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FAR FIELD BEHAVIOR OF SLIGHTLY COMPRESSIBLE FLOWS
LISETTE G. DE PILLIS *

Abstract. We study the two dimensional slightly compressible Navier-Stokes equations, a standard
mathematical model of low Mach number fluid flow. We analyze the far-field behavior of the velocity
and pressure solutions of the equations.

The mathematical analysis is simplified by making use of a technique which allows us to expand
asymptotically the slightly compressible solutions into a series of solutions of equations that model
incompressible flow. This technique is valid because of the two time scales involved in the slightly
compressible solutions, and because of the applicability of the bounded derivative principle.

The analysis of the behavior of the solutions in the far-field reveals that at a large enough distance
from the source of the flow, the nature of the slightly compressible flow changes to that of flow which
can be modeled by the wave equation. This leads to improved applications in computation.

Keywords: Navier-Stokes Equation, Compressible Flow, Incompressible Flow.

1. Introduction. In this work, we study the two dimensional slightly compressible
Navier-Stokes equations, which are a standard mathematical model of low Mach number
fluid flow. The Navier-Stokes equations are central to the modeling of ocean currents,
weather patterns, jet engine noise, waves generated by a body moving under water, and
many other physical phenomena.

Of interest to us in these phenomena are the different time scales which are involved.
In nature, for example, when a weather system passes through an area, there are three
time scales present. In a storm system, the actual movement of the entire system over
a region of the earth can be measured in days (a slow time scale), whereas the gravity
and sound waves generated by the storm must be measured in minutes and seconds,
respectively (fast time scales).

A similar kind of problem involving different time scales is present in the slightly
compressible Navier-Stokes equations. These equations are important in the modeling
of sound propagation. In this case, there are two time scales involved. The convection
scale and sound speed are on the slow and fast time scales, respectively. Whether the
fast time scale waves are excited depends on how the problem is initialized. This will
be discussed later in this paper.

Now consider the Cauchy problem, periodic in space, for the simplified, slightly
compressible Navier-Stokes equations,

(1.1) w4+ (u-ViudVp = vAu4 F
(1.2) e{p+(u-Vip+V-u = g,

with initial data

(1.3) u(z,y;0) = ue(z,¥);  pl2,y;0) = polz, y).

* Dept. of Mathematics, UCLA, Los Angeles, CA 90024, USA. This work was supported in part by
Navy grant ONR-N00014-90-J-1382 and by NSF grant NSF-DMS90-61311.
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Here, v > 0, € > 0, u(z,y;t) = (u(=z,y;t),v(z,y;1)) is the velocity and p(z,y;t) is the
pressure. Then V-u = u, +v, and V x u = v, — u, represent the dilatation and the
vorticity, respectively. The inhomogeneous terms F(z,y;t) and g(z,y;t) are assumed
to be C~-smooth. In addition, we require that the forcing function F (z,y;t) decay
exponentially fast in space, to ensure that the presence of forcing have no impact on
the far-field decay behavior of the velocity or the pressure.

The solution (u, p) can be separated into a slow part and a fast part [11]. The slow
part can be expanded in an asymptotic series so that the first term in the expansion
is the solution of the incompressible Navier-Stokes equations. The second term in the
expansion can be considered a linearized incompressible correction. This expansion
can continue indefinitely. The remainder term of the asymptotic expansion will have
essentially no vorticity, and will contain the fast part of the solution [11]. We note that
with proper initialization, the remainder term will behave in the same way as the first
terms in the expansion of the slow part. This is due in great part to the applicability
of the bounded derivative principle [8, 9], which can be implemented to ensure that,
within a finite time interval, the waves on the fast time scale are not excited. Details
will be discussed.

One particular application of the slightly compressible Navier-Stokes equations is to
model the pressure and velocity fields generated by the movement of a body submerged
in a fluid (as in the case of a submarine in the ocean). Here, there will be at least two
time scales involved. The movement of the fluid around the body will generate both
convection and acoustic waves on the convection scale (slow part), and fast time scale
waves on the sound speed scale. If the problem is not properly initialized, the fast time
scale waves will be excited, but will quickly leave the domain of observation. With
proper initialization, (i.e., when one ensures that at least two time derivatives of the
initial values are bounded), the fast time scale waves will not be excited. (There is also
the possibility of a third time scale being introduced through the vibration of the body.
The frequency of this time scale depends on the properties of the body.)

There are two possible approaches to solving the slightly compressible Navier-Stokes
equations numerically. Assuming proper initialization, the first approach is to calculate
the solution of the incompressible Navier-Stokes equations, as well as the solution of the
linearized incompressible correction equation (i.e., calculate the first two terms in the
asymptotic expansion of the slow part of the solution). The sum of these two solutions
give a good approximation to the solution of the slightly compressible Navier-Stokes
equations. The second approach, which is the one we take when carrying out our
numerical experiments, is simply to do a direct calculation of the slightly compressible
Navier-Stokes equations. (It still is important in this case to ensure that the first couple
of time derivatives of the initial data are bounded, so as not to excite the fast time scale
waves.) It is reasonable to carry out a straightforward calculation of the equations, as
long as the difference in magnitude of the time scales is not too large: in our case, the
time scales differ only by a factor of about 10.

