interior-point methods

We describe an interior-point method for convex optimization problems involving matrix in-
equalities [5]. The method is based on the theory developed by Nesterov and Nemirovsky {4]-

*Senior research assistant of the Belgian National Fund for Scientific Research (NFWO); on Jeave from
Katholicke Universileit Leuven, Belgium; Internet: vandenbatisl.stanford.sdu

YResearch supported in part by AFOSR grant F49620-92-J-0013-P00001 and DARPA grant AF F49620-
90-C-0014; Internet: boydtisl.stanford. sdu

Alternatively, it can be interpreted as a generalization of Gonzaga and Todd’s method for
linear programming [3]. The algorithm has several important properties:

s Tt is based on the reduction of a potential function associated with the problem. This
makes it possible to use large steps in each iteration.

o The method is primal-dual, which means that it processes a given problem and its dual
simultaneously.

o A worst-case analysis shows that the number of iterations grows as the square root of
the problem size. This bound is among the lowest achieved by interior-point methods.

e In practice the number of iterations appears to grow more slowly. As in other interior-
point methods the overall computational effort is therefore dominated by the least-
squares systems that must be solved in each iteration.

3 Numerical aspects

In each step a primal and a dual feasible direction are computed by solving a weighted
least-squares problem. A type of conjugate-gradient algorithm can be used for this purpose,
which results in important savings for two reasons. First, it allows us to take advantage of the
special structure the problems often have (e.g., Lyapunov or algebraic Riccati inequalities).
Second, we show that the polynomial bound on the number of iterations remains valid even
if the conjugate-gradient algorithm is not run until completion, which in practice can greatly
reduce the computational effort per iteration.

We describe in detail how the algorithm works for optimization problems with L Lya-
punov inequalities, each of size m. We prove an overall worst-case operation count of
O{m>*L1%). The average case complexity appears to increase much more slowly with m, as
O(mP L"), with 8 = 4 and v % 1.5. To appreciate these numbers, consider the following. A
single Lyapunov equation APB + BTPAT + D = 0 (which is just a set of m(m +1)/2 linear
equations for the m(m+1)/2 variables in P) can be solved in O(m®) operations by exploiting
the special structure of the equations (see, e.g., [2]). Therefore, it takes O(m*L) operations
to solve L independent Lyapunov equations. Comparing this operation count to O(m*L'®),
we see that the relative cost of solving L coupled Lyapunov inequalities, compared to solving
L independent Lyapunov equations, is only a factor of mL%3, A similar statement holds for
Riccati inequalities.

4 Conclusion

The algorithm that we describe involves two important extensions beyond the methods
described by Nesterov and Nemirovsky. First, it takes advantage of the special structure of



the matrix inequalities we encounter, e.g., Lyapunov or Riccati. Second, it allows the use of
approximate search directions,

The most significant conclusion is the following. Much of modern contrel theory involves
the solution of Riccati and Lyapunov equations. QOur results show that the computational
cost of extending current control theory to a theory based on the solution of (multiple,
coupled) Lyapunov or Riccati inequalities is modest.
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Further improvements in nonsymmetric hybrid CG methods

Henk van der Vorst - Utrecht University

In the past few years new methods have been proposed that can be seen
as combinations of standard Krylov subspave methods, such as Bi-CG and
GMRES. One of the first hybrid schemes of this type is CGS, actually the
Bi-CG squared method. Other such hybrid schemes include BiCGSTAB
(a combination of Bi-CG aud GMRES(1)), QMRS, TFQMR, Hybrid GM-
RES (polynomial preconditioned GMRES) and the nested GMRESR method
(GMRES preconditioned by itself or other schemes). These methods have
been successful in solving relevant sparse nonsymmetric linear systems, but
there is still a need for further improvements.

Bi-CG has two break—down conditions, one of which can be removed by
a lock-ahead strategy, the other can be reomoved by the QMR approach. A
weak point in BiICGSTAB is that it introduces one more break—down possibil-
lity on top of these, namely when the GMRES(1) part of the algorithm stag-
nates. This may happen, for instance in advection dominated pde-problems.
Gutknecht has suggested to combine Bi-CG with GMRES(2): BiCGSTAB2
to overcome this problem. We will show that if this idea is implemented
in a different manner, a very competitive BICGSTAB variant is obtained,
which is easy to implement. Moreover, it turns out to be relatively easy to
obtain other obvicus variants, like Bi-CG with GMRES(4), etc., which may
be attractive if one has memory space available.

For GMRESR we will propose a further improvement obtained by pre-
venting the preconditioning iteration scheme to construct search directions
in previously explored subspaces, that is by maintaining orthogonality in the
outer iteration as well as the inner jteration.

If time permits, we will discuss approaches to increase parallelism and
to avoid synchronization points in Krylov subspace methods. While for pre-
conditioned CG it seems possible to overlap all communication with compu-
tation, without giving up any stability in the method, this turns out to be
much more difficult in GMRES. Our approaches will be illustrated by results
obtained on distributed memory machines.

End of abstract for Householder Symposium
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Abstract

The Total Least Squares (TLS) method has been devised as a more global fitting method than
Least Squares (LS) for solving overdetermined sets of linear equations 4z = b in which A4, as
well as b, are noisy [4]. From a statistical point of view, TLS operates under the assumption
that the errors in 4 and b are independently and identically distributed with zero mean and
equal variance. If there is correlation among the errors, a noise whitening transformation can

‘be applied or a Generalized TLS problem [4] can be solved and the error norm is appropri-

ately modified. However if there is a linear dependence among the error entries in {A4; Ab]
.which is the case when the data matrix is linearly structured: Hankel, Toeplits,...- then the
TLS solution may no longer yield optimal statistical estimators. This happens for instance
in system identification when we try to estimate the impulse response of a system from its
input and output by discrete deconvolution. The errors in the corresponding data matrix are
obviously Toeplitz and this information is not used in the classical TLS problem. Another im-
portant example where the errors in the data matrix have a block Toeplite structure and are
hence linearly dependent is forward-backward linear prediction, used to estimate the frequen-
cies of sinusoids from measurements contaminated by white noise. Other applications occur

.in frequency estimation, estimation of the angular location of emitters and superresolution

harmonic analysis [1).

To get more accurate estimates of z, Abatzoglou and Mende] extended the classical TLS
method to incorporate the algebraic dependence of the errors in [4; 5] and called their exten-
sion “constrained TLS". )

Definition 1 Constrained TLS (CTLS) problem.

Let C = [Amxnibmxi} AC = [A4; Ab) = [Acy, ..., Acasa]

ond ezpress each error column Ac; as Acj = Fjv where F; is a matriz of an appropriate size
and v is a zero-mean white noise vector of minimal dimensionality. Then, the CTLS solution
£ is obtained from the following constrained minimization problem involving v and = :

.:...:.Bu.un__c__w-=€.8:aAQ.._._WHS:LM:.Z...S — Iu_. _ .I..c A:
v, 2

This is a quadratic minimization problem which is subject to a quadratic constraint equation.
# can be obtained as the solution of an unconstrained minimization problem. Suboptimal
algorithms have been applied to minimize the above functional and rather successful results
have been obtained so far. Alse, a complex version of the Newton method for finding the
minimum of a real function of several complex variables has been derived and applied to find
the CTLS sclution {see [1] for references). -

In this paper, we show how CTLS is a special case of the Structured TLS (STLS) problem
recently presented by B. De Moor [3] and formalized as follows.

Definition 2 Structured TLS {STLS) problem.
Let C(r) = Co+riCi + ... + roCn be an cffine matriz function of the parameter vector r
where C;,i = 0,1,...,n are fized given m X ¢ matrices. Let a be an p x 1 data vector and w



be a given vector of weights. Find a rank-deficient matriz in the affine set C(r) such that o
given quadratic function [r,a, w]3 of the parameters r; is minimized, i.e.

. , Cirly=0

, 2

min [ryo,w]f  subject 8* Ty=1

The solution to the STLS problem follows from a nonlinear generalized SVD problem. A
straightforward linear convergent algorithm is derived that is based on the inverse iteration
method to find the smallest singular value and corresponding singular vectors of a matriz.

Although both methods use a different formulation and solve the problem in a quite
different way, there are some nice similarities between both approaches which are described in
the paper. Based on these similarities we could simplify the straightforward inverse iteration
based algorithm outlined in [3} for solving the CTLS and STLS problem in cases where the
data matrix C = [A;}] is & linearly structured unweighted matzix. Numerical examples are
given in which one wishes to approximate a Hankel matrix by one of lower rank. This problem
is & key issue in the (partial) realization problem and in the enhancement of sinusoidal and
exponentially modeled signals, Applications occur in system identification, modal analysis,
biomedical signal processing such as Nuclear Magnetic Resonance spectroscopy {5], etc. The
STLS and CTLS approaches are compared to currently used suboptimal approaches described
in [2, 5). The latter methods first reduce the rank of the Hankel data matrix by computing
the truncated SVD approximation of the data matrix [2] or the minimum variance estimate
of the signal-only matrix [5] and then restore the Hankel structure by finding the closest
Hankel matrix {in Frobenius norm) which is simply obtained by replacing the antidiagonals
by the average of their elements. However, the new Hankel matrix is no longer rank-deficient.
One then iterates by again computing the truncated SVD or minimum variance estimate
and restoring the Hankel structure, etc, This process converges but the solution of these
suboptimal approaches does not satisfy any H; optimality condition.
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Stable numerical algorithms for equilibrium
systems
(extended abstract)

Stephen A. Vavasis*
September 28, 1992

NOTE: This extended abeiract is not for distribution. If the reader would Iike a
full version that may be circulated, please send me email {vavasisQcx.cornell.edu) and
I will be happy to send & longer tech-report version.

An equilibrium system (also known as a KKT system, a saddle-point system,
or a spatse tableau) is a square linear system with the following structure:

(& )G)=() ®

G. Strang [1986) has observed that equilibrium systems ariee in optimization,
finite elements, structural analysis, and electrical networks.

For example, in optimization, I? generally encodes the second derivative of
the objective function and A encodes the constraints.

Recently, G. W. Stewart [1989] established a norm bound for a type of
equilibzium system in the case that I} is very ill-conditioned. In this paper we
investigate the algorithmic implications of Stewart’s result. We show that all
standard textbook algorithms for equilibrium systems are unstable. Then we
show that a certain hybrid method has the right stability property.

In all of the applications, the following two assumptions are commonplace,
and they ate made throughout the paper. First, matrix D is symmetric and
positive definite. Second, matrix A has full colomn rank. These assumptions
imply that (1) is a nonsingular linear system with a unique solution.

The main focus of this paper is what happens when D is severely ill-conditioned.

In the case that D is well-conditioned, the numerical problems associated with
solving (1) are generally not as troublesome, and most standard methods will
give good answers,

The most natural framework for this assumption is an optimization algo-
rithm involving a barrier function. The primary example of & barrier function

*Department of Computer Science, Upson Hall, Cornell University, Ithaca, NY 14853,

in optimization is the class of interior point methods for linear programming.
In an interior point method, matrix D becomes very ill-conditioned when the
iterate approaches the boundary of the feasible region. {See Wright [1992] for
& description of barrier methods, linear programming, and their relationship.)
For linear programming, since the solution is always on the boundary of the
region, ill-conditioning in D always occurs during the algorithm.

In order to carry out the analysis, we make the following further assumnptions:
first, we are more interested in recovering y in (1) rather than £. Second, ¢ = 0.
Third, D is a diagonal matrix. There are & number of applications where these
agssumptions are reasonable. In the full paper we discuss conditions under which
these restrictions could be lifted.

Under these assumptions, we can apply Stewart’s theorem. Simplifying (1),
we have the following equation for y:

y=~(ATD VA ATD ). @

Stewart's theorem states that the matrix (AT D2 A)~' AT D~! has a uniform
norm bound depending only on A (not D).

Further analysis in the full paper shows that Stewart’s theorem implies that
¥ can be recovered accurately even if D is arbitrarily ill-conditioned. However,
the standard aigorithms for (1), including symmetric indefinite factorization, the
range-space method, and the nullspace method, can give answers without any
digits of accuracy even for simple three-node examples from electrical engineer-
ing. (By “standard algorithm” we mean that these algorithms are described in
optimization textbooks such as Fletcher {1987], electrical engineering textbooks
such as Chua, Desoer, and Kuh [1987), or civil engineering textbooks such as
Timoshenko and Young [1965).)

We propose a new algorithm, called the NSH method (nullspace scaled hy-
brid Ees.o& The NSH method finds a certain nullspace basis V for the matrix
ATD~1in a careful way, and then solves the linear system

un(¥)==. @

The NSH method does not appear in standard texthooks, but similar approaches
have appeared in the literature. For example, Coleman and Li [1989] suggest
a similar approach (called the “full-space” method) for optimization, but with
the scaling done in a different manner.

‘We prove that this method solves the problem stably, and e.oﬂ@ that result
with some computational tests.
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The convergence of preconditioned Conjugate Residual
iterations for the Stokes problem

Andy Wathen, University of Bristol
Bernd Fischer, University of Hamburg
David Silvester, UMIST

Discretisation of the incompressible Navier-Stokes equations gives rise to systems

of equations of the form
A B'\(u_ (]
B o0J\p) \O)

For a number of important discretisation techniques for the Navier-Stokes equations
and in particular for the classical Stokes problem for slow flow, the system is linear and
the square submatrix A4 is symmetric and positive definite, thus rendering the complete
system symmetric but indefinite. Since, for example for finite element approximation,
these systems will be large and sparse for practical flow problems, solution using iterative
methods is indicated.

Most commonly, iterative techniques are applied in a so-called ‘pressure-correction’
approach which in algebraic form is equivalent to a block elimination yielding the posi-
tive definite Schur complement system

BA™'B'p=BA'f

which can be effectively solved by the preconditioned (Hestenes-Steifel) Conjugate Gra-
dient method. A further inner iteration can then be used to sclve the systems indicated
by the A~! at each outer iteration.

In this talk we will describe and analyse an alternative iterative approach for Stokes-
like problems using (non-nested) Preconditioned Conjugate Residual (MINRES) meth-
ods,

To set the stage for our analysis, we will briefly review the convergence theory
which, as for other Krylov-subspace methods for normal matrices, is expressed in terms
of polynomial approximation problems on the eigenvalue spectrum, viz

[z — zli .
: - < e = min  max A
ilzo IH__ = Ck {pa:pa(0)=1} XD Ip( z
for some appropriate norm where z; are the solution iterates, z the desired solution
and D is an inclusion set for the eigenvalues.
We will then present eigenvalue estimates for preconditioned Stokes systems with

preconditioners of the form
My O
0 M,

where M4 is a preconditioner for the positive definite (discrete Laplacian) submatrix 4,
and M, is an appropriate simple scaling matrix which we will identify. We will show that
if the spectral condition number of the preconditioned positive definite matrix M A
is x, then the eigenvalues of the preconditioned Stokes system lie in )

[~a, =] Uc,d] (1)

where g, b, ¢ and d are positive values satisfying

afb<+/x and dfc<k. {2)
Thus the negative eigenvalues are, in & precise way, more clustered than the positive
eigenvalues.

The analysis applies to ‘optimal’ preconditioners M, such as some based on do-
main decomposition as well as to other widely used preconditioners such as incom-
plete cholesky factorisation and its modifications and also to the simple case of scaling:
M, = diag(A). For non-optimal preconditioners, the eigenvalue bounds are naturally
expressed in terms of the asymptotically small mesh-size parameter, h.

Finally, we will present new results on the convergence rate of MINRES for sym-
metric indefinite matrices with eigenvalue spectra which are not symmetric about the
origin, but for which the eigenvalues are contained in intervals of the form (1), (2).

These results show that MINRES for such problems will converge at & rate exactly
intermediate between the convergence rate of Hestenes-Steifel preconditioned Conju-
gate Gradients applied to the positive definite system M31A and Conjugate Gradients
applyied to the normal equations

A B'\{A B'\{u\_{A B b

B 0O B O p/ \B O o)
It is known that the rate of convergence of MINRES for a symmetric indefinite problem
when the eigenvalues are contained in intervals which are symmetric about the origin is
essentially the same as for Conjugate Gradients applied to the normal equations. (It is
exactly the same if the individual eigenvalues are symmetric.) Thus the Stokes problem
is of distinctly different character than the ‘worst case’ situation of symmetrically placed
eigenvalues, and MINRES is an attractive solution method for such problems.

Precisely, we will show that if the eigenvalues of an indefinite matrix are contained
in intervals of the form
[~a, ima\mu U [ea,d]

where a is an asymptotically small quantity (such as a simple montonic function of the
mesh-size, k in a partial differential equation problem) and a, b, ¢ and d are positive
constants independent of o, then the asymptotic convergence rate of MINRES iteration
is

lim |egt =1 -0(al).

| S
For Conjugate Gradients applied to a positive definite problem with eigenvalues A €
[ea, d] the standard result is
lim |ex|} =1 - O(el),
k—too
and for the normal equations it is correspondingly
lim Jexjt =1-0(a).
k—+o0
The results of numerical computations on Stokes flow problems which we shall
present show the accuracy of this theory in practice.

(Theoretical and practical comparison of the MINRES and Conjugate Gradient
pressure correction approach for Navier-Stokes flow simulations using implimentations
in the commercial FEAT industrial fluid flow simulation code are the subject of a second
submitted talk to this meeting by Alison Ramage and Andy Wathen.)



Forward (In)Stability of the QR Algorithm

David S. Watkins
Washington State University

Consider a matrix A that is upper Hessenberg and has a zero on the
subdiagonal. Say
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T we perform a step of the QR algorithm on this matrix (without splitting the
problem into two subproblems}, the outcome will depend on .iwmsuon we are
using an explicit or an implicit implementation. The explicit implementation
will effectively perform QR steps on the (1,1) and (2.2) blocks independently.
On the other hand, the implicit (bulge-chasing) implementation will perform
2 QR step on the (1,1) block and leave the (2,2) block unchanged. The step
“dies” when it hits the zero.

Now suppose we change the problem slightly and consider
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where € is small, say 1072°, (We assume that the other nonzero entries of
A are of order 1.) What happens if we perform an implicit QR step (with
roundoff errors) on this matrix? The conventional wisdom is that the effect of
the near-zero € will be similar to that of an exact zero. In this case {according
to conventional wisdom) the (2,2) block will not be left unchanged, but it will

be altered in a somewhat random way; the small ¢ triggers a loss of precision
(forward instability) that “washes out” the step. If QR steps are repeated

under these conditions, the convergence rate will be degraded severely, or so
says the conventional wisdom.

We will demonstrate, by examples and by analysis, that the conventional
wisdom is wrong. Assuming the matrix is well balanced, a small entry (or
even several consecutive small entries) on the subdiagonal will not normally
cause forward instability or degrade the convergence in any way. We will de-
termine the conditions under which forward instability does occur and com-

pare our results with those obtained by Parlett and Le {1] for the symmetric
case.

Our findings have implications for pipelined, parallel implementations of
the QR algorithm, for which it might not always be convenient to check
for possible deflations after each iteration. Our results demonstrate that,

contrary to popular belief, prompt deflations are not crucial to the success
of the algorithm.
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Abstract

Linear systems Az = b arising from discretizations of second-order
elliptic equations are solved via preconditioned conjugate gradient
methods. Recently, R. Chan and T. Chan proposed using block circu-
lant preconditioners for the solution of these problems. The precon-
ditioners approximate the eliiptic operator in all coordinate directions
and can be chosen so that the condition number of the preconditioned
system can be reduced from O(n?) to O(n)- In this talk, we extend the
idea and propose circulant preconditioner € and skew-circulant pre-
conditioner § which approximate the elliptic operator in all but one
coordinate directions. We prove that the condition number of the pre-
conditioned systems are also of O(n). We then show that the precon-
ditioners can be derived by using ideas similar to the INV algorithm
proposed by Concus, Golub and Meurant, Toeplitz preconditioners
based on C and § will be also discussed.



SOLVING EQUATIONS EXACTLY ON DISTRIBUTED
MEMORY MULTIPROCESSORS

Deng Jian Xin
MIMD Systems, Inc., Beimont, CA 94002 USA

Abstract

A parallel congruence algoritam for the exact solution of integer system of linear equations is
presented. The computations were executed on a five TB0O Transputer network, a distributed
memory multiprocessor. Our experiment shows that the algorithm is a practicable method and
an omﬁ_oa candidate for exact computation, high precision computations, and ili-condition
pr s.

1. Introduction

Let A be an integral nxn matrix, b and integral nx1 vector and d=dei(A)p0. A*i is an
adjoint matrix of A. Solving a given system of linear equations

Ax = b 1)
over an integral domain is equivalent to solving following equation

Ay = db @
where

y = Asdib Q)

From the definitions of adjoint malrix, A% is an integral nxn matrix, so that y is an integral
nx] vector. If the usual method is applied exactly to the solution of equation (2), then the
numbers involved increase very rapidly. Congruence arithmetic is noted for avoiding this
difficulty. Generally, system (2) can be solved exactly by congruence arithmetic with single
precision arithmetic in the main process of compulations [2]. The infinile precision integral
system has to be used only in the first and the last stage. Moreover, the Chinese congruence
theorem provides natural parallelism of congruence techniques. In this paper, a parallel
algorithm is presented for sqlving systems of equations exactly on paraliel computers. The
numerical experiment shows thal the natural paralielism of the congruence techniques makes
the algorithm an excellent melhod for execution on distributed memory multiprocessor.

This research was supported by Chinese National Science Foundation
and MIMD Systems,Inc.,Belmont,CA 94002 USA

N dey(H)

10 |10673 16531 9

20 |B82083 S5T17 043

30 [11487 70530 78810 13

40 [38151 96815 22430 3360

S0 {17577 48265 37839 63187 43

60 111266 20787 64se0 76325 3614 D7

70 |12620 53975 94210 89027 33133 642

20 |i12518 38063 3rss9 02206 91121 20934 41961 3

90 |9o2238 45326 45356 25398 51915 01222 $7303 938

100 124027 &8061 31639 57659 74293 $8622 61505 20243 14535 3
Table 2

N| ¢ 0 » 40 50 0 ” 0] 0 100

1, | sai01 91675 | 161612 212495 | 453517 o960 | 1000741 1erTSEI] 1892373 2574219

P 20430 24563 | 41836 68547 | 101724 151682 | 217966 301880 405520 534083

L 26 27 29 31 4.4 435 46 4.7 47 4.4

N—order of matrix, tg--sequential time, ._.luna__o_ time (50- micro-seconds)

sp~speed up
Table 3

6. Conclusion

esearch work shows that the congruence parallel algorithm for solving system of linear
O.“._.umonm quw.:« on distributed memory multiprocessors is practicable. For the problem
whose order of matrix is less then 100, the overhead is about 30 seconds in a five T80O
network by our experimental program. The very high efficiency and speed up of the
congruence parallel techniques makes the algorithm an excellent candidale for the exact
computations, high precision computations asd ill-condition preblems.
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The nonsymmetric Lanczos tridiagonalization algorithm is essentially the Gram-Schmidt
biorthogonalization method for generating biorthogonal bases of a pair of Krylov subspaces.
It suffers from breakdown and instability when a pivot at some step is Zero or nearly zero,
which is often the result of mismatch of the two Krylov subspaces. There are serveral
methods available in the literature to overcome this difficulty, most of which are hased on
constructing transformed biorthogonal bases of the same Krylov subspaces. We propose
instead to modify one of the two Krylov subspaces by introducing a new-start vector when
a pivot is small. The new-start vector generates another Krylov subspace, which we add
to the old one in an appropriate way so that the Gram-Schmidt method for the modified
subspaces yields a recurrence similar to the Lanczos algorithm. Then a banded Hessenberg
matrix is obtained and used to approximate the original matrix. Qur method enforces the
pivots to be above a given tolerance and can handle the situations of both exact breakdown
and near-breakdown. In particular, we recover the look-ahead Lanczos algorithm and the
Arnoldi algorithm as two special cases.

Our method is also new and of significance in the symmetric case. For example, by
applying the new method to the symmetric block Lanczos algorithm, we obtain an algorithm
that allows to increase the block size during the iteration and thus eliminate the difficulty
of choosing the block size.

Some theoretical analyses of the new method and numerical examples will be presented.



ITERATIVE SOLUTICN STRATEGIS FOR LARGE DENSE LINEAR SYSTEMS
COMING FROM 3D CFD AND ELECTROMAGNETICS PROBLEMS
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Large dense real and complex linear systems frequently arise in industrial
applications. Direct solution strategies seems to be very unattractive in this
case by the following reasons:

(1) The arithmetic complexity grows like the third degree of the problem
size, thus the solution of a problem of size 100 000 will take
thousands of hours of the CPU time even on biggest modern computers.

{2) The direct solution of even medium sized problems (like 20 000 -
30 000) reguires enormcus amount of the 1/0 activities which
can lead to a dramatics increse of the wall clock time despite of
the full overlapping of arithmetics and communications.

{3) To maintain the numerical stability the direct solution methods
may require pivoting strategies (especially when solving large
dense linear systems). They are able to ‘kill’ any out of core
solver.

The talk describes recent results related to construction of efficient
parallel iterative metheds for solving large dense linear systems. The suggested
approach is based on exploitaticon of Block Diagenally Perturbed - Block
Incomplete Triangular Factorizations accelerated by the Block Eigenvalue
Translation based Block GMRES (k) method [1]. Ensuring the numerical stabilicy
of Block incomplete Triangular Factorization by using Block Diagonal
Perturbations we are able to construct high quality preconditioners contaning
a relatively small number of nonzero entries. To process multiple right hand
sides we exploit the Block GMRES(k) method where wa perform one block iteration
for several right hand sides.

This iterative solution strategy enables us to reduce substantially
the arithmetic costs as compared with the direct methods (even when processing
hundreeds of multiple right hand sides) and to decrease dramatically the
required amount of the I/0 acitivities. It should be also emphasized that
our approach can kee¢p all processors busy when communications and arithmetics
can overlap.

The results of numerical experiments with dense linear systems of sizes
about tens of thousands are presented. Numerical experiments are performed on
CRAY /YMP/M30 computers.
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ABSTRACT
Lanczos Type Methods for the Solution of Nonsymmetric Linear Systems

by

David M. Young and Jen Yuan Chen
The University of Texas

In this paper we consider some Lanczos type methods for solving large systems of
linear algebraic equations with sparse, nonsymmetric matrices. Such systems typically
arise in the numerical solution of non-self-adjoint elliptic partial differential equations by
finite difference methods or finite element methods.

The Lanczos type methods which we consider can be derived from a class of
generalized conjugate gradient methods (GCG methods). With GOG methods one
chooses an auxiliary matrix Z and for n=1,2... determines an approximate solution, u™,
by requiring that 4™ ~u®e K,(r™, A) and that (Zr',v) =0 forall v ¢ K, (r'™, 4). Here
4™ is the initial approximation to the solution & = A™b of the given system, Au=b, and
r® = b~ Au™. The Krylov space K, (r', A) is spanned by the vectors
rArY. A", where 1™ = b~ Au™. Young and Jea [1980] considered three
procedures for the determination of the u™; these were referred to as ORTHODIR,
ORTHOMIN and ORTHORES. ORTHODIR is, in theory, the most robust since it
converges whenever ORTHOMIN and ORTHORES converge. However, numerical
experiments, ¢.g. Abbassian [1983], indicate that ORTHODIR often suffers from
numerical instability. Saad and Shultz [1986) developed a procedure, called GMRES,
which is mathematically equivalent to ORTHODIR but which is more stable and requires
fewer operators per iteration.

