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Abstract.

In this paper we present a general framework for multiresolution representation
of data which can be viewed as a generalization of the theory of wavelets. We
consider nested sequences of discrete approximations with increasing resolution and
show that the set of discrete values at each level of resolution has a multiresolution
representation, which consists of the scale-coefficients of all lower levels and the

discrete values of the coarsest level in the sequence.

This framework includes discretizations corresponding to unstructured grids in
several space-dimensions as well as non-local discretizations, and thus it is general

enough to enable us to embed most numerical problems in a multiresolution setting.

1. Introduction

In this paper we present a general framework for multiresolution representation
of data, which consists of a sequence of discrete approximations {(Dk,Rk)}ieg
with increasing resolution in k. Dy is a discretization operator which operates on
functions and assigns to them a sequence of discrete values which corresponds to
the k-th level of resolution; R} is a reconstruction operator which approximates the
function from its discrete values of the k-th level of resolution and is required to

satisfy
(11) DkRk = I;

here I is the identity operator in the vector-space of the discrete values.

We show that if the sequence of discretizations {Dy} is nested in the sense that
(1.2) Drf=0=>Dr1f =0,
then there existé an invertible multiresolution transform M such that
(132) u(Def) = M-Dif, Dif =M™ - u(Dif),

where

d*(f)
d'(f)
Dy f

(1.3b) W(Def) =




is the multiresolution representation of D f, and d*(f) are the scale-coefficients
of the k-th level of resolution. The scale-coefficients d*(f) are obtained from the

prediction error e,

(1.4a) ek = Di(I — Ri—1Dr—1)f

by removing the redundancy that is inherent to this set of variables, and is due to
the identity

(1.4]3) 'Dk._leek =0,

which is a direct consequence of (1.1)-(1.2).

This framework is general enough to include discretizations in unstructured grids
in several space-dimensions as well as non-local discretizations (e.g. by global mo-
ments); furthermore, it allows for adaptive (data-dependent) reconstruction proce-

dures which are needed to obtain near-optimal rates of data-compression,

Being novices to this field, we are in no position to present a meaningful historical
review. We refer the reader to the papers of Daubechies [4], Beylkin, Coifman and
Rokhlin [3] and the review paper by Strang [15], all of which had great influence
on the research reported in the present paper; it is evident from these papers that
the earlier works of Meyer and Mallat deserve special recognition. The primary
motivation for the theory of wavelets, as we understand it, is to find a way to
represent functions in terms of local decomposition into scales. Conceptually it
is linked to Fourier analysis by being an attempt to improve upon the windowed

Fourier transform.

The point of view which we pursue in the present paper is somewhat different.
We start with a sequence of discretizations corresponding to increasing level of
resolution, and use an approximation technique, namely the reconstruction operator

R, in order to predict the discrete values of the next finer level of resolution by
(1.5) FH = Do Ri(Def).

We define a “new scale” as the information in (D41 f) which cannot be predicted

by (1.5) from a lower level of resolution. If Dy and Ry are local operators, then this

2




definition of a scale is also local. In order to obtain a multiresolution representation,
i.e. a one-to-one correspondence between Dy f to its scale decomposition, we need

to remove the redundancy in (1.4).
In [11] we have presented this point of view in the diadic constant coeflicient case,
which corresponds to the sequence of nested diadic grids

(1.6a) X*={a¥}, @b =7 hp, hr=2"Fhe, 0<k <00,

i=
and discretization by local averages

(1.6b) (Duf)i = (foh), b= 5ow (ka - ) ,

where w(z) is a solution of a dilation equation

(1.6¢c) w(z) =2 aw(2z — L),
£

We showed that this point of view is a natural generalization of the wavelet the-
ory which allows for a more flexible choice of reconstruction operators and easier

handling of boundaries.

In the present paper we remove the requirement of discretization via a dilation
equation and thus obtain a general framework which enables us to embed most
numerical problems in a multiresolution setting. Once this is done we can improve
the efficiency of the numerical solution algorithm by applying data compression
to the numerical solution (see [2], {13] and [14]) as well as to the multiresolution
representation of the solution operator (see [3], [8], [1]). We can also reorganize
the numerical solution algorithm as a multi-scale computation, where we solve the
problem directly only in the coarsest level of resolution and then advance from one

level to the next finer one by prediction and correction (see [3] and [12]).
The paper is organized as follows:

In Section 2 we describe a general framework for a multiresolution setting which

is formulated as a property of the sequence of discretizations {Dy}.

In Section 3 we present the main result of this paper: If {(Dy,Ri)}3z, is a
sequence of discrete approximations with increasing resolution which is nested (1.2),

then there exists a multiresolution representation of the form (1.3).
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In Section 4 we show how to obtain multiresolution bases for function spaces
by first representing RiDy f in a multiresolution basis and then taking k£ — co.
We show that if this limit exists, then {(Dr,Rk)}5, has an hierarchical form
{(Dr, Ra)i g whore

RiDif — Rie1Dp1 f

involves only the scale-components of the k-th level.

In Section 5 we present examples of multiresolution representations and bases for

discretizations by point-value and by cell-average.

In Section 6 we examine the diadic constant coefficient case (1.6) in the context

of the new general framework.
In Section 7 we relate the general framework of this paper to the wavelet theory.
In Section 8 we sumrmarize the results of this paper and make some concluding
remarks.
2. General Framework

In this section we describe a general framework for multiresolution representation
of data. Let D be a linear operator which is defined in a space of functions F and

takes values in an Fuclidean vector-space V of finite dimension J,
(2.1a) D:F - V.

We say that D is a discretization operator and refer to J as the resolution of the

discretization.

Let {D:} be a sequence of discretization operators with monotone increasing

resolution {Ji} and denote
(21b) ‘ fk:Dkfu fkevk’ fer,

where f* is a column-vector of Ji; components.
Definition 2.1. Multiresolution Setting

A sequence {D;} with monotone increasing resolution is a multiresolution setting

if for all k there exists a Jy-1 X Ji matrix D,’:_l,
(2.2) rank (Df 1) = Jr1,
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such that for all f € F

(2.3) Fr =D,

The above relation means that 78! can be evaluated from f¥ without explicit
knowledge of the function f itself. Furthermore it shows that if {Dy} is a multires-
olution setting then knowledge of the discretization of f for some level of resolution

implies its knowledge for all lower levels of resolution.

In practice it is not easy to check whether a given sequence of discretizations
constitutes a multiresolution setting. In order to formulate a verifiable sufficient

condition we introduce now the notion of a reconstructible discretization.
Definition 2.2. Reconstructible discretization

We say that the discretization operator D in (2.19) is reconstructible if there

exists a linear operator R

(2.4a) R:V—=F
such that
(2.4b) DPR=1I

where I is the identity operator in V.

We say that R is a linear reconstruction operator and refer to
R(Dfy=Rfe F

as the (approximate) reconstruction of f from f.
Definition 2.3. Nested sequence of discretization

A sequence {Dy} of discretization operators with monotone increasing resolution

is called nested if for all k and f € F

(2.5) Dkf =0 = Dk_1f =0.
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Now we are ready to formulate our sufficient condition:

Theorem 2.1. If {Di} is o nested sequence of reconstructible discretization then

it constitutes a multiresolution setting with

(2.6) | DE = Dy 4Ry

Before proving this theorem we first show the following

Lemma 2.1. Let {Di} be a nested sequence of reconstructible discretizations, then

(2.7) De(RiDi) =Dp forall £<k.

Proof: Let f € F be any function and define

g = (ReDr)f, g € F.
Using the deﬁni{.;ion 2.2 we get

Drg = (DxRi)Drf =D f

and therefore

Dig - f) =06

Since {Dy} is nested this implies by successive applications of (2.5) that
Di(g—f)=0, £Z k.
It follows then that for any f € F
Def = Dig = De(RiDi)f

which proves (2.7). O




Proof of Theoi‘em 2.1: First we observe that
DYl =Dy Ry VE o VR

and therefore can be expressed as a Jy—1 X J matrix. Using Lemma 2.1 we get
that
D1 = Di—1Ri(Di f) = De—1(ReDi)f = D f = Fr-1

which proves (2.3). Next let us define P,‘;“_1
(2.8) Pl =DyRy VT S VF

and observe that it can be expressed as a Ji x Jp—; matrix. Using Lemma 2.1 again
and the definition 2.2 we get

(2.9) ' DYT'PE = Dii(RiDi)Ri—1 = 1
where I is the identity matrix in V*~1, This shows that
rank(D¥™!) = rank(Pf_,) = Ji_1

which completes the proof of this theorem. O

Remark 2.1. We observe that since f*~! and f* depend only on the discretization
operators, the same is true for the matrix Di”l in (2.3). It follows therefore that
the matrix expression for Dz—l in (2.6) is the same for any Ry and thus does not

depend at all on the reconstruction operator, but only on its existence.

In the following we present some examples of multiresolution settings. In the
first two examples we consider a polygonal domain B C R? which is triangulated
by T% = {TJ-k }jil Given T*! we form T* by dividing each triangle Tf‘l into
{T ;;1 3 _1 by connecting each apex of T}'_l with its centroid by a straight line;

T* is then defined by arranging these smaller triangles in a sequence with 1 < j <
Jka ']k = 3Jg—1.

Example 2.1. Cell-averages. Let
F.B—R
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be the space of piecewise-continuous functions in B and define f¥ to be the cell-

average of f in TF,

(2.10a) (Def)i = Ff = =0 / fdz,  |TF| = / dz.
|Ti| Tk Tk

From the additivity of the integral we get that

3
(2.10b) = (Z 5 | _}“,,,) NTFH, T =T

=]

We observe that relation (2.10b) implies the existence of the matrix D1 in (2.3)

and actually can serve as its definition.
What is the rank of Df7'?

Let fr € F be the piecewise-constant function which is defined by
(2.11a) fre(z) = ff for z € T_f.
It is easy to see that

(2.11b) (R f¥)(z) = fi(w)

is a reconstruction of f* in the sense of (2.4), and that relation (2.10b) implies
that {Di} is a nested sequence. It follows then from Theorem 2.1 that {Di} is a

multiresolution setting and consequently

ra.nk(D’,;_l) = Jr_1.

Example 2.2. Pointvalues. Let X* = {z¥}/*, denote the vertices in the trian-
gulation T%, and let a?f denote the centroid of the triangle Tjk. It follows from the

construction of T* from T*~! that

xk = xPru ey, Le=Ley + T
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Let
F:B—-R

be the space of continuous functions in B and define

(2.12a) (Def)i = fF = f(zf).

Since X*~! ¢ X* it follows immediately that {Dy} is a nested sequence of dis-
cretization. Let p¥(z) be the linear function which iterpolates the appropriate
values of f* at the three vertices of T¥ and define

(2.12b) (R f*)(z) = pf(z) for = € TE.
Clearly (R f¥)(z) is continuous in B and
(DeRef*); = (R f*)at) = FF;

thus Ry is a reconstruction operator in the sense of (2.4). We conclude by Theorem

2.1 that {Dy} is a multiresolution setting.

Example 2.3. Fourier coefficients. Let F = L%[0,1] be the space of square-
itegrable functions in [0,1] and denote the coefficients of the Fourier-cosine trans-

form of f € F by a;{f),

1
a;(f) = j{; f(z) cos jrzde, 0<j<oo.