An issue that we consider in this work is the fact that the velocity field decays in
space much more rapidly than does the pressure field. This means that at a certain
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distance from the body (or patch of vorticity), the velocity field will no longer be
significant in magnitude, whereas the pressure field still will be relatively large. At that
distance, the solution of the pressure equation actually satisfies the wave equation. This
will be shown.

Qur goal in this work is to discover how quickly the velocity field and pressure
field modeled by the slightly compressible Navier-Stokes equations decay in space. In
our analysis of decay rates, we take advantage of the fact that we can asymptotically
expand out the slow part of the solution, The decay rate analysis is carried out on the
first terms of the expansion of the slow part. (Again, assuming proper initialization,
the fast part of the solution will not be excited within a finite time interval, so it is
sufficient to focus our analysis on the slow part of the solution.) Once we know the
decay rates in space of the solution components, it is straightforward to determine how
far from the body we must be before we can replace the Navier-Stokes equations with
the wave equation for the pressure.

Our theory and calculations confirm that the velocity field decays rapidly to zero
at a distance from the body. In future works, we plan to carry out computationally
the actual coupling of the wave equation with the slightly compressible Navier-Stokes
equations.

The outline of the paper is as follows: In section 2, we study the decay behavior,
in space, of the solutions of incompressible Euler flow, induced by a patch of vorticity.
Because of the absence of diffusion in the Euler equations, the support of the vorticity
remains compact in finite time.

In section 3, we introduce a rigid body into the flow. The decay rates are affected
somewhat by the presence of the boundary of the body in the flow.

In section 4, diffusion and forcing are added in to the Euler equations to give us
the incompressible Navier-Stokes equations. The presence of diffusion implies that the
support of the vorticity will no longer remain compact in finite time. Although we no
longer have compact support for the vorticity, we show in this section that vorticity
does decay exponentially fast in space.

In section 5, we analyze the decay rates for the velocity and pressure fields modeled
by the incompressible Navier-Stokes equations. We find that the decay behavior of
the solutions of the incompressible Navier-Stokes equations is identical to that of the
solutions of the incompressible Euler equations.

In section 6, we calculate the decay behavior of the space derivatives of the vorticity
in the incompressible Navier-Stokes equations. We are able to determine that the
vorticity derivatives also decay exponentially fast in space.

In section 7, we move to analyzing the decay behavior of the solutions of the slightly
compressible Navier-Stokes equations. As mentioned earlier, we take advantage of the
fact that we can separate the slightly compressible solution into a fast part and a slow
part. Since the fast part can be suppressed by supplying appropriate initial data, we
carry out our analysis on the first two terms of the expansion of the slow part of the
solution. Upon determining the decay rates for the slightly compressible solution, we
make use of this knowledge to show that at a certain distance from the body, the
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slightly compressible Navier-Stokes equations can be replaced by the wave equation for
the pressure, '

In section 8, we carry out numerical experiments, which confirm our analysis of the
rapid decay in space of the velocity fields. Also made evident through the experiments
is the fact that the pressure field does not decay nearly as rapidly as the velocity field.

In section 9, we give a brief summary of the work carried out in this paper.

2. Incompressible Euler Flow: Induced by Vortex Patch. To understand
the asymptotic behavior of the pressure p and velocity u = (u,v) outside a patch
of vorticity w with compact support, we start by studying the incompressible Euler
equations. We assume that the region of support of w stays bounded for some finite
time, 0 < ¢ < T. Later, we will actually calculate T in terms of distance from the
origin. We also assume that at ¢ = 0, u(z,y;¢ = 0) = u(z,y), has compact support.
We are interested only in velocity u(z,y;t) which stays bounded on all of R2. Also, we
will require that
(21) fAmu=0,
where r = /zZ+y?. The first step in our analysis will be carried out on the Euler
equations in the following form:

(2.2) Uy + Uty + vu, +p, =0
v+ uv, +ov, +p, =0

with

(2.3) div(u) = u, + v, = 0.

2.1. Velocity Behavior: All Time. We present a theorem which will be of use
to us in the discussion to follow. A proof can be found in [6, p.151]. We say that u € Cm
if u has continuous derivatives up to order m.

Tueorem 1 Let # = ((z —£)? + (y — 1)2)1/2. Let D be a region in R2 with boundary
0D = B. Suppose we are given a function ¢(x,y) which belongs to C° in D UB, and
to C' in D. Then the function u(z,y) defined by

1 .
u(z,y) = 5= [ 4(6,n)log(7)dedn
belongs to C! in DU B, and C? in D. Also, it satisfies

Au = ¢(z,y)

in D. O
Now the vorticity w(z,y;t) is defined by the relation

(2.4) w=v,—u
4
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This implies
(25) Wy = Uy — U

Wy, = Vg, — U

zy
vy*

By equation (2.3), we have

{2.6) Ugy + v, =0
Ugy + Uy = 0.