The amount of work required per iteration with the GCG methods usually
increases linearly as the number of iteration increases. Jea and Young [1983] considered
the application of the GOG method to the double system {A}u} = {5} where

0wt eeu)

By choosing the auxiliary matrix

@ @=1e)=(; o]

they obtained three Lanczos type methods which they referred to as LANDIR, LANMIN
and LANRES. 1LANMIN is equivalent to the “biconjugate gradient method” (BCG
method) considered by Fletcher [1976). For each method the work per iteration does not
increase as the number of iterations increases; however, the methods may break down
and, even when they do not, they often exhibit erratic convergence or fail to converge.

A number of papers, for example the paper by Freund and Nachtigal [1990] on QMR
and the paper by Van der Vorst [1992] on Bi-CGSTAB, have appeared recently which
describe modifications of the BCG method which are designed to improve its
convergence behavior. Other papers, for example Joubert [1990], have appeared which
describe methods for avoiding or coping with breakdown of the BCG method.

The main focus of this paper is on several Lanczos type methods other than
LANMIN (or BCG). It can be shown that one such method, LANDIR, converges
whenever LANMIN converges. However, as in the case of ORTHODIR, the behavior of
LANDIR is often very erratic. We consider modifications of LANDIR, LANMIN and
LANRES corresponding to the use of the GOG methods with the modified auxiliary
matrix {Z) = {AT}{E) applied to the double system (1). Also using the modified {Z) we
develop a procedure, which we call “LANGMRES”. This procedure which is similar to
GMRES in that it involves first determining a set of vectors which are mutually
orthogonal with respect to (£} and then finding a least squares solution to a related linear
system. For all of these methods the amount of work required per iteration does not

"increase as the number of iterations increases. We are now carrying out numerical

studies on LANGMRES as well as on the modified versicns of LANDIR, LANMIN and
LANRES, to determine how well they perform in comparison to BCG, LANDIR and
LANRES. We will also compare the procedure with a modified version of LANDIR,
based on re-scaling, which was recently developed by Mai {1992].
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THE CANONICAL CORRELATIONS OF MATRIX PAIRS
THEORY, ALGORITHMS AND EXTENSIONS

HONGYUAN ZHA*

The concept of cancnical correlations was first introduced by Hotelling to tackle
the problem of identifying and measuring relations between two sels of random vari-
ables. Canonical correlation analysis has a wide variety of applications in statistics,
econometrics, psychology, educational research, anthropology, botany, geography and
ecology. In the discrete sample case, where A and B are two matrices representing
ohservations of two sets of random variables, the canonical correlations of the matrix
pair (A, B) are defined as follows.

DEFINITION G.1. Let A € R™*™ and B € R™, and essume ikat

p = rank{A) > rank(B) = ¢.

The canenical correlations oy (A, B), - -+, 04(A, B) of the motriz pair (A, B) are defined
recursively by the following formulae, fork =1,---,4,

T T T BT
y? BT Ax yi B Az:
0. B} = = :
(0.1) o4 By= | mex BvilAzli: ~ T1BuellzllAz1H:
Ax g {Ary, - Ae )
| PRI TeREe P N

The following vectors of unit length,
AzifllAzdla, Bui/iByill2. (i=1,-- e

in (0.1) are called the canonical vectors or canonical scores of (A4, B); and

eifllAzillz, w/lByill, G=1,--.9),

are called the canonical weights. The angles 8 € [0, 7/2] satisfying cos 8, = (A, B)
ate called the principal angles between R{A) and R(B), the range space of A and B,
respectively.

Traditional methods for computing the canonical correlations are based on matrix
inversion and eigendecomposition. A significant improvement was achieved by Bjorck
and Golub who proposed a numerical algorithm using QR decomposition and singular
value decomposition {SVD) together with a first order perturbation analysis of the
canonical correlations. In this talk, we survey several of the recent results concerning
the analysis and numerical computations of the canonical correlations.

Ve first discuss pertubstion analysis of the canonical correlationa. We extend the
first order perturbation analysis of Bjérck and Golub, and derive perturbation bounds
of the canonical correlations for normwise as well a5 componentwise perturbations.
In response to the question raised by J. Demmel,! we also discuss the relative per-
turbation bounds for the canonical correlations and demonstrate that it is generally
not true that small relative perturbations in A and B wil} result in small relative

* Computer Sci Depart 1, 309 Whit Laboratory, The Pennsylvania State University,
University Park, PA 16802, USA. Email: shaBGcs.pru.edn. Part of the work was done jointly with
G, Golub.

1}, Demmel put forward the guestion about relative perturbation bounds for the canonical cor-
relations s the IMA workshop in 1992,
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perturbations in their canonical correlations. We then identify a class of matrix pairs
for which good relative perturbation bounds exist.

For the numerical computation, we concentrate on the updating problem of canon-
jcal correlations when data points are added and on computing the canonical correla-
tions of large sparse and/or structured matrix pairs. The updating problem involves
two different cases: 1) one of the matrix 4 or B is sugmented by a column vector.
This corresponds to the situation when the number of random variables in either sets
is increased; 2) Both of the matrix A or B are sugmented by a row vector. This cor-
responds to the situation when the number of observations in both sets is increased.
The first case can be reduced to rank-one SVD updating. The second case is more
complicated and involves both additive and mutiplicative SVD updating. We will
present algorithms based one & sequence of chasing.

For large sparse and/or structured matrix pairs, we present 3 modification of
the Lanczos algorithm. Since it has the attractive feature that it is not necessary to
compute the crthonormal basis of the column space of A or B as is required in the
Bjorck-Golub algorithm, one can take full advantage of the sparsity and/or special
structure (eg, Hankel or Toeplitz structure) of the underlying matrix pairs. We
demonstrate the efficiency of the algorithm by computing the canonica! correlations
between the past and future of stationary time series which involves matrix pairs that
are Toeplitz metrices.

‘We also briefly discuss several extensions and applications of the concept of canon-
jcal correlations: canonical correlations associated with a general bilinear form; canon-
ical correlations with (in)homogeneous linear constraints; canonical correlations of
several sets of random variables.



Residual Smoothing Techniques For lierative Methods
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An iterative method for solving a linear system Az = b produces iterates {z:} with associated
residual norms that, in general, need not decrease “smoothly” to zere. We consider “residual
smoothing” techniques that generate a second sequence {yx} via a simple relation g = (1 -
D Yk-1 + Tk

The first smoothing process is QMRS {Quasi-minimizal Residual Smoothing), by which QMR
can be obtained from BCG. By changing the basis of the Krylov subspace and solving the induced
canonical least squares problem without changing the residual of the least squares problem, we
explicitly show that QMR uses a “weighted mean™ techaique to smooth the BCG method. In the
QMR method, the upper bound of the residual norm, v/ + 17x, is the square root of the harmonic

mean of the squares of the previous residual norms of BCG,

1
1 k
P 2i=0 7]

and the residual vector of QMR is a convex combination of the BCG residuals,

VEFin = y i = [IrBCC |2,

K
qur _ _ 1 Muhqunn.

M._wﬂa Wm‘ i=0 .OW '

From above equations, we are able to derive the following,

2 2 2 2
QMR _ Tk _qQMmi | Tk _BCG QMR _ Tk QMR , Tk BCG
LR i e TR e Sk T e £ B
Te1 Pk Th-1 P

where b = -+ &,
I Tiwy A,

In general, we can extend this smoothing process to any iterative method to get a new sequence

of iterates {yx} with residuals {sx} by

¥ = Dete1 + (1~ 0e)%e, 9k = NSkes + (1= v,

- = N
by choosing 7 = ﬂmml_ and updating mm H..a.mwl_ + ..m_m. where px = lirellz = ||6 — Azill2. This vk

preserves the same quasi-minimizal residual property in the QMR method which minimizes the

1

related least squares problem. Freund's TFQMR and QMRCGSTAB of Chan et al. can be derived
directly from CGS and Bi-CGSTAB by these relations.

The second smoothing process is MRS (Minimal Residual Smoothing), in which we just choose
e to minimize ||sgl|z, where s; = misg_1 + (1 — ga)re. This idea was first introduced by Schdnauner
in order to get a norm nonincreasing function of the iteration index. We use a slightly different
approach to damp the correction steps and get an equivalent mathematical result that has some
numerical advantages. ,

‘We also could consider smoothing in the form
¥ = (1 - )zl + mzy

where {z{} and {z}} are given iterates; Brezinski and Redivo Zaglia suggest this with 7, chosen
to minimize the residual. Creating {z}} and {z}} from two different iteative methods is expensive.
A cheap way is that

t " ;
Ty = Tk, Ty = k-1,

where 5}, is simply chosen to minimize ||b — A(niye-1)ilz-
Another possibility is combining given Aaw:f. . *um&w to produce {y:} by
" -
=P e, Sl =
=1
The QMR squared method of Freund and Szeto can be obtained from the CGS iterates and cerfain

auxiliary quantities through above relation.
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Properties of linear approximations of matrices in
the spectral norm

Let M be a linear subspace of the linear space of rectangular real matrices. We
consider the problem of finding the best approximation from M to a given ma-
trix with respect to the spectral norm. The problem is & particular case of the
matrix nearness problems.

In the general case the spectral approximation is not unique. Therefore we
define a strict spectral approximation. We prove that it always exists and that
it is unique. The concept of the strict speciral approximation of a matrix is
based on the strict Chebyshev approximation of & vector introduced by Rice.



Robust Image Processing for Remote Sensing Data

Remote sensing has become an important resource for a variety of areas including
energy and mineral exploration, environmental studies, land use studies, military surveil-
fance, and archeology. An immense amount of remote sensing data from satellites such
as the Landsat and SPOT series have been, and continue to be, collected and archived.
Furthermore, new satellites with improved capabilities are currently being planned and
constructed. How to efficiently utilize this information is still under active study. Part
of the reason for this is that the data typically consists of a large number of multivariate
observations, the structure of which can change over time. For example, the Landsat
Thematic Mapper gives refiectances at each of 7 spectral bands — 3 visible, 2 near-
infrared, 1 mid-infrarcd, and 1 thermal infrared band. Thus a 1K by 1K pixel data set
consists of 1,048,576 observaiions on 7 variables.

In order to visualize such data, one can assign an RGB color value to each of 3
selected bands and then create a false-color image. Additional images can be created by
using various band ratios to generate the RGB values. A common problem with satellite
data is that topographic features produce uneven itlumination due to shadowing from any
appreciable relief present in the scene. One way 10 overcome the potential confusion from
this situation is to use band ratios, since (at least theorectically) a surface should receive
the same proportion of energy across the spectrum without regards to its orientation to the
sun, and should refiect in proportion to its spectral reflectance properties. Furthermore,
particular band ratios can be selected 10 emphasize the differential response of various
surface components to different bands. However, in some exploratory applications it
may be desired to examine a large number of band ratios in order to be certain that
any important feature will be detected. In such cases, the use of band ratios can greatly
expand the dimensionality of the dataset since there is a potentially large number of such
ratios that can be defined.

Typically, the reflectance of a feature at one wavelength is correlated with its re-
flectance at other wavelengths, and so some of the information contained in the individ-
val bands and band ratios is redundant. A commonly used approach to overcome this
problem is to use principal component analysis (PCA) to "decorrelate” such information,
In addition, PCA is useful as a tool for contrast enhancement of images constructed
from this data. However, since PCA is based on the eigenvalue decomposition {(EVD)
of the covariance matrix, it is highly sensitive to the presence of outliers or to subpop-
ulations that differ from the major features of a dataset. For this reason, a statistically
robust version of PCA can provide a more useful decomposition of the data in that it
can characierize the structure of the major feature of a dataset without the distorting

1

(Larry Ammann)

effects of different subpopulations, and at the same time produce better separation of
subpopulaticns from the major feature.

This talk discusses the applications of robust PCA to remote sensing data. An algo-
rithm for robust covariance estimation was derived in Ammann (1993) and is described
here in the context of robust principal components. Methods for image processing based
on this robust principal component analysis (RPCA) are described, including such prob-
lems as output data storage, histogram equalization and other visualization tools, identi-
fication of unusual spectral response structures or features. Examples of the application
of RPCA o0 datasets taken from the Landsat and SPOT satellites will be presented. Fi-
nally, problems associated with very high dimensional datasets and how RPCA can be
efficiently applied in such cases will be considered.



ROUND-OFF ERROR ANALYSIS OF FAST TRIGONOMETRIC
TRANSFORMS AND APPLICATION TO THE CHEBYSHEV
PSEUDOSPECTRAL METHOD.

M. ARIOLI'® axp L. VALDETTARO!?

In [1] we show that the relative error in the maximum norm for the Fast Fourier
transfom (defined as £, = J|A(F,.z) = #||oo/||#]lc, Where # denctes the Fourier trans-
form of the vector z and fi(F,x) the computed value), is bounded theoretically by
cuy/n, where ¢ is & constant of order 10, u is the machine precision (defined as the
maximum positive number such that fI{1 + u) = 1) and n is the vector length. The
analysis is based on a ‘worst case’ analysis, where all the rounding errors contribute
in the same direction. In practice, the rounding errors have a statistical distribution
and as a consequence the expected value for the relative error grows only as logn.
This result is supported by numerical experiments on several different types of initial
signals, ranging from echerent signals (having only a few harmonics excited) to white
noise and to “turbulent like” signals {cbtained by considering a signal with an imposed
turbulent spectrum and random phases); the same logarithmic behaviour was observed
on machines which support the IEEE arithmetic standard as well as on the CRAY?2
computer which does not have this arithmetic.

This very good error property of the FFT is however counterbalanced by the very
bad conditioning of the derivative operators. The condition number of the matrix for
the k** derivative in spectral space scales like n* for the Fourier and for the Spherical
Harmonics expansion, and like n? for the Chebyshev expansion (n being the order of
the truncation). The computation of the derivatives of a function at the grid points
in a pseudo-spectral method is done by transforming the signal from real space to
spectral space, applying the derivative matrix, and returning back to real space. The
roundoff error in the first transform is then amplified due to the bad conditioning of
the derivative matrix.

iFrom the preceding discussion we expect that the total roundoff error made in
computing the k** derivative is of order cun® log n for Fourier expansions. This is well
confirmed by numetical tests.

For Chebyshev expansions the analysis is a little more involved. As we have seen
previously, for the Chebyshev peeudospectral method using the Gauss Lobatto grid
points (z; = cos(xj/n),j : 0 — n), the transformations between real space (z;) and
spectral space {a;) are defined by:

n
134
o)=Y meon L, o220 3 b f(m)con T

=0 k=0
where b; = 1,§:1 — n— 1,b, = b, = 1/2. In both cases we must perform a cosine
transform on the original vector. Special care must be taken when implementing the
cosine transform, otherwise additional error ie incurred. In [2], we analyze the four
metheds which are commonly used:
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& The most straightforward way is to define a vector z of length 2n:

Ty =Tp

I = Ig

1 . .
4 = 5% J=lLon-1 =z, j=n+l,..,2n

The vector z has the symmetry z; = zy,.;. We will call such a sequence Even
Symmetric. The complex FFT of z is precisely the cosine transform of the
original signal. The roundoff error for this transform is the same as that for
the FFT, and the total error in computing the derivative scales like n** logn.
There are however two drawbacks: it requires twice the array storage because
it uses a vector of double length, and it requires more computational work
than is necessary.

¢ The second method takes into account directly the symmetries of the sequence.
It is shown in [3] that the Fourier transform of an Even Symmetric sequence
can be done in less operations than the FFT. The idea is that one identifies the
intermediate symmetries that occur in the FFT of the symmetric sequence,
and uses these symmetries to eliminate the duplicate or zero computations.
The computations needed reduce to half of those for the full FFT. The error
analysis is the same as that for the FFT, since the computations are a subset
of those done during the FFT. The drawback of thiz method ia that it is not
straightforward to implement. While the FFT’s are generally provided by the
vendors of & machine in a very optimized form, the symmetric FFT's must be
hand coded by the uzer.

¢ The third and fourth method are similar. They require half the operations
and half the storage of the first method. They are based on a pre-processing
stage, which is followed by a complex FFT transform of length n and a post-
processing stage (see [4], Section 4.4, for more details). The total error in
these cosine transforms scales like nlogn, and the k" derivative is computed
with a roundoff error which scales like r?**+ Jog n.

Summarizing, the straightforward cosine transform requires more computational cost
and memory, but it is much less affected by roundoff error. Since the derivative matrix
introduces a very large amplification of the error, it might be preferable to use the
straightforward transform when high resolutions are required.
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The rate of convergence of the conjugate gradient method
Q. Axelsson
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Abstract

The rate of convergence of conjugate gradient type methods is considered. Frequently it is
observed that the convergence of the norm of the residuals or iteration errors take place in
three phases: an initial phase with rapid decay during the first few iteration steps, a middie
phase of essentially linear rate and a final phase of superlinear rate of convergence. This is
explained here using various quantitative estimates involving the eigenvalues of the iteration
matrix. The case where the smallest eigenvalues are well separated is analysed in particular
detail.

For the case of real and positive nondegenerate eigenvalues an expression is derived
showing that for each relative accuracy e, there is an optimal number p of small eigenvalues
involved in the estimate in addition to the spectral condition number of the remainder of the
spectrum. Also the actual distribution of the Fourier coefficients of the initial vector is
involved. In this way using certain best polynomial approximations this is shown to explain
the observed behaviour of the rate of convergence. It can even explain small details in the
convergence during the seemingly linear rate phase. The above is an improvement of earlier
estimates by Axelsson (1976), Jennings (1977) and Axelsson/Lindskog (1986).

An alternative & priori qualitative estimate has been derived by LE. Kaporin and involves
the K-condition number (1/n tr(A))"/det(A), where n is the order of A. Hence, here all
eigenvalues are invoived. However, for typical distributions of the eigenvalues it is shown
that this estimate gives less accurate bounds, which can even be incorrect in its order of
magnitude as a function of n, n ~ . This bound will be improved here, but it can then not be
used as an 3 priori estimate.

A third type of estimates of qualitative type, i.e. not giving & priori bounds for the number
of iterations have been derived by van der Sluis/van der Vorst. They involve the behaviour of
the Ritz values for the corresponding "Lanczos” matrix. A comparison with our quantitative
estimate is presented.

Finally the first class of estimates (involving only some isolated eigenvalues and a
condition number for the remainder of the spectrum) are extended to the case of complex
matrices and to degenerate matrices. These type of estimates are applicable for Orthomin type
methods and for orthogonal residual type methods. It is examinated how the following
numbers influence the raik: of convergence
{i)  Theorder of the Jordan boxes
{ii)  The condition numnber of the transformation matrix 5 {to Jordan canonical form)

(i) Aqin1/2(A+AT)and 1 1A 112,

Among other things it is shown situations where cond(S) does not influence the number of
iterations at ali, even when cond(5) is very large.

The above estimates give the most complete explanation of the rate of convergence of the
conjugate gradient method among publications known to the author.
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Progress in the Numerical Solution of
the Nonsymmetric Eigenvalue Problem

Zhaojun Bai *

Abstract

With the growing demands from disciplinary and interdisciplinary fields of
science and engineering for the numerical solution of the nonsymmetric eigen-
value problem, competitive new technigues have been developed for solving
the problem. In this presentation, we examine the start-of-the-art of the al-
gorithmic techniques and the software scene for the problem. Some current
developments are also outlined.

Extended Abstract

Over several years working on the LAPACK project, and on algorithm and software
development of the nonsymmetric eigenvalue problem and communication with a vari-
ety of users who work in diverse fields involving scientific computing, the author have
seen a growing demand for the numerical solution of the nonsymmetric eigenvalue
problems. Meanwhile, in numerical analysis community, since Parlett’s exploratory
review paper entitled “The Software Scene in the Extraction of Eigenvalues from
Sparse Matrices” nearly one decade ago, and with the successful development of the
symmettic eigenvalue problem, many new numerical methods and analysis have been
developed for the nonsymmetric eigenproblem. The aim of this work is to review the
origine of the problem and the progress of the numerical technignes over the past
decade, and to share our view and expertise within scientific computing community.

The survey is by no means complete. One reason for this is that relevant articles
may be found scattered throughout the scientific and engineering literature, and the
task of tracking them all down is impossibly large. The author apologizes for the
ignorance of some important contributions to the problem that are not mentioned
here. A new book by Saad is an elegant source for studying the start-of-the-art
in large eigenproblem techniques. This review will only focus on the nonsymmetric
eigenvalue problem in the aspects of its origins, algorithmic techniques, software scene
and work in progress.

As defined by Parlett one decade ago, there are two different user groups for the
eigenproblem. Oge is called intensive user group and the other called sporadic user

*Current Address: Department of Computer Science, Texas A&M University, College Station,
TX 77842, e-mail address: bai®cs.tamn.edu

group. For the former group, spectral analysis is imperative to their entire work; they
have been spending tremendous efforts in terms of times and funding for extracting
the desired spectral information. But for the latter group, the need to compute
eigenvalues arises occasionally and the user wants to oblain them with minimal fuss.
With the rapid advances of computer facilities, in particular the massively parallel
computers, and the new engagement of interdisciplinary scientific computing activ-
ities, as proposed by J. W. Demmel, there are two different camps in each user
group according to their different desired priorities, in terms of computation details,
reliability and execution time, of a program. The first camp is made up of tradi-
tional library users, and the second camp is made up of high performance computing
researchers. For the first camp, the desiderata can be characterized as follows:

1. easy user interface with hidden computation details,
2. reliability; the code should fail as rarely as possible,
3. execution time.
However for the second camp, the desiderata are
1. execution time,
2. be able to access to internal details o tune data structures to their applications,

3. reliability; A program should expend only a negligible amount of time, space or
code in checking or taking precautions against rare eventualities that the user
knows may never arise for his or her particular applications.

These different desiderata give an extra dimension to numerical algorithm develop-
ment and analysis. To what extent can we satisfy both camps? In this presentation,
we will try to address this interesting question with respect to the nonsymmetric
eigenvalue problem.



Error Analysis of the Lanczos Algorithm for
the Nonsymmetric Eigenvalue Problem

Zhaojun Bai*

Abstract

This work presents an error analysis of the Lanczos algorithm in finite-
precision arithmetic for solving the standard nonsymmetric eigenvalue problem,
if no breakdown occurs. An analogy of Paige's theory on the relationship be-
tween the loss of orthogonality among the Lanczos vectors and the convergence
of Ritz values in the symmetric Lanczos algorithm is discussed in this paper.
‘The theory developed illustrates that in the nonsymmetric Lanczos scherme, if
Ritz values are well conditioned, then the loss of biorthogonality among the
computed Lanczos vectors implies the convergence of a Ritz triplet in terms
of small residuals. Numerical experimental resuits confirm this observation.
The results of such error analysis provide insight into the need for robustness
schemes, such as jook-ahead strategies, which attempt to avoid the potential
breakdown and instability in the nonsymmetric Lanczos procedure.

Extended Abstract

This work is concerned with an error analysis of the Lanczos algorithm for solving
the nonsymmetric eigenvalue problem of a given real n x n matrix A. In the applica-
tions of interest, the matrix A is usually large and sparse, and only a few eigenvalues
and eigenvectors of A are wanted. In [1], a collection of such matrices is presented
describing their origins in problems of applied sciences and engineering.

The Lanczos algorithm, proposed by Cornelius Lanczos in 1950 [7], is a procedure
for successive reduction of a given general matrix to a nonsymmetric tridiagonal ma-
trix. The eigenvalue problem for the latter matrix is then solved. The remarkable
feature in practice is that in this procedure, a few eigenvalues of A (often the largest
ones in algebraic magnitude) appear as the eigenvalues of a smaller reduced tridi-
agonal matrix. The scheme references the matrix A only through the matrix-vector
products Az and AT z; hence the structure of the matrix is maintained, which renders

the scheme particularly useful for finding a few eigenvalues of a very large and sparse
problem.

“Current Address: Department of Computer Science, Texas A&M University, College Station,
TX 77842, e-mail address: bai®ce.tamu.sdy
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In the 1970’s and 80’s, great progress has been made on the Lanczos algorithm
for solving a large linear system of equations with symmetric coefficient matrix and
the symmetric eigenvalue problem. Paige [8] was the first to give an error analysis
of the Lanczos algorithm in finite-precision arithmetic. Later, Parlett, Scott, Grear,
Simon, Greenbaum, Strakes and many others [9, 12, 5] presented further analysis
of the Lanczos scheme and its variants. These analyses conclude that the loss of
orthogonality among the computed Lanczos vectors is not necessarily a calamity,
since it accompanies the convergence of a group of Ritz values to the eigenvalues of
the original matrix. Today, the Lanczos algorithm is regarded as the most powerful
tool for finding a few eigenvalues of a large symmetric eigenvalue problem. Software,
developed by Parlett and Scott [9] and Cullum and Willoughby [3] can be accessed
via netlib, a software distribution system.

In recent years, there has been considerable interest in the Lanczos algorithm for
solving linear systems of equations with nonsymmetric coefficient matrix and the non-
symmetric eigenvalue problem. Parlett, Taylor and Liu [10], Freund, Gutknecht and
Nachtigal [4] have proposed robust schemes for overcoming possible failure (called
breakdown), or huge intermediate quantities {(called instability) in the nonsymmetric
Lanczos procedure. A theoretical investigation of the possible breakdown and insta-
bility of the nensymmetric Lanczos procedure is made by Gutknecht [6], Boley et al
[2] and Parlett [11].

Compared to the existing sophisticated error analysis of the Lanczos algorithm for
the symmetric eigenvalue problem, much less progress has been made on error analysis
of the nonsymmetric Lanczos algorithm. In this work, we give an error analysis for
the simple nonsymmetric Lanczos algorithm and study the effects of finite-precision
arithmetic. In the spirit of Paige’s floating-point error analysis for the symmetric
Lanczos algorithm [8], based on the rounding error model of the basic sparse linear
algebra operations, such as saxpy, inner product, and matrix-vector multiplication,
we present a set of matrix equations which govern all computed quantities of the
simple nonsymmetric Lanczos algorithm in finite-precision arithmetic. An analogy
of Paige’s theory on the relationship between the loss of orthogonality among the
computed Lanczos vectors and the convergence of a Ritz value for the symmetric
eigenvalue problem is also discussed in this work. We conclude that if Ritz values
are well conditioned, then the loss of biorthogonality among the computed Lanczos
vectors implies the convergence of Ritz triplets in termas of small residuals. The error
analysis results developed in this work also provide insight into the need for robustness
schemes, such as look-ahead strategies [10, 4], to avoid the potential breakdown and
instability in the nonsymmetric Lanczos algorithm.
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Long Abstract:

It i3 a challenge to design a parallel algorithm for the

nonsymmetric eigenproblem which scales for larger problems on larger
machines, uses coarse grain parallelism effectively,

deals with highly nonnormal matrices and strongly clustered spectra, and
does not waste time dealing with the parts of the spectrum in which the
user is not interested.

The coaventional Hessenberg QR algorithm is a fine grain algorithm and
has proven to be difficult to parallelire. Moreover,

it finds all the eigenvalues, and essentially just one (or a few)

at a time. In applicaticns whera only some sigenvalues sre desired, one
atill has to compute all of them.

If one only wants an invarlant subspace corresponding to & specified set of
elgenvalues, cne has to reduce the matrix completely to Schur form, and
then swap the desired eigenvalues along the diagonal to

group them together in order to form the desired invariant subspace.