We define ,
Dkf = ka = (aﬁ(f)aal(f)s SERRERCN % (f))*

and note that if {J;} is monotone increasing then {Dz} is a nested sequence. Next

we define

Ji
(Ref5)(z) = f&+ Zfo cos j7wE
i=1
and observe that Ry f* € L?{0,1] and that

DyRif* = f*.
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Hence {D;} is a nested sequence of reconstructible discretization and therefore 1t

constitutes a multiresolution setting,.

3. Multiresolution representation

In the previous section we introduced the notion of reconstructible discretization
(Definition 2.2) in which R is a linear operator. We pointed out in Remark 2.1 that
R plays only an auxiliary role in the formulation in the sense that we merely use
its existence and not its particular form. In this section, however, R does play a
significant role and it need not be a linear operator. In order to remind us of these

differences we shall refer to R as a reconstruction procedure and consider the pair
(D, R).

Definition 3.1. Discrete approximation. We say that (D, R) is a discrete

approximation in F with resolution J if

(3.1a) D:F-V, R:V-=F,
(3.1b) ' DR =1,

where F is a space of functions, V is an Euclidean vector-space of finite dimension

J and identity I, and D is a linear operator.

Definition 3.2. Multiresolution sequence of discrete approximations. We
say that {(Dx,Re)} is & multiresolution sequence of discrete approximations if for
all k, (Dx, Ri) is a discrete approximation with monotone increasing resolution Jy

and {D} is a multiresolution setting.

Given f*~1 = Dy_; f we can get an approximation fk to f¥ = Dpf by
(3.22) FE=Pl Y Py =DiRe
We refer to P,f_l as the prediction operator and to
(5.20) b= ¥ = P ph

as the prediction error. In applications to data-compression it is important to

minimize the prediction error, and for this purpose we need to consider adaptive
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(data-dependent) reconstruction procedures. This is the reason why we let R, and
consequently P,f‘_l, be nonlinear operators. In the following lemma we show that

relation (2.9) holds even in the nonlinear case.

Lemma 3.1. Let {(Dy,Ri)} be a multiresolution sequence of discrete approzima-
tions, then for any fF—1 in VA1

(3.3) Dyt =Dy PE L FT =

Proof: Let ¢ = Re—1f*71, g € F, and observe that
Dig = DiRir f* = PE P71 = 5.
Using (2.3) in the definition of multiresolution setting and (2.4b) it follows that
DI f* = DE Y (Dig) = Dio1g = Di—a R " = £,

which proves the lemma. L

Corollary 3.1.

(3.4) DEtek = DE-1(F - oy = Rl o el g,

The above relation is an homogeneous system of J_1 linear equation for the Ji

components of e¥. Since by Definition 2.1
(3.5) rank(DF1) = Jx

we conclude that e* can be expressed in terms of Ay = Ji — Jz—1 independent
quantities which we denote by the column-vecotr d* of Ay components. In the
following Lemma 3.2 we describe such a tranformation between e* and d¥ which is
a generalization of the one which is used for orthogonal wavelets (see [4] and section
7). Before stating the lemma we introduce some notations: let U C V* denote the
linear span of the columns of (Dif—:E )*, and let W denote its orthogonal complement
in V*; thus

(3.6a) VE=UoW, dmU = Jr-;, dmW = Ag =T — Jg-1.
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Let {w;}2* be a basis in W and define the Ay x Ji, matrix G* by
(3.6b) (G*)* = (wi,. .. WA );

thus Gf’"’ is any A X Ji matrix which satisfies

(3.6¢) | DEHGERY =0, rank(Gp*) = Ag.

Let Sp denote the Ji x Jp symmetric matrix

(372 S = (D) DY + (6563

clearly, St is positive definite. To see that observe that for any v € vk

(3.7b) (Skv,v) = [IDF o]l + 1[G o* 2 0
and that

(Skv,v):(]:-Di_lv:O, Gf"v=0=>v 1U, v LW
(8.7¢) vl VF=0v=0

note that the inner-product and norms in (3.7b) are to be interpreted as belonging

to the appropriate vector-space.

Lemma 3.2. Let ef be the prediction error (3.2), then

(3.8a) ef = SN GRR) dF,
where
(3.8b)  db=Goket

18 a column-vector of A = Ji — Jr—1 components.

Proof: Using (3.4), the invertability of S and the definition (3.8b) we get

61;: — Sk—l Skek —_ S.;c_i [(Di—l)*Dlg—l ek + (Gflk)*GkAkek]
= S7THGA Y (GLr Py = S H (Gt ) dF
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Corollary 3.2.

(3.9) JR LY el (e

Proof: Use (3.2b) and (3.8a) to rewrite
fk . fk + ek

as (3.9). | | O

We can interpret relation (3.9) as saying that d* represents the information which
is present in f* and is not predictable from f*-1 by the reconstruction procedure
Ri. Motivated by this interpretation we refer to d* as the coefficients of the k-th
scale in the multiresolution sequence of discrete approximations. We observe that
d* can be expressed directly in terms of f* by writing f*1 as Df—l f*¥ in (3.2),
thus

(3.10) | d* = Gg*(I — Pf_ D{7H)F*

where T is the identity matrix in V¥,
Given f* € V¥ we define the column-vector
dL
Ly
(3.11) uiy=|
J—ﬂ)
and observe that it has

Y k= Jre1) + Jo =1
k=1

components and thus is also in V2.

Theorem 3.1. Let {(Dr, Ri) e, be a multiresolution sequence of discrete approz-
smations, then u(f7) is a representation of f* in the sense that there is ¢ one-to-one

transformation between f¥ and p(fY) which we denote by

(3.12) u(fy = MF", P = M7 (7).
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Proof: Rather than describe this transformation and its inverse, we present the

algorithms to carry them out.

u(f¥) = Mf¥ (Encoding)

DO k=1L,...,1
(3.13) fl = phoi g
d* = G (f* — PE 1)

P =Mu(f*) (Decoding)

DO k=1,...,L
(3.14)

JFk — Pk’:c— Jfk—l -|-Sk_1(GkAk)*dk-

g

The representation u(f") can be viewed as a decomposition of f% into scales,
and we refer to it as the multiresolution representation of f. The scale coefficients
d* are derived from the prediction error by removing the redundant information in
them by (3.8b). The prediction error itself is a combination of what we intuitively
call a “scale-coefficient” (i.e. something which is not predictable from lower levels
of resolution by any method) and an approximation error which depends on the

“quality” of the particular reconstruction procedure.

Decomposition into scales is useful because it provides a way to analyze the “reg-
ularity” of f& and its information contents; the latter leads to data-compression of
fL by discarding scale-coefficients which fall below an appropriate tolerance. Given
a class of functions F, we first choose a sense of discretization which is appropriate
for the particular application, and then generate a refinement sequence which con-
stitutes a multiresolution setting. Once this is done, we still have the freedom to
choose a reconstruction procedure. Roughly speaking, the class of reconstruction
procedures is as rich as the corresponding class of interpolations (or collocations)

for the given discrete data.

Remark 3.1. To make the multiresolution representation computationally useful
we want the multiresolution transform (3.13) and its inverse (3.14) to be computa-

tionally fast. For this purpose we want Dif ~1 and Gf" to be banded matrices with
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width which is uniformly bounded in %, and likewise to choose P,f_l to be a local
operator. In this case we can perform the multiresolution transform and its inverse

in O(Jy) operations.

4. Multiresolution bases

In this section we consider the case where {Ry} are linear operators and describe
the multiresolution basis in which the components of the multiresolution represen-

tation (3.11) are the coordinates.

Let us denote
(4.1) H pH1i=pL ... pml AL T

using algorithm (3.14) we get the following expression for the inverse multiresolution

transform

(4.2) Z AL G- (@Am Y g™ 4 AL O,

m=1}

k41
Pk

If we assume now that {R} are all linear operators we get that isa Jry1 X Ji

matrix an 15 us a Jr X Jyp IMatlix, € : enoLe € unli-vecior o
trix and AZ is th Jr x J trix. Let 67 denote the unit-vector of J

components which satisfies
(4.32) (670 =6, 14,5 <J

where §;; is the Kronecker-6, and

(4.3b) nk = STHGRF )62, 1<t < Ap = Ji — Jema, nf €V,
JIm
-m,L " m,L =1 L,
(436) ¥y = Afrnts;j ? ¢'z = Amnz Z(nz )J 5
i=1

observe that {@/*}/™ and {™L}2m are vectors in V¥ for all 1 < m < L. Using

these definitions it is easy to see that (4.2) can be rewritten as

(4.4a) Zde¢mL+Zf" EHad

m=1 t=1
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Combining (4.4a) with Theorem 3.1, we have proved

Theorem 4.1, Let {(Dy, Ri )}, be a multiresolution sequence of discrete approz-

imations, then

(4.4b) Bu = ({$7F 120 e, {807 )i20)

is o basis in VL. The representation of any f& € VL in this basis is given by
(4.42), where the coordinates are the components of the mulliresolution representa-
tion u(fT) in (3.11); these coordinates can be computed by algorithm (3.13).

Next we consider multiresolution basés in function spaces. Let us denote
v -m,L L
(4.52) ot = Re@lt, E(?ﬁ”);w ,

and observe that tp:"”L and ;" L' are functions in F. Using the linearity of the

reconstruction operator it follows immediately from (4.4a) that for any f € F

Corollary 4.1.

m

Jo
4 (RPN = 3 Yodr 2)+ Y _(Dof)iwl" (@),

m=1 i=1

(4.5¢) d(f) = Gar(I = PRy D™ YD f)-

Definition 4.1. Complete Sequence of Discrete Approximations.

We say that the infinite sequence {(Di, R)}$2, is complete in F, a Banach
space, if for all f € F

(4.6) Jim [[R;D1f — £ = 0.

We turn now to consider the limit L — oo in (4.5). If the multiresolution sequence
of discrete approximations is complete, then the LHS of (4.5) converges to f in the

sense of the norm in (4.6). We assume now that for all levels of resolution 0 < k < oo
(4.7) 3 Jim et =pf e FL1<i < T
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Later in this section we shall formulate a sufficient condition which ensures that for
every f € F

(4.8a) F=3 ) dr el + ) (Do)l
m=1 t=1 =1
where
Jra
(4.8b) Y= (M)e}
j=1

and the equality in (4.8a) is to be interpreted in the sense of the norm in (4.6).

Lemma 4.1. If Dy is a bounded operator, then

(4.9a) Dyt = @™, 0 <L < m.

Proof: It follows immediately from Lemma 2.1 and the definition of A%, in (4.1)
that

L-1 ' £—2
DR AL = D, H (Ri41Di41) R = Do H (Re+1Dk+1) Rm
k=m k=m
-1
= ] Pri1Re) = A5,
ke=m

It follows then from the definition (4.5a) that
(4.9b) D™t = DR AL S = AL ] = g
Since Dy 1s bounded we get

. —m,£
Dep?" = lim D" = "
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We define now the linear operator R

(4.10a) R VESF
by
. Jk —
(4.10D) Raff = fret
i=1

Corollary 4.2.. Ry is @ reconstruction operator.