Adding equations (2.6) to equations (2.5) yields
(2.7) w, = Av

—w, = Au.

By Treorem 1, the solutions to these Poisson equations are given by
-1 }
(2.8) U= / @ log(#)dédn
1
= — Fldédn.
= [ [ exlog(idedn

Integration by parts yields

29)  u(eyt)= 2:‘ (/ (&, m;t)log() + [ [ w(e,n,t)(y ”)ded)

v(a,y;t) = (/w(e,n, og() + [ [ wie,mit) f)ded)

Since w has compact support, we may choose the region D so large that w = 0 on B.
Thus we have

(2.10) z,y;1) 2 f] (€, mt (y- ") e
o(ev31) = o= [[ wlemit )dfd
Since w = 0 outside region D, we have
(2.11) /fw R ")dgd —0
L] om0t

Adding equations (2.11) to equation (2.10) gives us an expression for u = (u,v) over
the entire R? plane:

(2.12) u(z,y;t) = ;—:sz w(f,n;t)@-;}q—)dédn
o@vit)= o= [ wle.mnESE
5
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We show the uniqueness of this solution as follows: We are given (u,v) over all of
§2. Now, suppose there were a function g = (g,,9,), such that Ag = 0 on ®2. Then it
is true that

(2.13) ue,it)= 5= [ (f,mt)
oewt) =5 [ [ wlemt)C é)dde“nga

would also satisfy equation (2.7). But we also require that the boundary conditions
be satisfied. Since u — 0 as 7 — oo, by equation (2.1), we must also have g — 0 as
r — oo. By the maximum principle (c.f., [6]), since g is harmonic and is equal to 0 on
its boundaries, we have g = 0 over all of 2. Thus, the solutions (2.12) are the unique
solutions satisfying equations (2.7), with zero boundary conditions.

Recall that r = +/z% + y?. We see from (2.12) that for large r,

u<ge/r.

(y—n)

dédn + g4

This is consistent with results from potential theory, given a point source [7]. Intuitively
it should follow that u, < ¢,/r? and u, < ¢,/r2, We confirm this by first noting that we
are interested in evaluating u, and u, far from the origin. Since 7 # 0 in the far-field,
the expression (y — 7)/#? is continuously differentiable in that region. Therefore, we
can differentiate directly under the integral sign, and obtain for large r,

(2.14) u, = f /.5 0 (”r Yo i, mtydedn
- =/ W(—z)(y 2= e, syt

and

(2.15) u, = ifw a%&?;—q)w(f,n;t)dé“dn
= jfw ( 2l r:’)z -,)W(E,n,t)dﬁdn

A similar argument, can be given for v. Thus our intuition is confirmed, and we see that
U, S 02/ r2

and
u, < ¢yfr?

for r large.

We go one step further, and claim that since u = ¢, /r for large r, it follows that
u < c3/(r + 1) over all of £2. This is true, because we know that there is some M > 1
such that for r 2 M, u < ¢;/r. We also know that u is bounded over all of R2. So, for
r <M, u < ¢;. Therefore, if we let ¢; = (M + 1)¢,, we can say that everywhere on the
plane,

(2.16) u < eg/(r +1).
6



2.2. Pressure Behavior. In this section, we analyze the far-field behavior of the
pressure p. Taking the divergence of equations (2.2), we have

(2.17)  uytv,+ul4 v;‘: + Uty + vuy, + 2uyv, + vy, + uv,, + Ap = 0.

Recall the incompressibility condition,

(2.18) div(u) = u, + v, = 0.
Several terms drop out, and equation (2.17) becomes
(2.19) u2 + 02+ 2uv, + Ap =0,
For the sake of notation, we define the following symbols:
0 0
Dy = Dy, = —;
= 9z 27 oy
Uy = u, Uy = V.
We re-write equation (2.19) as
2

1,7=1

Note that with p, as opposed to with u, the right hand side of the Poisson equation
does not have compact support. This means that we will have to examine the solution
to (2.20} over all of %2, and will now need to deal specifically with the presence of a
singularity, (When dealing with u, the singularity always lay outside the support of w.
Since our integral calculations were limited to the region of vortex support, they were
unaffected by the presence of the singularity.)

Let D be a disk with boundary B and radius R centered at the origin. By Throrem
1 we have

(2.21) p = lim -—(// 2 D;D;(u;u;)log(7)dédn)

Resc0 21 =1

= f/m S D, :D;(uu;) log(7)dedn).

1,5=1

We will handle the singularity separately. Let G be a disk of radius R, centered
at the singularity (2,y). We denote the distance from the origin to the singularity by
R. As before, the distance from the singularity to any other point in 2 is denoted by
7, and the distance from the origin to another point in 2 is denoted by r. Then

(2.22) p = ( / j& - Z D;D;(u;u;)log(F)dédy

t ././ 2_1 Dby (u uJ)Iog(r)dédn)

= :.2%(11 + I,).