In this working note, wo propose a collection of tools from which hybrid
sigenvalue algorithms may be constructed. The new tools we propose

usé the matrix sign function to both “‘divide and conquer’’ the matrix,

a8 well as count the number of sigenvalues in a region of the complex plane.
We desacribe how these tools might be combined to deal with

different kinds of spectra and user needs. We do not attempt to design a
‘'black box'’ for this problam since we believe that such an slgoxithm
would necessarily be much less efficient and reliasble than one tuned for a
particular application. All our algorithmic building blocks use at least
several times as many flops as serial Hessenberg (R, but these are almost
entirely in large and efficiently parallelizable block cperationa.
Furthermore, if we succeed in initially .

‘‘dividing and conguering’’ the mattix at least a few times, most of ths cost
will be in these initial reductions.

Dus to the potential ill-conditioning of the matrix inversion required for

the matrix sign function, we also propose to use a ‘‘astaircase’’ type algorithm
a3 3 preprocessing step to deflate near zerc sigenvalues.

This will permit us to compute the sign function with forward and backward
error proportional to the square root of machine precision. In other words,

we only proposs to achimve half precision in our ismplementation in order to
save time.

In recent years, there have been similar efforts by Dongarra and Sidani,
T.-Y. Ii and Z. Zeng, Auslander, Lederman, Tsac and Turnbull,

and Lin and 2mijewski. In the work of Dongarra and Sidani, an upper
Heasenberg matrix is divided and conquered by setting the middie subdiagonal
to zero, solving the two resulting subproblems recursively and in parallel,
and then merging the two subparts using Newton’s method. It fails a small
but nonnegligible fraction of the time because Newton’s method fails to
converge, or converges to the wrong solution. Li and Zeng divide an upper
Heaspenberg matrix the same way, but merge the subparts using homotopy
continuation applied to the determinant. It can alac fall occaaionally.

In work of Auslander, Tsao, Ledarman and Turnbull, a sequence of polynomials
is applied to map one part of the spectrum to zerc, and the other part to
one, and then the matrix is aplit into the corresponding invariant subapaces.
The rxesulting scheme is rich in matrix-matrix muitiplies.

Howaver, the restriction to polynomial mappings means the scheme i

only suitable for finding eigenvalues of matrices with real

spectrum, a very small fraction of real nonsymmetric matrices.

In work by Lin and Zmijewksi, instead of polynomial mappings, the matrix sign
function i3 used, which can be regarded as a stabilized version of a

schame proposed by Bsavers and Denman.

The goal is a *‘black box’’ for the eigenproblem.

In some sense the algorithms we propose using here are less

sophisticated and reliable than their serisl counterparts. This reflects the
fact that it is only such simple, large block algorithms which

map well to current massively parallel machines. This is something

of a daparture from traditional numerical analysis which can tend

toward sver more sophisticated algorithms, but it reflects how

well (or how poorly) we can currently exploit these machines.

The talk will discuss basic computational bullding blocks,
exiating iteration schemes for the sign function, numerical examples,
and futurs ressarch,



Efficient and Stable Algorithms for

Downdating Two-sided Orthogonal
Decompositions
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We discuss methods for downdating three different types of complete orthog-
onal decomposition of an m x n matrix A where m > n. Two of the methods are
new. The three types of decomposition can be characterized by writing them in

the form
A=U A m v vT ¢}

where U € R™*™ and V € R"*" are orthogonal, and C € R**" has one of the
forms

C= A R S v R € RExE T ¢ Rn-21x(n~F) ypper triangular @
SN0 T ) ISTT e e

C= ﬁ L o v L € ®xt G g Rn-*)x(n=F) Jower triangular ©)
“\NF G/ |{FG)|lr<e

N s 12032 ...20n

C = I = diag(oy,02,...,04) I (Trssnonon) lI< € 4)

Here k is the computed rank of A and ¢ is related to the tolerence used to

determine that rank. We use || - || to denote the Euclidean norm, || - |lr

to denote the Frobenius norm, and || - {j2,r is for expressions that hold for

both norms. For (2) and (3) it is presumed that some condition estimator has
concluded that || L= ||;1> tol or || R™? ||;'> tol , where p = 1,2,00 and
¢ = v/n — k +tol. For (4) we presume o} > lol.

*Computer Science Department, Penn State University, University Park, PA 16802-6103.
e-mail: barlow@cs.psu.edu, thaGes.psu.edu. The research of Jesse L. Barlow was supported
by the National Science Foundation under grant no. CCR-9201692.

tComputer Science Department and Applied Research Laboratory, The Pennsylvania State
University, University Park, PA 16802. The research of Peter A. Yoon was supported by the
Office of Naval Research under the Fundamental Research Initistives Progam.
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The forms (2,3) are the URV decomposition and the ULV decomposition
described by Stewart, and the form (4) is the familiar singular value decom-
position(SVD), We refer to all of these decompositions as two-sided orthogonal
decompositions(TSO decompostions). They arte what Lawson and Hanson call
HRK decompositions. _

The downdating problem is that of obtaining the TSO decomposition of A
where :

-(%)

Here A denotes a matrix whose TSO decomposition is known, and w denotes a
row of observations that we wish to delete. The opposite computation, updating,
consists of obtaining the TSO decomposition of A from that of A. Updating
and downdating are important in signal processing and statistical applications.

The problem can be transformed into a problem of finding a matrix C of the
same form as C, and an orthogonal matrix V such that

CTC - 22T = VETCVT ®)

where z = VT w.

Our approaches to downdating the decompositions (3)-(4) use ideas from
“chasing” algorithms and from the downdating algorithm due to Gill et al.

The chasing strategy for the SVD was originated by Rutishauser, recently
considered by Abdallah and Hu, and improved by Zha. Van Huffel and Park
extended Zha's result so that it can be applied to partial SVDs. Stewart gives
chasing strategies for the URV and ULV decompostions. All of the above strate-
gies were advocated only for updating, not downdating.

By themselves, these chasing procedures have two closely related weaknesses:

1. The numerical rank may no longer be “revealed” by the form of C.
2. The small singular values of ¢’ may be very inaccurate.

‘We show that the downdating method of Gill et al. can be used to obtain forms
that once again “reveal the rank”.
The following are the main results of this paper:

¢ A blockwise procedure for downdating the ULV decomposition where

0= A Lo v H.nw lower triangular (6)
- | (F G) llz,r <l (F G) ll2.r

where the blocks are conformal with (3).

F G

¢ A demonstration that the downdating technique of Gill et al. has a prop-
erty similar to (6) for the URV decomposition.
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o A procedure for downdating the SVD which cbtains a bidiagonal form
such that
&= A By 0 v By, B; lower bidiagonal e
H | B2 i< pIHETY.

Tere] B,
where the blocks are conformal with {4). This form preserves more of
the accuracy of the small singular values. We can then use one of several
algorithms to find the singular values of the bidiagonal matrix C to relative
ACCUTACY.

¢ A perturbation theory for the singular values and vectors from downdated
matrices and blockwise error bounds for the above procedures.
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Title: Structure pressrving difference schemes for matrix differential
sguations

Authors: Simon Bell and Bancy K, Nichols
Univeraity of Reading

Abstract:

Matrix differsntisl equations often have solutions with special structure,
and numerical methods for generating approximate solutions that retain
the special atructure are deairable. We consider hers systems for which
the solution matrix is orthogonal.

Most numerical methods for solving such systems do not preserve orthogonality
of the approximate scolutions (even ignering round-off errors). In this

paper we present two simple second-order difference schemes that preserve
orthogonality. The primary motivation for developing these schemes arises from
the computation of the analytic singular value decomposition (ASVD) of a
time-varying matrix A(t). In order to find continuous left and right

singular factors of the matrix, orthogonal solutions of certain differential
systems are neaded.

We consider the following class of differential equations
ax/dt = L(X,t) X , X{0) = X_0

where the matrix Z is skew-symmetric for all X and ¢ . Under mild
assumptions on continuity, if the initial matrix X(0) is orthogonal,
then the system has a unique solution that ia orthogonal.

fvo numerical schemes for solving this system are proposed. It is
established that orthognslity of the results (in exact arithmetic)

is preserved. Consistency and stablility of the achemes are also shown.
For linear systems, wvhere Z = gZ{t) 4is not dependent on X, the

schemes are expliicit; for non-linear systems, an iteration procedure
that preserves orthogonality for svery iterate is derived and shown to
converge under simple assumptions.

Numerical examples are presented to illustrate the behaviour of the
schemss. Applications to the computation of the ASVD of a matrix

are also described. The proposed methods can be gensralired to
higher order schemes.



An Oblique Projection Method for Solving
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ABSTRACT

An oblique projection method is adapted to solve large sparse unstructured sys-
tems of linear equations. This row-action technique is a direct method which can
be interpreted as an oblique Kaczmarz-type algorithm which converges in exactly
n-1 steps where n is the size of the problem. When a sparsity-preserving pivoting
strategy is incorporated, it is demonstrated that the technique can be superior in
terms of both fill-in and arithmetic complexity to more standard sparse algorithms
based on Gaussian elimination.



Improved Parallel Computations with
Toeplits-like and Hankel-like Matrices
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Summary. The known parallel algorithms for computations with general Toeplitz,
Hanke], Toeplitz-like, and Hankel-like matrices are inherently sequential. We develop some
new techniques in order to devise fast parallel algorithms for such computations, including

- the evaluation of Krylov sequences for such matrices, traces of their power sums, charac-

teristic polynomials and generalized inverses. This has further extensions to computing
" the solution or & Jeast-squares solution to s linear system of equations with such » matrix
B&Fggigﬁﬂﬁlgvﬁ?agg.ggﬁg
gmgm&g&ggmﬂggr!daﬂlsgg‘gnf%.
1oum span of a linear recurrence sequence. The algorithms can be applied over any Reld
of constants, with the resulting advantages of wsing modular arithmetic. The algorithms
consist of simple computational blocks (mostly reduced to fast Fourier transforms, FFT')
and have potential practical value. aozsgﬁgai&qg&bunug

~ results to the case of matrices representable as the sums of Toeplits-like and Hankel-like .

matrices and in addition show some more minor innovations, such as an improvement of
the transition to the solution to pumbn.-._ Toeplitz linear system T'x = b from two comput-
ed columns of T-?, which extends the previous result of Ammar and Gader for symmetric
Toeplitz systems. . . i .

Key words: Toeplite matrices, Hanke] matrices, parallel algorithms, displacement opera-

tor, displacement rank, Krylov sequences, polynomial ged, linear recurrence, least-squares
solution.

1891 Math Subject Classification: 65F05, 65Y03, 68Q40, 68Q25, 15400
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Unstructured Grid Problems on SIMD Machines with
Application to Iterative Methods

Petter E. Bjgrstad * w\owma S. Schreiber t

Large computational problems defined from highly unstructured discretizations, of three
dimensional geometries, represent considerable challenges for the design of efficient parallel
algorithms. In particular, there is a popular belief that these problems are very difficult
to handie on SIMD-style data-parallel machines.

As an important model case of such a problem, we consider the efficient implementation
of iterative methods where the computation of matrix-vector products are essential. We
assume that the number of such products (with the same non-zero structure) is so large
that preprocessing of the data can be afforded.

We consider a modular approach that can be divided into the following steps:

1. Partitioning of the grid using for example a spectral algorithm.

2. Further minimizing the inter-processor communication requirement by advanced
mapping algorithms that assign the gridpoints of the mesh to processors.

3. The use of a router compiler to determine an efficient sequence of communication
steps on the (nearest neighbor) communication network of the target machine.

4. The actual execution of the necessary communication and computation of the matrix-
vector product during an iterative procedure.

eswu&woaio_.rmbn_R.mﬂm._.ogosvnnm&ouﬂmﬂmmo:n@monmH..w..&Pumgo_...,__»wm
emphasis in our work is on the two last steps. :

In the actual implementation of our method, we focus on a SIMD style machine having
a two dimensional mesh of processor interconnections. The MasPar MP-1 and MP-2

*Institutt for Informatikk, University of Bergen, N-5020 Bergen, Norway. This work was performed
when the author visited RIACS

TResearch Institute for Advanced Computer Science, Mail mSv T045-1, NASA Ames Research Center,
Moffett Field, CA 94035-1000.

machines belong to this class and may (at first sight) appear unsuited for unstructured
mesh calculations. According to the latest NAS Parallel Benchmark, this machine is
among the most cost effective MPP machines in the industry. It is therefore of considerable
interest to investigate how well this architecture can handle unstructured communication.

The talk will discuss our discoveries about routing in this situation. In particular, we
report on:

» The use of longer distance communication compared to nearest neighbor only

¢ The use of diagonal communication

¢ The adaptive nature of our algorithm

¢ The balance of arithmetic and commaunication for complex 3-D unstructured grids
s The parallel implementation of the router compiler in Fortran 90

# The incorporation in a state of art iterative method

We show that one can implement these ideas achieving a good balance between arith-
metic steps and communication steps for complex three dimensional unstructured grids
mapped to a two dimensional machine. This holds true even in the case where the number
of gridpoints per processor is quite modest. We present results from a test implementation
of the complete process outlined above.



The periodic Schur decomposition. Algorithms and applications
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Abstract.

In this paper we derive a unitary cigendecompesition for a sequence of matrices which we call the periadic
Schur decomposition. We prove its existence and discuss its application to the solution of periodic differ-
ence equations arising in control. We show how the classical QR algorithm can be extended to provide a
stable algorithm for computing this generalized decomposition. We apply the decomposition alse to cyclic
matrices and two point boundary value problems.



A General Model for Orthogonal Projection Methods

3ames R. Bunch *
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Abstract When the overdelermined system of linear equations AX =~ B
has no solution, compatibility may be restored by an orthogonal projection
method. The idea is to determine an orthogonal projection matrix P (or R) by
some method M such that {4 B} = P[A B] (or [A B] =4 B]R),and AX = B
is compatible. A compatibility condition for the lower rank approximation and
subspace propertics of A in relation Lo the nearest rank-k matrix 10 A will
be discussed briefly. We establish a model for a general orthogonal projection
method M, such ss Jeast squares {LS), total least squares (TLS), or the rank
revealing QR factorization RRQR, by reformulating the parameter estimation
problem as an equivalent problem of nullspace deternination. When the method
is based on the singular value decomposition of the matrix [4 B, the model
specializes to the well known TLS method. Further, denote by Xy the minimum
norm solution to AX = B using method M. We find upper and lower bounds
for |Xar — X71sil, where X715 denotes the TLS solution. We consider M =
LS and RRQR.

* Speaker



Unitary Hessenberg Methods for Toeplitz
Approximations and Applications

Angelika Bunse-Gerstner and Chunyang He

Let Ty be an N x N Hermitian positive definite Toeplitz matrix and let
H(p) = H(y,---,Yn-1,p) be a unitary Hessenberg matrix in parameterized
form. If the parameters {7, }1'~" are the refiection coefficients from the Levin-
son algorithm applied to Ty, then for any p on the unit circle the Cholesky
decomposition of Ty is given by

u..?. = waﬁm—. .m:bvnn. seny HNZI—A\VNQEAQ—. .m-..ﬁbwﬂ-. ey H&Zlu A\Vmuu.

Thus we can associate to Ty a family of unitary Hessenberg matrices H(p).
This relation can be used to develop numerical methods for the basic sig-
nal processing problem of approximating a signal by a sum of an sinusoids
or more general a sum of exponentials. The frequencies and amplitudes are
determined such that the Toeplitz matrix of autocorrelation lags of the sig-
nal is approximated in some sense by the corresponding Toeplitz matrix of
the model. Two such models are the Pisarenko frequency model (PFM), and
the the compoeite sinusoidal model (CSM) by Sagayama and Itakura. Here
the amplitudes and frequencies are determined such that the first autocorre-
lation lags are matched. The relationship between the Toeplitz matrix and
the unitary Hessenberg matrices has already been used in several papers by
Ammar, Gragg and Reichel to improve the numerical computation of the
required quantities by making use of special unitary eigenvalue methods for
the Hessenberg matrix.

Here we consider the Toeplitz approximation model (TAM) introduced by
Kung in 1981. The task is here to find an N x N Toeplitz matrices of pre-
acribed rank n,, such that Ty — T is a Toeplitz matrix of rank n, with
minimal trace.

Assuming that n, + ny = N the relationship with the unitary Hessenberg
matrix H(p) can be used to see that the TAM is equivalent to the problem

of finding .
min 3 4% (o),

J=1

where H(p) = X(p)A(p)X(p)¥ ia the spectral decomposition of H(p),
hi(p) = olz1;(p)| and h;(p) is the j-th smallest h;(p},j = 1,...,N.

We present formulas for the derivatives of the eigenvalues and eigenvectors
of H{p) and use Newtons method to solve the optimization problem.
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Distances and Conditioning in Computational Control
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In this talk we investigate numerical methods for measuring the distance
from a controllable system to the nearest uncontrollable system and briefly
discuss some related problems. A linear control system

@m = Az + Bu

y = Cz
E, A€ R"*", B € R**?, is said to be {strongly) controllable if
1. For all A € C, [\E — A, B) has full rank, and

2. If the columns of S, form a basis of the null space of E, then {E, AS., B]
is full rank.

The distance to uncontrollability is defined by

(E+AE,A+AA, B+ AB)isun-
controllable and (AE, AA, AB)
is restricted to a set D of “allow-
able” perturbations

vo(E, A, B) =inf { [IAE, A4, ABJ|

The distance v(E, A, B) is related to the conditioning of a variety of computa-
tional control problems. The special case in which E = I and F is not allowed
to be perturbed has been extensively studied but few provably reliable methods
for calculating v(E, A, B} are known.

One natural choice of the set P of allowable perturbations is {o restrict AE
to preserve the null space of E. This prevents perturbations from introducing
differentiated variables not already present in the unperturbed system. Alter-
natively, D may be chosen to restrict AE to preserve the left null space of E.
This preserves the character of the algebraic constraints. In some contexts, e.g.,
the case E = I, it may be best {0 select D to restrict AE to be zero.

In the case that D is chosen to preserve either the left or right null space
of the set of allowable perturbations, the problem of calculating v(E, A, B) can
be to a one real varinble parameter optimization problem involving the smallest
singular value of a ane real parameter family of matrices.

Similar techniques ¢an be used to calculate the distance from a stable pencil
(one with all eigenvalues in the open left half plane or one with eigenvalues in
the unit disc) to the nearest unsiable pencil.

The probiem of caleulating v(E, A, B) boils down to the problem of finding
the nearest rectangular pencil with a regular part to a generic singular rect-
angular pencil. A related problem is that of finding the distance from a given
square, regular pencil AE — A to the nearest singular pencil. Reasonably effec-
tive heuristic methods for this problem have been known for some time, but it
appears to be quite difficult to find a failure free numerical method.



Overlapping Graph Decomposition Methods for
General Sparse Linear Systems

Xiao-Chuan Cai* Youcef Saad!

Domain decomposition methods have been extensively studied for finite element problems
whereby the subproblems are obtained by a partition of the underlying mesh on which the
finite element problems are formulated. In this presentation, we discuss algebraic extensions
of the class of overlapping domain decomposition algorithms for general sparse matrices. The
subproblems are created with an overlapping partition of the adjacency graph corresponding
to the sparse structure of the matrix. These algebraic domain decomposition methods are
especially useful for unstructured mesh problems.

The fundamental principle underlying this extension is to replace the domain of definition
of the problem by the adjacency graph of the sparse matrix, i.e., the graph that represents
its non-zero pattern. We note that by switching from a domain to a graph the concept of
Euclidean distance, which plays an important role in the optimality analysis of these domain
decomposition methods, is lost. We show in this presentation, mostly by means of numerical
experiments, that the efficiency of the overlapping methods can be preserved to some extent
with certain well-balanced overlapping graph decomposition.

In the practical implementation of the algebraic Schwarz algorithms, a crucial step is
the non-numerical preprocessing consisting of the graph partitioning and coloring. Many of
the useful schemes in graph theory, such as the perfect graph coloring scheme, are of NP-
hard. On the other hand, simple and easy-to-implement heuristics that generally perform
reasonably well exist.

*Department of Mathematics, University of Kentucky, Lexington, KY 40506. caites.uky.edn. Work
supported in part by the National Science Foundation and the Kentucky EPSCoRt Program under grant
STI1-9108764 and in part by AHPCRC, University of Minnesots, under Army Research Office grant numnber
DAAL0O3-89-C-0038.

Department of Computer Science, University of Minnescta, Minneapolis, MN 55455. suadécs.um. adu.
Work supported in part by NIST uader grant number S0NANB2D1272 and and in part by AHPCRC,
University of Minnesota, under Army Research Office grant number DAAL03-88-C-0038.
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Two Hybrid Algorithms for the Tridiagonalization of Symmetric
Sparse Matrices
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This paper considers sequential, direct methods for the reduction of a sparse, symmet-
ric matrix to tridiagonal form, using sequences of Givens similarity transformations. One
possible approach to sparse tridiagonalization is the construction of customized Givens re-
duction algorithms that attempt to exploit matrix sparsity. The experimentation of Duff and
Reid [DR75], however, shows that, even with careful use of row interchanges, adaptations of
Givens reduction for use with large sparee matrices usually experience prohibitive levels of
fill.

Assuming A has a symmetric permutation PT AP with moderate bandwidth, previously
the best direct tridiagonalization method consisted of two distinct phases. First a band-
width reducing preordering algorithm, perhaps GPS [GPS76, Lew82], permutes the sparse
matrix, which is then reduced with the O{(bN?)* band-preserving, column-oriented tridiag-
onalization algorithm of Butishauser [Rut63] and Schwarz [Sch68]. The latter algorithm,
subsequently referred to as the Rutishauser-Schwarz or R~5 algorithm, is used in EISPACK’s
BANDR implementation [GBDM77} and is the basis of the vectorized code, SSBTRD, in LA-
PACK [ABB+92]. We have shown [Cav92], however, that this approach is almost completely
dependent upon the preordering algorithm to take maximal advantage of sparsity. Typically
the selected preordering leaves the band of the permuted matrix relatively sparse. Unfor-
tunately, even if the application of a transformation by the Rutishauser-Schwarz algorithm
is enbanced to take full advantage of band sparsity, the unreduced portion of the band fills
rapidly and further opportunity to exploit sparsity is lost.

In this paper we discuss two new hybrid tridiagonalization algorithms, BANDHYS and
HYBSBC, which also use bandwidth reducing preorderings and band-preserving reduction
techniques. Both algorithms, however, rearrange the elimination sequence of nonzero entries,
taking better advantage of sparsity within the band of the permuted matrix.

We motivate our first algorithm, BANDHYB [Cav92], by the following observation. A
bandwidth reducing preordering frequently produces a permuted matrix, whose hand con-
sists of varying length spikes of nonzeros extending from the main diagonal. If the ends of
the longest spikea are “clipped” off, the matrix's bandwidth can be significantly reduced at
relatively low cost before the band becomes full. To execute this portion of the reduction,
BANDHYB uses 3 band-preserving sparse reduction algorithm, Bandwidth Contraction (or
BC), to eliminate band nonzeros diagonal by diagonal from the outside in. Once the interme-
diate matrix satisfies some measure of band “fullness”, the reduction process switches to the
Rutishauser-Schwarz algorithm to complete the contracted band’s tridiagonalization. BAND-
HYB has been implemented and tested on a large number of symmetric problems from the
Harwell-Boeing sparse matrix collection. In comparison te an GPS-BANDR approach, the

*The bandwidth, b, of the permnted matrix is defined a8 max; je(1._N).iy; i — 7] such that (PAPT),; # 0.
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GPS-BANDHYB slgorithm shows significantly reduced CPU requirements for most sparse
problems. Reductions of 25-45% in CPU time are common but select problems experience
reductions as high as 63%.

Qur newest algorithm, HYBSBC, is similar to BANDHYB’S approach, but improves upon
two aspects of the sparse reduction. First, HYBSBC takes additional advantage of band
sparsity by replacing the algorithm’s Bandwidth Contraction stage with a novel algorithm,
Split Bandwidth Contraction (or SBC). In addition, HYBSBC improves the regulation of the
reduction’s transition to the R-S algorithm.

For most sparse problems, the predominant cost of Bandwidth Contraction is bulge! chas-
ing. In recognition of this fact, the Split Bandwidth Contraction algorithm modifies the
elimination sequence of a diagonal’'s nonzeros to reduce the aumber of bulge chasing trans-
formations required. Rather than eliminate a diagonal’s nonzeros from top to bottom, Split
Bandwidth Contraction begins by identifying a split point. Starting just above the split point,
elimination proceeds back up the diagonal, while below the split point, elimination proceeds
away from the split point, towards the end of the matrix. If needed, shortened bulge chasing
transformation sequences, in the appropriate direction, accompany a band nonzero’s elimi-
nation. Buiges produced by eliminations above the split point are chased off the top of the
matrix, while bulges originating from other eliminations are chased off the bottom of the
matrix.

A split point is a block of one or more zero entries in the diagonal under reduction. The
zero entries completely isolate the transformations applied above and below the split point,
permitting the elimination sequence to start in the middle of the diagonal. Of course, this
type of reduction is not possible if the diagonal is dense. When the diagonal contains a single,
centered zero entry, the split point is fixed. In this case the shortened, bidirectional bulge
chasing sequences reduce the computational requirements of Split Bandwidth Centraction to
approximately 1/2 the cost of Bandwidth Contraction. However, when split points are forced
off center or several split points are available, we require strategies for proper split point
selection and the regulation of the algorithm’s traasition to B-S .

For general sparse matrices, the optimal split point may not be immediately obvious. We
present rationale motivating four split point selection strategies. Using experimental evidence,
we demonstrate that a so-called minimum displacement split point selection strategy with
damped tiebreaking is preferable.

When HYBSBC is applied to a sparsely banded matrix, we show that it is coet effective for
the SBC stage to continue while a split point exists near the middie of the ontermost nonzero
diagonal. Unfortunately, as a sparse tridiagonalization proceeds, the unreduced portion of
the band typically becomes more dense, and the best split points are forced towards either
end of the diagonal. As a result, at some point allowing one extra step of SBC, using an
off-center split point, and then switching to R-5 may become more costly than switching
to R-S immediately. The algorithm’s transition strategy must resolve this cost comparison
before the contraction of each subdiagonal by SBC.

The delis transition strategy developed for HYBSBC uses operation counts for the SBC
and R-§ algorithms to construct a general algebraic function that estimates the cost of delay-
ing the transition. While the cost of one extra step of SBC followed by R-S is estimated to be
less than immediately switching to R~S , the algorithm continues to contract the bandwidth

tA bulge is a entry, created by the application of & trassformation, lying outside the curreat
bandwidth.




with SBC . For practical sparse problems, we show that the transition bandwidths selected
by the delta transition strategy are close to optimal and that the cost of evaluating the delta
function is minimal.

In conclusion, we describe extensive testing of the HYBSBC algorithm with symmetric,
sparse problems from the Harwell-Boeing test matrix collection. In comparison to GPS-
BANDHYB, the GPS-HYBSBC algorithm reduces CPU time by 20-40% for many problems,
and by more than 50% for select problems. These additional gains make GPS-HYBSBC a very
impressive alternative to GPS-BANDR, with one problem tridiagonalized in approximately
1/5 of BANDR’s time.

References

{ABB*92] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D, Sorensen. LAPACK
Users’ Guide. SIAM, Philadelphia, 1992.

[Cav92] Ian A. Cavers. A hybrid tridiagonalization algorithm for symmetric sparse ma-
trices. Submitted to SIAM Journal on Matrix Analysis and Applications, March
1992. First revision, November 1992,

[DR75] LS. Duff and J. K. Reid. On the reduction of sparse matrices to condensed forms
by similarity traneformations. J. Inst. of Maths. Applics., 15:217-224, 1975.