Proof: It follows from (4.9) and A7 = I, that
&,

pm"\O:n =0

Let f* be any vector in V¥, and apply Dy to both sides of (4.10b)

(DrRi)f Zf Dypf = Zf; 5 =

Lemma 4.2.

I
(4.11) P = ) (MY & =Proam
)

Proof: Using the definition (4.3¢c) we get

@m—l,L — AL 6Jrn 1 AL Pm 6Jm-— AL E:n

) m-1Yq

= AL SNyt = SNer ALt = Z(i”‘); e

j—_*} jzl

Applying R to both sides of the above relation we get

Im
—1i,L m )L-
= Z(Et )jtp? 1

j=1
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taking the limit L — oo above we prove (4.11).

Lemma 4.3.

(4.12a) (1) ('feka)'fék—l = Ri—1;
Ay

(4.12b) (i) Ra(Drf) = Rema(Drcaf) = ) dE(H)vf
i=1

where ¥ is defined in (4.8b) and d¥(f) are the k-th scale coefficients (4.5¢).

Proof: (i) Denoting f* = D, f and using (4.11) we get

Ji1 Jr—1
Re—1 f71 = Z e Z . Z(E’“);cfo,
Ji Je_1
= Z‘P; Z fik_l(ff)j-
j=1 i=1

Using the definitions of £F in (4.11) and the approximation F* (3.2a) we get

‘Ik—l Jp-1
TR - J -1 TR - J; -1 Tk—
> B = (P,f_1 > Tt ) = (P& 7Y
gum] i=1 ,
: 7
= fj!f_

Thus
Jy . .
Rit JE71 =Y ok = De(Raa F77) = ¥ = Re(DeRi—a 7°77)
j=1
Je .
= il =R
=1
which proves the first part of the lemma.
. ~ Jk Jk ~
) Reff —Raaf* =) fles— D fie) =
=1 J=1

Ji Jy
= Z eftpf Z[Sk (GAk )*dk]J‘P;a
j=1




where we used (3.8a) to express the prediction error e® in terms of the scale coefli-
cients d*. Using the definition of n¥ in (4.3b) we get

FAYY FAWN
STUGE b = S (G dEspe =) " dEnk.
i=1 =]

Hence

o X - -Jk Ay Ag Ji
Rt — R =3 [zdf(nm} ot =55 St
i—1 i—1 =1

i=1

Ay
= diyf.
i=1

Summing (4.12) from k£ = 1 to k == L we get

L A

(4.13) ReDrf —RoDof =Y Y dE(F)f.

k=1 i=1

We refer to {(Dy,Ri)}$, as the hierarchical form of {(Dx,Rk)}32,- Combining

all previous results we have proved

Theorem 4.2. Let {(Di, Ri)}, be ¢ sequence of discrete approzimations in o
Banach function space F, where {Dy} is @ nested sequence of bounded discretization

operators.

(1) If for all levels of resolution 0 < k < co

(4.14a) 3 lim P =pfeF, 1<i<y,

L—coo
then this sequence has an hierarchical form {{Dx, 7:’,15)}20:0 which is defined by (4.10).

(2) If the hierarchical form is complete in F, then

(4-14]3) By = ({{‘l’f}iﬁﬁh {‘P{z'}};:]il)
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is a basis in F. The expansion of any f € F in By is given by (4.8), where the
coordinates are the coefficients of the multiresolution representation of f (4.5¢) in

the original sequence {(Di, R )} oo
Definition 4.2. Hierarchical Sequence of Discrete Approximations

Let {(Dy, R )} be a sequence of discrete approximations where {Dk} is a nested
sequence of bounded discretization operators. We say that this sequence is hierar-

chical if for all &

(4.15) (Ri+1Dr41)Ri = R

Corollary 4.3. Let {(Dr, Ri)}52, be an hierarchical sequence of discrete approz-
imations which is complete in F, then it is in hierarchical form end By, (4.14b)
with

Jin
(4.16) CHES Rm‘sijma Y= Z("??)J‘P}n =Rm®i "

=1

1s @ basis in F.

Proof: Using induction in (4.15) we get that
(’R,[De)']?,k =Ry for £2> k.

It follows therefore that

L1 L—}
’R»LAfn =Rr H (Dk+1Rk) = H (Rk+1pk+1) R = Rm,
k=m k=m

and consequently in (4.5a)

o = Ry = Ry ALEI = RS = 9T,

T

T I
m, m WL m
Yl =3 "Myt = Y el

j=1 . =1

Since " = Rmé;™ € F and tp:-n’L = @™ is a constant sequence, we conclude

from Part (1) of Theorem 4.2 that the hierarchical form is identical to the original
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sequence. Part (2) of this theorem follows immediately from the assumption that

the given sequence is complete. [

Remark 4.1. It is easy to see that the sequences of discrete approximations in
Examples 2.1-2.3 are all hierarchical. The term “hierarchical” is borrowed from
the context of finite elements (such as Example 2.2) where {/!"} in (4.16) is called
“hierarchical basis” - see [16]. We remark that many of the commonly used finite-
clement approximations and spectral collocations are hierarchical. However, as will
be demonstrated in the next section, this is not true for many approximations
that are used in finite-difference methods, and thus the limiting process (4.14a) is

actually needed.

5. Examples

In this section we demonstrate the ideas of this paper for two important classes of
diseretization: pointvalues (Example 2.2 and Example 5.1 in the following) and cell-
averages (Example 2.1 and Example 5.2 in the following). In both cases we consider
functions which are defined in [0,1] and discretized on the following sequence of
nested diadic grids {X*}%2,:

(5.1a) XF={ahyly, ab=j ki, B =27 he, Ji= 2k T,

where hg = 1/J, for some integer Jy; observe that

(5.1b) XFUCXE, XP - XET = (af )

Example 5.1. Pointvalues.

(5.2a) Dy : C[0,1] - VF

(5.2b) F¥ = (Df)i = f(=f), 035 < Tx

here C[0,1] is the space of continuous functions in [0,1]. Since x?_l = mé’j for

0 <j < Jip—1 we get that

(5.2c) FEt=fE =D ), 0<i<dia
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and thus the decimation matrix Dt_l is given by

(5.2d) ' Dy i = 82ig-

The columns of (D~')* are {553-};2‘91 where 6;-“ denote the unit vector 6}]’“ in (4.3a).

This shows that Di—l has a full row-rank and suggests to take in (3.6b)
(5.3a) wj =63y, 1<7 < i,

which leads to G';g_l (note ché,nge of notation: Ay = Jr1 — k — 1) that is given
by

(5.3b) (G5 )i = b2,
It is easy to see that in this case S in (3.7a) is the identity matrix in VE,

(5.3(:) ‘ Sy =1.

The reconstruction procedure Ry, for this discretization is any operator
(5.4a) R : VE = C[0,1)

which satisfies

(5.4b) Dy Rif* = f*,
i.e.
(5.4¢) (Rif*) (k) = £F, 0<5 <

this shows that Ry is any continuous interpolation of the data f* at the grid-points

X*. In the following we use the notation

(5.50) (Rif*)(w) = (s F*)
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where

(5.5b) Ii(z; f¥) € €10, 1],
(5.5¢) L(a% )y =fF, 0<i< Ui,

for any f*¥ € V%,

The predicted values f* (3.2a),
(5.6a) & = Pf_lfk_l = Dy Re—1F571,
are given by

(5.6b) o &=L (f, 7571,

Observe that for i = 2j we have 25, ;= = ¥ i ! and thus

(5.6¢) =L Y =5
consequently, the prediction error e¥ (3.2b) satisfies

(5.7a) es; =0, 0<5< Jhor,
(57b) 62] 1 f23 1 Ik—l(mé:j——l;fk_l)a 1 SJ < Jg-1.

The scale coefficients d* in (3.8b) are given by
(5.8a) df = (GE1eky; = egj_l, 1 <7< Jg1;
e* is recovered from d* by (3.8a)

e* = (GE1y*dF,

which can be expressed by

e =0,  0<j< T
(5.8b)

ek =df, 1<j< T
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The periodic case is obtained from the above formulation by replacing C[0, 1] in
(5.2) and (5.4) with its subclass ¢l0,1]

(5.92) Clo,1]={f | f € C[0,1], £(0) = f(1)}.
This change implies in (5.2)

(5.9b) | fe =10 =f1) =15

and in (5.4) it imposes the additional requirement

(5.9¢) Ii(0; f*) = Iu(1; f*).

To describe both the periodic and non-periodic case with the same expression we

introduce the starting index p,

1 periodic
(5.10a) p= ;

0 non-periodic

thus V* has the dimension (J; — p + 1) and we denote
(5.10b) =00 05,

and similarly other quantities in V*.

Using this notation we now describe the multiresolution transform (3.13) and its

inverse (3.14) for both cases as follows:

p(f5) = Mf* (Encoding)

DO k=1I,...1
(5.11) F'=H, p<i<dia
df = fo = Ialel F571), 1<5 < ke
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= M u(f%) (Decoding)

(DO k=1L
(5.12) i =11 p<i < T
Fhioy = ma(efy_ys P +df, 1<5 < Jhea

We turn now to describe multiresolution bases for the pointvalue discretization.

We assume that Ry is a linear operator and express Irx(z; f*) by

Jk

(5.13a) I(z; f*) = frub(z), ub(z) = Iu(w; 6F);

i=p
using this in (5.6) we express the prediction matrix PF by
k—
(5-135) (Pfgcwz)zi,j = bi,j, (Plic—l)?i—lyj = Uy 1($§i—1)-

The functions c,o;"’L(m) in (4.5a) are obtained by repeated interpolation of 6;":

(5.14a) | el = (H "“)

(5.14b) o (@) = In(z; o).

Let us assume now that )" converges in the maximum norm, i.e.
(5.14c) ElLli_ryn00 @?’L(a;) = ¢!"(z) uniformly for 0 < 2 < 1.
In this case ¢ € C[0,1] and

(5.14d) rpf"(a:;“) = g/"* for k > m.

From Lemma 4.2 we get that {1} satisfy the “generalized dilation relation” (4.11)

(5.15a) e = (PR e™) = (1T (Prey) ™)
Jm—l
=5 t Z UT_1($$-—1)§0$W1-
=1
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The functions {!"} in (4.8b) are defined in terms of {p["} as follows:

(5.15b) o = (™) = (G YT ™) = (67T, GRT )

_,.m
= Pi-1-

From Lemma 4.3 we get that the interpolation
Ji -
(5.162) Fe(as Yy =D frol(a)
i=p

is the hierarchical form of Ij(z; fk),

N ) L Ji—a
(5.16b) In(z, D f) = Lo(z; Do f) + Z Z d?(f)‘ﬁgj—l(w)a
k=1 j=1
where
(5.16¢) d5(f) = fak;_1) = Ii—1(25;_1; Dr-1f)-

When the interpolation It(z; f*) is hierarchial to begin with, i.e.
(5.17a) F* = Dhlea (5 1571 = Tilai /) = Tema (a3 ££77)
then we get from Corollary 4.3 that

(5.17b) - L =TI, of(a) = Li(z; 8F).