Let us examine the region G about the singularity first. We integrate by parts once,
then convert to polar coordinates to determine the bounding behavior of I,.

(2.23) I, = f f ZDD u;) log(7)dédy
< [ }:ID (uiu;)log(®) + [ [ zlw(uu,)t dédy
1= t)=
27FRG 10g RG'
< Fhg f‘/;glfl)(uuj)[ dédn
< 27TRGIOg(RG)

= = —déd:
(R— Rg)® +(R—RG)3f/GF Edn
27 Rglog(Rg) c o fRg
- B = 1d7dé
(R - Rg)® * (R~ Rg)? jt; ./o :
< 2%1?(; log(Rg) ~27{'CRG
~ (R-Rg)® (R — Rg)?
27TRG

= m(log(}?a) +¢c).

Next we deal with I). Since (¢,7) will range over R2 ~ G, we have 7 # 0 throughout
the domain of integration. At this point, we introduce another disk in the plane, D, of
radius Rp. Let D also be centered at the singularity, but let Ry > 2R, so that disk G
and the origin are encompassed by D. Then

(224) I, = / fm 2 ZDD (15 log(7)dedy

s J=1

2 1
QWRG log( Re)
<
= (R-Rg» fj;p‘_g 2;1 | Di(u ug)lz d‘fd??
27 R log(RG 1
. 2Rglog(Ro)

(R - Rg)? +(R R)2 /-/azﬂ-c;z'(uuf),"zd‘fd”

2rRglog(Rg)
- (ﬁG_ I‘?G)SG -+ - R ) ././sthD Z ,(U|UJ)|_2d6dr]

j-/D G. Z |(i uJ)!~2d€d??

t,5=1
21 R log(Rg)

[
= = +Jy+ Ja,
(R~ Rg)® +(R—RG)2 1t
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where J, is the integral taken over ®2 — D and J, is the integral taken over the annulus
D —G. Let us first examine J;, the region outside of the disk D. Since the distances R,
7, and r represent the positive lengths of the three sides of the triangle connecting the
origin, the singularity, and some point outside the disk D, it is clear that the following
inequalities hold:

(2.25)

r+R > §

=r > i-R

=}1 < 1
r F-R

We can then use 1/(7 — R) to dominate the behavior of u < ¢/r in Jy. Also, since we
are only interested in the region lying outside D, we see that

(2.26) #F > R
57 > F-R>0
=}’1 < 1
F F-R

This means we can also use 1/(# — R) to dominate the behavior of 1 /7 in J;. We can
bound J; as follows:

2
(2.27) ho= [f S w)igdedy

1=l r

o 2

2r 1 .
= > I(wiu;)|zdrd

Rp =1

© 11
< ZrclL 77
p TeF

o0 1
< 2 ———dF
< wclfRD GoR)p F
Cz
(Rp— R)*
Next, when dealing with J; over the disk D, we introduce a larger disk D' centered
at the origin, with radius Ry, large enough to encompass all of disk D. Recall that

u < ¢3/(1 +r) over the entire ®? plane, even over the support of the vorticity. We use
this fact when examining the bounding behavior of J,:

<

2 1
(2.28) J, = / fD _G";l (i) e
1 2
< R_g/./D-G -21 Wusu;)|dédn
L=
1 2
< 'Eg./jbi _Zl |(wu;)|dédn
L=

9



2

1 2r  pRpy .
- = /0 /0 7N |(upu,)|Fdrde
G

i,5=1
2r¢cg (RBpr T

= b Gr

< .@/RD' -—(1+f) dr
R:L Jo  (147)2

_ 27763./RD’ 1 &
Ri Jo (147)
2re

< R log(Fp).

Next, we set R = r, and choose Rg, Rp, and Rp to be of the same order as r. For
example, we can choose Rg = r/2, Rp = 2r and Rp = 3r. Then, for some constant ¢
large enough, we find

c
(2.29) J < =
J, < clogz(r)
T
which gives
elog(r)
I £ =
Similarly, we find that
clog(r
1, < S8
-
Putting all the information together gives
c
(2.30) P = 5-(L+h)
clog(r)
2

Since the right hand side of (2.30) goes to zero as r — oo, we may require that
lim p=0.

Thus, by the same argument given for the velocity u, we know that the solution given
in equation (2.21) is the only solution for p satisfying the homogeneous boundary con-
ditions at infinity.