{GBDMT77] B. 5. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler. Matriz Eigensystemn
Routines - EISPACK Guide Extension, volume 51 of Lecture Notes in Compuler
Science. Springer-Verlag, 1977.

[GPS76] N. E. Gibbs, W. G. Poole Jr., and P. K. Stockmeyer. An algorithm for reducing
the bandwidth and profile of a sparse matrix, STAM J. Numer. Anal., 13(2):236-
250, 1976.

[Lews82] J. G. Lewis. Implementation of the Gibbs-Poole-Stockmeyer and Gibbs-King
algorithms. ACM TOMS, 8(2):180-189, 1982.

[Rut63]  H. Rutishauser. On Jacobi rotation patterns. In Ezperimental Arithmetic, High
Speed Computing and Mathematics, volume 15 of Proceedings of Symposia in Ap-
plied Mathematics, pages 219-239. AMS, April 1963,

[Sch68]  H.R. Schwarz. Tridiagonalization of a symmetric band matrix. In J. H. Wilkinson
and C. Reinsch, editors, Linear Algebra, volume II of Handbook for Automatic
Computation, pages 273-283. Springer-Verlag, 1968.



DOMAIN DECOMPOSITION INTERFACE PRECONDITIONERS FOR
COUPLED PDE SYSTEM
SEPTEMBER 83,1992

TONY F. CHAN AND JIANPING SHAO °

Abstract. Domain decomposition technique has been efficiently used 1o design numerical solver
for elliptic probl on irregular domains and on the multiprocessor computer. Typically, s domain
is decomposed into many smaller regular nonoverlapping subdomains. The capacitance system on
the interface is usually solved by preconditioned conjugate gradient method. In this paper, by us
ing Fourier approximation and probe technique, we propose several interface preconditioners for the
model problems, the coupled elliptic aystem which comes from the linearization of semiconductor de-
vice simulation. We compare the convergence behaviors of these preconditioners in the performance
of preconditioned iterative method through providing numerical results and their eigenvalue distribu-
tion. We found that the change of coupling parameter greatly affects the properties of the coupled
discrete system. This brings difficulty in constructing efficient preconditioner for the coupled system.
Numerical results are presented.

Key Words. domain decompasition, capacitance matrix, the coupled elliptic system, Fouriet
approximation, probe techaique.

AMS subject classifications; 65N20, 65F10.

1. Introduction . Domain decomposition is a class of techniques nsed to design
efficient algorithms for elliptic problems on an irregular domain and multiprocessor
systems. The basic idea is to decompose a domain into many smaller regular sub-
domains and obtain global solution through iteratively solving subproblems on these
subdomains. This is relatively old idea which can be traced to Schwarz's alternating
procedure [?).

There are several reasons why such a procedure is attractive and useful. The first
is its obvious advantage in implementation on multiprocessor systems, The second
is ite flexibility to the feature of problems, such as irregular domain, discontinuous
coefficients, singular problem, and boundary layer.etc. The domain decomposition
technique has been successfully applied to many problems, see for instance {7, 7, 7, ?].

In this paper, we consider applying the non-overlapping domain decompasition to
the coupled elliptic systems which resuit from linearization of semiconduct device simu-
lation problems [?, 2, 7, ?]. The main idea is to decompose a domain into many smaller
regular subdomains, reduce the problem on the whole domain to the capacitance sys-
tem on the interface and then solve the interface system. Since the capacitance matrix
is expensive to evaluate and to solve directly, the reduced capacitance system is usually
solved by iterative method, suck as GMRES or BiCG conjugate gradient type method.
‘To minimize the number of iteration, it is imperative to have a good precondtioner for
the capacitance matrix. Our main purpose, here, is to derive interface preconditioners
for the coupled elliptic system. We notice that the variation of coupling term may lead
the coupled elliptic problem to become indefinite and unsymmetric. Hence, our main
interest is in finding the preconditioner that slightly depends on or does not depend
on the coupling parameter. Our efforts on this are based on two approaches. One is
Fourier approximation. The other is probe technique.

* Department of Mathematics, University of California at Los Angeles, Loa Angeles, CA. 80024

Fourier transform has been used to derive exact eigen-decomposition or triangle
similar matrix of the capacitance matrix for the simple model coupled elliptic system
on the rectangle with constant coefficients. This makes it possible to construct pre-
conditioners, which are similar to those proposed for Poisson equation by Dryja [?),
Golub and Mayer [?}, and Chan [?] respectively. One advantage of this approach is
that the mathematical setting is extremely simple. These preconditioners may be used
for variable coefficient coupled elliptic system on general domain through averaging
coefficients and approximating the itregular domains by regular demain sharing the
same interface. However, this generalization may be still sensitive to the variations in
these other parameters. i .

Probe technique, which was developed by Chan and Resasco[?], Keyes and Gropp
{?,7), and Chan and Mathew [?], is used here to construct interface preconditioner for
the coupled elliptic problem. Since probe technique is an algebraic method, it can easily
be applied to any operator on any domain, provided having decay properties. We notice
that the entries of the capacitance matrix decay rapidly away from its diagonal when
the coupling parameter is very small. However, this decay property is very sensitive to
the coupling parameter. In order to overcome this difficulty, we use Fourier transform
to concentrate the off diagonal entries to the diagonal entries, and then use probe
technique to approximately find these entries. This combination of Fourier transform
and probe method will be refereed as Fourier-probe technique. Probe technigue has
been successfully applied to construct preconditioners to 4th order problems, to the
Navier-Stokes {?, 7], to convection-diffusion problem [?], and etc..

This paper is organized as follows. In section 2, we describe the model coupled el
liptic problem and give the capacitance matrix on the interface. In section 3, we derive
the spectral decomposition of capacitance matrix and construct interface precondition-
ers by using Fourier approximation. Then, we discuss how to construct preconditioners
by using probe technique in section 4. Finally, we present numerical results for these
preconditioners and summarize the main properties.



A Composite Step Conjugate Gradients Squared
Algorithm for Solving Nonsymmetric Linear
Systems

Tony F. Chan Tedd Szeto

Recently, the Composite Step Biconjugate Gradient method {CSBCG)
was proposed by Bank and Chan {1, 2] to cure one type of breakdown inher-
ent in the BCG algorithm. Specifically, CSBCG skips over steps for which
the BCG iterate js not defined due to the singularity of the principal subma-
trix of the tridiagonal matrix generated by the underlying Lanczos process.
We propose a method, the Camposite Step Conjugate Gradients Squared Al-
gorithm {CSCGS), which uses a similar techrique to smooth the convergence
of the CGS algorithm [4]. By doing this, we obtain a method which not only
handles the breakdowns described above, but does so without involving mul-
tiplications by the transpose matrix and has a faster convergence rate. We
further investigate smoother convergence by applying a residual smoothing
technique as described by Schonauer [3] and Weiss [5). We also prove a “best
approximation” result for the method. Finally, numerical experiments are
shown illustrating the practical performance of the method.
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Finite Precision Analysis of Inverse Iteration
S. Chandrasekaran®

We prove that inverse iteration can efficiently compute eigenvectors for a real sym-
metric matrix so that they are numerically orthogonal and their residue is small - even in
the presence of pathologically close eigenvalues.

Given some set of computed eigenvalues of a real symmetric matrix, inverse iteration is
the most efficient way of computing the corresponding set of eigenvectors. The method has
plagued numerical analysts for some time as it involves the solution of highly ill-conditioned
linear systems at each stage. Wilkinson was able to give convincing arguments to show
that the method computes “good” eigenvectors in finite precision for distinct eigenvalues.
But clustered eigenvalues were not amenable to his srguments leading him to remark in his
book “The Algebraic Eigenvalue Problem™ that “The problem of determining reliably full
digital information in the subspace spanned by eigenvectors corresponding to coincident
or pathologically close eigenvalues has never been satisfactorily solved.”. In this talk we
provide a satisfactory solution to Wilkinson's problem.

In the process we obtain rigorous criteria for stopping and for crthogonalisation. These
criteria can be implemented by making simple modifications to existing implementations
of inverse iteration in LAPACK. In addition we reduce the “average-case” time complexity
of the method for symmetric tri-diagonal matrices of order n from O(rn?) to O(n®), and
also reduce the constant in front of the leading term in the time complexity by haif.

We briefly mention the highlights of the analysis now. We assume that the eigenvalues
are sufficiently accurate and that the eigenvectors are being computed from the smallest
to the largest. We analyse the computation of the ith eigenvector by first assuming that
no orthogonalisation is necessary. Traditionally the analysis was either carried out in the
canonical basis or in the actual eigenvector basis. Instead we use the set of orthonormal
columns nearest to the previously computed set of i — 1 eigenvectors as the basis in which
to carry out the analysis. Moreover we don’t try to bound the norm of the error (as is
traditional) but rather we bound the error in individual components in the new basis. The
chief result we use here is that the error along an eigenvector is inversely proportional
to the magnitude of the corresponding eigenvalue. We then show the worst sequence of
iterates comes from the power iteration of an unsymmetric matrix. This enables us to
prove that inverse iteration works in finite precision when no orthogonalisation is needed.

In case of orthogonalisation we divide the eigenvalues into several groups. As Wilkin-
son had already guessed it is necessary to perturb the computed ith eigenvalue in order to
separate it from the (£ — 1)st eigenvalue. We present criteria to divide the eigenvalues into
pathologically close eigenvalues, moderately close eigenvalues and far away eigenvalues.
The eigenvectors corresponding to pathologically close eigenvalues are treated as a sub-
space. After each iteration the iterate is orthogonalised against all previously computed
eigenvectors in the pathological space (in the current LAPACK implementation the iterate
is orthogonalised even against those eigenvectors which are just moderately close). Our
definition of the pathological space makes it possible to incorporate the orthogonalisation

* Joint work with 1. Ipsen.

errors so that we can define again the sequence of worst iterates through the power iter-
ation of an unsymmetric matrix. Upon convergence it is sufficient to orthogonalise the
iterate once against those eigenvectors which are moderately close.

With the benefit of hindsight we see that the actual implementation of inverse iteration
can be derived from purely infinite-precision considerations!
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For many scientific applications that require sparse linear equation solution, the most
reliable and flexible methods are those based on direct matrix factorization. Due to the
high potential performance of many paraliel machines, an efficient solution on such archi-
tectures would be highly desirable. Two types of programming environments have been
developed for distributed-memory parallel machines — message passing and data parallel.
Each provides a different level of control on the execution of a parallel program. This talk
will describe work done on the CM-5, a machine that supports both programming models,
to develop a set high performance sparse matrix routines.

The CM.5 architecture consists of k nodes each of which has four vector units. Each
node is controlled by a sparc vnowmm.uon which both issues instructions to the vector units
and handles communication between nodes. From a data parallel model the machine is
most naturally viewed um 4k processors running synchronously, while the message passing
model dictates viewing the machine as & collection of nodes, with the four VU’s in each
node acting &s an ensemble. In both programming models the dense matrix kernels on each
node have been coded to run at near optimal efficiency by using standard vectorization
techniques. )
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The elimination tree of a sparse matrix under a given ordering provides a precedence
graph of a series of dense matrix problems to be solved. The factorization and solution ex-
hibit two levels of parallelism — within each dense matrix operation and across independent
matrix operations. Our data parallel approach exploits the former type of parallelism by
mapping each dense problem (frontal matrix) to a square array of processors via a block
torus wrapping. When such a mapping is applied to the overall sparse matrix, all com-
munication between processors is performed during the factorization and solution of the
dense frontal matrices. Assembly of frontal matrices and stack manipulation are local to
each processor. For the model problem of 2 N by N grid this “parsing” of the ekmination
tree gives up to O(N) parallelism with high efficiency.

In addition to the concurrency within each fronial matrix, our message passing ap-
proach also exploits the second form of parallelism, by factoring multiple frontal matrices
coneurrently in disjoint subsets of the processors. Recursively partitioning the matrix in
this fashion leads to a subtree-subcube or nested B.Euvmsm. If this process is followed to its
logical conclusion, each processor will have a unique branch of the elimination tree. Within
frontal matrices, communication is limited to broadeasts of pivot rows and columns. As
frontal matrices that are factored in parallel are assembled, aggregate updates are sent
among, the processors.

To date we have acalar (Sparc only) implementations of complete sparse factorization
programs for. both the message passing and data parallel programming models. We are
now integrating our vectorized/parallelized dense matrix kernels into the parallel sparse
solvers. We will be able to present and contrast results of optimized implementations of

both at the meeting in June,



Domain Decomposition Methods for Ill-conditioned
Elliptic Problems with Applications to Semiconductor
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Rob Coomer
School of Mathematical Sciences
University of Bath
Bath
BA2 TAY
England

Abstract

Stationary semiconducting devices are classically modelled by drift-diffusion
equations. Employing the well-known change of variables to the quasi-Fermi
potentials, these equations may be written as the following system of coupled noalinear
elliptic partial differential equations

0,
heu.?&l Q.ﬁl‘ v, w— ﬂvu
—pur{w v, — v, w0~ ..bv.

~ XAy + b(exp(y — v) — (w— ¥)) ~ d
~V.(exp($ ~ 1) Vv)
~V.(exp(w ~ $) V)

These are to be solved for ¥, the electrostatic potential, and v and 1w, the electron and
hole quasi-Fermi potentials respectively. The equations are soived on some generally
polygonal domain in R? subject to mixed boundary conditions. In many models A, 6, p,
and p,, are constants, 4 is the (piecewise smooth) doping profile and r is some, generally
nonlinear, model for the recombination/generation rate.

A typical solution strategy involves decoupling the three equations with a
“Gummel” type iteration. That is, given a starting guess (y¥°, v°, ") we iterate around
the following loop

it

M A L §exp(Pptrt — vF) — (0 — PHH)) —d =0,
—V.(exp(p*t} — v¥) Vo) = por(wt — of, gh+l - ok wt — i),
V. (explat — PV = —p (i = o, g — o, ub - gH),

These partial differential equations are solved by piecewise linear finite elements
on triangles. The discretization of the first equation (the potential equation) yields a
nonlinear system for the approximation to . We construct upper and lower solutions
to this system and then use a parallel quasi-Newton method for its solution. We
have shown that, under sufficient conditions, the iterates of this algorithm converge
monotonically and quadratically to the unique solution. It is also known that the
overall decoupling algorithm converges for sufficiently small voltage biases.

0

We are therefore interested in efficient methods for solving the large linear systems
which arise from this decoupling strategy. Those associated with the potential equation
are (relatively) wellconditioned in comparison to those arising from the second and
third equations {the electron and hole continuity equations respectively). Thus in this
work we focus on problems of the form

~V.(aVu}=fon§, 0.1)

with appropriate boundary conditions and where & is piecewise smooth on the domain
{2 but may take widely differing values from subregion to subregion. As shown by
Markowich, the exponential coefficients in the electron and hole continuity equations
typically have this property with jumps which may be 0{107) across interior layers.

We consider domain decomposition methods for (0.1) and their implementation on
a 1K MasPar parallel architecture. The domain is first divided into quadrilateral
substructures which are then further subdivided to obtain a fine triangulation on
which (0.1) is discretized by finite elements. The resulting linear system is solved by
locally eliminating unknowns associated with the interior nodes of the substructures
and solving the remaining Schur complement gystem for the substructure boundary
unknowns by a preconditioned conjugate gradient method (PCGM).

The preconditioner in its most general form is the sum of local block diagonal
approXimations to the Schur complement (involving unknowns along edges of
substructures and/or unknowns local to a vertex of the coarse grid) plus a coarse
grid operator which is needed to simulate the global interaction of the substructures.

Widlund and Dryja have shown that if a preconditioner consisting of the vertex
spaces (with an overlap proportional to the coarse mesh diameter) together with the
coarse grid operator is used, then the convergence rate of the PCGM is independent
of the number of substructures and the mesh diameter of the triangulation. They
have also shown that if the vertex space approximations are replaced with edge space
approximations that have no overlap, then the convergence rate grows logarithmically
with the ratio of coarse mesh to fine mesh diameters. Furthermore Smith has shown
that the convergence of the latter strategy is independent of the jumps in the value of
a across substructure boundaries.

We have so far implemented the optimal method of Widlund and Dryja on a 1K
MasPar MP-1 parallel computer. This is a SIMD (Single Instraction Multiple Data)
machine with a square array of 1024 processing elements each of which has 16KByte
RAM. The architecture of the machine is such that to find and explicitly invert the
preconditioners would be prohibitively expensive, so the preconditioning solves are
done by parallel inner conjugate gradient loops. We have resuits obtained from various
test problems which reflect the theoretical results of Widlund and Dryja (even though
the preconditioning solves are inexact) and which are comparable with varicus other
methods.

In the coming months we hope to enhance the speed of execution of our code by
improving the coarse grid solver, which is proving to be expensive at present. We also
hope to implement the version using edge space rather than vertex space approximation
to obtair convergence independent of the jumps in 6. We then hope to try a mixture of
edge and vertex space preconditioners along with the coarse grid preconditioner in an
attempt to obtain convergence independent of subdomains, triangulation and jumps
in @. We feel that a method of this type would be well suited to our semiconductor
application where a is effectively constant on large regions of the domain with very
sharp fronts between these regions.
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Remarkable progress has been made in bath theory and applications of all important areas of
control. The theory is rich and very sophisticated. Some beautiful applications of control theory
are presently being made in aerospace, biomedical engineering, industrial engineering, robotics,
economics, power systems, etc.

Unfortunately, the same assessment of progress does not hold in general for computations in
control theory. Control theory is lagging behind other areas of science and engineering in this
respect. Nowadays there is a revolution going on in the world of high performance scientific com-
puting. Many powerful computers with vector and parallel processing have been built and have
been available in recent years. These supercomputers offer very high speed in computations. Highly
efficient software, based on powerful algorithms, has been developed to use on these advanced com-
puters, and has also contributed to increased performance. While workers in many areas of science
and engineering have taken great advantage of these hardware and software developments, control
scientists and engineers, unfortunately, have not been able to take much advantage of these devel-
opments.

Progress in computational aspects of control theory, especially in the area of large-scale and
paraliel computations, has been painfuily slow. On the other hand, there are practical sitnations—
such as the design of large space structures, control of power systems, and others—that give rise
to very large problems, some of which are so large that they can be considered grand challenge
problems,

The need for expanded research in these areas has been clearly outlined in the recent panel
report “Future Directions in Control Theory: A Mathematical Perspective.” The control com-
munity has been urged to collaborate with numerical analysts, software engineers, and experts in
large-scale, parallel, and symbolic computations to develop interdisciplinary projects for computer
solutions of real-time control, complex control systems, intelligent control, stochastic control, non-
linear filtering, and other control problems.

In the last few years, the author, in collaboration with some well-known experts on large-scale
and parallel computations (Chris Bischof of Argonne National Laboratory and Youcef Saad of the
University of Minnesota, as well as several of the latter’s Ph.D. students), has developed a few
computationally viable parallel algorithms and algorithms for large-scale computations for impor-
tant linear algebra problems arising in control [?7], [?}-{?]. Among these problems are those of
controllability, the eigenvalue assignment problem, design of observers, and matrix equations, to
name a few. These algorithms have been implemented on some of the existing parallel architectures
and (nearly) perfect speed and speed-up have been achieved in all cases. It is believed that these
algorithms will be highly beneficial to practicing control engineers and will provide incentive for
expanded research in this area.

In this paper, we will present an overview of these and other existing parallel algorithms for linear
control problems, giving particular attention to block algorithms for high performance computing.
The results of performance of some of these algorithms on existing parallel/vector architectures
such as the ALLIANT FX/8, the CRAY YMP, Intel ipsc and others will alsoc be presented. The

lecture will conclude with remarks on “Future Directions of Research on High Performance
Computing for Control.”
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An extended Kaczmarz’s method for £, minimum norm solutions Absiract, This paper presenta a row relaxation method for solving the problem

by inimize Jz/3/p
subject to Az =}
where 1 < p < 00. It is shown that the dual of this problem has the form
s T T
- AT yHe
Achiya Dax maximize by - A" yll§/¢
where ¢ = pf(p ~ 1). Moreover, let § solve the dual and let g = (x,,... +Za) € R® solve
the primal, then z; = uhm.h_-iwummbﬁmm.ﬁ where g; denotes the j-th column of A. That
is, a primal solution is easily retrieved from a dual one. Maximizing the dual objective
function by changing one variable at a time results in an iterative scheme that resembles
June, 1992 Kaczmarz’s method. This feature makes the new scheme suitable for problems in which

A is large, aparse and unstructured. Numerical experiments illustrate the ability of the
proposed method to bandle very large problems of this kind.
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Numerical Methods for Optimal Control Problems

June M. Donato*

January 26, 1993

Here we consider a two-sided game for a non-local competitive system
where the contro! is on the source terms. The two original equations give
rise to two more adjoint equations. Thus, we are led to solve four coupled
non-linear parabolic partial differential equations in four variables.

First, we consider the numerical solution of two-dimensional elliptic ver-
gsions of the coupled systems. Several methods for solving these nonlinear
systems are utilized. Of the methods tested we chose the point Gauss-Seidel
Newton iteration for the further study of system. Parameters within the sys-
tem are varied and the behavior of the solutions ia compared against theory.

Next, we consider the parabolic versions of the systems. The difficulty
becomes one of handling the time steps. This is made difficult in that the
two original equations are specified forward in time (initial conditions are
given), whereas the adjoint equations are specified backward in time (final
time conditions are given). We again investigate a variety of techniques in
solving these systems, including a method based on the concept of multigrid.
But here, we use a multigrid-like method in time, not in space.

This work was done in conjunction with Dr. Lenhart {University of Ten-
nessee, Knoxville) and Dr. Protoposescu (Oak Ridge National Laboratory,
Tennessee).

*Osk Ridge National Laboratory, Tennessee



Solution of symmetric indefinite sparse iinear squations
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Abstract

The solution of sparnse symmetric indefipite equations is a common subproblem
of many numerical calculations, particularly in conmtrained optimization
problsms, for example the KET equaticns or subprobiems in the sclution of
linear programs by ianterior point methods. The resulting linear system is of
the form

T
H A
A 0

where the matrix H is symmetric but is scmetimes non-definite.

For some years we have had & code in the Harwell Subroutine Library to solve
sparse symmetric indefinite prcblems. The code, called MA27, uses a modified
form of the Bunch-Parlett-Kaufman pivoting algorithm to maintain stability
and exploits sparsity by using a muitifrontal approach.

This code does not work well on structured problems of the form shown above.
We discuss why this is the case, and examine design changes to improve the
performance of this code on problems with zeros on the diagonal. We illustrate
the affect of our changes and discuss the design of our software that
implements these new techniques.

Wa also consider some other methods for solving the augmented system shown
above, including iterative methods that use eigenvalus approximations to
accelerate convergenca.



A Supernodal Approach to a Sparse Partial Pivoting Code

Stanley C. Eisenstat, John R. Gilbert, and Joseph W.-H. Liu

" ABSTRACT

The problem of solving sparse symmetric positive definite systems of lin-
ear equations on sequential and vector processors seems to be relatively well
understood. Normally the solution process is broken into two phases:

1. symbolic factorization to determine the nonzero structure of the Cholesky
factor

2. numeric factorization and solution.

The use of elimination trees and compressed subscripts has reduced the time
and space for the symbolic factorization to a low order term. The use of
supernodal elimination (or multifrontal elimination) has allowed the use of
dense vector operations for nearly all of the floating-point computation, thus
reducing the symbolic overhead in the numerical factorization to a low order
term.
For unsymmetric systems where pivoting is required in order to maintain
numerical stability, the progress has been less satisfactory.

Recently, Eisenstat and Liu showed how to exploit structural symmetry
to decrease the amount of structural information required for the symbolic
factorization of a sparse unsymmetric matrix (i.e,, for obtaining the nonzero
structures of the factor matrices). They then showed how to use this tech-
pique of symmetric reduction to improve the performance of a class of partial
pivoting codes for the LU factorization of large sparse unsymmetric matri-
ces. The result was that the time and space for symbolic factorization was
reduced to a low order term (the resulting speedup was more than a factor
of two for some problems).

In this talk we will describe how a similar approach can be used to gener-
alize supernodes to the unsymmetric case. Preliminary results suggest that
the total time can be as much as 25% less than the time to factor the matrix
given the sequence of pivots and the symbolic factorization of the reordered
matriz.



Fast Numerical Solution of the Radiative
Helmholtz Equation by Imbedding

Oliver Ernst

The Helmhoitz or reduced wave equation describes the spatial part of wave phe-
pomena, when constant propagation speed and harmonic time dependence are as-
sumed. In many physical applications, known as scattering problems, the wave field
resulting from the interaction of a physical body, known as the scatterer, with some
known incident wave is sought. This requires solving the Helmholtz equation

~Au—-klu=f,

on an unbounded domain P. Here, k € IR is the wave number and f is a source
term. A unique solution to this equation is singled out by imposing the asymptotic
condition

lim #2% (u, —iku) =0

=00
known as the Sommerfeld radiation condition, r denoting the radial coordinate and
d the dimension of the underlying space. Physically, this asymptotic condition de-
‘termines whether the solution will be an incoming or outgoing wave.

When the infinite domain is truncated for numerical computation of the solution,
this introduces s new, artificial boundary B on the computational domain. It then
becomes very important to accurately incorpotste the radiation condition into the
finite-domain problem. This has recently been solved by Keiler and Givoli[3, using
the so-called Diricklei-16-Newmann (DtN) mapping, which works whenever the arti-
ficial boundary is a circle or sphere in two or three dimensional domains respectively.
This method has the advantage that the solution of the problem formulated with
the DtN boundary condition has as its solution the restriction of the solution of the
unbounded-domain problem to the computational domain, which is 85 good as one
can do.

In this talk, we will describe the linear system of equations that arises when
the Helmholtz equation is discretized on a truncated domain using finite differences
and how the DtN formulation fits in well with classical fast solvers based on the
fast Fourier transform and cyclic reduction techniques {cf. [1]). These techniques
have a serial complexity of O(nlogn), where n is the number of gridpoints of the
discretization. To apply these fast techniques, it is necessary for the underlying
domain to be separable, i.e. that the boundary consist of coordinate surfaces. For
the circular or spherical artificial boundaries required by the DIN boundary condition,
this is achieved by using polar coordinates. Direct application of fast solvers would
then work only for circular scattering bodies centered at the origin. In order to extend
the method to arbitrarily shaped scattering bodies, we use a computational technique

known as the capacilance malriz method (see e.g. {2, 4]). This is an imbedding
method, in which the linear system of equations resulting from the discretization is
written es a low-rank modification of the same problem on a separable domaia (in this
case an annulus), for which the fast algorithm is available. The capacitance matrix
method then requires applying the fast solver once and, in addition, the solution of a
dense linear system of dimension p, the capacitance matrix equation. Here, p denotes
the number of gridpoints in the domain for which at least one of its neighbors in the
difference stencil used to approximate the Laplacian fails to lie inside the domain.
In its original version (2], the approach was a purely algebraic one and the ca-
pacitance matrix equation was based on the Woodbury formula for the inverse of a
rank-p modification of a matrix. In [4], another appoach, which mimics discretely
the integral equations of potential theory for solving elliptic boundary value prob-
lems, is used. The main idea is to view the fast solver applied to a problem on a
larger (possibly infinite) domain as acting like a discrete free-space Green’s func-
tion, which can then be used to incorporate the boundary condition imposed on the
smaller domain. This yields well-conditioned capacitance matrices for a larger range
of boundary conditions than does the purely algebraic approch. While the work in
{4} was mainly concerned with positive definite operators, we demonstrate that these
techniques also work well in the case of the indefinite Helmholtz operator.
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A number of signal processing problems can be seen to require numerical methods for different
unitazy eigenvalue problems.