Example 5.1.1. Piecewise-polynomial interpolation

Let & denote the stencil

(5.18a) S=8(rs)={-s,—s+1,...,—s+r}, r=2s20,r21
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let {Lm(y)}mes denote the Lagrange interpolation polynomials for this stencil

—str .
(5.18b) Lo = TT (Y22, L) = bim, i €S,
j:js \m _J/
J#Em
and define
k k £y z —aj
. . ey J
(5.18¢) ¥z f*,ry8) = m;g bl ik

First we consider the periodic case,

(5.19a) )FEJ = ﬁk—ja f§k+j+1 = J“C}c+1a 0<s <

and define the piecewise-polynomial interpolation Ix(z; f¥)of degreerfor0 <z <1
by

(5.19b) Ii(z; f*) = q;?(m;fk,r, s) for m§_1 <z< a:f, 1<j < Jg.

In this case we get in (5.6)

Bo= (Pl P = 7
féci—l = (Plf~lfk_1)2i—1 Z L ( 1/2)f;+m

m=—3a

(5.19¢)

observe that the coefficients of f! +m in (5.19¢) depend only on m and they vanish

fm<—sorm>—s-r.

Let us consider now the limiting process L — oo in (5.14) where we start by
setting @™ = 67" at the points of the m-th grid and then repeatedly apply (5.19¢).
After k applications we get that ¢} ™+ has its support in

(5.20a) (2" —1)2s—1-2r) <j—2M < (2" - 1)(2s - 1)

and that the values within this support are the same for all ¢ and m; so lets take
i =m = 0. Tt follows from (5.20a) that Ii(z;80%) has its support in

(5.20b) 29,1 ar +0(27F) < T9e_q + O(27 .
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If
(5.20¢) 3 klim Ii(z; 30 = o)

then the above analysis shows that for all ¢ and m

where
(5.20¢) o(z) = po(zhg), support(p) = [25 — 1 —2r,2s — 1].

Hence the uniform convergence of the single sequence (5.20c) implies the existence
of the hierarchial interpolation Iy in (5.16).

The centered stencils r == 2s — 1 are of particular interest: For r = 1, Ij is the
piecewise-linear interpolation which is hierarchial - so the limiting process 1s not
needed. Deslauriers and Duboc [5] proved uniform convergence to a continuously
differentiable ¢(z) for r = 3,5 (see Figures 1-2).

It follows from (5.15a) that ¢(z) satisfies the dilation relation

—g+r
(5.20f) p(z) =(2z)+ Y Lm(-1/2)p(2z +2m +1).

nm=-—38

Hence the smoothness of the limiting function can be studied from the Fourier

transform of (5.20f) as suggested by Daubechies in [4].

In the non-periodic case we modify the centered interpolation r = 2s — 1 to

account for the boundaries by defining Ii(xz; f¥) in [2¥_;, z¥] as follows:

5 (z; f*,r, 1) 1<j<s—1
(521) Ik(m»fk): qf(m;fk,r,s) SSjSJk_3+1

@i g — T +r) Je—s+2<i< T

In this case convergence of (5.20c) implies convergence of (5.20d) for s < ¢ <
Jm — 8+ 1; the convergence ofga::"’L for0<i<s—landfor J,—s+2<:< Jn
has to be studied independently.

29




Example 5.1.2. Cubic splines

Let I(x; f¥) be the unique piecewise-cubic function (i.e. Iy is a cubic polynomial
in each [:1:;?71,:1:’“], 1 < ;7 < Ji) which satisfies

G) Ieh; fXy=7FF, 0<j< i
dt = df =
@) olee) =0 ) = 5h(ef +0; /%), £=12 171
(ii1) L1003 1) = 50 LG ) = i
d.’ﬂ ) ] dw H bl
note that requirement (ii} implies Iy € C*[0,1].

The periodic case is obtained by specifying dataonly for1 < j < Jrm (i) and adding

the requirement I;(0; f*) = Ix(1; f*) instead; (iii) is replaced by the requirement
¢ - £ oy

A (0; f*) = (1 %), £=1,2.

It is easy to see that the cubic-spline interpolation is hierarchial in both the

periodic and non-periodic case: Let us denote
fE = La(eh 771, p<i <

where p is given by (5.10a); Ix(x; F*)is the unique cubic spline which interpolates f*
and satisfies the boundary conditions. Since Ix_1(; f¥71) is a cubic spline which
does exactly that, it follows from the uniqueness that Ir(z; ) = (=3 F51),
and thus I is hierarchial by (5.17a). Hence by (5.17b) we get that I, = I and
thus I(z; f*) can be represented by the RHS of (5.16b) with

oH(x) = Ii(=; 6F).

In the context of finite element, the set

({teh i, ()

is referred to as hierarchical basis (see [16]).

We remark that in the periodic case the cubic-spline interpolation is translation

invariant in the sense that

In(z — qhk;ﬁf_q) = Ii(z; 6;“) for any integer g.
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Therefore, for each k, ¢¥ can be described in terms of a single function wk(z) =
Ii(z; 65) by
PHe) = bt — iha).

Example 5.1.3. Fourier collocation

We start with the non-periodic case and define

Jr

(5.22a) Ii(z; f5) = Z am{f¥) cos mmz

m=0

where {am(F¥)}:_, are given as the solution of the system of J;+1 linear equations

which is obtained from
(5.22b) L5 fF) =F, 0<j < Tk

We observe that the RHS of (5.22a) is a polynomial of degree < Jy in y = cos 7z, and
that the homogeneous problem for f* = 0 in (5.22b) amounts to finding coeflicients
am(0) so that it will have Ji 4+ 1 roots. This shows that the trivial solution is the
only solution of the homogeneous problem, which in turn implies the uniqueness of

the non-homogeneous problem

Next we show that Iy is hierarchial: Let f* denote

Jren
fE=hoa@h o) = )0 an(fS D eosmraf,  0<i< g
el
and observe that ,
k
Ii(z; f*) = Z am(F*) cosmnz
m=0
with _
» am(fF71)  0<m < T
am(fk) =
0 Jk—l + 1 S m § Jk
satisfies

L(zk 5y = fF, 08 < 0,

which shows that
Ii(e; F*) = i (2 7571,
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The functions ¢%(z) = Ij(z;6 ) in this case can be expressed in terms of the

discrete Dirichlet kernel (see [6}) as follows:

(5.22¢) k(g) = - Sllame)coslma/2) ki _ kg gt
' ¥o k 2sin(wz/2) e Yo i
In the periodic case we use
Ji—1 Je—1—1
(5.23a) Ii(z; f5) = Z b (F¥) cos 2mma + Z em(f*) sin 2rma

m=0

where the Ji coefficients {bn(F¥)}28, {em(F¥)} s %171 are determined uniquely

by
(5.23b) L(zb Foy=FF 1<i < T

It is easy to see that Ir in (5.23a)-(5.23b) is also hierarchial and the functions
eh(z) = In(=; 6 %) are given by

1 sm(Jk'fr:r:) COS TT

(5.23¢) po(z) = . e5(e) = pole — ).

sinmx

The standard way to reduce the dimensionality of the Fourier representation
(5.22a) is to discard terms cos(mma} for which an(f) is small. The multiresolution
representation (5.16b) of the Fourier collocation provides another way to reduce

dimensionality, i.e. to discard terms <p§j_1(:n) for which df( f) is small (see [6]).

Example 5.2. Cell-averages
(5.24a) Dy : L'0,1] — V*

(5.24D) 75 = (Def); = hl—k / 7 flayds, 125 < T

here L1[0,1] is the space of functions which are absolutely integrable in [0, 1]. Since
k—1 k k—1 k

Ty =8y, Ty = Tyjeg, WE get

» xgj 1 xrzc 1 - -
(5.24c) fit= «»};1; Umk._ f(z)dz + /2 ) f(:v)dm] = 5(faj- + f23)
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and thus the decimation matrix Dif_l is given by
| k—1 1
(5.24d) (Dy™ )i = 5(82iz1,j + 62i5)-

Consequently
D79 =0= g2i = —g2i-1, 1 <j < Ji,

and therefore we take in (3.6b)

(5.25a) w; = %(5;3_1 — 553), 1< £ g,
which leads to

(5.25b) Gy )i = %(62,-_1,,- — 62i,3);
Sk in (3.7a) turns out to be

(5.25¢) | S = %I.

The reconstruction procedure Ry for this discretization is any operator
(5.262) Ry : Vi = L'[0,1]

which satisfies

(5.20b) PeRef)s = - [ (Rufe)ds = T
Let
(5.27a) Fe) = [ Sy

and denote F;“ = F(&:f), 0 < j < Ji; note that Ff = 0. The relations

J
(5.27b) f;'c = (F}k - Ff—l)/hks FJIC = hsz"k
i=1
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show that knowledge of F* implies knowledge of f* and vice versa. Let Ii(z; F¥)

denote any interpolation function which satisfies (5.5) with respect to F* and define

A
147

T - kY.
de k(ma )u

(5.27c) (R F*)(z) =
clearly Ry in (5.27c) satisfies the requirements in (5.26).
The predicted values f* (3.2a) are given by

k
P . 1 &g d _
(5.282) ff = (DeRu—1f*1)i = e fk E-Ik—l(w;fk_l)d!}?
it

1 _ -
E:[Ikd(-’ﬂf;Fk Y~ s (2 FFH)

From (3.4) and (5.24d) we get that the prediction error satisfies
(5.28b) ek = —ek |, 1<i< Ty
consequently the scale coefficients d* can be expressed by

(5.28c) di = (Giwlﬁk‘)i = %(3’5{—1 - egi) = 82;‘-1 = “—655-

It follows therefore that
(5.28d)

- - 1 _ 5
di‘c(f) = elzci—l = fzkz‘w-z - f2ki—1 = E;[Féki—l - Ik—l(mgi—ﬁ F¥ 1)] = d?(F)/hk

where a?f(F) denotes the interpolation error in F', which is also the scale coeflicient

in (5.7)-(5.8).

We turn now to describe the multiresolution transform (3.13) and its inverse

(3.14) in the non-periodic case.

u(FY) = MF* (Encoding)

DOk=L,...,1
(5.29) F =3+ F), 1<6< T
df = [FE_) — Lima (2 s FF D) /e, 1 <8 < Jias
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F* = M~ p(f%) (Decoding)

( DOk=1,...,L
DOi=1,...,J61
(5.30) { 3 .
= [T (ks FF1) — FE& N/ + d¥

\ J?zk; - zﬁfc'—l - f—gci—l'

We remark that (5.27b) can be used in order to express the algorithms (5.29)-
(5.30) directly in terms of the cell-averages f*. in this case the algorithms apply
to periodic data by periodic extension of f*¥. When we use the primitive function
F(z) (5.27a) we need to have F(1) = F(0) = 0 in order to use periodic extension
of F*. Let us denote

and observe that F(1) = fuu. If the given cell-averages do not satisfy faw =0, we
subtract the constant value f,, from them before applying the algorithm and then
add it back to the resulting cell-averages, i.e. in (5.29) we subtract fav from f¥ and
then add it to the resulting f°, and in (5.30) we subtract fav from f° and add it to
the resulting f~.

Next we show that if I} is hierarchial (5.16) then so is the reconstruction (5.27¢)
5 Fk d - k
(5.31a) (Rif*)(x) = d—mIk(x;F ).

Let us denote
Ji _

(5.31b) Lz F*) =) FFel(e), ¢H(e) = In(z; 55
j=1

and assume that I} is hierarchial, i.e.