If we wish to find a bound for the decay behavior of the gradient of the pressure,
we replace equation (2.20) with the following equations:

2
(2.31) Ap, =¢; Y, DiD;D,(uu;)
i,j=1
2
(2.32) Ap, = ¢ Y D;D;D,(uu;).
f,5=1
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It is then straightforward to find estimates on p_ and p, in the same way we found
estimates on p itself. Working through the estimates, one finds
(2.23) .. . clog(r)
(2.33) v 3
r

2.3. Velocity Behavior: Finite Time. In this section, we find the far-field be-
havior of u = (u,v) along its characteristic lines. We follow a particle along a charac-
teristic from a point at distance r, from the origin (at time ¢ = 0), to a point no closer
than ry/2 from the origin. We find T in terms of r, such that for 0 < t < T we know the

particle is no closer than ry/2 to {0,0). To do this, we first examine the total derivative
of u, assuming (z,y;t) space, so that & and y are t-dependent:

IA

du dz dy,
(2.34) 7 = st (g us + (5 )y,

dv dx dy

P78 + (E)”z + (E)Uy

Now assume that p is a given function representing pressure. We know by equa-
tion (2.30) that the behavior of p is dominated by (%ﬂ) In addition, from equa-
tion (2.33) it follows that at a point which is large distance ro away from the origin,
and for some appropriate constant ¢, the behavior of p, and p, is given asymptotically
by (r5red).

Substituting the asymptotic behavior of the gradient of the pressure in the far-field
into equation {2.2) gives:

1
(2.35) up + uu, + vu, = C_Oi(_tg)
0
]
v+ uy, + vy, = c oga(rg)
To
From equations _(2.35) and (2.34) we find that
du  clog(ry)
dv _ clog(r,)
dt r3
on the characteristic line which satisfies
dz
(2.37) - =
dy
it ="
Let us impose some initial conditions, namely,
(2.38) u(®, y;t = 0) = uo(z,y),

v(z,y;t = 0) = vo(z,y).
11



These are equivalent to
(2.39) u(z,y;t = 0) = uy(z,y).
We also have

(2.40) z(t = 0) = z,,
y(t = 0) = Yo.
Then integrating equations {2.36) and (2.37) with respect to time yields

du
= ——dt
u dtd

_ ./‘c}log(ro)dIE

o
|
c 0g3(r0)t 4

o

0

on the line parameterized by

1
(2.41) 2(t) = < °f§r°)t2 + ugt + 24
0
log(r
y(t) = -C%})tz + vl + ¥,.
0

In the far-field, then, we have the behavior of u dominated by

1
usg.g.a(.ro_)t_l.uo’
T

0

for an appropriate constant c.

Now we want to find a time T in terms of r, such that for 0 < ¢ < T, the particle is
no closer than r4/2 from the origin. If we set £ = /2 and y = /2 in equation (2.41),
and solve for ¢, the requirement will be satisfied. First, we can see that for large t,
the behavior of 2 and y in equation (2.41) is dominated by the quadratic term. (In
addition, recall that we made the assumption that u, has compact support, so for large
7o, the ugt term in (2.41) vanishes.) Thus, we assume a large ¢, and let

(2.42) 2(t) = y(t) = f—i°—f§-@t2.

Setting & = y = ry/2, and solving for ¢, gives

r4
2= —.0
2clog(rg)
cr?
< O
= ot~ ©
12
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Next, we use the same method of analysis for the vozrticity w in order to see that
the support of w stays bounded for 0 < ¢t < T = (103(?;))1 7. Taking the curl of the
incompressible Euler equations (2.2), gives an equation for the vorticity:

(243) l_,_!‘. + ul_.'!x g{_,_yy = Q.

Taking the total derivative of w in (z,y, z) space gives
dw dx dy

(2.44) - =wt T + T
From equations (2.43) and (2.44) we see that
dw
i 0
along
dx dy
(245) E =1u, a = .

Since the vorticity follows the same characteristic lines as the velocity, we then know
that for some starting point ry from the origin, at which vorticity w = 0, the vorticity
will ct.)ntinue. to be zero valu?d, at least for 0 <t 5 T= T{cj))wi' o
Since this analysis is valid for any starting point r, far away from the origin, it is
also valid for any r far from the origin. Thus, we have shown that for finite time t,
0£t<T = ogf: ; 777> the support of w stays bounded, and the behavior of velocity u

in the far-ﬁelé] is dominated by

u(z,y;t) < clog(r)/r?,
for an appropriate constant c. We note that it can also be shown in the far-field that,
(2.46) u;, u, <clog(r)/r, and wu,, u,,...< clog(r)/r®,

and so forth, by carrying out the same analysis on the respective derivatives of our
original equations.

3. Incompressible Euler Flow: Induced by a Rigid Body. Up to this point,
we have been looking at a flow field containing a simple vorticity patch with compact
support. In this section we wish to examine the behavior of the flow field induced by
a body submerged in a non-viscous fluid. (We are still working in 2 dimensions.} We
assume a body which can be conformally mapped to a disk, and thus carry out our
analysis on a circular body.

Our analysis will follow along lines of reasoning similar to those in the previous
section, except that we now must take into account the values of pressure and velocity
on the boundary 0B of the body B. The analysis we carry out will be valid whether or
not the surface of the body is vibrating. If it is not vibrating, then we consider velocity
to be zero on the boundary (or surface) of the body. If it is vibrating, then we simply
consider the velocity to be a function of position and time on the boundary of the body.