One of these problems is the discrete least-square approximation of & real-valued function f
given at arbitrary distiact nodes {#,}7., in [0,2x) by trigonometric polynomials t in the discrete
norm || f~t)] = (They 1£(8:) - t(8:)1%w?)}, where the {w]}5.., are positive weights. The problem
can easily be reformulated as the standard least square problem of minimizing D Ac— Dy over all
coefficient vectors ¢ in the Euclidian norm, where D = diag(w, ...,wm) and A is the transposed

m x n Vandermonde matrix
1 Hw wen kﬂ...u
A=1: v
1 % 88 - 7
with £, = ezp(if,}.

The usual way to solve this least square problem is to compute the QR decomposition of DA.
But DA is just the Krylov matrix K(A, g, n) = [0, AGo, .., A" 0] (where A = diag(2y, ..., Zm)
snd gy = (W1, .-yim)T). We may therefore use the following consequence of the Implicit Q
Theorem to compute the desired QR decomposition. H there exists a unitary matrix U such
that USAU = H is a unitary upper Hesseaberg matrix with positive subdiagonal elements,
then the unique QR decomposition of K(A,qq,m) is given by UR with R = K(H,e,,m). The
construction of such a unitary Hessenberg matrix from speciral data, here contained in A, is
s inverse eigenproblem. Thus the best trigopometric approximation to f can be computed vis
solving this inverse eigenproblem.

A different -ﬁwg is to reformulate the approximation problem as the standard least square
problem of minimizing DAL ~ D f over all coefficient vectors { in the Euclidian norm, where

1 lm.ﬂ..— ﬂg.n e Imﬂuﬁn Bﬂ~°-
huﬁn : : : : v

1 sinf, cosfn --- sinlf, coslfm

and ! is the degree of the desired trigonometric polynomial. DA is the product of the modi-
fied Krylov matrix (A, go,1) = [gos Ags A" s, AG0, A gy, ..., A'ty, A¥'go] and a block diagonal
matrix F = diag(1, B, B, ..., B) with B = A |,.. ”

v. K there exists & ugitary matrix Q such
that §#(A - ANQG, = G, -G, is a unitary matrix pencil in parametrized form, where G,,G,

are unitary block diagonal matrices with block size at most two, then the unique QR decompo-
sition of k(A,4,,1) is given by QR with R = x(G.G] ,e,1). From this a unique (real-valued)
QR factorization of DA is easily obtained. The construction of such & unitary matrix pencil in
parametrized form from spectral data is & generalized inverse eigenproblem.

In this talk we present algorithms for discrete least-square approximations that are based
on schemes for the solution of an inverse eigenproblem for uaitary Hesgenberg matrices H =
H{(71,--+71w) s0d for unitary matrix pencils in parametrized form G, — AG,.

Reichel, Ammar and Gragg observe in [1] that solving an inverse eigenproblem for unitary
Hessenberg matrices is equivalent to computing Szegd polynomials, that is to computing poly-
nomials that are orthogonal with respect to an inner product on the unit circle. The scheme for
solving an inverse cigenproblem for unitary matrix pencils in parametrized form is developed
from s backward stable algorithm given by Bunse-Gerstner and Elsper in [2] which reduces &
unitary matrix pencil to parametrized form. It is shown that this is equivalent to computing
rational functions that are orthonormal with respect to aa inner product on the unit circle.

The algorithms require only O{mn) arithmetic operations as compared with O{mn?) opera-
tions needed for algorithms that ignore the special structure of DA. We compare the presented
algorithms with each other and with a general QR decompoeition. We will see that the proposed
algorithms produce consistently accurate results that are often better than those obtsined by
general QR decomposition methods for the least-squares problem.
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Abstract. The singular value decompesition (SVD) is a widely used computational
tool in various applications. However, in some applications the SVD is viewed as
computationally demanding or difficult to update. The rank revealing QR (RRQR)
factorization and the recently propesed rank revealing two-sided orthogonal (URV
or ULV) decompositions are promising altemnatives. In this paper we prove sharp
s posteriori bounds for sasessing the quality of the subspaces obtained by rank re-
vealing URV or ULV decompositions. We implement the algorithms in an adaptive
manner, which is particulatly ugeful for applications where the “noise” subspace must
be computed, such as in signal processing or total least squares. Our analysis shows
that the quality of the URV or ULV decomposition depends on the quality of the
estimated start vectors, and not on a gap condition. From our snalysis we conclude
that the rank revealing two-sided orthogonal decompositions may be more accurate
alternatives to the SVD than the RRQR factorization.

December 1992; Revised February 1983.
UCLA CAM Technical Report 92-51



GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
CAN FAIL IN PRACTICE

LESLIE V. FOSTER}

Abstract. Even though Gaussian elimination with partial pivoting is very widely used, one
can construct n by n matrices where the error growth in the algorithm is proportional to 2"=1. Thus
for moderate or large n, in theory, there is a potential for disastrous error growth. However, prior
to this year no reports of such an example in » practical application have appeared in the literature.
We present two related examples that arise naturally in practice and which lead to disastrous error
growth in Gaussian elimination with partial pivoting-

Key words. Gaussian elimination, numetical stability
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1. Extended Abstract.

Gaussian elimination with partial pivoting (gepp) is one of the most widely used
algorithms in scientific computing. When applied to an n x n matrix A it results in a
factorization PA = LU, where P is a permutation matrix, L is lower triangular and
U is upper triangular. Let X represent the solution to Ax = b computed in floating
point arithmetic on a computer with relative machine precision €. Then it is known

[Wil] that
(11) I = xlloo < dn*condo(A)pe
Hxllco
where x is the exact solution, condeo(4) is the condition number of A in the supremum
norm and p is the growth factor,

L2 max;, j k _amw
(12) P= "maxi; lai

with nmw denoting the i,j element after the kth step Ommmﬂmnmmou.ﬂwnmmmvvmm
considered numerically stable unless p is large.

The theory for Gaussian elimination with partial pivoting suggests that p can be
very large. The sharpest bound is p < 9n—1 4nd this is attained, for example, for

matrices Ap of the form [Wil]

1 0 o 0 1
-=1 1 0 0 1
(1.3) As={ -1 -1 1 0 1
“1 -1 -1 1 1
——1 -1 -1 =11

tDepartment of Mathematics and Computer Science, San Jose State University, San Jose, Cal-
ifornia, 95192.

Thus for moderate or large n the growth factor can be large. However, more than

25 years ago Wilkinson reported:

“I is our experience that any substantial increase in size of elements of
successive A, is extremely uncommon even with partial pivoting. --- No
example which has arisen naturally has in my experience given an increase
by a factor as large as 16.”

Since Wilkinson made his remarks, [DBMS] reports an example where p is 23 and [HH]
reports several natural, non-contrived examples where the growth factor is between
n/2 and n. Although the growth factors reported in these papers are larger than
those mentioned by Wilkinson, they do not grow exponentially with n and are far
from the theoretical limit of 2°~1, Recently Wright [Wri] presented a class of practical
examples where the growth factors do grow exponentially. Wright’s paper and ours are
related in that we both consider boundary value problems with coupled end conditions.
Wright discretizes these problems using the multiple shooting method and we rewrite
the differential equations as integral equations and use the quadrature method [Bak,
DM]. The growth factor for our matrices can be closer to the theoretical limit than the
growth factor for Wright’s matrices and our examples can have large growth factors for
problems arising from a single differential equation whereas Wright requires a system
of two or more differential equations for large growth factors. Wright’s examples
involve sparse matrices and our matrices are dense. Finally, our results include an
analysis of problems arising from Volterra integral equations. These are not discussed
by Wright.

In [HH] Higham and Higham characterize all matrices A where partial pivoting
has growth factor 2"}, However a matrix need not be of the form (1.3) or in the
class of {HH] to still have a large growth factor. For example, if we replace all the -1’s
in the matrix A, with random numbers selected uniformly between 0 and -1 the new
matrix will still have a large growth factor for moderate or large n. For example for
n = 60 the median growth factor for 30 such matrices was 1.9 x 10'°. This is less than
the maximum growth factor of 5.7 x 10! but is still quite large.

In this paper we will present several classes of problems that arise naturally in
practice where the growth factor is less than 271 but is still very large. First we dis-
cuss a class of first order boundary value problems where the discretization used is the
trapezoid method. More generally, we then discuss a class Volterra integral equations
where higher order Newton-Cotes numerical integration is used for the discretization.
We illustrate that large growth factors can lead to large errors when using gepp with
two specific practical examples - a solution mixture problem and a problem involving
an LRC circuit. We compare our examples with those recently developed by Wright.
Finally, we discuss the implications such examples have on software development and
testing.
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Stable Algorithms for Fast Triangular Factorization
of General Hankel and Toeplitz Matrices
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Extended Abstract

A matrix T is called Toeplitz if its entries are constant along each diagonal; a matrix H
is called Hankel if its entries are constant along each anti-diagonal. There are tremen-
dously many applications that require the solution of systems of linear equations whose
coeflicient matrices are nonsingular Hankel or Toeplitz matrices. For example, Hankel
systems arige in connection with orthogonsal polynomials, Padé approximation, the mini-
mal realization problem in systems theory, and the Berlekamp-Massey algorithm for de-
coding Reed-Solomon and BCH codes. Applications leading to Toeplitz systems include
time-series analysis, linear prediction, image processing, statistics, probability theory, and
solution of integral equations.

It is well known that these special structures of the coefficient matrices can be ex-
ploited when solving Hankel or Toeplitz systems, and in both cases there are classical fast
algorithms that require only O(N?) arithmetic operations for the solution of systems of
order N, as compared to O(N*) operations for general systems. Al fast Hankel solvers
compute either an inverse triangular factorization of the Hankel matrix H of the type

UTHU =D, &)
or a triangular factorization of H of the form

H =UTDU. &)
Here, in (1) and (2), U is a unit upper triangular matrix, and D is & diagonal matrix.

Similarly, all fast Toeplitz solvers compute either an inverse triangular factorization of the
Toeplitz matrix T of the type

vTTU =D, )
or a triangular factorization of T of the form

T=vTDU, @)

where I/ and V are unit upper triangular matrices, and D is again a diagonal matrix.
The celebrated Levinson-Trench algorithm for Toeplitz matrices is of the type (3). The
first Toeplitz solver based on (4) was proposed by Bareiss. The classical Hankel solver of
type (1) is due to Trench. Algorithms based on (2} were devised by Rissanen and Kalman.

Unfortunately, for nonsingular matrices H and T, factorizations of the form (1)
and (2), respectively (3) and (4), exist if, and only if, the matrix H, respectively T,
is strongly regular, i.e., all its leading principal submatrices are nonsingular. Indeed, all
classical fast Hankel and Toeplitz solvers require that the coeflicient matrix is strongly regu-
lar. If H, respectively T, has singular submatrices, then breakdowns-triggered by division
by 0—occur in these algorithme. On the other hand, it is well known that the classical
Hankel and Toeplitz solvers can be extended to handle exactly singular leading principal
submatrices, and numerous such algorithms have been proposed. These algorithms are
again based on factorizations of the type (1}-(4), where now D is & block-diagonal matrix.
However, in finite-precision arithmetic, it is not enough to skip only over exactly singular
submatrices, and numerically robust Hankel and Toeplitz solvers also must be able to han-
dle nonsingular, yet ili-conditioned leading principal submatrices. Two algorithms of this
{ype were recently proposed by Freund and Zha. Both algorithms use so-called look-akead
techniques to skip over singular and ill-conditioned submatrices, and they generate inverse
factorizations of the type (1), respectively (3), with block-diagonal D. First, they devised
a look-ahead version of Trench’s classical Hankel solver besed on the decomposition (1)
of H. Second, they developed a look-ahead version of the Levinson-Trench algorithm besed
on the inverse factorization (3) of T.

In this talk, we present two counterparts to the algorithms of Freund and Zha :pwn
are based on direct triangular factorizations of the type (2) and (4), rather than the
decompositions (1) and (3). The first algorithm is a stable extension of the classical
Hankel solver by Rissanen and Kalman for strongly regular matrices to general Hankel
matrices H. It computes a factorization of B of the type (2) where U is still a unit
upper triangular matrix and D is now in general a block-diagonal matrix. The second
algorithm is 2 stable extension of the Bareiss algorithm for strongly regular matnces to
general Toeplitz matrices T. It generates a decomposition of T of the form (4) where U
and V' are still unit upper triangular matrices and D is now block-diagonal. We give
implementation details and operations counts for both algorithms, and we describe the
look-shead strategies used to detect singular and nonsingular, but ill-conditioned leading
principal submatrices. We present numerical stability analyses for both algorithms, We
consider the look-ahead Bareiss algorithm for certain special cases, such as Hermitian
indefinite or banded Toeplitz matrices. Moreover, we discuss the implementation of the
proposed algorithms on parallel and vector machines, and we show that they are superior
to elgorithms based on inverse triangular factorizations. We report results of numerical
experiments with Hankel and Toeplitz systems with ill-conditioned submatrices of various
kinds.

Finally, we present two generalizations of the proposed algorithms. First, we consider
extensions to the more general case of block-Hankel and block-Toeplitz matrices. Toeplitz
matrices are a special case of structured matrices classified by their displacement rank.
Second, we discuss extensions of the look-ahead Bareies algorithm to the factorization of
matrices with low displacement rank.
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Abstract

A class of matrix decompositons will be given based on Wedderburn’s 1934
cbservation that

AxyTA

A = {0.1)

has rank one less than that of A. Alston Householder gave a converse in his

1964 book and Cline and Funderlic [1977, LAA] provided considerable unifying

theory associsted with rank{A-B) along with generalisations of the rank one
case of Wedderburn and Householder.

The Wedderburn-Householder result of (0.1) suggests » very general class of

decompaositions:

)
A=Y Wl AxyT A
- dml

Ay m A~ w Ay T A, yT Az =y
By choosing column vectors u; and v; as certain linear combinations of the x’s

sod y's, then
UT AV, = diag(w)

with Uy, snd V,, having full column rank k.

Based on & norm idea of Householder, it will be shown that the w's, xs
and ¥'s may be chosen to give the singular valus decomposition. Another
choice gives the special gemeralisation where the w’s are generalised singular
values determined by ellipsoidal norms. Furthermaore, the currently popular
URV decompositions can be thought of as Wedderburn decompositions. The
‘Wedderbum decompositions thus provide a fresh and promising approach to
updating the singular value decomposition. More generally they unify several
matrix decompasitions through a historical progremion of important linear al-
gebra idess starting with Wedderburn’s rank reduction idea and progressing via
Householder’s norm approach to the modern view of the singular value decom-
position.



ON THE SOLUTION OF COMPLEX SYMMETRIC SYSTEMS WITH MULTIPLE
RIGHT-HAND SIDES

E. GALLOPOULOS® AND V. SIMONCINI!

Abstract

We are interested in the solution of linear systems A[z(1), ..., z0)] = (1), ..., 50
where A is a complex symmetric matrix of dimension n. It is known that in designing iterative
algorithms one can exploit the symmetry of A by using the indefinite product (z,y) = zTy,
instead of the conjugate transpose z*y [3]{5](4]. In order to overcome the lack of minimality
properties of the corresponding Lanczos methods, the quasi-minimal residual approach has
been recently used to design successful iterative methods for a single right-hand side [1}{2].
‘The aim of this talk is (i) to present new block iterative methods to solve Afz(), ..., 2(#)] =
[64),...,b%)], which use the complex symmetric implementation of Lanczos algorithms
together with a quasi-minimal residual approach; (if) to present the theoretical justification,
desiga and computational experience of a novel methed, we term MRMULTL. We evaluate the
performance of all methods using matrices from important applications areas and show that
the new method is a competitive alternative to block and single right-hand side solvers.
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A Constrained Quadratic Form (Walter Gander & Urs Von Matt)

Let A be a real symmetric n-by-n matrix. We consider the problem of finding
a vector x such that

xT Ax - 26Tx
Jixlla

Such constrained quadratic forms occur, for instance, in the area of nonlinear
optimization.

The solution of the constrained quadratic form is analysed by means of the
Lagrange equations. We are led to the so-called secular equation

F(A) = bT(A+ M) b =a?,

that we must solve for its lazgest zero A.

Conventional approaches to solving the secular equation are based on the
eigenvalue decomposition of A. Thus, their computational complexity is of
order O(n®). For large matrices, however, this becomes infeasible.

Our new approach relies on Gauss quadrature to appraximate the secular
function f(A). We will give a short overview of the theory of Gauss quadrature as
far as it will be used by cur approach. This includes the discumsion of orthogonal
polynomials, the calculation of Gauss quadrature rules by means of an eigenvalue
decomposition, and the error law.

In order to apply the theory of Gauss quadrature to spproximating the
secular function f()\} we use the Lanczoe algorithm as a means to compute the
orthogonal polynomials and their three-term recurrence relationship. Thus, we
are able to give lower and upper bounds on the secular function. After k steps
of the Lanczos algorithm we have

L:(A) S F(A) S U (D).

Our overall algorithm for the solution of the constrained quadratic form
executes the Lanczos algorithm until the secular function f{)) is approximated
accurately enough. The precise termination criterion is considered in more
detail.

As soon as the Lagrange multiplier A is known we can compute the solution x
of the constrained quadratic form from the linear system

(A+A)x=b
by a conjugate gradient inethod, for instance.

min,

]

a.

The Orthogonal Quotient-Difference Algorithm

The orthogonal qd-algorithm is » novel way of computing the singular value
decomposition of a bidisgonal matrix. Unlike the corresponding subroutine

in the LINPACK library, which computes all the singular values to the same
absolute accuracy, the orthogonal qd-algorithm is capable of computing all the
singular values to high relative accuracy.

First, we present the tool of the generalized Givens transformation, which is
designed to introduce a given value ¢ into a vector. It can be described by the

onﬂw._mou

_Z:u__-_,s;-:

-8 ¢ zy o

Then, we introduce the so-called orthogonal qd-steps which formn the heart

of the orthogonal gd-algorithm. One such step is the orthogonal left lu-step
with shift #

Q Lij_ U
ol |7 | Ve 4821 )"’
which transforms the lower bidiagonal matrix L into the upper bidiagonal ma-

trix U/ by means of the orthogonal matrix @. The singular values of L are
diminished by the amount of the shift s, i.e.

oHU) = GF(L) ~ &

By an appropriate sequence of orthogonal gd-steps we can compute the de-

composition
[3]-7[z]e

where P denotes an orthogonal {2n)-by-(2n) matrix, Q denoies an orthogonal
n-by-n matrix, and I denotes a diagonal n-by-n matrix with the singular values
of B.

Finally, we discuss the various deflation opportunities during the execution
of the orthogonal qd-algorithm, as well as a way to obtain the final singular
value decomposition

B=UTVT,

Some numerical results are presented.



Construction of Richardson Polynomials and Polynomial
Preconditioning

K. Gartper!

Abstract. The solution of linear nonsymmetric problems is one of the fields
where much progress was made during the last years [1}. The most often
used Lanczos-type iterative methods are based on three-term recursions,
extended now to longer recursions to fulfil stability requirements. More or
less explicitly the information from an iteration with the transposed matrix
is used too. Error minimizing generalized conjugate-gradient methods like
GMRES are ignored here due to the fact that we are interested in applica-
tions where the L., or the Hy norm of the error has a natural meaning. In
contrast, GMRES minimizes the H; norm of the error in the case of a sec-
ond order elliptic partial differential equation discretized by finite elements.
Another option is Richardson iteration ([2,3]), which accomplishes the con-
struction of the residual polynomial not by a three-term recurrence relation
but by its factorization. In exact arithmetic the minimal polynomial of de-
gree n can be determined in 2n matrix-vector operations as in the Lanczos
case. From the point of view of polynomial preconditioning the Rickard-
son process has the advantage of lower storage and computational costs {as
long as the zeros of the polynomial are real) and offers in some applications
the possibility to include a few well separated eigenvalues explicitly in the
polynomial without further effort. Such eigenvalues appear systematically if
» MILU preconditioner is used. Concerning stability requirements in finite
arithmetic it seems worth noting, that long term recurrencies can be con-
structed simply by defining the residual polynomial of degree n recursively
as Po(z) = Pa, (Pas_, (---Pay(2))) with logarithmic (log(n)) growing storage
requirements.

The solution of the linear system is often part of an outer iteration pro-
cess. A polynomial approximating zero sufficiently well over some part of
the spectrum (including the complex eigenvalues) and having positive val-
ues less than 1 at the remaining real eigenvalues is very well suited for an
approximate solution in a Newton iteration when damping is necessary: the
computed correction in its spectral decomposition is either correct or too
small. Thus an implicit damping occurs which can be exploited systemati-
cally in some problems with boundary layers (different scales in space which
are refiected in the eigenvalue distribution).

iinterdisciplivary Project Center for Supercomputing, ETH Zurich, ETH-Zentrum,
CHE-8092 Zurich, Switserland

The stability problem is met again in the Richardeon iteration: the or-
dering of the zeros of the polynomial is relevant. Stable orderings for Cheby-
shev polynomials (T, U,) ate known since more than twenty years [4], the
general case was studied by Reichel [5] and leads to Leja orderings. Appling
Richardson iteration, it seems natural to exploit Richardson iteration itself
to estimate the outermost parts of the spectrnm of the iteration matrix and
to introduce this knowledge in a polynomial preconditioner for reducing the
condition number of the remaining problem. This approach diminishes the
pumerical stability problems and the aumber of inner products. The lat-
ter may be of considerable interest if, on parallel machines, the trend to
increased relative communication cost (measured relative to the floating-
point performance of the nodes) continues.

The main problem of constructing a fixed polynomial preconditioner is
that only incomplete information is available. In view of the fact that well
separated eigenvalues are often observed in applications the construction of
the residual polynomials should respect them. The degree of a polynomial
incorporating once all estimates of separated eigenvalues is limited rather
fast by the errors of these estimates and the possible ill-conditioning of the
matrix. Thus, one is forced to introduce as many copies of the estimates
as stability requires. In other words: one replaces an isolated eigenvalue
by a disk with the radius of the error centered at the estimate and applies
the Leja ordering procedure. The other possibility is to use a polynomial
of limited degree in a cyclic manner: this leeds to the recursive definition
of the residual polynomial and has the advantage that further eigenvalue
estimates are made now in the range of the polynomial. A limited degree
(nz) of the polynomial on each recursive level (k} would restrict all zeros of
the polynomial to a set excloding an £;-disk centered at zero. This seems
to be a natural way to split the original problem into simpler ones. In
the recursive process one has the choice to proceed further and further by
Richardson iteration or to fix the preconditioning polynomial and to switch
to a Lanczos like procedure. In the Richardson case the inclusion of new
eigenvalue estimates is no problem and can be done also on the recursive
Jevel before the actual one. In the Lancros case one would have to accept
large values of the modulus of an intermediate polynomial over parts of
the spectrum, to introduce look-ahead strategies, or to restart the Lanczos
precess. In thie talk we are going to show:

- how during Richardson iteraticn error components related to a few
eigenvalues can be made dominant,

- how these eigenvalues can be estimated, and



- how a polynomial preconditioner can be used to damp out these error
components afterwards.

The application to the solution of the semiconductor device equations and
some other test problems is considered. For instance, for the sherman5
matrix scaled by its diagonal (the iteration matrix has then at least two
complex conjugate eigenvalue pairs with modulus > 1), a polynomial of de-
gree 10 was generated. With this polynomial as preconditioner, the residual
norm decreased monotonically during 100 plain jterations. Nevertheless the
polynomials modulus is > 1 on parts of the boundary of the convex polygon
constructed from ite zeros.
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Geometric Mesh Partitioning and Nested Dissection
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Shang-Hua Teng?

1 Introduction

Many sparse matrix computations require that the graph of a matrix be partitioned into
pieces of roughly equal size, with few connectiona between the pieces. Nested dissection [1)
uses recursive partitioning to construct orderings for Gaussian elimination with low fill and
good parallel load balsnce. In implementing iterative methods on distributed-memory com-
puters, the efficiency of matrix-vector multiplication depends on how well the matrix is
divided among the processors [2].

Graph partitioning is & hard combinatorial problem, and it pays to take advantage of all
the available information about any particular instance. If the graph comes from a linear
system that arises in physical simulation, it usually has an underlying geometric structure:
its vertices are located at specific points in space. Vertices near to each other in the graph
are also near to eack other in space, in some sense.

A partitioner can exploit this geometric information in several ways. First, good space
partitions may be easier to find than good graph partitions. Second, using a technique called
geomeiric sampling, the partitioner can work with a small randomly selected subset of mesh
points but. still generate a good partition with high probability; this makes the partitioner
more efficient. Finally, most computational meshes are composed of elements (triangles or
tetrahedra, for example) that are in some sense well shaped. Bounds on the shapes of the
elements can sometimes be used to prove bounds on the quality of the partition.

Here we report on the implementation of a geometric partitioning algorithm. The basis
for the algorithm is theoretical work by Miller, Teng, Thurston, and Vavasis on geometric
separators [4, 5, 7]; we describe several simplifications and extensions of that work, which
lead to an efficient and practical mesh partitioner. We compare and contrast our approach to
partitioning with the apectral methods investigated by Hendrickson, Leland, Pothen, Simon,
and Liou [3, 6. We describe experiments with our partitioner in partitioning meshes for
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paraliel matrix-vector multiplication, and in producing geomeiric nested dissection orderings
for sparse factorization.

2 Geometric separators

Miller et al. [4] define a class of “d-dimensional” graphs called overlap graphs. This class
includes planar graphs and k-nearest neighbor graphs. Most significantly, it includes all
finite element meshes, no matter how irregular, provided that the angles in the individual
mesh elements are bounded away from zero or from 180°. The theoretical result says that a
d-dimensional mesh of size n can be partitioned evenly by cutting O(n{*~1¥/#) vertices. (The
exponent (d — 1}/d is what one would expect from the trivial case of regular square grids.
In two dimensions, an n-point square grid can be partitioned by a cut of size n*/3, and an
n-point cubic grid in three dimensions needs a cut of size n?/3.)

To find this separator, the mesh in d dimensions is mapped onto the surface of a sphere
in d + 1 dimensions. The mapping can be chosen in such a way that any d-dimensional
hyperplane through the center of the sphere divides the mesh approximately in half, and
that most such hyperplanes cut only a small number of mesh edges (at most O(n'~Y/9), to
be precise).

Practical implementation requires attention to several issues. A key step is to find a
center point for a set of points in d+ 1-dimensional space. The theoretical algorithm to find
a centerpoint uses linear programming and is too slow in practice; we have implemented a
heuristic that runs very fast and gives very satisfactory results. (In separate work, Eppstein
and Teng recently proved that the heuristic always gives good approximate center points.)
Finding a good cutting hyperplane is also an important problem; in theory a randomly
chosen hyperplane should be good enough, but in practice it is worthwhile to spend some
effort searching.

Geometric sampling is ¢rucial to our implementation's efficiency in several ways. The
approximate center point is based on a sample of the input points. When searching for a
good hyperplane, a candidate is rejected quickly if it does not partition a sample of the
points well.