Je-1
(5.31c¢) Ii(z; Fk) — fk—l(ﬂf; Fk_l) = E df(F)‘:azj—l(fE)-
i=1
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Differentiating (5.31b)-(5.31¢) and using (5.27b) and (5.28¢c) we get that

Ji

(5.320) RaFN) = D Pl

(5.52b) (Ref)(2) — (Ruma P 1)) = %dk(f)«pj(x)
where

(5.32¢) (:ﬂ)wzhv—% U = b @k (@)

Example 5.2.1. Piecewise polynomial reconstruction

Using the piecewise-polynomial interpolation (5.18) for the primitive function
F(z) we get from (5.27c) that

(5.33a)
7k d k By — 2 k k
(ka )(:B) = EQJ("E:F aT'.\S) Z J+mL hk I y Ti g <x < Tj,
and consequently in (5.28a)
5 —s+r 847
(5.33b) fE_ =— E (FEL — FEDLn(-1/2)= > Befiid,
m=—s f=—3s+1
N . N B —8+4T
(5.33¢) fz!cj =2f; - - f2kj~—1 = 2f; - Z BefE J+£
. b= g+1
where
—3+7
QZLm(—é) 0<f< —5r
(5.33d) Be = mjf__ ) :
—2 3 Lm(-1) —s+1<£<-1

the coefficients {8} depend on the choice of stencil in q;f’ . Note that in the periodic
case (5.19) we take the same stencil for all j and %, and therefore we get (in the
same way as in (5.20)) that if

(5.34a) 3 lim Ri@o® = o
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then

(534b) 3 th]ilﬂ R 7?1’m+k = ('p:n, (Pzn = (;:I: — 2) ;
LA N FTiIE Vi
where
(5.340) o(2) = po(zha),  support(p) = [2(s — r) ~ 1,2(s — 1)

In Appendix B of [12] we use the continuous differentiability of the limit functions
(5.20) for the centered interpolation with r = 3,5 (see [5], [7]), which we denote
here by ¢(z), to prove uniform convergence in (5.34) to a continuous ¢(z). From
Lemma 4.2 and (5.33) we get that ¢(z) satisfies the dilation relation

—s+r
(5.340) p(z) =20(28) + Y Belp(20 +20+1) — (22 + 20)};
f=—3s+1
from (4.8b) and (5.25) we get that
(5.340) 5@ =9 (-3, ) = pl2s+1) = pl2)

The hierarchial form R (4.10) which results from the limiting process above is
identical to the one obtained by differentiating the hierarchial form of the interpo-
lation [ in (5.31)-(5.32). The relations between ¢(z) and @(z), ¥(z) in (5.32¢)

can be expressed by

(5.35) o) —ple—1) =@(2), P(@)=@'(22+1)

(see [T} and [12, Appendix B}).

The case s = r = 1 corresponds to the piecewise-linear interpolation, which is

hierarchial to begin with. Here ¢(z) is the “hat function”

(1Bl st
(5.36a) ¢(z) = { .

otherwise
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which satisfies the dilation equation (5.20f)

(5:360)  @(x) = $(2) + Slpe — 1)+ $(2e+ 1)), supp(®) = [-1,1]

The reconstruction Ry, (5.27¢c) for the cell-averages in this case is the piecewise-

constant function

(5.37a) (Ref¥) (@) = ff  for zi_y <z < k.
Here
1 —-1<2<0
(5.37b) olz) = X(__m](x) = . ,
0 otherwise

which satisfies the dilation equation (5.34d)

(5.87c) o(z) = p(2z) + 2z +1), supp(p) =[—1,0};

¥(z) in (5.34€) is given by

(5.37d)
1 ~l<z<—1
p(z) =2z +1) —p(22) =x _, (@) —x_; () =13 ~1 ~l<z<0
-3 L,
' 0 otherwise

The multiresolution basis (4.14b) in this case is the Haar basis.

In Figures 1-4 we present some numerical examples for the limiting process in
(5.20¢) and (5.34a) for the case of a centered stencil with r = 3 and r = 5. In
Figures 1 and 2 we show the results for the interpolation (5.20c) with r = 3 and
5, respectively; part (a) (top) of each figure shows @ and part (b) (bottom)
shows @J'. The circles in these figures are the pointvalues of these functions at the
gridpoints of X% here kg = 1/16. In Figures 3 and 4 we show the results for the
cell-averages (5.34a) with r = 3 and 5, respectively. Parts (a) and (c) in each figure
show 903’6 and 1/;8 S while parts (b) and {d) show cpg’l and g 'L respectively; the

circles denote the cell-averages of these functions in the intervals of X 6,
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We remark that the convergence of the limiting process in both cases is very fast,

and the results for L = 6 are very close to those of the limit functions.

Remark 5.1. (1) Discretization by cell-averages is particularly useful for the nu-
merical solution of integral equations with integrably singular kernel (see [12]) and
for the computation of discontinuous solutions of hyperbolic conservation laws,

where it leads to schemes in conservation form (see {13] and [14]).

(2) In this paper we describe reconstruction from cell-averages through interpo-
lation of the primitive function. A more general approach which applies to unstruc-

tured grids in several space dimensions is described in [9] and [10].

(3) As we have pointed out in Section 3, the multiresolution transforms can be
applied with nonlinear operators R. In [6] and [11] we show how to use essentially
non-oscillatory (ENO) interpolation techniques, which use an adaptive selection of

stencil in (5.19b), in order to improve data-compression of discontinuous data.

6. The Diadic constant-coefficient case

In this section we consider the case of a diadic sequence of uniform one-dimensional
grids where D51 (2.3) is a “T6plitz matrix”

(6.1) (Di_l)i,j = a&j—gi, independent of k;

this case has been studied extensively, primarily within the context of wavelets. In
this section we examine it within the general framework for multiresolution rep-
resentation which was described in the previous sections; later in Section 7 we
present the wavelet formulation of this case. Our formulation starts with a finite-
dimensional vector-space V' (2.1a), and therefore we have to consider the periodic
case where the matrix in (6.1) is to be interpreted in a cyclic manner. In order to

avoid this awkwardness in notation we consider first the infinite case of grids in R

2
loc

to be periodic functions with period 1, and by describing the multiresolution rep-

and functions in L2 (R), and obtain the finite-dimensional case later by taking F

resentation for the finite number of discrete quantities which correspond to [0,1].
Thus D:”’l and P£“~1 will be treated as infinite matrices; {ay} will be taken to be
an infinite sequence with compact support, 1.e. we assume that oy are zero when

1¢| > L for some finite integer L.
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Let {X¥}2  be the following sequence of nested diadic grids in R

(6.2a) = {:1: :cf =j-hg, hip= 2 %he, ho=1/Jy

=00

where Jy is some integer, and note that
(6.2b) Xkl o xF, XF o XE = {ah )2 .
We observe that
(6.2c) {mk}J o Jr =28 Jo, is a partition of [0,1].
Let w(z) be a function of compact support which satisfies
(6.32) | / w(@)dz = 1, / w(2)]2dz < oo
and denote
(6.3b) wh(z) = hiw (hi - j) .

k k

We define the discretization operator Dy,

(6.3c) Dy LE (R) - RxZ
by
(6.34) (Duf) = b = (hh) = [ fepk)an

Hence ff is an average of f over few cells of the k-th grid around zF with a weight

function wf(x); note that for f =1 we get Dif =1 for all k.

We assume now that DF™! has the form (6.1), i.e.
(6.42) fEL = (DEUTRY, ZaJ 2iff = Zat’me
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Using the definition (6.3d) we get for f =1 that
(6.4D) > =1,
¢

and that for any f € L .(R)

loc

<wfml =) i f> =0
¢
which implies that

(6.5a) wr ! = z ki,
.

Substituting y = = — j in the above relation, we get that w is the solution of the

-1
dilation equation

(6.5b) w(y) =2 Z aw(2y — £).
£

It is shown in [4] and [15] that given {a;} which satisfy (6.4b), the dilation equa-
tion has a solution w which is unique up to a multiplicative constant and a shift;
however, w is defined in terms of its Fourier transform and does not necessarily cor-
respond to a function. Daubechies observes in [4] that without imposing additional
constraints, the solution w of the dilation equation is typically a fractal. Strang
points out in [15] that w = §, the Dirac distribution, is the solution of the simplest

dilation equation

w(z) = 2w(2z).

We are interested in w(z) which is a generalized “weight function” in the sense that
it is concentrated around some point (which we take to be z = 0), and that its
regularity is not worse than a distribution; we do not need w to be nonnegative.
Daubechies shows in [4] that if {a,} has its support in Ly < £ < L, then w(z), the
solution of the corresponding dilation equation (6.5b), is likewise supported in an
interval of length Ly — L;. We recall that the solution of the dilation equation is

determined up to a multiplicative constant and a shift. We fix the multiplicative
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constant by (6.3a) and locate it so that its main concentration is placed around
z = 0. As an example, consider the hierarchy of functions w™ which is obtained by

repeated convolutions with the characteristic function x;_1 1),

(6.6a) Wt = ™ 4 X[=1,4]s W’ = 4.
It is easy to see that w™ has its support in |z| < m/2 and it satisfies a dilation
equation (6.5b) with coefficients {aj'}, which can be computed by the recursive

relation
m 1 m
(6.60) o7t = o} + o), of = o

observe that {af'} has its support in 0 < £ < m (see [11]).

The simplest and most commonly used discretization is that by pointvalues; this
corresponds to w = 6, i.e. m = 0 in the hierarchy (6.6} (see Example 5.1). The
reconstruction procedure in this case is given by any interpolation method of the
pointvalue data. This discretization is most suitable for F of continuous functions.
The next weight function in the hierarchy (6.6) is w = X[-1,1] which corresponds
to discretization by cell-averages (see Example 5.2), and is most suitable for F of
piecewise-smooth data with jump-discontinuities. The “hat function”, m = 2 in
the hierarchy (6.6) is most suitable for F of piecewise-smooth distributions, 1.e.
piecewise smooth functions with a finite number of é-singularities (see [11]); such

F is used in vortex methods for the numerical solution of fluid dynamics problems.