Inverse distance decay behavior for the velocity components in all time is still valid,
so we move directly to the analysis of the behavior of the pressure field.
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3.1. Pressure Behavior. We assume that the function representing velocity is
analytic, and therefore can be expanded in a Taylor series. Assume the body B is
centered at the origin, and is of radius a. We carry out our analysis in polar coordinates
(r,8). Over R? containing B, we want to solve:

(3.1) Ap= ¢ E?'J.___l D.D;(uu;}) on R2- B.
p(r,0) = f(6) on 9B.

The first thing we do is extend the function u into the region of the body. Since we
assume u is reasonably smooth, (that is, for some large m, u € C™) this extension can
be carried out by means of a simple m~term Taylor series expansion. Let ug be the
extension of u. We need not concern ourselves with the behavior of ug as it nears the
origin. This is because we can define a cutoff function x(r) which drops rapidly to zero
as it approaches the origin, and multiply it by ug to create a new function u*, which
we can work with in place of ug. We define x as follows:

el=e/7} forr<a

62) x={

forr>a
Thus, u* will become
«_ J x(rjug(r,8) forr<a
(3.3) ur = { u(r0) for v s o

In order to solve equation (3.1} with boundary conditions, we first solve the following
equation, without boundary conditions imposed:

2
(3.4) Ap=c, ) D.D;(u*;u*;) on R2
i,5=1

Let p.(r,0) be the solution of equation (3.4). Potential theory [7] tells us that u* is
bounded by ¢/r, for some constant ¢, as r — oo. It is also clear that for r < a, we
can bound u* by ¢/(1 + r), by the definition of u*. Since u* is dominated by the
same behavior that dominates u in equation (2.16), over the whole plane, we know that
the bound we found for p in equation (2.30) will also be valid for the solution p. of
equation (3.4). Thus we have

(3.5) plr0) < =250,

It is clear that p, satisfies the differential equation in (3.1), but that the boundary
conditions are not yet satisfied.

We next concern ourselves with finding a harmonic solution p, of the Laplace
equation satisfying special boundary conditions. Solve

(3.6) Ap = 0 on 2,

p(?‘,a) = f(ﬂ) - PC(G,G) on 4B.
14



In polar coordinates, the differential equation (3.6) reads,

1 1
(37) Dry + ;pr + r_gpﬂf? = 0.

Clearly, the solution p,(r, #) of equation (3.7) must be 2r-pericdic in 8. We also require
r

that p, stay finite for all r > a.
Assume that

(3.8) p(r,6) = R(r)0(9),

4]

and use the technique of separation of variables to solve (3.7). For completeness, we
carry out the calculations here. Differentiating p in equation (3.8), and substituting the
results back into equation (3.7) gives rise to two ordinary differential equations: _

(3.9) r?R' 4 rR —cR = 0
(3.10) 0"+c® = 0

for some constant ¢. It can be shown that ¢ must be real. See, for example, |2, p.507).
We therefore need only consider three separate cases: ¢ < 0, ¢ = 0, and ¢ > 0.

Let us first look at the case where ¢ < 0. For some A > 0, we let ¢ = ~A2, Then
equation (3.10) becomes

(3.11) 0" - 220 =0,
which has the general solution
(3.12) O = c,e! + ¢y,

Recall, however, that we require that p,(r,8) be 2r-periodic in 8. Thus, © must be
2n-periodic. This will only happen if ¢; = ¢, = 0. So the case ¢ < 0 only gives the
trivial solution

p{r,0)=0.
Next we examine the case ¢ = 0. Equation (3.10) becomes
" = 0,
which has the general solution
O =¢, + c,b.

The requirement that © be 2r-periodic forces ¢, = 0. The solution becomes
(3.13) 0(0) = ¢.
When ¢ = 0, equation (3.9) becomes

(3.14) r2RY 4 rR =0,
15



This is an Euler type equation, and has the general solution
R(T) = kl + k2 log(:").

Recall that we require p = RO to be finite for r > a, which means we require R(r) < oo
for r > a. Therefore, we must discard the log(r) term, and force k, = 0. This gives

We now can say that for ¢ = 0,
(3.15) p(r,0) = 1.
In the case where ¢ > 0, we let ¢ = A2, Then equation (3.9) becomes
r*R'4+rR' -~ AR =0.
This is again an Euler type equation, and has a general solution of the form
R(r) = kyr? + kyr—?
The condition that R(r) be finite for all r > a forces k; = 0, since A > 0. Thus,
R(r) = kyr—2,
Now for ¢ = A? > 0, equation (3.10) becomes
O+ )20 =0.
The general solution is of the form
©(0) = ¢, sin(Af) + ¢, cos(A8).

Since © must be 27-periodic, A must be a positive integer n. We then have fundamental
solutions in the case ¢ = A2 > 0,

Pn = r"sin(nb)
g, = r~"cos(nb).