Some applications require an exact 50/30 split of the input points rather than the ap-
proximate split guaranteed by the theory. We describe some simple techniques for evening
the split without making the separator much larger. :

Our first implementation uses Matlab; it is a sequential program. We expect that the
partitioning algorithm itself will parallelize well. In most graph partitioners, the flow of
data in the algorithm i mostly along the edges of the graph, which introduces a sort of
bootstrapping problem for parallel implementation: the partitioner will run faster on the
parallel machine if a good partitioning among the processors has already been found. In
our partitioner, on the other hand, most of the computation deals only with the vertex
coordinates, and does not depend on the edges of the graph at all.
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A Modified Newton Method Based on
a Partial Cholesky Factorisation
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The effectiveness of Newton's method for finding an unconstrained minimiszer
of a strictly convex twice continuously differentiable function £ : R® — R has
prompted the proposal of various medified Newton methods for the nonconvex
case,

The class of linesearch modified Newton methods generates a sequence {z;}
of improving estimates of a focal minimizer by performing a linesearch along a
path formed from a descent direction s, and a direction of negative curvature
di. If these directions are sufficient in the sense that the sequences {s;} and
{ds} are bounded and satisfy

Vf(ze)Tsr —0 implies Vf(zi)~0 and a3 — O,
dIVif(zi)dr =0  implies min{Anip(V?f(zs)),0} — 0 and dy — 0,

then every limit point of the sequence {z3} will E—:.»Q the second-order neces-
sary conditions for optimality.

It has been observed in practice that the number of iterates at which the
Hessian is positive definite is large compared to the total number of iterations.
Since linesearch methods revert to Newton’s method when the Hessian is suffi-
ciently positive definite, it would seem sensible to use a modified Newton method
based on the most efficient method for solving a symmetric positive-definite sys-
tem. This is the motivation for the modified Cholesky factorization proposed by
Gilt and Murray. However, it has been shown by Moré and Sorensen that this
factorization may not give directions of negative curvature that are sufficient in
the sense above.

In this talk we propose an efficient method for computing a descent direction
and a direction of negative curvature that is based on a partial Cholesky fac-
torization of the Hessian. The partial Cholesky factorization of H is a variant
of the standard Cholesky factorization with diagonal pivoting. The algorithm
is defined in outer-product form, where the Schur complement associated with
the unfactorized part of H is updated explicitly at each step.

It will be shown that this factorization may be used to define an algorithm
with not only the efficiency and simplicity of the Cholesky factorization, but
also the guarantee of convergence when used in conjunction with a suitable
linesearch.



Rounding errors in the Gauss quadrature
calculations and in computing continued fractions!

Abstract

Gene H. Golub,
Dept. of Comp. Science, Stanford University, Stanford, USA

and

Zdenek Strakos,
Institut of Computer Science, Academy of Science of the Czech Republic, Prague,
Czech Republic

We consider the effect of rounding errors in computing the Gauss quadrature for
the distribution function w{}) with the N points of increase A, ¥ = 1,...,N, 0 <
A < A <... < An. From the relation between orthogonal polynomials, the Lanczos
method and Jacobi matrices, it is well known that the abscissas g; and weights w;,
j=1,...,n, of the n-point Gauss quadrature for the Riemann-Stieltjes integral

(1) [ 10yt = AL

[ |

can be determined as the eigenvalues and the square of the first elements of the nor-

malized eigenvectors of the Jacobi matrix T, having the Lanczos coefficients as its-

elements [1], [2]. In exact arithmetic, the error of the quadrature formula is expressed
as

N n
@ L etf00) = Lwif ) + Rall),
N
ﬁwu m.‘:ﬁk.v AI.. u*.ﬁﬂy..t:tm....ut:'t:vuﬁk ltr w

-.l_

1This paper is being submitted for consideration for the X1I. Householder Meeting on Numerical
Linear Algebra

where (A, 1, 1, - - - Bns fin) i5 the 2n-th divided difference of a function f with respect
to the abseissas A, 1,41 ..« fins i, [2]. In particular, for the important case f{}) =
271, {2) can be written into the form

4) (T = (T + RO,

Consider a Bﬁix A, A = Udiag{M\)UT, UTU = I, and the initial “residual” vector

o/ 0 = Mu oiu, ui is the i-th normalized eigenvector of A. Then (3) gives

=1

(5) BT =/ e 1 =~ =™ 1%

where || # — z® |4 is the energy norm of the error of the conjugate gradient (CG)
process for A,r° [3], [4].

Rounding errors may affect the computation crucially. - As a consequence, the
Lanczos coefficients, the actually computed abscissas j;, and weights &;, j = 1,...,n,
may differ substantially from their theoretical counterparts. Despite that, the n-point
Gauss quadrature frequently gives very precise results. Our analysis explains this
behavior.

Using the backward error analysis of the Lanczos process developed by Greenbaum
{5] we will show, that the results of the n-point Gauss quadrature for (1), computed
in finite precision arithmetic, is characterized by

N n
(6) Yot f(N) = L @if(5) + Ra(f) — Pu(f),

i=1 J=1
where P,(f) is a modest E::mm._n of the machine precision . H,(f) is given in terms
of {f(Xfi1 i1, s finy fin) E (A — fc)?}. The original distribution function w(A) is

not used, but using a vm.nﬂnﬂ_mn distribution function @(A), possibly having many
more points of increase (denoted by X;) than N, and whose points of increase all lie
within tiny intervals about the points of increase X; of the distribution function w(A).

Moreover, the sum of “weights” 3 @3, where C; denotes the set of indices k for which
kel

At is close to A;, approximates the original “weight” o? of A;, ¢ = 1,2,...,N. The
exact values Az, Bk, k£ = 1,2,..., are determined by the actual values of rounding
errors in steps 1 thru n of the finite precision Lanczos process.

In this way, the total error (including the roundoff errors) of the Gauss
quadrature for (1) is expressed as the truncation error of the Gauss quadrature for
a specific but different problem.

In pariicular, for f(A) = A~!, the rate of convergence of the associated continued
fraction computed in a finite precision arithmetic is described by



™ (T3 = )+ ol 2= 2 L
where the superscriptt * denotes for the actually computed quantities. Thus, (7) is
the finite precision analogy of exact arithmetic results {4)-(5). This analogy
seems natural, but its derivation is far from trivial {4].

‘We emphasize relations between quadratures, orthogonal polynomials, Jacobi ma-
trices, continued fractions, Lanczos and Conjugate gradient methods. Exploiting these
relations one can easily reformulate a question from one area into the language of the
other area. As it is demonstrated on the examples mentioned above, this approach
may lead to interesting results.
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A New Bound on the Convergence Rate of the
GMRES Algorithm

Anne Greenbaum*

January, 1993

A new bound on the convergence rate of the GMRES algorithm is given
in terms of the eigenvalues of the iteration matrix and the norms of the
orthogonal complements of each eigenvector, relative to the space spanned
by the other eigenvectors. The bound consists of the sum of squares of values
of a polynomial at each of the eigenvalues, and a weighted sum of squares of
differences between the values of the polynomial at different eigenvalues. The
weights involve the reciprocals of the norms of the orthogonal complements
of the corresponding eigenvectors. It is demonstrated numerically that this
bound is quite reasonable in many cases where other error bounds, such as
those involving pseudo-spectra or the condition number of the eigenvector
matrix, give large overestimates.

Let A be a diagonalizable matrix with eigendecomposition A = VAV-?,
where A = diag(},...,A,) and V has columns v!,...,v", each with norm
one. Let p be any polynomial. Then it can be shown that the Frobenius
norm of p(A) satisfies

n n =1

Ie(A)F = 3 P12 ~ X0 3 [e(h) - oA (V*V); (VV);t.
[£-3 f=d j=1
Here (V*V);; denotes the (i,7) element of V'V and (V*V);' denotes the
(i,7) element of (V'V)~!. Let v’ be the orthogonal complement of v', rel-

ative to the space spanned by the other eigenvectors. Then the Frobenius
norm of p(A) is bounded by

*Courant Institute of Mathematical Sciences, 251 Mercer St., New York, NY 10012.
This work was supported by DOE contract DEFG0288ER25053.

AR < 3 PO + )

o i , min { VI= [, vI= w7}
2, 2 0= #(3)] ] .

=2 j=1

If the eigenvectors of A are nearly orthogonal so that the weights in the
second sum in (??} are small, then this bound on [[p(A)||p is approximately
the same as that for a normal matrix with the same eigenvalues. In con-
trast, if the eigenvectors of A are far from orthogonal, then the second sum
in inequality (7?7) will dominate, unless the values of p(};) and p(};) are
almost equal for all eigenvalues A; and J; corresponding to nearly-dependent
eigenvectors.

The residual at step k of the GMRES algorithm for solving a linear
system Az = b is given by

__..r = .me;ﬁvﬂﬂ

where P, is the k** degree polynomial with value one at the origin that
minimizes [jrt||. It follows that for any other such polynomial p,, we have

U1/l < Hpe( A < lipe(A)lis-

Taking p; to be the polynomial that minimizes the expression in (??) we
obtain the bound

AR < 3 mOOF +

izl

n §i-1

min { V=P, vI= TP}

MU M lPe(X) — vw?b_u

i= =1 flafll Tl

While this bound is not sharp, we argue that it is very reasonable and gives
good estimates of the actual convergence rate of the GMRES method (for
the worst possible initial residual) in many cases where other bounds are
overly pessimistic.



DOWNDATING THE SINGULAR VALUE DECOMPOSITION

Mg Gut

The singular velue decomposition (SVD) of a matrix A € R™** with m > n is
D
A=(h Q&A 0 v_t_a. ,

where U = (L4 U,) € R™™ and V € R™*" are orthonormal, with Iy € R™" and
U; € Rmxtm=n): and D € R™* js non-negative diagonal. The columns of I/ and V are the
left singular vectors and the right singular vectors of A, respectively; the diagonal entries of
D are the singular values of A.

In many least squares and signal processing applications, we repeatedly update A by append-
ing a row or a column, or downdate B by deleting a row or a column. After each update
or downdate, we compute the SVD of the resulting matrix. In this paper we consider the
problem of downdating the SVD.

We only consider the case where a row is deleted. Without loss of generality, we further
assume that the last row is deleted. Thus, we can write

A
(3).
where 4 € R™-1x" jg the downdated matrix. Let the SVD of A be
=@ D),

where I = (0 [h) € Rim-0%("-1) a4 ¥ € R™*" are orthonormal, with {/; € R~ and
0; € Rim=1xtm=n=1); 3nd D € R*** is non-negative diagonal. We would like to compute
the SVD of A by taking advantage of some knowledge of the SVD of A.

There are three downdating problems:

o Problem 1: Given V, D and a, compute ¥ and D;

¢ Problem 2: Given U {or U};), V and D, compute IJ {or {h), V and D;
¢ Problem 3: Given U (or U;) and D, compute U (or T;;) and D.

1Joint work with Stanley C. Eisenstat.

We show that for Problem 1
ATA=VDVT =V(D? — 22" W7
where z = V7a € R®. Assuming that there is a solution, the singular values of A can be
computed by the eigendecomposition
D? - 3227 = SD*ST

where § € R™*" is orthonormal. The right singular vector matrix V¥ can be computed as
VS. We present Algorithm I to solve Problem 1 stably.

Since Problem 1 is associated with the eigendecomposition of D? — zz¥, small perturbations
in D and @ can cause large perturbations in D and V. We also analyze the ill-conditioning
of the singular values.

We show that for Problems 2 and 3 there exists a column orthonormal matrix F € R(m—1xn
such that

A=FcvT
where € R™*™ is of the form
C= Aht H.”tucﬂv D ,
with u a vector and g > 0 a scalar. The singular values of A can be computed by the SVD
C=QbwT |

where @ and W are orthonormal. The left singular vector matrix U, can be computed as
FQ. The right singular vector matrix ¥ can be computed as VW. We ignore U; here for
simplicity. We present Algorithm II to solve Problems 2 and 3 stably.

For Problems 2 and 3, the singular values are well-conditioned with respect to perturbations
in input data, whereas the singular vectors can be very sensitive to such perturbations.

Problems 1 and 2 have been considered by Bunch and Nielsen. They reduce Problem 1 to the
eigendecomposition of D? ~zz7 as well. But their scheme for finding this eigendecomposition
can be unstable, They sclve Problem 2 by reducing it to Problem 1. This risks solving 2
well-conditioned problem using an ill-conditioned process for the singular values.

Algorithm I solves Problem 1 in O(n*) time, and Algorithm If solves Problems 2 and 3 in
O(mn?) time. We show that Algorithm I can be accelerated by the fast multipole method
of Carrier, Greengard and Rokhlin to solve Problem 1 in O(n?) time, and that Algorithm II
can be accelerated to solve Problems 2 and 3 in O(mn) time. This is an important advantage
for large matrices.

Finally we point out that all these results hold similarly for downdating the SVD of an mxn
matrix A with m < n.
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Solving constrained and weighted linear least squares

Abstract

When solving nonlinear, constrained and weighted least squares
problem with the Gauss-Newton method, linear, constrained and
weighted least squares problems on the form

.H
BE‘.IAFI\_%VHS\»?»E\?&V AC
zeR" 2

s.t. }u.ﬁ = &r

where W; is a diagonal weight matrix, arise as subproblems. Weighte
linear least squares problems with very different weights also emerge
when using interior point methods for solving linear programming
problems,

We present an algorithm for solving (1) where arbitrarily large
weights can be handled which is stable, simple and easy to extend to
other problem classes, see SIAM J. Matrix Anal. Appl., 29:268-296,
1992. Define W as a diagonal weight matrix with nonnegative, pos-
sibly infinite, elements. The algorithm is based on doing a weighted
QR decomposition

\Eno_m_ (2)

of A, where B € R™*" is an upper triangular matrix, II is a permu-
tation matrix and @ satisfies

QTWQ =Ww. (3)

We call a matrix, @, that satisfies the relation (3) W -invariant.

A new backward rounding error analysis for the solution of (1),
using the weighted QR decomposition is presented and a special
perturbation analysis is applied to get explicit normwise relative
errors on the solution.

Using a variant of the weighted QR decomposition we will ex-
tend our algorithin to underdetermined weighted linear least squares

Abstract

January 29, 1998 Householder Symposium 1998

problems on the form
.1
min —z* Wz 4
min. 5 (4)
8.t. L&uﬁ = mw

where the weighted QR decomposition now is done on A7.
If we define A by
A= 1 =
HENH

Wil = M, = diag(y:), with gyy; > 0 then an equivalent formula-
tion of (1) is

c c .\»u \/u F
0 aw hu yn - m—n ) Amv
AT AT 0 z 0

where A; is the vector of Lagrange multipliers and M, ), is the resid-
ual. We will show how iterative refinement for (1) can be done using
the formulation in (5). By using perturbation analysis we analyze
the convergence behavior of the ijterative process and give a few
numerical examples.

Last, but not least, we describe how modified Gram-Schmidt
can be generalized to constrained and weighted linear least squares.
The usual way of normalizing the vectors, ¢;, in the Gram-Schmidt
method when using a weighted norm would be to impose the con-
dition gf Wg; = 1. We will instead use the normalizing condition
¢fW¢q; = w; and in that way we are able to handle constraints too.
Especially we will explain the geometry involved in determining a
W-invariant ¢ when using the modified Gram-Schmidt for weighted
linear least squares.



A modified GMRES algorithm for flow problems.
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Extended abstract. .

The stationary Enler equations of fiuid flow are a system of first order partial differential equa-
tions of importance to the simulation of the sir low around airpianes in the aircyaft industry. The
numerical solution of such equations is often obtained by an iterative method such as Runge-

Kutta time-stepping (RK) (or runcated and restarted Richardson iteration), ref. 1, or the General-

ized Minimum Residual method (GMRES), ref. 2. The convergence of these methods can be
explained as a combination of two effects, refs. 3,4,5:

* wave propagation of smooth error modes out through the open boundaries,
* damnping of the amplitude of oscillatory error modes.

The algorithms we advocate here enhance the wave propagation. Theoretical investigation of lin-

ear model problems using Fourier analysis support this view, refs. 3,5. Substantial improvements
in convergence rate and increased robustness are obtained in numerical experiments. The gain in
efficiency of the algorithms is probably slso due to better damping of oscillatory modes, but this is
maore difficult to verify theoretically.

In Krylov subspace methods such as RX and GMRES, see ¢ g 1ef. 6, the propagation of smooth
emror waves is modeied by the differential equation imbedded in a time-dependent problem. Wave
propagation depends on the coefficient in front of the first Krylov vector. The second coefficient
influences the damping of smooth waves.

A modified truncated GMRES (mGMRES) method introduced in refs. 3,4 is tested and compared
with the original GMRES and the very rucoessful RK. In the modified method the coefficient
multiplying the first Krylov vector is fixed. One advantage with RK and (m)GMRES is that only
residual evaluations are needed in each iterative step. GMRES and mGMRES also have a local
optimality property. >§%§Bm«§ﬁmzwmmgaam§=5 e extra storage require-
ments compared t0 RE. Ancther problem with GMRES is that sometimes the iteration ﬂm_ﬁa
and the residual ceases to decreass a2 2 nmber of i iterations. The remedy is 10 introduc
mGMRES or a proper preconditioner. B 53\ and mGMRES have a secured wav Eonan»:on
property. The (m)GMRES algorithm for nonlinear problems is as in ref. 7.

We consider two kinds of preconditioning of the Euler equations: residual sinoothing and multi-

grid iteration. Both of them improve the propagation of smooth esror waves. The residual smooth-

ing technigue in ref. § is chosen. It contains the original one, ref. 9, as 8 special case and has beiter

convergence properties and is less sensitive to parameters. The parameters in the multigrid accel-
eration are selected so that the wave speed of smooth error modes increases.

In 2D problems with constant coefficients modeling the equations of inviscid flow mGMRES is
often superior to both RK and GMRES when counting the number of iterations. The computed
coefficients of (n}GMRES are transformed to equivalent RK-coefficients. The behavior of the

coefficients of mGMRES are in general much smoother than those of GMRES.

The convergence of the iterative algorithms to the solution of the stationary Euler equations is
studied in numerical experiments in 2D and 3D. The number of iterations and the total CPU-time
are compared for three-stage RK, GMRES and mGMRES combined with residual smoothing and
multigrid iteration. It is found that the convergence rate is improved considerably by techniques
that enhance the propagation of smooth error modes out from the computational domain. Stagna-
tion problems with GMRES disappear with mGMRES or multigrid preconditioning. When
GMRES stagnates then the first coefficient vanishes and the others start oscillating wildly.
mGMRES is often more efficient than RK in terms of nurnber of iterations but not always if the
CPU-seconds are compared. There is an extra evaluation of the residual and more overhead per
iteration in (m)GMRES. However, mJMRES appears to be more robust than RK. The computa-
tional exampies include channe! geometries, airfoils and wings at subsonic, transonic and super- -
sonic speeds.
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CONTROL STRATEGIES FOR THE ITERATIVE SOLUTION OF
NONLINEAR EQUATIONS IN ODE SOLVERS

KJELL GUSTAFSSON® AND GUSTAF SODERLIND!

Abstract. We develop new control strategies for handling the iterative solution of nonlinear

equations in ODE solvers, i.e. i .

¢ automatic awitching between fixed-point and Newton iterations, )

¢ deriving an “optimal” convergence rate with respect to total work per unit step,

® a strategy for when to reevaluate the Jacobian,

¢ astrategy for when to refectorize the iteration matrix, and

¢ coordination with stepaize selection .
Examples will be given, that demonstrate that the new overall strategy works n__mn.n.uo—« In particu-
lar, the new strategy admits & restrained stepaize variation without refactorizations, thus permitting
the use of & ther stepsi q The strategy is of equal importance for Runge-Kutta and
multistep methods.

1. Introduction. The numerical integration of an ODE § = h&. by implicit
time-stepping methods leads to the problem of solving a nonlinear equation on every
step. The generic structure of this equation is

¥=71hf(y) + ¢,

where h is the stepsize, v is a constant characteristic of the discretisation method,
and ¥ is a known vector. In nonstiff computations, i.c. when AL[f] < 1, where L[]is
the Lipschitz constant, fixed-point iterations are used ~ convergence is fast and the
iterations are inexpensive. In stiff computations hL[f] 3 1, and fixed-point iterations
do not converge. Instead one uses (some variant of) Newton's method. The ability
to use large steps motivates the extra expense incurred by this iteration.

The Newton iteration reads

(I - yhJ) byt v +rhf*) + v
# o= st

where J is some approximation to the Jacobian 8f/8y. The iteration matrix M =
I~ yhJ varies with J aud h; this may call for reevaluations of the Jacobian and/or
refactorizations of M. Likewise, the convergence of the iteration (whether fixed-point
or modified Newton) will depend on the stepsize and should be controlled such that
efficiency is maintained. Thus, strategies for an efficient solution of the nonlinear
equation interact with the stepsize selection strategy; the important considerations
are listed in the abstract above,

2. Optimal convergence and switching. A switch from fixed-point to New-
ton iteration can easily be accomplished based on monitoring the convergence rate.
As the stepaize increases, the convergence rate of fixed-point iteration slows down
and eventually causes a strong limitation on stepsize. Newton iterations are then
advantageous.

Let h, denote the stepsize associated with the optimal convergence rate of fixed-
point iterations andl h, the stepsize suggested by accuracy considerations alone. Switch-

* Computer Science, MJH 309, Stanford University, Stanford, CA 84305, USA {speaker)
! Computer Science, Lund University, P.O. Box 118, 5-221 00 Lund, Sweden

ing from fixed-point to Newton is carried out if

hr

R 9
where the factor @ determines how large a stepsize increase is deemed necessary for
Newton’s method to be less expensive per unit step. In principle, Q should depend
on the size of the problem, but a Jarge Q@ will require very small iteration errors.

Switching back to fixed-point iteration could be done based on the Jacobian J
which is available during Newton iteration — one can easily check whether vAf is a
contraction or not. Several switching strategies of a similar type have been used in
Practical computations earlier, but remain important in good adaptive implementa-
tions.

Convergence is linear both for fixed-point and modified Newton iterations. The
convergence rate a can be estimated in the computational process; a is typically
proportional to h when the stepsize varies. Convergence occurs only if a < 1, and is
faster the smaller the value of a. The total work Per unit step increases quite rapidly,
however, should the convergence rate slow down and approach 1. For very short steps,
convergence is fast, but the step does not take the integration very far.

For multistep as well as Runge-Kutta methods, one can show that under very
general conditions

m 1

— -

h  aloga’

where m/k is work per unit step and « is the convergence rate. This function has a
minimum at & = 1/e, which is therefore “optimal” for a lineatly converging iteration.
More precisely, it does not pay off to increass the stepsize at the expense of a slower
convergence, since total work per unit step then incresses without a corresponding
accuracy gain. Therefore, one should never allow a slower convergence rate than 1/e.
Since the minimum is quite fat, a slightly conservative strategy might be preferred;
we recommend o < o® = 0.2. Experience with practical computations provides strong
support for this strategy.

3. Refactorization and reevaluation. For modified Newton iteration, we as-
sume that the Jacobian J remains fixed for several consecutive steps, and that the
iteration matrix M = [ - qh'J is not necessarily refactorized when the stepsize varies,
ie. b’ denotes the stepsize when M was last factorized. One can show that the con-
vergence rate is

a S u|I(R'I)"16(aT),

where §(AJ) denotes the current value of hJ deviates from the value used when
forming M. The factor v = 1 in stiff computation, and the linearisation §(hJ) =
ShJ + héJ readily yields the convergence rate estimate

&h

QMﬂ;

‘ +||J78T).

Thus the convergence rate is bounded by the relative stepsize change, plus the “re}-

ative change” in the Jacobian since its last update. This furnishes a simple but

effective strategy for reevaluating the Jacobian and/or refactorizing M due to step-

size variation. No changes are necessary as long as & is small; if it becomes larger
2



than a®, check whether this can be attributed to [64/h’|. II so, a refactorization is
sufficient, otherwise the Jacobian must have changed significantly, and it is necessary
to reevaluate J and then refactorize M.

Practical experience with this strategy shows that it is not at all necessary to
refactorize M whenever the stepsize changes, nor is it necessary to prevent stepsize
changes for efficiency reasons. On the contrary, moderate stepsize variation is permit-
ted and can be used to advantage with elaborated error control, see Gustafsson (1991)
and (1992). This makes for a smoother local error control {closer to the prescribed
tolerance), and the global error may show a more consistent behavior for different
tolerances.
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A weakly stable, generically superfast algorithm for
non-Hermitian Toeplitz systems

Martin H. Gutknecht?

Abstract. It has been known for a long time (Levinson, 1947; Durbin,
1959; Trench, 1964; and others) that an N x N linear system with Toeplitz
matrix T can be solved fast, in O(N?) operations. More recently, superfast
O(N log? N) algorithms were found (Musicus, 1984; de Hoog, 1987; Ammar
and Gragg, 1986-88). However, these algorithms require a strongly regular
matrix; i.e., one whose leading principal minors are all nonzero. But what
is worse is that these methods are easily seen to be unstable if any of these
minors is very small. Hence, the remaining challenge has been to find fast
solvers that are stable (in an appropriate sense).

Recently, Chan and Hansen developed a generalization of the Levinson
algorithm that seemed to resolve this challenge: it produces an inverse block
LDU decomposition of &, and requires O(N?) + O(NE?) operations if h is
the size of the largest Eo.ur However, some doubts remained regarding the
optimality and the generality of the block steps, and, in Summer 1992, Freund
and Zha indeed showed that the case of two directly neighboring blocks was
not handled correctly by this algorithm.

Also in 1992, the author introduced four new algorithms that were all
based on mmnm-.w_ recurrences in the Padé table [I}. Two are of ‘Levinson
type’ and require O{N?) + O(Nh?) operations, the other two are of ‘Schur
type’ and require OAZ log? N) +O{NH?) operations. However, none of these
algorithms reduces in the case of a matrix with well-conditioned leading
principal submatrices to the Levinson or to the Schur (or Bareiss) algorithm.
In particular, they differ markedly from the Chan and Hansen algorithin
and also from the Freund and Zha look-ahead Levinson algorithm that has
been submitted shortly after our proposals . Since then, yet another pair
of algorithms has been developed in joint work with Marlis Hochbruck [2].
Starting from Padé recurrences also, we have reformulated them in terms
of linear algebra; they are similar {though not identical) to the Freund-Zha
algorithm and a corresponding look-ahead Schur algorithm that is currently
being developed by Freund.

Hnterdisciplinary Project Center for Supercomputing, ETH Zurich, ETH-Zentrum,
CH-8092 Zurich, Switzerland

2The December 1991 date on the Freund and Zha report is misleading; the paper was
not available before September 1992,

In this talk we want to reformulate also the algorithms from [1] in the lan-
guage of matrix analysis, so that they become accessible to a wider audience.
Of prime interest are the fast Levinson type and the superfast Schur type
algorithms that were originally based on generalized sawtooth recurrences
since these recurrences are the simplest ones among all these methods. The
price one pays is a loss of the symmetry that is one of the features of the
classical Levinson and Schur algorithms.

Although detailed stability proofs have not been worked out, one can
expect that the algorithms we proposed are weakly stable, i.e., forward stable
for well-conditioned problems.

This is partly joint work with Murlis Hochbruck from the University of
Wiirzbury.
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Look-ahead Levinson and Schur Algorithms for non-Hermitian
Toeplitz Systems

Martin H. Gutknecht! and Marlis Hochbruck?