Requirement (2.2), which is formulated for the finite-dimensional case, ensures

k

that the Ji components of the prediction error e® can be expressed in terms of Ay =

Jr — Jp—1 = Jr—1 quantities {d;c }fi]l; then the counting in (3.11) shows that there
is a one-to-one transformation between f” and its multiresolution representation

w(fE). In [11] we rewrite Df 'ef =0 (3.4) as
(6'73) Zazzeg(iﬂ) = Wza2£+16§(i+g)+1, 1< < Jie,
£

and choose

(6.7b) db=eb;_y, 1<5 < Jp1.
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This method is particularly attractive when

(6.7c) o] > ) lexzel,

££0

which implies that the coefficient matrix in the system of linear equations (6.7a)
for the even components of the prediction error is diagonally dominant. In the
present paper we choose to remove the redundancy from the prediction error by
(3.8) which involves the matrices Sy and G5! (note the change in notation for the
diadic case: Ag — k — 1). The motivation for this choice is our wish to relate the

general framework of the present paper to the more familiar theory of wavelets.
Following Daubechies in [4] we now show:

Lemma 6.1, Let G’,:_l be the infinite matriz

(6.8a) (G i = (1Y agij

then

(6.8b) @ DEMEET)r =0

(6.8¢) (i) Se=(DEyDE (GG

is a banded Toplitz matriz which s given by

(6.8d) (Sk)i; = s(fi — j]), s@m+1)=0, s(2m) = > _ aroetzm.
. £

Proof:

G) [DFHGET )T =) (D) ageziazje

£41
= —Z(-1) Hap _gicnj_p_1
£I

where we used the substitution £ = 2{(j +¢)— £ — 1.
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(ii) Using (;1)i+j = (1)l we can express (Sk);; in (6.8¢) as

(Sk)ij = Zai—%ai—ﬂ-i-(j—i) + Z(—l)lj_“Olze—i—lagg—iml—(j—i)-
¢ ¢
For j — ¢ = 2m, using £' =1 — £ + m in the second sum, we get

(Sk)ij = Z Q200 —2642m T Z Qi (2041} +2mFi— (24 +1)
£ &

= ( Z e Z ) Qplptom = Za£a£+2m'
£

f=even fI=odd

For j — 4 = 2m — 1, using £ =1 — £+ m in the second sum, we get

(Sk)i,j = Zai—2£aim22+2m—l - Zai—%’-f—zm—lai—u’ =0.
£ &

Clearly if {ay} has its support in Ly < £ < Ly we get that s(m) = 0 for |m| > p =
[LZLZI—"»ﬂ], where [ ] denotes the integer part of the number. O

Algorithm (3.14) for the calculation of the inverse multiresolution transform is
well defined for any invertible Sy. However in order to ensure the stability of the
Cholesky decomposition S m-LL*, where L is a lower diagonal matrix, we would
like Sj to be diagonally dominant. Hence we consider weight functions w(z) which

are solutions of the dilation equation (6.5b) with coefficients {ag}f? 1, that satisfy

Ly
Z Oplig42q

=14

Ly P
(6.9a) S (a?>2) ]

Lz—-*Ll-|—1
y P= T 5
ﬂELi g‘=1

2

We remark that this condition is met for 0 < m < 4 in the hierarchy (6.6); it
is interesting to note that the method (6.7) of [11] leads to a diagonally dominant
matrix for 0 < m < 7in (6.6). For m = 0, 1, as well as for the Daubechies’ wavelets,

we have the attractive situation where s(2¢q) = s(0)8,,0, i.e.,

(6.9b) Si = s(0)1.
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We turn now to consider the class of linear reconstruction operators Ry for this

discretization:
(6.10a) Re:RxZ— L (R)
(6.10b) DRy = 1.

Definition 6.1. Order of accuracy

We say that the reconstruction Ry is r-th order accurate if
(6.11a) ' Ri(Drz™)=2™ for 0<m<r—1.

We observe that if Ry_1 is r-th order accurate, then the resulting prediction k=
Pk f*=1 in (3.2a) is exact for polynomial data of degree less or equal r — 1,

(6.11Db) Pt (Di_12™) = Di(Ri—1Dp—12™) = Dipz™, 0<m <r—1,
Since f(z) =1 implies fF = 1 for all k, we say that Ry is consistent if
(6.11¢) (Re - )(z) =1

i.e. Ry is at least first-order accurate. Using m = 0 in (6.11b) we get that the rows
of P,f_i have to satisfy

(6.11d) : Y (PEy)ie=1 foralli.
£

Next we show that given a “reasonable” weight function, we can derive r-th order
reconstruction procedures from corresponding r-th order interpolation methods;

thus we have a large class of reconstruction operators to choose from.

Lemma 6.2. Let u(y) be such that

(6.12a) u(j) = 8o,
(6.12b) Z(j)mu(y —)=y™ for 0<m<r—1

J
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define the matric B by

(6.12) By = (o — (- =) = [ wly =ty - )
and denote
(6.12d) uh(e) = u (hi,, - j) .

If B is invertible, then

(6.120 Reft = Y APk, B =B

is an r-th order reconstruction.

Proof: We observe that
(Druf)i = (wf uf) = (w(- — ), u( = j)) = Bij,
and therefore we get from (6.12e)
(DxRif*)i = Z Bi(F*)(Druf)i = Z(B 'f8)iBij
(BB Y=
which shows that Ry in (6.12e) satisfies relation (3.1b). Substituting y = z/hy in
(6.12b) we get
Z(mf)mu;‘(m) =z™, 0<m<r—1L

j

Applying Dy to the above relation we see that
(#5)™ = Bi(Dra™);
it follows therefore that for 0 < m <r —1
Ri(Dpz™) = Zﬁj(‘kam)uf = Z(m?)muf =z™.
' J J

46




O

Lemma 6.3. Let Ry be a linear operator which i3 translation mvariant in the sense
that

(6.13a) (Rkt‘)"}“mq)(a: —ghy) = (’Rké‘;‘)(m) for any integer gq,
and denote
(6.13b) vE = (w; T Reds);

then the prediction matriz P,f"'l has the constant value v on s “subdiagonal”

i—2j =0, ie

(6.13¢) (PET)i = 7imsj

Proof: It follows from (6.13a} for ¢ = j that

(PE i = (DenaRadf)i = (Wi, Rady) = (wi™, Rabo (- = ha))
= (WFY(- + jhi), RibE) = (i, Ri6F)

_ Ak
= Yi-2j-

Corollary 6.1. (i) The predicted values fF+! = PEYLFR can be computed by

(6.14a) k+1 Z"fzefk £ L:.ll E’Yzz-;—lf —£-

(ii) If the reconstruction is consistent, then
' k k
(6.14b) Z’Yzf = Z’)’zHl = 1.
¢ £

In the following we describe the periodic case, which is obtained from the previous

formulation for functions in L2 _(R) by taking F to be the periodic extension of
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functions f € L#[0,1], i.e. f(z +n) = f(z) for all integers n. We recall from (6.2c)
that for hg = 1/Jp

(6.15a) {X;-C}Jk :Bf =7-hg, hy = 2 %hg, Jr = 2% Ty,

J=0°

is a partition of {0,1]. The discrete quantities in this case can be expressed by a

periodic extension of their values for 1 < j < Ji, e.g.
(6.15b) FEo=Frmis Frovjmn = Fhg, for 0<j < T —1,

and similarly for other discrete quantities.

The multiresolution transform (3.13) in the diadic constant coefficient case can

be performed by the following algorithm:

p(f*) = Mf"  (Encoding)
(6.16)

DO k=1I,...,1
(i) ff_l = ;O‘fﬂch_g: 1<7 < Jgps
. 7 k=1 Fk— F k—1 Fk— :
(ii) ﬁgj—l = f2kj—-1 - %:72£+1fjw£1—-1: 65,‘ = fzkj — ZE}TQE ! j_gl, 1<y < Jeon

| (iid) dff = —Zﬂ:aze—leéu_@ + ;023650_3)_1; 1<y < Jg-1.

From Lemma 6.1 we see that if {a,} is of compact support then Sy (6.8c) is
banded. In order to express the prediction error e* in terms of the scale coefficients

d* (3.8a) we have to solve the system of linear equations
(6.17a) Sie* = (GF1)y*dP

for the Ji components of e*. Using property (6.8d) we get that the above system

decouples into two separate systems for the odd and even components of ek, e

6.17b s(2mdef . =) szedf , 1<t < e,
2(i—m)—1 +£
m : £
(6.17¢) > s(@m)es iy = — > _ose-1diyy 1<i< Jea
m £
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Let €°99 and e®ve® denote the column-vectors of the J;—; odd and even components
of e*, respectively,

(6.17d) 29 = ek, | et = ek, 1<4 € e,
and let €299 and é°¥** denote the RHS of (6.17b) and (6.17c), respectively. Using

the periodic extension (6.15b) we rewrite (6.17b)-(6.17¢c) in the matrix form
(6178) S‘*eﬂdd — é‘ﬁdd, S’eeven — é\even,

where S is a cyclic banded T6plitz matrix of dimension Ji_i, and observe that
(6.17¢) can be solved in O(Jx_1) operations. Using these notations we now describe

the inverse multiresolution transform (3.14) by the following algorithm:

£ = M7 u(fb)  (Decoding)
(6.18)

DO k=1,...,L
(i) é‘?dd = Zazed§+£a éﬁven s —;a%—ldf_}.ga 1 Sj < Jk_1;
£

(11) eOdd — S——l éodd’ geven — S’—léeven;

7 k—1 Fk—1 7k k—1Fk~1 | _e -
[ (i) fF, = Ze:’}’zull j—e—1 F 3%, f3; = %:721 e tei 157 < T
We observe that if {ay} satisfy

(6.19a) Z pCppom =0 for m#0
¢

then it follows from (6.8d) that

(6.19b) St = 5(1_{))1

and thus the inverse multiresolution transform (6.18) takes the simpler form

( DO k=1,...,L

DO j=1,...,J51

f3ioa = ;7§ﬁ1ﬁ—_el—1 + ﬁ%:a”dﬁw
\ f;fj = gﬁ’fg_lﬂc__gl - $§a2£~ld§+£'
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We turn now to consider the limiting process (4.7) in the diadic constant coefficient

case.

Lemma 6.4. Assumne that there exist {5} € L?[0,1} such that for all k
(6.200) lim Ry ALe — ebllison = 0

and denote

(6.20b) oH@) = k(s — ihe);

then for all © and m

(6.20¢) () 3 Jim [RLARE" — 7120, = 0,
(6.20d) (1) Dl =8

(ii1) {pk(z)} satisfy the relation

(6.20¢) P67 @) =D vt — Lha),
£

where y§ are defined by (6.13b).

Proof: .
-1
1) o' =RALS" = [[ (Ret1Drs1) - Rm6)™
k=m
Using (6.13a) above we get
L-1 L—1 _
e (2) = [ RexaDer1) - Rmb™)z) = [] (Ris1Dri1)(Rumbo)(w — ihim)
E=m k=m

= ‘P(r)n’L($ — ihm).

Taking L —» oo we now get

3 lim P (z) = o (v — ihm) = o] (z),
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which proves the first part of the lemma.

(ii) Using (4.9b) we get that
D" = 7" = 87"

therefore

m,L
bl Dt — 61|12, = B[P (01" — 0z,
m m L m m, L
= hm Z [{wi™ i — e P < hom [ w; |[?Lz[u,1;||90? i ”%2[0,1]
j

= “w”%ﬂ(m”@? “L2{0 11 o0 0

which proves the second part of the lemma.

(iii) It follows from Lemma 4.2 and Lemma 6.3 that
pEt = (PF_ 887 of) = [(PE_)*¢"): Z'r;, 2ot = ok,
¢

using (6.20b) and hz_; = 2h we get that

l(m—zhk 1)—27 (,00 (z —thg1 — £hy);

substituting y = = — thg—y in the relation above we obtain (6.20e).

Corollary 6.2. Let p*(z) be as in (6.20a) — (6.20b) and define

(6.21a) Ri(Drf) = Z(Dkf)j%’?;

i
then {(Ry,Di)} is an hierarchical sequence, i.e.

~

(6.21b) (RaDi)Ri—1 = Ri—1

Proof. Use Corollary 4.2 and the first part of Lemma 4.3.