Taking a linear combination of all fundamental solutions gives

(3.16) pr(r,0) = % + i r="(c, cos(nf) + k, sin(nd)).

n=1

On the boundary of B, we see from equations (3.6) and (3.16) that

prla,8) = % + i a~"(c, cos(nb) + k, sin(nﬂ))‘

2 n=1
f(a) - pc(as 9)
16



We assume that both f(0) and p.(r,8) are expressible in terms of a Fourier series, so
the term f(8) — p.(a,0) is also expressible in terms of a Fourier series. Our solution p,
already takes the form of a Fourier series, so we simply choose the coefficients of the
series to make the boundary condition consistent. The coefficients ¢, and k, become

an pix
e = = [ (£(6) - p.(a, ) cos(nd)do
an 2r
ko= = [7(£(6) - p.(a, 8)) sin(n8)db.
Letting

(3.17) p(r,0) = p.(r,8) + p,(r, 6)

gives the complete solution p(r, @) of the boundary value problem (3.1). Looking at the
bounding behavior of p(r,#), we see from equations (3.5), (3.16), and (3.17), that

| 1 1 1
(3.18) p(r,0) < o, (1+;+ ox() +-T-5+--.).

Therefore, the gradient of p is bounded by

(3.19) Va(r,0) < (-1— ploel) 1, ) ,

r2 3 3

for some constant ¢, independent of r. This bound for the gradient of p can be found
formally by replacing the Laplace equation in (3.1) with the following two equations:

2
(3.20) Apy = ¢ Y, D;D;D;(uu;)
f,5=1
2
(3.21) Apy =0 Z D'DJDz('LL"UJ).
Hi=1

Carrying out arguments almost identical to those for estimating the decay behavior of
p, we find estimates for the decay behavior of p, and p,. These then lead to the final
bound for Vp in equation (3.19).

For large r, the behavior of Vp(r, 8) is dominated by the largest term in its domi-
nating series. So for large r we have

C
(3.22) Vp(r,6) < .

We will use this dominating behavior in the next section, where we will analyze the
far-field behavior of u, assuming the pressure p is given.

17



3.2. Velocity Behavior: Finite Time. As in section 2.3, we use characteristics
to determine the behavior of u within a finite time period. We follow precisely those
arguments outlined in section 2.3, substituting only the new behavior of the pressure p
in the presence of a body submerged in the fluid.

Equations (2.2) and (3.22) tell us that in the far-field,

c
(3.23) Uy + ulty + vu, = s
v+ uv, fuy, = ;(:;-

The analysis of characteristics shows that

du c
(3.24) =
dv _ ¢
dt ~ r?
on
dz
2 =
(3.25) o = U
dy _
dt =7

Integrating equations (3.24) and (3.25) with respect to time, and imposing the same
initial conditions as in equations (2.39) and (2.40), gives

t
(3.26) U= + U

v.-—-c’r‘—z-kv0

on

12
(3.27) z(t) = ¢ + ugt + zg

t2
y(t) = 0;3 + vt + Yo

To determine the the time interval in which the behavior of u remains unchanged
In nature, we restrict the particle to moving no closer than distance r /2 from the origin.
Once again, we assume the behaviors of z(t) and y(t) are dominated by their quadratic
terms. Setting

and solving for ¢ shows us that for

0<t<er¥?2=1,
18



‘the behavior of u in the far-field can be described by
u < efr?,

for some independent constant ¢. In addition, it can be shown (by taking the appropriate
derivatives of equation (3.23) and following the same line of arguments) that in the far-
field, the behavior of the space derivatives of the velocity can be given by

{3.28) u;, u, <efrd
(3.29) Uypy Ugy,... < cfrt
and so forth.

4. Incompressible Navier-Stokes Flow: Vorticity Behavior. Up to this point
we have considered the incompressible Euler equations (2.2). We now add a diffusion
term and a forcing term back into the equations, to obtain the incompressible Navier-
Stokes equations,

(4.1) u+(u-Viu+Vp = vAu+F, v>0
(4.2) Vou = 0.

Here, F(z,y;t) = (fi(z,y;t), fo(2,y; ). We require that the components f, and fo of
F, as well as all derivatives of the components, decay rapidly enough in space 50 as not
to interfere with the decay behavior of the velocity, pressure, or vorticity. We therefore
require that F decay exponentially fast in space. The exact decay rate bound will be
determined according to need.

With diffusion present, we can no longer assume that the vorticity w(z,y;t) has
compact support in finite time. We intend to show, however, that the vorticity will
decay, as a function of distance from the origin, at a rapid enough rate so as to contribute
only negligibly to our bounds on the far-field behavior of velocity and pressure. Once
this is shown, the same types of bounding estimates that were carried out on the
incompressible Euler equations will also be valid for the incompressible Navier-Stokes
equations.