Abstract. Systems of linear equations with Tveplitz coefficient matrices
Tx € C¥N arise in many important applications. It is well-known that the
Toeplitz structure of Tx can be exploited when solving linear systems with
Toeplitz coefficient matrices. There are mainly two basically different types
of algorithms of complexity O(N?) for the recursive solution of 2 Toeplitz
system Tnxy = by. Levinson type algorithms compute — at least implicitly
- an LDV decomposition of the inverse of Tw. Schur type algorithms, such
as the Bareiss algorithm, compute an LDU decomposition of T'x itself. The
main difference between both types of algorithms is that Levinson’s algorithm
requires the computation of two inner products of size n + 1 in step n, while
Schur’s algorithm is of purely recursive nature. Thus, Schur type algorithms
might be better suited for implementation on parallel architectures.

In addition, a number of superfast algorithms, which are of complexity
O(Nlog? N), have been proposed (e. g. by de Hoog; Musicus; Ammar and
Gragg). These algorithms are generalizations of Schur type algorithms which
do not compute the complete LDU decomposition of Tx but instead only
find the last row of L and the last column of U and then apply an inversion
formula (like the Gohberg-Semencul formula) for inverting Tx.

However, a major drawback of all these algorithms is that they require
all the leading principal submatrices of Ty to be nonsingular. If only one
" of these submatrices T, is singular, the algorithms break down. In finite
precision arithmetic such exact breakdowns are rare, bui near singular or ill-
conditioned submatrices may occur frequently. In this case, the algorithms
become unstable and may compute solutions which are far away from the
exact solution.

In the past few years, the interest in the solution of indefinite or nonsym-
metric Toeplitz systems has grown substantially. Chan and Hansen proposed
a look-ahead solver that jumps over ill-conditioned submatrices. Since this
algorithm estimates the condition of each submatrix T, the overhead is quite
large, even if no look-ahead steps are performed. In addition, there is still
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a possibility of breakdowns if two or more consecutive look-ahead steps are
necessary. Recently, Freund and Zha came up with a generalization of the
classical Levinson algorithm, which can overcome these difficulties. Their
approach is based on an interpretation of the Levinson algorithm in terms
of formally biorthogonal polynomials. The new algorithm can handle exact
and near breakdowns and has low overhead. At the same time, Gutknecht
published a paper on general row recurrences in the Padé table and showed
how these recurrences are related to the solution of Toeplitz systems. Making
use of this Padé connection, he proposed different types of fast and superfast
solvers, which can handle exact and near breakdowns. However, none of the
algorithms he proposed is a generalization of either the Schur or the Levinson
algorithm in the sense that it reduces to one of the classical algorithms in
the absence of look-zhead steps.

In this talk we present generalizations of the algorithms by Levinson and
Schur which can also bandle the general case. The LDU decompositions com-
puted in the classical algorithms then become block LDU decompositions, as
in the algorithms of Freund and Zha and of Chan and Hansen. Therefore, it
is possible to compute the solution of any subsystem TaxX, = by, if desired.
The new algorithms are derived from a purely linear algebra point of view.
In particular, we do not need to have knowledge about the Padé connection,
although the recurrences are closely related to some in the Padé table.

Moreover, we show how this approach can be used to obtain a superfast
look-ahead solver for general Toeplitz systems, which reduces to the variant
by Ammar and Gragg if no lock-ahead steps are necessary. To our best
knowledge, this is the first implementation of a superfast Toeplitz solver
with look-ahead.

The look-ahead strategy used in our algorithms is based on local infor-
mation only. In particular, no condition estimates of the submatrices T, are
necessary. Therefore, the overhead of the look-ahead algorithms is low.

Finally, we present several numerical examples for the new fast and su-
perfast algorithms. These examples indicate that the proposed algorithms
have good numerical properties. Since the computation of the residual and
the application of the inversion formmla requires only O(N log N) arithmetic
operations when FFT techniques are used, iterative refinement to improve
the accuracy can be applied very effectively. In all our examples, one step of
iterative refinement was sufficient to reduce the relative error to the order of
the machine precision.



Experience with Regularizing CG Iterations

Per Christian Hansen®

The numerical tzeatment of ill-posed problems has always been & challenge, because the com-
putation of a useful solution depends to & very high degres on choosing the appropriate way to
regularize, or stabilize, the solution (the ordinary least-squares solution 2ps5q is not useful since
it is completely dominated by noise). A variety of theoretical and numerical algorithms have ap-
peared over the years [4], and the regularization method due to Tikhonov is undoubtedly the most
well known and perhaps also the most used method.

Tterative regnlarization methods that only require matrix-vector products are very important
alternatives to Tikhonov's method for large-scale problems {and they may also be useful on some
high-performance computers where matrix-vector producta can be computed fast).

Among the iterative regularization methodas, the conjugate gradient (CG) method applied to the
normal equations AT Az = AT} js probably the most promising—provided that it is implemented
as in CGLS [2, p. 560] or in the algorithms based on Lancgos bidisgonalization, such as LSQR
[2, p- 566] and the new algorithm based on modificd moments [1]. See also the approach in (5]
based on Gause quadrature. The iteration vector z(*) for the CG process is said to exhibit semi-
convergence: during the first iterations, the error ||2(¥)—2*||; (where z* is the exact, unregularized
solution {0 a problem without noine} decreasea, while at later stages of the CG process the error
increases again until z(*) converges to the least-squares solution zrsg. We atress that 254 is not
the desired solution siner it is completely dominated by the noise.

This bebavior of z) can, to some extent, be explained in terms of spectral filtering. Let #{*,
j=1,...,k denote the Rits values associated with applying k steps of CG to AT A with starting
vector ATD, and let A =T, o; u; v denote the SVD of A. Then z(*) can be written as a filtered

expansion;
13 &5 - nw

n
NASRM”\MSMMWE R with h&"uiHH ..P.Mqu . 1)
dx1 4 =1 O

Here, .&5 are the filier factors for CG. It is easy to see that bE will be close to 1 if some &5
bas converged to of. Moreover, if no &5 has converged to o7, then S = of Hwn_aa.“_aul +
O(c? /(#M)), and if o; is small then ) is also small. In other words, the spectral filtering ia
associsted with the number of converged Rits values which, in turn, is velated to the number of
iterations k. Hence, k easentially plays the role of a regularisation parameter.

The above analysis illustrates that a full understanding of the regularising properties of CG
iterations requires a good understanding of the approximation properties of the Ritz values &Sl
in infinite precision s well as finite precision. Work along this line has been presented by van der
Sluis & van der Vorst [11]. In this talk, we will present some new results derived in collaboration
with Dianne P. O'Leary & G. W. Stewart, Univ. of Maryland. In particular, we give conditions in
which small Rits values will not appear until each of the significant eigenvalues has been resolved.
Our results are consistent with those of [11] in that the decay of the cocfficicuts |uf b)/a;, which is
related 1o the discrete Picard condition [7], plays a central rofe.

In » practical implementation of regularizing CG, a reliable algorithm for choosing the optimal
number of iterations is crucial, due to the semi-convergent nature of the CG process when applied

*UNIeC (Dastiah Computing Center for Ri ch and Education), Building 305, Technical University of Denmark,
DK-2800 Lyngby, D k. Email: wnipch@unli.qni-c.dk.
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to these problems. We demonstrate that the method of generalised cross-validation (GCV) [2,
p. 604]—which is a reliable method for ‘Tikhonov regularisation—~is not as reliable for the CG
method, especially because the underlying GCV function cannot be computed correctly without
explicit knowledge of all the singular values of A. We also demonstrate that a stopping rule based
on the L-curve criterion [8, 9] seems to be useful for reguiarizsing CG iterations. Some of this work
has been presented in the survey paper [6] written jointly with Martin Hanke, Univ. of Karlsruhe.

In our talk we will also discuss s “hybrid” implementation of the CG process, based on [10} and
[2, p. 604], and which incorporates regularization adaptively in each step of the CG process. The
“hybrid” version is well suited if the CG procese starts to spproximate small cigenvalues of AT A
before all the large cigenvalues have been captured. In these instances, the adaptive regularization
in each CG step aims to filter out the influence of the smallest Rite values on z(*). We show that
the L-curve criterion is suited for choosing the regularisation parameter in each CG step.

Finally, we will report on our comparison of CG regularisation with other methods such as
Tikhonov regularization and truncated SVD (TSVD). Surprisingly, we find that the optimal (i.e.,
minimal) error for CG and TSVD is often smaller than that for Tikhonov’s method when both
the matrix A and the right-hand side b are perturbed. We will discuss a possible explanation for
this, namely, that the “sharper” filter factors of TSVD and CG are betier suited for suppressing
the errors in A than the Tikhonov filter factors.

Our numerical examples come from a collaboration with J. Christensen-Dalagaard, Arbus Uni-
versity on inverse heliceeismology [3].
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Parallelism Versus Stability in
Linear Equation Solvers
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Extended abstract for the
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Parallel algotithms in matrix computations tend to be less stable than their serial
counterparts. This fact has become clear in recent years as more parallel algorithms
are derived and more error analyses are done of both existing and new algorithms. In
this talk I analyse the tradeoff between parallelism and stability for linear equations
solvers. A recurring theme in the talk is that for a parallel method the backward
error often depends on the condition number.

1 begin by considering algorithms for solving triangular systems, concentrating
on algorithms that are not simply rearrangements of the usual substitution algorithm
(which, of course, is known to have ideal stability properties). A method of particular
interest because of the generality of the underlying idea can be described as follows.
1f L € IR*™" is lower triangular, we can write L = L,L;...L,, where L; is an
elementary lower triangular matrix that differs from the ideatity only in the kth
column. To solve Lz = b, we write z = L-1b = [-1L;%, ...L7'b, and we evaluate
this product in paraliel in log; n stages using a tree structure. This evaluation requires
more flops than substitution, but it requires less parallel stages. Sameh and Brent [6]
have shown that this method has a backward error bound proportional to x2(L)(|Lilu,
where u is the unit roundoff. I will discuss the sharpness of this bound and the average
case stability {as opposed to the worst case given by the bound).

Another paraliel triangular solver, also based on matrix inversion, employs the
formula - . -

L, 0 _ — L3 0
Ly Lyl ~-L3luly Lz
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The idea is to invert L,y and L,, in parallel, and then evaluate the (2,1) block. I
explain the relation of this method to Strassen’s inversion method [8]. The L;; inver-
sions can be done recursively by the same technique. Note that although methods
based on matrix inversion are usually avoided because of potential numerical insta-
bility, they are worth considering in the parallel context because instability can be
shown not to occur for well-conditioned matrices [3].

A parallel method for solving sparse triangular systems with many right-hand sides
has recently been considered by Pothen, Schreiber and others. The method employs
a partition into sparse factors of the product form of the inverse of the coefficient
matrix. I show that while the method can be unstable, stability is guaranteed if a
certain scalar that depends on the matrix and the partition is small, and that this
scalar is small when the matrix is well-conditioned [5}. Moreover, when the partition
is chosen so that the factors have the same sparsity structure as the coefficient matrix,
the backward error matrix can be taken to be sparse.

Turning to full systems of equations I briefly consider Gaussian elimination with
parallel pivoting strategies. One particular method carries out operations only on
adjacent rows:

o4 = o~ e ol

Before carrying out the operation we interchange the rows, if necessary, to ensure that
the multiplier is bounded by one. In the basic serial implementation, we introduce
zeros in the first column in the order (n,1), (n-1,1), ..., (2,1}, and then work from
the bottom to the middle of each of the remaining columns in turn. This strategy
avoids the sequential search for a pivot of partial pivoting and allows row operations
to be overlapped. I explain the relation of this method to another parallel Gaussian
elimination algorithm mentioned by Wilkinson in {10, pp. 236-237] and Gallivan et
al. [4], and discuss the stability, making use of resulta of Sorensen [7} and Trefethen
and Schreiber [9].

An excellent example of how modifying a point algorithm for paraliel computation
can worsen the stability is block LU factorization. 1 quantify the instability of block
LU factorization for general matrices and explain why it is unconditionally stable
only for matrices that are block diagonally dominant by columns [2].

I outline a complexity argument that suggests we need to look beyond elimination
methods to obtain efficient linear equations solvers on massively parallel machines. A
classic algorithm in the NC complexity class {polylogarithmic run time on a paralle]
machine) is one devised by Csanky (1976); it turns out to be very unstable. A better
NC algorithm is Newton’s method for the inverse, first considered by Schulz in 1933.
I discuss its practical speed of convergence and its stability.

Finally, I indicate the possible courses of action when a method is found to be
unstable. We can apply fixed precision iterative refinement if the instability is not too
severe. Or we can redo the computation with a slower but more stable method—a
strategy proposed by Demmel [1].
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Semi-circulant solvers and boundary corrections
for first-order pde
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Abstract

We consider solving systems of equations arising from time-dependent and time-independent first-
order linear pde.
Bu=%

The matrix B is a discretization of a system of n, pde in 2D using a five-point operator on an
my X mg-grid. The bandwidth of the matrix is 2n.my, but the number of nonzero elements is only
(mgzm;). Thus, the memory and arithmetic requirements for momﬁmm the systems using Gaussian
elimination are m._dr_!s.a. To store the LU-factors, O{mym}) memory positions are required.
The factorization requires ((mam?) a.0. and each vwnwmuwmsgsg O(mzm?) a.o.

Previously we have developed an iterative solution procedure based on a CG-like iterative method
combined with semi-cireulant preconditioners [1]. A semi-circulant preconditioner can be considered
as a fast direct solver {€Xmym; log, m;) arithmetic complexity) for a pde problem closely related
to the original one. .

Mu=c¢

In the semi-circulant matrix M two approximations are introduced. The coefficients in the dif-
ferential operator are approximated by constants in the space direction associated with my, and
the Dirichlet and outflow boundary conditions in the same space direction are replaced by periodic
boundary conditions. For problems with constant coefficients in the m;-direction we obtain.

B=M45VT
V =diag(v,.. .y ¥my)
S = diag(s,...,s)
Iny O 8y

(=]

0
0
Itn)

[ =T

The matrix SV7 is of rank 2n.m; and contains the corrections of the boundaty conditions.

Often the main problems in constructing and analyzing numerical methods for first-order pde are
caused by the numerical boundary conditions required at the outflow boundaries. Semi-circulant
preconditioners have proved to be efficient, and for some model problems with a B according to
eq. (1) we have argued that the number of iterations required are independent of problem size [2]).

! This work was sapported by the Swedish National Board for Industrial and Technical Development (NUTEK)

We now construct a memory efficient solver for linear systems with a coefficient matrix B according
to eq. (1). The solver is based on the Fourier technique used for the semi-circulant preconditioners.
The boundary corrections S¥7 are resolved by using the Sherman-Morrison-Woodbury formula.

=(M+ 85V = (I - M SP WM
wu:_\ﬁz;_m @)

There are several ways of exploiting this factorization, none of which requires more than
O(mymy + m3) memory positions. When computing = B~'b there are at least three alternatives,

i, First form the 2n.m; X 2n.my-matrix P by essentially performing 2n,my semi-circulant solves.
Then LU-factorize P. The total cost for this is O(m3m,log; m; + m3). The substitution
then basically consists of twe semi-circulant solves and a backsubstitution for P at a cost of
O(mym; log, my +m3). This gives a direct solver possibly useful for time-dependent problems,
where the factorization could be performed once prior to the time-marching.

ii, If it is considered too expensive to form P, then approximate P~! by some matrix H ! which
is cheaper to form. Then use C as a preconditioner in an iteration, where
C =T~ MIISH- WML,

1ii, When we compute B~!b using eq. {2) we need P~! acting on a vector, z = P!z, If we solve
Pz = 2 for £ using a CG-like method P need not be formed, since only multiplications with

P = I+ VTM~!S are required. This strategy is similar to the partitioned matrix method in
domain decomposition.

For problems with variable coefficients in both space directions (not fitting into this framework) the
methods above could be used as preconditioners. We use these strategies for some scalar (n, = 1)
model problems involving wave propagation. We also apply them to a driven cavity problem solving
the Navier-Stokes’ equations employing an operator splitting. We compare the performance and
memory requirements of the various solution methods.

To analyze the convergence properties of the CG-like methods for the coefficient matzrix M1 8 or
P, the eigensystems of these matrices are examined. For a model problem with coefficient matrix
8B = Iim,) ® By + By ® Iy, a thorough analysis has been catried out [2]. In short the result is:

i, M~1B has only 2m; eigenvalues .T + p1x, 1+ 43 LT& separated from unity.

ii, M~ B has a nensingular eigenvector matrix W = (V3 ® I, )diag(U1,. .., Um,), Where V3 is
the eigenvector matrix of By. For every fixed k = 1,...,my ail but the first and last columns
of Uy are mutually orthonormal. The first and last columns Ui(:, 1), Ux{:, m;} are associated
with gy i and pg .

This is intimately related to the eigensystem of P.

» P has eigenvalues {1+ 10, X422}, xoy+ 1-¢. the same as the nontrivial eigenvalues of M~1B.

#i, P has an eigenvector matrix Wp = VIWS = V; o Z, where Zip = ea. EL..S SA..EL_ and
o denotes the Hadamard product.

Often Wp is less ill-conditioned than W. However, the number of iterations required for convergence
is almost the same for both M 1B and P. This once again shows that the convergence of CG-like
methods is not completely determined by the condition number of the eigenvector matrix.
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Iterative Solution of Linear Systems with Low Displacement Rank
by Preconditioned Conjugate Gradient-Type Algorithms
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Extended Abstract

In recent vears. there has been considerable interest in the iterative solution of systems
of linear equations with Toeplitz coefficient matrices by preconditioned conjugate gradient
algorithms. Conjugate gradient schemes involve the coefficient matrix of a linear system
only in the form of matrix-vector products. Therefore, they are very well suited for the
solution of Toeplitz systems, since matrix-vector products with Toeplitz matrices can be
computed efficiently using FFTs. Furthermore, appropriately chosen circulant or skew-
circulant matrices yield powerful preconditioners for Toeplitz systems.

Toeplitz matrices are a special case of more general families of structured matrices
classified by their displacement rank. More precisely, Toeplitz matrices are of displacement
rank two. Other classes of non-Toeplitz matrices of low displacement rank arise in impor-
tant applications. For example, the positive definite coefficient matrices of the normal
equations corresponding to Toeplitz least-squares problems are non-Toeplitz matrices of
displacement rank four. In this talk, we propose and analyze the use of circulant precon-
ditioners for the iterative solution of systems of linear equations Az = b with coefficient
matrices A of low displacement rank. In the case of symmetric positive definite A, these
preconditioners are combined with the classical conjugate gradient algorithm. We also
study the case of nonsymmetric linear systems. Here we use the quasi-minimal-residual
method {QMR) and its transpose-free variant, the TFQMR algorithm, for the solution of
Az = b,

Many recent papers consider the special case of linear equations with a Toeplitz matrix
Talta-1, wtiitoitog, oy ti=g) = (ti—j);=; connected with an ly-sequence ()5 —r
Y -wltil € M < co. The Toeplitz structure can be generalized in the following
way. Let us denote a lower Toeplitz matrix L, connected with an I;-sequence (I;)32o
by La(lo,.odney) 2= Tu(ln=1, .o 15 1030, ...,0) , and an upper Toeplitz matrix connected
with an /;-sequence (u;)72q by Upn(t0, v tini) = Tp{0y .., 05080 1, ..., 205—1) - Then a
displacement rank matrix A of positive displacement rank a4 = k is given by

k
4o = T LOUY

i=1

with lower and upper Toeplitz matrices. Similatly a matrix with negative displacement
rank a_ = k can be defined by reversing L and U. Note that Toeplitz matrices have

1

displacement rank two. Here, we will consider only matrices with positive displacement
rank; the other case can be treated in the same way. Furthermore, we assume that all
occurring Toeplitz matrices are connected with !;-sequences.

For preconditioning we use circulant matrices, i.e., Toeplitz matrices of the form

Cr(C0, o1 Cnu1) 1= Ta(Cty oes Cam13 €01 €1, voey €nmy ) = FHAF,

with a diagonal matrix A and the Fourier matrix

.i
F, = wﬁslu»vwruo , w:=ezp(2wifn).

For the following, we also need skew-circulant matrices
%:?9 aeny m:luv = u.,=A|m.T oy =81} 90} 81, ony Snmy ) = a.ma%.?m._aﬂ

with A diagonal and 9 := diag(l.0,....6™" ), 0 1= exp(7ifn).

The so-called optimal circulant preconditioner C for a given matrix A that minimizes
A - C in the Frobenius norm is given by C := FY diag(F,AF#)F, . This leads to
two different ways to obtain circulant preconditioners for & displacement rank matrix
Ap. One possibility is to compute the optimal circulant approximations Qmw and QW )
to the Toeplitz matrices LY and UY in order to define the circulant preconditioner
CLv = MU..MHH QM.:Q%H. For A, & Hermitian matrix we use the Hermitian part of Crp as
preconditioner. On the other hand one can try to determine the true optimal circulant
Frobenius norm approximation C 4 to A,. In this case, one has to compute diag{F, LUFY).
This can be done by using the well known partitioning of a Toeplitz matrix T in the sum
of a circulant and a skew-circulant matrix. If the lower and upper Toeplitz matrices
in A, are connected with I,-sequences then we show that these two preconditioners are
asymptotically equivalent in the spectral norm, and that the eigenvalues of A, — C, are
clustered around 0 if n tends to infinity. Thus, if for example the matrices A, and A! are
Hermitian uniformly positive definite then the number of iterations of the preconditioned
conjugate gradient method for computing A;7!d to a given accuracy is bounded independent
of n.

Finally, we present results of numerical experiments with the proposed circulant pre-
conditioners for various symmetric and nonsymimetric linear systems of low displacement
rank.

This is joint work Roland W. Freund from AT& T Bell Laboratories.



RELATIVE PERTURBATION TECHNIQUES FOR EIGENVALUE
AND SINGULAR VALUE PROBLEMS

ILSE C.F. IPSEN*

Abstract. We present techniques for deriving relative perturbation results for
singular values and vectors, as well as for eigenvalues and vectors.

We consider the class of perturbations § A where A+8A4 is congruent to the original
matrix 4, Le. A + §A = DTAD for some non-singular D. This includes companent-
wise relative perturbations, as well perturbations that amount to elimination of off-
diagonal blocks (deflation).

The relative perturbation results derived by means of our techniques can be used
a3 deflation and convergence criteria in algorithms for solving singular value and eigen-
value problems of dense or banded matrices. Not only do they guarantee high accuracy,
they also enhance efficiency because the potential for break-up into smaller subprob-
lems is recognised as early as possible. This in turn makes our perturbation results
highly suitable for the design of accurate parallel divide-and-conguer algorithms, in
particular as a means to estimate and contrel Joad balance.

We briefly describe our main results. Let M be a real, symmetric matrix and
M + §M = DTMD for some non-singular matrix D. If A; and A} are the respective
ith eigenvalues of M and M + &M then

1A = Xl < [lEM)]

is the traditional absolute error bound. It provides useful information only about the
relative accuracy of the largest eigenvalues. In contrast, we derive the relative error
bound

_y-|¥“_ M _rwd..

where 4 = |[DTD ~ I|{ and the norm is the two-norm. Because this bound on the
relative sccuracy is the same for all eigenvalues, it can provide realistic information
about the relative accuracy of the amallest eigenvalues.

Furthermore, if

Mw; = Mw; and (M4 §M)w} = Alw},

and if 8; is the angle between the eigenspaces spanned by w; and w] then the traditional
result

flsM]|
gapi — 6 MI|

says that the amplification of ||6Af]] in the bound is inversely proportional to the
absolute difference

|sind;] <

gap; = ﬁ,.. (M) = A; (M)

* This represents joint work with Stanley C. Eisenstat
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Again, this bound is too pessimistic for eigenvectors associated with the smallest
eigenvalues. In contrast, we derive the bound

§

i Q—. M s
loind € == +8
where
Euﬁ....?n»..._hr_
is the relative gap and

A=|D"I\D~1I, &=|DTD||D"TD™* -1}
This bound provides realistic information for all eigenvalues that are well-separated
in relation to their magnitude.

Similar results hold for singular values and singular vectors. Let B be a real,
possibly rectangular, matrix and B 4 §B = Dy BDp for non-singular Dy and Dg. i
o; and of are the respective ith singolar values of B and B + §B then we prove

&
s < 0 < 0; || Dl | D)
WDz HIDRM
Also, if
Bu; = o;v;, and (B + 6B =ole}, .

and if 8¢ and 87 are the respective angles between the spaces spanned by u; and v/,
and by v; and v} then we prove

max{sin 67, in ) < 2 (=2 +4).
e
Most surprisingly, all of the above relative perturbation results can be derived by
means of the traditional absolute perturbation results.
‘We show that the following known results for the class of component-wise relative
perturbations represent apecial cases of our results above:
» bounds on the relative errors in the singular values of bi-diagonal matrices
(Demmel & Kahan 90; Deift, Demmel, Li & Tomei 81)
s bounds on the relative errors in the singular values of bi-acyclic matrices
(Demmel & Gragg 92)
¢ relative bounds on the angles between singular vectors of bi-diagonal matrices
(Barlow & Demmel 90; Deift, Demmel, Li & Tomei 91)
In addition, we derive a relative bound on the singular vector angles for bi-acyclic
matrices.
For the class of perturbations that amount to elimination of an off-diagonal block
(deflation) we prove a bound on the relative error in the singular values. I B is a real,
possibly rectangular matrix, snd B + 68 = BD for

(L X
.UIA Htlv !

where I, is the identity matrix of order m, then
lof - ail < i | Xl
The following known results are special cases of this bound:
2



¢ bounds on the relative errors in the singular values of bi-diagonal matrices
(Demme! & Kahan 90; Deift, Demmel, Li & Tomei 91; Fernando & Parlett
92)
¢ bounds on the rejative errors in the smallest singular values of block triangular
matrices (Chandrasekaran & Ipsen 92; Mathias & Stewart 92)
In addition, we derive & bound on the relative error in the singular values of deflated
block-triangular matrices. I

Ih: m_-uv ...A.mz v
unﬁ T2) amd BsB= By)"

where By or By is non-singular, then

Bl

oi~oll < o ||By3 .

s = o < o S (B, Fmin B)]

This means, high relative accuracy of the singular values is preserved after elimina-
tion of a ‘small’ off-diagonal block if at at Jeast one of the diagonal blocks is well-
conditioned.



A Direct Method for Reordering Eigenvalues
in the Generalized Real Schur Form of
a Regular Matrix Pair (4, B)

Bo Kagstrom
Institute of Information Processing
University of Umea
$-901 87 Umea, Sweden

In this talk we will present a direct method for reordering eigenvalues in the generalized
real Schur form of a regular matrix pair (A4, B) [5]. The method performs an orthogonal
equivalence transformation of the real matrix pair (4, B), where A is upper quasi-triangular
and B upper triangular. (This form can be computed by an orthogonal equivalence trans-
formation using the nZ algoritbm.) A quasi-triangular matrix is triangular with possible
2 x 2 blocks along the diagonal. In the generalized Schur form the 2 x 2 blocks correspond
to pairs of complex conjugate eigenvalues of the real pencil A — AB. The real eigenvalues
are given by the ratios of the diagonal entries of A and B corresponding to 1 X 1 diagenal
blocks in the generalized Schur form. So the problem of reordering eigenvalues is equivalent
to swap 1 x 1 and 2 x 2 diagonal blocks along the diagonal of {4, B). Let (A3, By;) and
{Azq, By7) be matrix pairs of size m x m and n X n, respectively, where m,n=1or 2. We
want to find orthogonul (m + n} X {m + n) matrices m and n such that

(| Au A | _,| Bu Pu _[An Au]_,[ B2 Bu :
i 2 0 Ax g‘ g — 0 B2|)9=|%0 Au]| M 0 Bujr O
where (A;;, Bi;) and (A, Bj;) for § = 1,2 are equivalent matrix pairs with the same eigen-

values but their positicns are exchanged (swapped) along the block diagonal of (4, B). Each
swap comprises solving for (I, R) in the generalized Sylvester equation [7]:

An-R—L-Ap=-An
By-R-L-Bn=-Bn’ (©.2)

Further, m and n are determined from computing orthogonal basis for certain eigenspaces
(involving L and R) of the regular pendil in ().