51




We turn now to describe multiresolution bases for function spaces. From the

second part of Lemma 4.3 we get
(6.22) Ref* — Rpa fo71 = Z efof = (¥, "),

where e* is the prediction error and @* denote the column-vector (¢*); = @¥. Let

us assume that e¥ is represented by d* of Jy_; components as follows:
(6.23a) = CF1ek, o = EF_ d¥,

where C’,’;“l is a Jr—1 X Jr matrix and E,f_l is a J X Jr—1 matrix; then

(6.23b) (8,04 = (BE1dF, k) = (d, (BE1)"6h).
Denoting
(6.24a) WH(a) = (B ) et ()

we can express (6.22) as

Je-1
(6.24b) Rift — Reoa fr70 =) diwd
j=t
where
(6.24¢) = CF ek = CF Y (FF - PN

Reformulating Theorem 4.2 for the above we now have

Theorem 6.1. Assume that there exist {pk(2)} which are square-integrable in
[0,1], such that

(6.25a) Lh—{l;o IRLAY s — @b |20, = O,
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and denote

(6.25b) @k = ph(x —jh), ¥F = (BET Yo, & =T (P - BT,
then
‘ X Jr L Jy-1
(6.25¢) G) ReFP = fleb =3 dipf+ ZF’
j=1 k=1 =1

(i) IF {(Dr, Ri)}2, s complete in F, then for any f € F

oo Jr-1

(6.25d) F=>23 dipk+ Zf"

k=1 i=1
In the present paper we use in (6.24a)
Ck 1_ Gk -1 }_;}].Z:c_‘1 — Sk—l(G.;z—I)*,
and thus Theorem 6.2 applies to this case with
(6.26a) PF = GF LSy, dF = GET 1R
¥ above can be expressed by

(6.26b) PEe) =Y (1) ae1phi_e(a), ¢° = S o
£ .

7. Wavelet formulation

In this section we consider the diadic constant coefficient case of the previous
section in the special circumstances where in addition to (6.1) we also have that
P,f__1 is a constant “Toplitz matrix”
(7.1) (P} ))ij = vieaj, (DE7")ij = @j_2i, independent of &
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(see Examples 5.1.1 and 5.2.1).

First we present this case in the context of the general framework of this paper,
where (7.1) is obtained by taking Ry to be both translation invariant and indepen-
dent of k, and show the extra structure that results from this assumption. Then
we present the wavelet point of view which is based on the observation that in this
special case, the design of a multiresolution representation reduces to a choice of

coefficients {ay} and {~;} subject to appropriate algebraic conditions.

We assume now that Ry, in addition to being translation invariant, is also the

same for all levels of resolution, i.e.

(7.2a) (Rip108t1)(2) = fvaké[’;)(zm) for all k.

In this case the coefficients {yF} in (6.13b) are the same for all levels of resolution,
(7.2b) P = (Wit Ren& ) = (W, Rids) =1,

and we show the following;:

Theorem 7.1. Assume that Ry is translation invartant (6.13a) end independent
of k (7.2a). If there exists p(z) € L*(R) such that

(7.3) Jim R AGE — ¢oll =0, #(=) = wo(eho)

then

(i) ¢(x) satisfies the dilation equation

(7.4) 0(@) = yep(2e — &)
¢

(if)

z

(7.5) Rif* = Zf"t.o,, wfzw(hk—j>

s hierarchial.
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(ii1) If {(D, Ri)} 2 is complete in F, then for any f € F

(7.6a) F=3Y"3 dE+ ) flel
k=1 1 i
where
(7.6b) d¥ = G¥ YDy f — PE_\Dra f),
(7.6¢) pEa) =Y (1) o ghi_if2), ¢F =57
P}
Proof:
L-1
ot = Ry AL = [] (Res1Dit1) - Rm]™
k=m

Using (7.2a) we get
L—1
wm, L ™m
oo 22) = [I (Re+1Drn1) Runt1Pms1) » (Rmt16g ™))

k=m+1
L—1

= [I Rer1Drsr)- (Rama§5)(z) = w0t ().
k=m+1

It follows then by induction that
ey (2) = w0t (27)
and therefore (7.3) implies that
3 lim o =o', ¢f'(2) = ¢(a/hm).

Now we can apply Lemma 6.4 and Theorem 6.1 in order to complete the proof of
Theorem 7.1. [

Corollary 7.1. If
(7.7a) Zagag+2m =0 for m#0
¢
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then ¥(z) in Theorem 7.1 satisifes

(7.7b) | Pi(e) = (‘,i - %) »

\ YR

where W(z), the “mother wavelet function”, is
(7.7¢) P(z) = [Z(——l)‘“ae_lcp(zw +E)} / > aj.
£ . £

Proof: From (7.7a) and (6.8d) we get that

1 k

Si' =yl ? = W o*, s(0) = Z@e

It follows then from (7.6c) that

= ) = '1— o z_ 7 = _;:[,,__ k.
P (Ef":’: - 7’) = 5(0) ;( 1) +1 -1 (hk 2 +£) e ) ;( 1)£+1O€g_1(,021w£
= Z(“1)£+1GE—195’2°i—e = pF(z).

e
[

In this paper we obtain a multiresolution representation from any sequence of
discrete approximations {{Dk, Ry )} for which {Dx} is nested (Definition 2.3). This
is a very general concept which applies to unstructured grids (Examples 2.1 and
2.2) as well as to nonlocal discretizations (Example 2.3). The matrices DE1 and

P,fm_l are obtained from the sequence of discrete approximations by
(7.8a) D1 = Dy Ry, Py = DiRioa;
the matrix Gf" relates only to D,’z_l and is chosen so that

(7.8b) | DEH(GAE Y = 0, rank(G2*) = A,

We observe that the multiresolution transform (3.13) and its inverse (3.14) are

expressed in terms of these matrices without reference to Dg and Ry. Therefore we
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can formulate requirements for the existence of the multiresolution representation
(3.11) directly in terms of the matrices Dif"“l, P,f -1 Gf"“ as follows: Find such

matrices so that

(7.9) Ditpt =1

and Gf’“ satisfies (7.8b); observe that the above relation implies
(7.10) rank(DF1) = rank(P§ ;) = Jp-1.

In spite of its simplicity, (7.9) is not a useful guideline for design of multiresolution
algorithms in complicated situations such as bounded domains with unstructured

grids. We note that if the underlying discretization has the property that
(7.11a) flzy=1= ff=1 forall &,
then we have to add the consistency requirements

(7.11b) SUDF N ie=1, Y (Ply)ie=1, Vi.
’ £

£

We turn now to consider the special case where both matrices D,’z_l and P,f_l
are constant Téplitz matrices which are defined in terms of {ag} and {7y} (7.1),

respectively. In this case
ko
(Dk IPIf—l)i,j = Z Om—2ifm—2j = Z QpYot2(i—j)
m £

and therefore (7.9) is equivalent to the following condition on the choice of {ae}
and {v¢}

(7.12a) Z aeYer2m = 00,m-
I
The consistency relatic;n (7.11) implies that
(7.12b) ‘ Y ar=1
.
(7.120) E’yze = Z’]’u.H = 1.
‘ ¢
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We refer to the algebraic approach of finding {ag} and {y¢} subject to conditions
(7.12) as the wavelet formulation. In the following we assume that both {ay} and

{~v¢} are of compact support.

The consistency relation (7.12c) implies that PF_, is at least first-order accurate

in the sense of (6.11b). In Lemma 7.1 we formulate conditions on the matrix
(7.13a) Q =P DI

for the prediction to be r-th order accurate

Lemma 7.1. The prediction is r-th order accurate in the sense that
B r—1 B B B
(713b) fik = Z bm(wi")m, fkn} = D]’:_lfk = P]ic_lfk—l — fk,
m=0

if and only if

(7.13¢) ZQ:’,i+p =1, ZQi,i+pp£ =0, 1<{<r—-1
) P
Proof: Proving (7.13b) amount to showing that

Quft = for fE= Y bnlab)™,

m=0

which is true if and only if
(7.13d) Y Qiieh)m =(=hH™ Vi, 0<m<r—1
J
Using the binomial expansion and the substitution j = ¢ + p we get
3 Qii(=H)™ = ()™ ) Quisli +2)"
J P
S AT
= (h)™ > Qiiep ) p
P £=0 £

- (Jff)m Z Qi itp + (he)™ Z (T:) im [Z Qi,i-i-ppf] :
P £=1 P
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For m = 0 we get that (7.13d) is true if and only if ¥ @; 4, = 1. Form = 1 we get
P
that if the proposition of this lemma is true for 0 < £ <m —1, then

> Qi)™ = (&)™ + (he)™ > Qiinpp™,
¥ P

which shows that it is also true for 0 < £ < m; by induction we get that it is true
for0<£<r—1. O

We remark that for the discretizatin (6.3) we get that for any (b} L, there

exists {am}7 ", such that

r—1 r-—1
Dy (Z amwm)} = Z bm(:r::-“)m Vi,
m=0 i m=1

and vice versa. Therefore (7.13¢) implies r-th order accuracy in the sense of (6.11b).

When D¥~! and PF |, are the constant matrices in (7.1) we get that
k k—1 g

m

Y Y2mQ2mtp for : = even
(714&) Q'i,i‘FP =

S Yem+1@2mt14p for i = odd.
m

This shows that the consistency conditions (7.12) imply that
Z Qlli'{'P - 1 Vi’
p
and that the prediction is r-th order accurate, r > 2, if and only if

(7.14b) ZPE Z'Y2ma2m+p =0, ZPE Z’)’zm+1a2m+1+p =0,1<£<r~-1

P m P m

We refer the reader to Appendix A where we derive a necessary and sufficient
condition for (7.14b).

Following Daubechies in [4] we now consider the limiting process L — oo for

(7.15a) e (@) = Y (@I )ixpr, 20 (@),
g
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where y, is the characteristic function of the interval I, and t,EZ"'L is defined as in
(4.3¢), i.e.

(7.15b) ol = alsm, AL = [ PF.
k=m

As in Examples 5.1.1 and 5.2.1 we get that if
(7.15¢) 3 lim 0" = po(<)

then

x

(i) Hl}i_lgow?"L =" Pl =9 (m = z) , p(e) = po(zho);
(ii) support () is the same as that of {~y¢};
(iii) ¢ satisfies the dilation equation (7.4).

At this point we can switch to our formulation by defining

(1.160) Du) = b, of = o (=),
where w is the solution of the dilation equation (6.5), and
(1.16) (Ref*)@) = 3 ok (o)
In order to prove that R is a reconstruction, i.e.
(7.16¢) DiRi =1
we have to show that
(7.164d) (W, ©T) = bij, Vi, j,m.
To do so we express w(z) as the L? limit
1 m,L

(7.17a) . wi(z) = P lim w!™"(z),

m Lrro0
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where, as in (7.15), we define

L 1

3\ ~msl _ TT rnk
) Wil = 11 (D)8,

— —m Ly
- Z(wi )ixtet (@),
J
and cbserve that

1 — T e
(7'176) h—(w?"[’, (P?,L)Lz = (""’i ’,L: (P;'n’Lh?

L-1

H(D w)76r, T PEY6 e

k=m

( m+1 DL 1PL 1’ ’PnTH‘S?)E? = (5z'm> 5?)%

C}-)

JJ?‘

the last part follows from (7.9). Taking the limit L — oo in (7.17c) we obtain
(7.164).

Since ¢(z) satisfies a dilation equation, we get that {(Dy, Ri)} is an hierar-
chial sequence of discrete approximations; hence (7.6) in Theorem 7.1 follows from
Corollary 4.3.

Example 7.1. Piecewise-polynomial reconstruction

From Example 5.1.1 we get that

og = bpp
(7.18)
Yo = 1, Yorm+1 = me(—1/2), —s+r<m< —38,

where Ly (y) is defined by (5.18b), is a solution of the system of algebraic equations
(7.12) and (7.14) for 1 <£<r —1.

From Example 5.2.1 we get that

ap = 2(8e,0 + 6e,—1)
(7.19)

Yomtl = Bem, Yzm = 26mo — B-m, —s+1Sm < —s+r,
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where 8., is defined by (5.33d)}, is also a solution of the above mentioned system of

algebraic equations.
Example 7.2. Daubechies’ wavelets

In the framework of this paper, Daubechies’ compactly supported orthonormal

wavelets, are characterized by the choice

(7.20a) Pf . =2ADF'Y = v = 20,
In this case (7.9) becomes

(7.20b) 2DE Y (Di Y =1,
which is equivalent to the condition (7.12a})

: i
(7.20c) Zatawzm == §6m,0;
¢

note that this implies in (6.9b)

(7.20d) Sy = %I.

The consistency conditions (7.12b)-(7.12c) are now equivalent to
(7.21a) > one=Y ageyr =1/2

£ £
The conditions for r-th order accuracy (7.14b) for » > 2 become

(721b) Epe Z XoamX2m4p = 0, pr Ea2m+1agm+1+p = 0, 1 S 4 S r—1.
P m P m

In Appendix A we show that

(7.21c) Z(—l)ppfap =0,1<£<r—1,
P
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is a necessary condition for (7.21b) to be true; Strang [15] argues that this is also a

sufficient condition.

Daubechies’ construction in [4] is based on the Fourier transform of the limiting
process in (7.15) and its goal is to ensure convergence and to increase the regularity
of its limit ¢(z), which is the solution to the dilation equation (7.4); observe that
in the orthonormal wavelet case, the dilation equation for w{z) (6.5) is the same as
(7.4). For each r, this construction results in a unique set of 2r coefficients {aj )3t
for which the limiting process converges to ¢ with increasing regularity in ». This
set of 2r coefficients solves the system of 2r algebraic equations which is composed
of the (r — 1) equations of (7.20c) for 1 < m < r ~ 1, the 2 equations of (7.21a)
and the (r — 1) equations of (7.21¢); the condition ©aj = 1 is derivable from this
system by using the orthogonality condition in (%0{23)2 + (%Cﬂzg_}_l)z =3. Forr=1
we get from this system ag = oy = % which corresponds to the Haar basis; note

that this is identical to the cell-average algorithm 5.2.1 with r = 1. For r = 2 we

get from this system
(7.21d) oo = (1 Fv3)/8, a1 = (3F v/3)/8, ay = (3£ V/3)/8, az = (1 £/3)/8

which is identical to Daubechies’ result. Strang [15] seems to conjecture that
Daubechies’ construction is equivalent to solving this system of 2r algebraic equa-

tions.

We observe that Daubechies’ approach couples the discretization with the recon-
struction by (7.20a) and thus increasing r implies better reconstruction but for a

different discretization which depends on r.

We remark that it follows from (7.20d) and Corollary 7.1 that

(7.22a) F=2 ) dE+) el
k=1 1 i

where ¥ are obtained by

(7.22) w0 =¥ (5 -1),

from a “mother wavelet function” (z) which is defined by

(7.22c) P(z) =2 z(~—1)f+1ag_1(p(2::: + £).
£
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In Figures 5-6 we present the results of the limiting process (7.15) for Daubechies’
wavelets for r = 3 and 5, respectively. Part (a) in each figure shows (g® while
part (b) shows 13°°. The coefficients {«}} in these numerical experiments are the
Daubechies’ coefficients [4] divided by v/Z (to account for the different normaliza-
tion).

Remark 7.1. Observe that the roles of discretization and reconstruction in the
wavelet formulation are interchangeable in the following sense: If ({ae}, {v¢}) is a

solution to (7.12), and in addition

S o= Y wern,
£ £

then ({6‘3}’ {:ﬂf}) 1
Qg = 5 e, Ye = 20

is also a solution to (7.12} corresponding to

@ef)y =5, &), ot =6 (5 -4).

(RefY@) = DI oha), @i =0 (7 —7),
k - J i (hk )
where w(z) and @(z) satisfy

B(z) = yew(2z — 1), f &(x)dz = 1,

£

#(@) =23 ar p(2e - o), / F(2)o()ds = 1.

8. Summary and concluding remarks

In this paper we have presented a general framework which enables us to embed
most numerical problems in a multiresolution setting. This framework consists of a
sequence of discrete approximations {(Dy, Ri)} with increasing resolution, where
{D+} is nested, i.e.

(8.14a) DRy = 1,
(8.1b) Dif = 0= Dy f =0.
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This framework allows for discretization in unstructured grids as well as for nonlo-
cal discretization; it also allows for adaptive (data-dependent) reconstruction pro-

cedures.

Using {(Dx, Ri)} we definc the decimation matrix DF™' and the prediction
matrix PF_, by

(8.2a) Df™! = Dp1 R,
(8.2b) PE L =DyRy-1.

Using these matrices we have shown that f©, the finest-level discrete values, can
be represented by u(fL) which consists of the scale coeflicients {dk}f;:l, and the
coarsest-level discrete values f°. In (3.13) we have presented the multiresolution
transform p(fY) = M f¥, and in (3.14) its inverse.

The fundamental property in this framework is
(8.3a) DIF'PE | = I = rank(D}™!) = rank(PF_,) = Jr_1.
This property implies that the prediction error e* satisfies
(8.3b) Di~tek =0,
and thus can be represented in terms of the Ay = Jy — Jp—; scale coeflicients dk.
There are many ways to express the transformations (6.23) between these two sets of
variables: in this paper we used a generalized version of the wavelet technique (3.6)-

(3.8), which leads to an orthogonal decomposition in the diadic constant coefficient

case.

The multiresolution representation (3.11) enables us to obtain data compression

by replacing u(f%) with a truncated j(f%)

(8.42) W =t w(y =] o |,
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where

(8.4b) ds =

] {0 |d§| < ex
J -

L dif‘ otherwise

The crucial numerical issue is the stability of the data-compression procedure. We

would like to formulate conditions on Dg, Ry and g so that
(8.52) SO FE =M (),
where C' is independent of L. Let £* denote

(8.5b) & = SGR) (- 4,

then we get from (4.2) that
B L
(8.5¢) Fr-fl=>"akem
m=1
this shows that

L
(8.5d) |AZE™| < Cem, Y em <&,

m=1

is a sufficient condition for (8.5a); in the diadic constant coefficient case
(8.5¢) £, = ¢ - 2m (LA

seems to be a natural choice (see [11} and {12]).

By Lax’s equivalence theorem, convergence is equivalent to stability 4 consis-
y q ) g

tency. Therefore convergence of the limiting process
(8.62) RLARST = ¢,

also implies stability of the data-compression procedure (see [12]).
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If this process is convergent in a strong sense, then ¢ satisfies the relation (4.11)
(8.6b) Pt = (P60 e™)

in the wavelet case this relation implies the dilation equation (7.4). Relation (8.6b)

also implies that

(8.7a) Ref* = ot

1

is hierarchial, and thus

(8.7b) Ref* = R fF77 = de%k
where

(8.7¢) PF = (ST GR )R, o),
(8.7d) df = GoH(F* — PE 7).
Denoting

(8.82) o* = span{pt}, U =span{y}f}

we get from (8.7) that

(8.8b) ' oF = ¥F g @+,
which implies

(8.8¢) t=vlg. .  gulgad’

in the wavelet case this direct sum is an orthogonal decomposition.

The basic relation which implies additional structure is (2.7)

(8.9a) Dn(RiDr) = D for m <k,
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From this relation we get that

(8.9b) Dyt = 6t
Dm(']%kfk - ﬁk_.lfk_i) =0 for m<k-—1;

the latter implies

(8.9¢) | Dbk =0 Vi, m <k—1.
When Dy, is given by (6.3)

(8.10a) (Drf)i = Wk, )

then (8.9b)-(8.9¢) become

(8.10b) (wf, of) = 65

(8.10¢) (W, Py =0 for m <k—1.
Denoting

(8.11a) QF = span{wf}

the above relations can be expressed by:

(8.11b) QF and ®* are bi-orthonormal,
(8.11c) ™ 1L QF form <k —1.

For Daubechies’ orthonormal wavelets we also have that ®* = Q¥ is an orthonormal

system, in which case we get that

{9} =

is an orthonormal basis for R f% — Rof° (see [11]).

Our opinion is that these orthogonality relations should be regarded as a conse-

quence rather than essence.
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Appendix A.

Conditions (7.14b) can be written as

(A1) D ym Y Plamip =) vm > a(p—m)
m P m P
t (e
= Z ( ) (—1)* [vamk] [Z appg_k] ,1<e<r—1,
k=0 k L3 P
where . = even or m = odd. Let us denote

(4.2a) C';-’dd = Z’ﬁm-;—l(zm + 1)j= Cfven = Z’YZm(zm)j

(A.2b) Aj =) amm,

and observe that the consistency relations (7.12b)-(7.12¢) imply
(A.2¢) Ag =CM =g = 1.

Using this notation we can rewrite (A.1) as

(A.3)
£ Y ¢ ¢
Z (k) (“"1)kogvenA£—k =0, Z (k) (—1)kcgddﬂe-k =0,1<£f<r—1.
k=0 k=0

Subtracting the second equation from the first we get that

-1 f
(Ada)  (-1FHCP - 03 Ao =Y (k) (~H(CF™ - C2*) Aems.

k=0

Since Ag =1, (A.3b) shows that
(A.4b) Ceem =M for 0 <k <4 — 1= O™ = 39,

since by (A.2c) it is true for £ = 1, we get by induction that it is true for 1 < £ < r—1.
This result can be expressed by

(A.4c) Y (—1)"™mbym =0 for 1<£<r—1,
m

69




Denoting

(A.Sa) 20_1 — Z mJ,},m — C;dd + C;ven
we get that
(A.5b) C — Codd Ceven

and thus we get the additional condition

t (¢
(A.5¢) Z (k) (—1)kOkAg_k =0 for 1 <f<—r—1.

k=0

Each of the conditions (A.4c) and (A.5c) by itself is only a necessary condition, but
together they do constitute a sufficient condition for (A.1) to be true,

In the case of Daubechies’ orthonormal wavelets vp = 2y, and then (A.4c) is
(7.21c). However, for the associated prediction to be r-th order accurate we also
need to have (A.5¢c), i.e.

£
(A.6) 2( )( P Arde 1 =0, 1<£<r 1.

k=0

For £ = odd (A.6) is an identity, and therefore it is not an extra condition. For
£ =2 we get
AgAdy — 2(./—11)2 + A Ay =0= Ay = (A1)2;

we verified that this condition is satisfied by the set {a}}3r;" in [4] for r = 3,4,5.
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