The numerical stability of the direct reordering method will be discussed. Since the
method is based on solving of a sequence of generalized Sylvester equations we will also
present a perturbation analysis of the generalized Sylvester equation itself, including per-
turbation and error bounds and an expression for the normwise relative backward error of
an approximate solution [6].

‘We have developed reliable and robust software in the LAPACK-style [1], with guaran-
teed backward stability, which implements the direct reordering method. The error anal-
ysis and nomerical experiments show the following characteristics of the direct reordering
method:

o It is numerically stable and accurate except for “extremely™ ill-conditioned problems.
Typically, these problems are related to ill-conditioned, large-normed solutions of the
associated generalized Sylvester equation.

¢ The numerical stability can be guaranteed and controlled by computing the size of
the backward error and rejecting a swap if it exceeds a certain threshold. The user
can choose between a “weak” or a “strong” stability criterion.

e We can expect “large” changes in individual eigenvalues for ill-conditioned Az = ABz
problems even if the backward error after the ewapping is at the level of machine
Pprecigion.

Examples include defective eigenvalues, notably at infinity. This type of inherited
ill-conditioning cannot be “cured” by any reordering method. However, one possible
remedy is to start to deflate the infinite eigenvalues with a staircase type of algorithm
{e-g., see [2, 3]) and then perform the required reordering of the finite eigenvalues.
The placement of the jafinite cluster could be made either to the (1,1)-block or to the
(2,2)-block.

Our practical algorithm will be compared experimentally with an iterative method based
on the QZ iteration [9]. Besides, we have implemented a block solver of the generalized
Sylvester equation with Dif~! estimators based on the work in [7]. These routines form the
basis for practical estimation of condition numbers for the generalized eigenvalue problem
Az = ABz, where (A, B) is a regular matrix pair {4, 2, 3, 8], which also will be illustrated.

This is joint work with Peter Poromaa, University of Umed.
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THE X-CONDITIOM NUMBER AND ITS USE FOR THE CONSTRUCTING OF
PARALLELTZABLE PRECONDITIONED CONJUGATE GRADIENT SOLYERS
I.E.Kaporin (Russia}

i1. Let M be an SPD matrix of order n . Define the K-condition

nunber am
KCH) = CtrM ~O" sdetM .

Qualitatively, thim matrix function KCM2 has such in common with
the standard condition number,

) = ?.!usnxb \r.sw:ﬁku .
and can be efficiently used instead of CCMY fOor many purpomes.

2. In particular, see [2,3)], for the numsber of iterations k of
the conjugate nﬂlngrun {(CG) wmathod applied to the molution of Mx =
b, the estimate

K HD
-4 - NGD‘H b
halds, which can be wore appropriate than the standerd one,
1 2
&k £ q F ] YoM nomi M J ’
when choomsing a preconditioning strategy or even Zfor estimating
the actual CG iteration number.
3. Hence, the choice of s preconditioning can be wmubjected to

" the requirsment of the reduction of KCAD> rether than CCMD. Here ve
concentrate on the case of left preconditioned matrix

M = GG A,

wheres A is the origineal SPD coefficient matrix and G is a sparse
lower triangular Incomplete Inverse Chalesky (IIC) factor of 4. If
the sparsity pattern of 6 is fixed, = simple formula for & that
minimizes KCM) exiwte (1-3], es oppomed to the case of wmininizing
ccM> 15, . procedures are
available.

For FD- or FE-type mparse wmatrices A quite asppropriaste IIC
sparsity patternw can be obtained using wpecial reorderings, such
In wsuch cases,

when' no computsaticnslly fessible

as Domain-Decompoaition/NMulticolor ones [2].
nECs + Qqu can be much smaller than :ﬂnndmv which is essentisl for
overall efficiency of IIC-CG algorithms, see S.5 belov.

4. Bince thes resuliing preconditioned CG methods employ only

{51 can be proven using thess

simple vector und mwmatrix-vector operstions, ssveral faniliea of

highly psrsllel solution procedures are essentially defined,

5. Seversl results concerning the performance limitations of the

entire family of the Texplicit®

iterative wmethode are also
presented,

Tuxorxm (4], Let hﬂc

entries of the vecior ﬁ:ﬁuwlw. wherse . is the ' unit

ts an SPD matrix, and the dicgonal of HA is nonsero. Then the

be the subset of iIndices of nonzerc

vector, A

lower bound

z _ LT, gtk g T -1
a—n:a_an..m_. | PCHAS ub z 1 Qpﬁ.__n > . s 4 .

PO = 3

holds, where A'X

i

colunns having indices not contained

t> obtained from A by replacing ail (ts rows and

in h%n by those of the
identity matrix.

Uaing this theorem with wseveral test watrices 4, one can
obtain some non-trivial lowver bounds on the number of iterations
and/or condition numbers for such families of methods as SOR- and
SS0R-like ones, a® well as for CG-like wmethods
preconditioner N. In particular, several hypotheses

using sparse
presented in
resulie. MNoreover, this theorem
whowse " that explicitly preconditioned CG wethods may perform
satisfactorily only with rather filled preconditioners H, which
fact explains the iwmportance of uaing the factored form N = ndm
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Large Structured Problems

Linds Ksufrnen
AT&T Bell Laboratotien
Murray Hill, NJ 07974

Much of the work in numerical linear algebra for large systems concentrates on the sero structure of the
system. Thete are some examples, notably multigrid and fast direct methods for separable partial differential
equations, where aaking from whence the problem eame and exploiting its algebraic structure bas paid off
bandsomnely. In this talk we will explore some additional examples of this type.

The first example is o linear least squares problem coming from system identification in which each
tolumn can be written as & tensor product of 2 vectors. Thus a problem with m x g rows and n colamns
actually comes from two matrices one having m rows snd the other p rows. By doing QR decompositions
ot these 2 matrices independently and then forming the original system one can reduce the problem to one
in which the cnly the first i? elements of the ith column are nonsero.

A similar problem arises in separable nonlinear least squares with multiple right hand sides. Golub and
Leveque bave shown for that problem one can solve a linear least squares with s Jacobian that has special
structure. Ench right hand side corresponds to a block of rows and the jth column of the ith block has the
form Mjy; where each M; usually hes only 1 or 2 nonzero columns, One can use this structure to quickly
obtain a QR factorisation of the whole matrix. The trick involves concatenating all the nonzero columns
of all the M; matrices to form a dense matrix G. If each M; has only one nonzero column then by doing
& QR decomposition of G snd one of Y whose ith column is g, then we are back to the problem defined
in the previous paragraph. Slightly more complicated M; matrices will lead to slightly more complicated
final matrices but they will usnally be almost triangular, Note that all this structure can be exploited if one
thooses 1o form the normal equations. :

A nonnegative linear least squares problem arises in the reconstruction problem in positron amission
tomography. Typically there are millions of aonzero elements in the matrix but fortunately it is composed
of repeated submatrices that decreases the storage and sffords the use of parallel computation. One can
sttack the problem with a preconditioned conjugate gradient algorithm whete the preconditioner gives an
spproximate distance of the variable to the bound. The preconditioner allows one to travel further without
hitting » constraint in the space of the larger varisbies, which physically are the most important. Because
the problem lies on a grid the techniques of multigridding and adaptive gridding in pdes are applicable but
they must be applied with caution because the solution haa wteep fronts and because the noise in the data
teads to produce a noisy solution. ’



A New Approach to Condition Estimation

Charles Kenney

Efficient estimation of matrix norms has long been a central problem in condition theory, espe-
cially for situations where

1) The matrix M in question is not known explicitly or is too expendive to compute directly.
2) Products of the form Mv where v is a vector can be formed reiatively easily.
3) Transpose products of the form MTw where w in a vector can also be formed relatively easily.

As a familiar example, if M is the inverse of a matrix A, then we may only know M implicitly
through the LU factorization of A but the matrix-vector products in 2) and 3) can be found by
uging the LU factors to solve either Az = v or ATy = w. In a more general setting, we may wish to
measure the sensitivity of & function F that maps matrices into matrices by estimating the norm
of the linearization DF' of F about a matrix X. In this case, M is the Kronecker form of DF and
the matrix-vector products of the form Mv = vec{ DF(Z)) can be estimated via

DF(Z) = (F{(X+§2) - F(X))/§ + O(¥), (1

where § is “small” and v = vec(Z). If F is smooth and maps square matrices into square matrices
of equal dimension, then the transpose products MTw can be formed by replacing X by X7 as
described in [1}.

H the three conditions listed above are met, the norm of M can be efficiently estimated via the
power method: giver an initial vector vy define w; = My, and v, = MTw,. Unless the initial vector
is poorly chasen the 2-norm ratio |ju,[|/}jun || provides a good estimate of the 2-norm of M. Better
estimates can be obtained by restarting the power iteration with v, replaced by v;,. {See [2] for a
statistical analysis of the performance of the power method for random initial vectors.)

Unfortunately, the transpose step is the Achilles’ heel of the power method for the problem
of estimating the sensitivity of functions that map between spaces of different dimensions. As an
llustration, if ¥ maps IR" into IR then DF is just the gradient of F and products Mv in 2) are
easily approximated by (1), However, the transpose step 3) requires knowing each component of
the gradient. Difference estimates of the individual entries of the gradient would require n extra
function evaluations and hence the transpose step is impractical,

Because of this problem, a new form of condition estimation has been developed [3] which drog:
the tranepose requirement 3) and only assumes that matrix products of the form Mv in 2) can
be obtained at a reasonable cost. (By (1) this cost should be no more than the cost of one extra
function evaluation, and for many problems is considerably less, especially if the function can be
evaluated via a Newton method.) .

Somewhat surprisingly the statistical theory associated with the norme of vectors of the form
Mv for random vectors v can be worked out in great detail and a rather complete theory derived
that predicts the accuracy of norm estimates for M from just a few matrix-vector products.

This theory is based or the distribution of inner products between a fixed vector v € IR" and
randomly selected unit vectors z. The random variable { = |v72| is easy to work with analytically
because (? has a beta distribution. In particular, the expected value of { is equal to E,, jv]| where E,
is a constant depending only on the dimension n. From this an exact expression can be derived for
the probability that (/E, lies within a given factor w of ||v]|. This probability is given approximately
by the expression

Eﬁ_u_mmmm%..me__e_oa_uw. @)
By taking more than one inner product, say v7z,,...,v7z,,, we obtain an m" order estimate for
llejl. That is, the probability of a bad estimate (off by more than & factor w) is less than a constant
divided by w™. For example, with two inner products the chance of a bad estimate is approximately
i>3. Thus only a few inner products are needed to render the possibility of a bad estimate for the
norm of v very small indeed.

This procedure can be extended to estimate the Frobenius norm of a matrix M with just a few
matrix-vector products Mz, Mz, ... The basic idea here is that each entry of the product Mz
ie an inner product between a row of M and z, so the preceding theory can be applied. Combining
the estimates of the norms of the rows of M gives an estimate of the Frobenius norm of M, but
the analysis of how well this estimate approximates [ M{|p ie not as easy as in the vector case. A
conjecture is presented to the effect that the probability of a bad estimate in the matrix case is
1o worse than the probability of a bad estimate in the vector case. This is strongly supported by
numetical evidence and a conservative form of the conjecture is proved in [4]. The material in this
talk represents joint work with Alan Laub and Thorkell Gudmundsson.
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Restarted Arnoldi Procedure and

Eigenvalue Translation Technique for Solving
Large Sparse Automatic Control Problems

S.A. Kharchenko
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In this talk we consider the problem of constructing efficient and numer-
ically stable algorithms for solving Eigenvalue Assignment problems with
sparse large-scale matrices: for a given square matrix A € R"x" and a given
multiple input b € R*x¢ find a feedback matrix f € R**¢ such that the ma-
trix AT+bfT has all its eigenvalues in the left-half plane. Existing algorithms
for solving this problem are not suitable for sparse large-scale matrices since
they require either the computation of the exact eigenspaces of the matrix
associated with eigenvalues to be assigned or the reduction of the entire ma-
trix to the block Hessenberg form which fully destroys the sparsity structure.
Moreover, the larger is the size of the problem to be solved the more unstable
are the existing algorithmns.

We consider the following algebraic reformulation of the original problem:
find a feedback matrix f such, that the matrix A7 + bf7 has all its eigen-
values in the desired complex domain K of the complex plane. To solve this
problem we exploit eigenvalue translations [1] which deal with only approx-
imations to the eigenspaces corresponding to the eigenvalues to be assigned
computed at severa! restarted Arnoldi cycles. It enables us to preserve au-
tomatically the sparsity structure of the original matrix since in this case
the Eigenvalue Assignment problem is reduced to a sequence of Eigenvalue
Assignment problems of smaller sizes exploiting only a procedure for mul-
tiplying a matrix by a vector. In order to maintain the numerical stability
during calculations we construct similarity transformation of the transformed
matrix after every restarted Amoldi cycle. This transformation preserves the
spectrum, sssigned by the Arnoldi procedure, minimizes the largest singular
value of the transformed matrix and can be computed without destroying
the sparsity structure of the original matrix since only a small number of
multiplications of the matrices A and AT by a vector is required.

The suggested algorithm for the single-input case £ = 1 can be described
as follows. Let AT be the iteration matrix at the i-th global iteration of

1

the algorithm and b; be the corresponding single input while AT = AT and
b, = b. In order to construct feedback vector f; we perform k iterations of
the Arnoldi procedure with the matrix A; and initial vector v, = b,/[jbl-
Thus we have the equalities:

* AV = WH,+ Eef.—om.- cu

Su..: —\I_ = r.:.
where V} = {v,,...,v;}. From matrix equalities (1) we can compute approx-
jmations to the eigenpairs of the matrix A; and norm of the corresponding
eigenresiduals. If the spectrum of the matrix H) lies in the prescribed convex
domain K of the complex plane than, by the approximation properties of the
Arnoldi procedure, we stop global iterations of the algorithm.

The feedback vector f; we seek in the form

h. = ’xﬂn&. Awu

Here X; € R**™ i5 a real matrix which is a unitary transformed matrix
of approximations to eigenvectors from the eigenpairs to be assigned while
w € R™ is to be chosen to assign required eigenvalues. We emphasize that
we do not require to assign all eigenvalues at the current global iteration of
the algorithm.

Controllability conditions for a feedback vector f; from (2) have the form

5 —
i ri(A) | < .m. | ctg by z; 1, (3)

where r;(A;) are the eigenresiduals of the eigenpairs to be assigned, z; are
approximations to the corresponding eigenvectors while §; are some positive
coefficients depending on the stability properties of the eigenspaces to be
assigned.

To show that we actually assign eigenvalues of the matrix AT by the
transformation AT + b;f7 we prove the numerical stability of eigenvalue as-
signments, i.e. when |j r;(A;) || tend to zero for every eigenpair from the
group to be assigned then the radii of the circles containing assigned and
perturbed eigenvalues also tend to zero. It means that the algorithm gives a
solution to the algebraic formulation of the Eigenvalue Assignment problem.

Iterations of the presented algorithm without stabilization step may be
unstable due to an increase of the largest singular value of the matrix after

2



every transformation. We construct the similarity transformation of the form
I, + uT in order to minimize the maximal singular value of the iteration
matrix at the next global iteration of the algorithm

AL, = (I, + woT)AT + 55T+ o]

The single-input vector b4y at the next global iteration of the algorithm will
be of the form

bipy = (I + uoT)bs.

Obviously the solution f to the original Eigenvalue Assignment problem can
be quite easily restored from the solution to the transformed Eigenvalue
Assignment problem.

As an application of the suggested algorithm consider now the problem
of finding a feedback stabilization f for the second order differential equation

Myin + Gyign + Kngn = By
with the first order realization

T k) st
~M7'Ky —Mg'Gy ~My'By ]

This problem can be solved directly by our algorithm. In this case we need
no inverting of the matrix My since in our algorithm only a procedure for
multiplying a matrix by a vector is needed. At every global iteration of the
algorithm we must only solve systems with matrices My and MT.

The results of numerical experiments with large sparse matrices are pre-
sented which can tiot be reproduced by the existing algorithms.
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Computational Kernels for Iterative Methods

Recent work here and elsewhere has focused on the establishment of a set of
computational kernels for solving sparse linear systems by iterative methods.
Many iterative algorithms can be decomposed into a relatively small set of
basic computational operations. Since these are the most computationally
intensive parts of the code, it is possible to develop efficient and portable im-
plementations of iterative algorithms by writing them in terms of these basic
building blocks. Such computational kernels are particularly advantageous
for developing software for use on various high performance computers. The
development of parallelizable computational kernels is particularly compli-
cated. Several different researchers have begun to write and test software for
computational kernels. These approaches will be compared and contrasted.

David R. Kincaid

Center for Numerical Analysis
University of Texas at Austin
Austin, TX 78713-8510



Incomplete Block SSOR Preconditionings for p-Adaptive
Three-Dimensional FE Systems
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The p-version of the Finite Element Method (FEM) is considered to be

& promising approach to solving many problems of structural mechanics.
To reduce the size of the resulting linear system ensuring the desired accu-
racy various p-adaptive strategies of constructing a FE approximation are
exploited.

A symmetric positive definite coefficient matrix of the resulting linear
system can be naturally presented in the following two-by-two block form

_ | An Ay ,
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where the first diagonal block A;, corresponds to the "old” degrees of freedom
while the second block A,; corresponds to the "new” degrees of freedom
resulting from a p-refinement.

In the three-dimensional case the matrix A may be quite ill-conditioned,
relatively densely populated {depending on p), and the second block A,
has in general an irregular sparsity pattern. However, the considered block

partitioning of A possesses two algebraic properties which are natural to be
exploited when constructing a preconditioner for A:

{1) the "new” block A, is well-conditioned and
(2) the matrix A5;'(A;, — A;;A45) A;,) is well-conditioned.

The second property ensures that the block SSOR matrix corresponding
to the block partitioning (1) would be a good preconditioner for A. However,
this approach is not practically feasible because of the solution of linear
systems with A;; and A, it requires.

We propose to apply instead an incomplete block SSOR preconditioning
12}, where the matrices 4,, and A, are replaced by some approximations
.&.: and .buu to them.

The approximation A, to A, is constructed using the diagonally com-
pensated reduction of positive off-diagonal entries [1] taking into account

1

property (1). The construction of A,; is essentially based on the results
in [2], where block SSOR preconditionings corresponding to a superelement
partitioning of the original FE mesh for a 3D high-order FE system are
considered.

The described preconditionings are analyzed theoretically and provided
with the results of numerical experiments for 3D linear elasticity problems
for orthotropic materials.
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The wavelet and wavelet packet transforms provide a new multiresolution signal analysis
tool, and have received a lot of attention recently. The effective application of this new tool
to engineering problems requires insights into the nature of the problems and novel ideas in
processing the data. I will focus on the application of wavelets to image processing problems
in thin talk. Basic concepts of wavelet theory will be first reviewed. Then, I will use three
examples to illusirate the advantages provided by the new wavelet approach, i.e. image
compressiorn, texture analysis and planar curve representation as detailed below.

1. Image Compression

Image compression methods based on a multiresclution approach have been studied over
the last ten years. The major advantage of the multiresolution approach is that it provides
a graceful degradation between image quality and compression ratio and iy hence suitable
for progressive transmission. The first multiresolution compression method, which is usu-
ally known as the Laplacian pyramid scheme, was proposed by Burt and Apderson. The
basic idea is to decomposition an image into a low resclution image by lowpass filtering
snd a detailed image which is the difference of the original image and the low resolution
image. By recursively performing the decomposition for the lower resolution images, we ob-
tain a sequence of detailed images of different resolutions which can be encoded separately.
With recently developed wavelet theory, the application of wavelet transform to image data
compression has been considered by many researchers.

We present a new method for image compression based on » modified wavelet transform
called the full wavelet transform (FWT) in this research. With the FWT, we first apply
the two-scale wavelet decomposition to the original image and obtain 4 subimages. Then,
we apply the two-scale wavelet decomposition to all 4 decomposed subimages and obtain
16 subsubimages. The procedure is performed recursively until a desired level is reached.
Thus, an image is decomposed into small blocks of the same size via FWT, where each block
corresponds to a particular frequency band {or channel) whereas each transform coefficient
in the blocks corresponds to a local spatial region in the original image. We observe ex-
perimentally that energy compaction is achieved in both the spatial and frequency domains
via FWT. The energy compaction property can be effectively utilized to achieve high image
compression ratio while preserving good image quality. .

The relationship between our proposed algorithm and three other popular compression
schemes, i.e. the DCT (Discrete Cosine Transform), PWT (Pyramidal Wavelet Transform),
and SBC (SubBand Coding) schemes will be discussed. The performance of these algorithms
will be compared.

2. Texture Classification and Segmentation

Textures provide important characteristics for surface or object identification from aerial
or satellite photographs. Texture segmentation is important in applications, say, distinguish-
ing the boundaries of different surfaces such as fand, sea, forest, farms with agriculture, etc.
Most texture classification and segmentation algorithms have been traditionally developed
by considering the statistical property of image pixels in a Jocal region. Motivated by ev-
idences from physiology and psychophysics, a recent approach to characterizing textured
images is to decompose images into several channels with different spatial frequencies and
orientations and analyze the properties of each channel. The approach is generally known as
the multichannel texture analysis. The resulting methods, which include the Gabor filter, the
multichannel filter-bank decomposition, and the wavelet packet transform, often outperform
traditional methods.

In this presentation, we will review the multichanne] texture classification algorithms,
point out their relationship and make a thorough performance comparison. The methods
compared include the DCT, DST, DHT, Gabor filters, Laws filters, wavelet and wavelet
packet transforms. The robusiness of the algorithms with respect to noise and their dis-
criminant capability of similar textures will also be illustrated by experiments. We will also
propose an algorithm using both the wavelet packet transform and the hierarchical fuzzy
clustering technique for texture segmentation.

8. Multiscale Planar Curve Descriptor

Effective representation of planar curves is crucial for shape description and recognition
and has many applications in image analysis and understanding. Traditional planar curve
descriptors include methods based on the Fourier transform and the scale-space filtering ap-
proach. We have recently developed a multiscale descriptor which extracts components of
curves by using the biorthogonal wavelet transform. With this descriptor, we can decompose
a curve into components of different scales so that coarser scale components carry basic infor-
mation while finer scale components contain detailed information. The biorthogonal wavelet
transform restores smooth curves more effectively than traditional compactly-supported or-
thogonal wavelet transforms such as the well known Haar or Daubechies bases, We show that
the reconstructing filters and their duals, the analysis filters, form a perfect reconstruction
digital filter banks. Thus, the proposed new filter bank provides a lossless multiscale de-
composition freconstruction scheme to represent planar curves. Since the decomposed data
provide a hierarchical representation of planar curves, they can be effectively used in hi-
erarchical matching and object recognition, progressive rendering of graphics, and motion
detection.

We will analyze the performance of various wavelet bases by examining their regularity
and vanishing moments. We will illustrate two different applications of the proposed wavelet
curve descriptor, i.e. character recognition and fast deformation of curves. The performance
of the new descriptor is compared to that of other types of descriptors such as descriptors
based on the Fourier transform and the scale-space filtering approach in numerical experi-
ments.
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We consider the solution of algebraic linear systems of the form
Az = b, (1)

where A is a matrix and z and b are vectors. Relaxation methods for solving this problem
are defined by splitting the matrix A as A = M — N, and solving the aystem

Mz, = b+ Nz, (2

at each step k, from some initial guess 2, Generally M is chosen to be easily invertible, We
will consider the situation where M is not necessarily easy to invert. This situation might
arise in block Gauss-Seidel where the diagonal blocks become very large. In this case we
will consider solving the system Mv = g by an iterative method, which might also require
the solution of a system of equations done by an iterative method. We call this a nested
iterative methed.

Two-level iterative methods were first investigated by Nichols [?]. Two-level iterative
methods are distinguished from nested iterative methods because the former does not con-
sider that al each step of an iterative solution of Mv = g the system

Fujyy =g+ Gy, (3)

where M = F — G, could also be solved iteratively. We call equation (3) the inner iteration
and equation (2) the outer iteration. Nichols showed that if the inner iteration were conver-
gent and the outer iteration were convergent then there was some finite number, p, such that
if P > p inner iterations were done at each outer iteration then the whole iteration would
converge to the solution of (1).

The iterative methods considered by Nichols did not account for a large class of problems
arising from Gauss-Seidel type iterations. If A is split as 4 = D -- L — I/ and the iteration

.UHr+m = w + quk + hHr+— Abv

is performed, the splitting is given by M = D —~ L and N = U. Note, however that to solve
(4) by an iterative method the matrix I? is split and not the matrix M.

We derive results for the case when A is an M-matrix. To derive these results we demon-
strate the itertion matrix for the Gauss-Seidel iteration described above. We will also show
that this iteration implies an induced splitting of A. This induced splitting of A under the
conditions that A=M - U, where M = D~ L, and D — L are convergent regular splittings
aud D = F — G is a convergent weak regular splitting is itself a weak regular splitting [7].
We then recall that a weak regular splitting of an M-matrix is convergent. Under these
same conditions it can also be shown that increasing the number of inner iterations does not
decrease the convergence: rate of the iterative method.

These results showed that if A were an M-matrix the iteration would converge for any
fixed number of inner iterations. We then showed that under somewhat tighter restrictions
the iteration would converge even if the number of inner iterations were changed at every

outer iteration. We can also show that if A is an M-matrix both multiplicitive and additive
Schwarz iterations converge if the inner iteration comes from a weak regular splitting. This
extends results of [?].

it is well known that the iteration

T = b+ poTzy + iz + pyzyy, {5)

where T is a n x n matrix and g, are scalars, converges if T > 0 and

1—p, —
ThT R T,
Ho
p(T) the spectral radius of T and py, 4;, and g, > 0. We give an alternative proof of this
by deriving an iteration matrix for the method and showing that the induced splitting is
convergent. We give this as an illustration of the power of induced jteration matrices.

The results discussed to this point require the outer iteration to be a regular splitting. It
is well know that SOR does not give a regular splitting. Thus the results presented above
do not apply to the case when the outer iteration is SOR and the inner iteration comes from
a weak regular splitting. We have partially extended the classical results?, ], but have not
completely solved the problem. We will present these results.

We will conclude the talk with a discussion of practical results from nested iterative
methods. An interesting observation we made was that determining the optimal number of
inner iterations is very complex if nothing is known about the system. We found, however,
that near optimal (and sometimes suboptimal) results can be obtained if the number of
inner iterations to be done for the next few, say 5, outer iterations was chosen randomly. We
conjecture that this result may be due to the iteration matrix changing at every fifth iteration,
and that therefore the residual vector does not converge to the eigenvector associated with
the largest eigenvalue of a particular iteration matrix.

These practical results will also include some discussion of our implementation of nested
iterative methods on a BBN butterfly, and on a TMC CMS5 currently at Duke University.
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