Taking the curl of equation (4.1) gives us the following equation for the vorticity,

(4.3) wy + ww, + v, = vAw + f,

where we let f(z,y;t) = (f2), — (f1),- Thus, f itself decays exponentially in space.
Recall our basic assumptions:
¢ The velocity u = (u,v) is bounded, i.e., for some finite constants u, and u,,
U <u<uy.
o The vorticity w(z, y;t) has compact support and is bounded at time t = .
¢ The vorticity w(z,y;t) is bounded in terms of its initial data w(z,y;0). The
same holds for all space derivatives of w(z,y;1);
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The assumptions on the vorticity clearly imply that

lim w(z,y;t)=0.
(z/v)~e0
We next determine how quickly w decays to zero at infinity. There are four separate
cases to examine:
1. For some ¢ such that 6§ > 0, u < —§. This means on the (z,y) plane, the
flow is moving to the left.
2. For some 6 such that 4, > § > 0, u > §. This means on the (z,y) plane,
the flow is moving to the right.
3. For some 7 such that v > 0, v < —+. This means on the (z,y) plane, the
flow is moving downwards.
4. For some v such that v; > v > 0, v > 4. This means on the (z,y) plane,
the flow is moving upwards.
Case 1. Suppose u < —6 (6 > 0).
Claim I: We claim that w(z,y;{) decays exponentially in z as z — oo.
Proof of Claim 1. Assume that (u,v) is given. Let

(4.4) w(z,y;t) = e~%0(z, y; t),

for some & > 0 to be determined. We note that since w(z,y;0) is bounded and has
compact support, then &(z,y;0) must also be bounded and have compact support.
Plug equation (4.4) back into the vorticity equation (4.3), and we have

(4.5) &y — (Su+ vd)o + (u + 28v), + v, — vVAG - f = 0.
Here, f = efzf. So, we now stipulate the following:
|f (=, ;)| < e=>=, Vz >0,

for some « such that o > &. This ensures that f decays exponentially in space as well.

H & attains a maximum, the maximum must be attained at time ¢ = 0. This can
be shown as follows:

We know that there exists some rq such that for all r > ry, |f] < |(Su + v62)w|
(This is because we require f to decay exponentially fast to zero in space, whereas 2 is
a constant.) Therefore, we examine all points in space further away from the origin than
ro. Suppose the maximum in this region is attained at some point (xg, yo; ty). Without
loss of generality, we may assume that &(zg, yg;%,) > 0. Then at this maximum point,
we have

Gy =, =0,
A < 0.
We thus have
4.6 5, = (& §)G Aé f
(4.6 6= (ut )t AT+ ]
<0 if b=5/v | fiibutviz|
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(Note that because of the magnitude restrictions we put on f, the sign of f has no
impact on the sign of &,.) Therefore, given the fact that u < —§, if we choose

)
o=—,
v
we know that
&y (z,y;t) <0,

This means that the maximum must occur at ¢ = 0, which gives
(4.7) |0(, ¥5 8)los < 13(2,330)lo0 < 0.

Since &(z,y;t) is bounded, it is then clear that because we have

(4.8) w = e,

w(z,y;t) decays exponentially as £ — oo for u < —8.

Case 2: Suppose for uy > 6§ > 0, u > 6.

Claim 2. We claim that, with the introduction of a moving coordinate system,
w(z,y;1) decays exponentially in = as z — oco. (That is, for any fixed time t, we can
show exponential decay in space).

Proof of Claim 2: For our coordinate system to move at constant speed with respect
to time, we have for some ' and #, and some constant speed c,

z = 24+t 3 z'=zg-d,
t = t,

We make a change of variables in equation (4.3): let w = w(z’,y;1). Then

at! ox'
= 1, E s

b1 %
and
3_w _ a_wat’ + Ow 8z’
ot ~ 8t 8t ' Oz Bt

Then we have

(49) Wy = Wy - Oy,
Wy = Wg,
Wep = Wpigh

Substituting the values from equations (4.9) into equation (4.3) gives

(4.10) Wy + (8 — Jupr + vw, = V(wpe +wy,) + f = vVw + f.
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If we now choose
c>u+é,
we have
(u—c)< -6

We have now reduced Case 2 to Case 1, in which we know the solution of equation (4.3)
decays exponentially as x — oo.

Note, also, that this last argument actually can be applied to all u for uy < u < u;.
As a matter of fact, we are free to allow & to be as large as we like. This means we
can always have u < §, and the arguments will still hold. Therefore, it is possible to
choose one constant speed at which to move our coordinate system in time, so that at
any fixed time ¢, and for any bounded wave speed u, the vorticity decays exponentially
as & — oo.

Now, with regard to Case 3 and Case 4, the same arguments as given in Cases 1
and 2, respectively, can be applied to show that for a fixed time t, the vorticity decays
exponentially as y — ooc.

We have now shown, given the assumptions outlined at the beginning of this section,
that the vorticity w(z,y;t), with diffusion present, decays exponentially in space as we
move away from the origin. Therefore, there are positive constants ¢ and k, such that

(4.11) [w(z,y;t)|oo < ce—Fr

for r = (22 4 y2)1/2, ¢ determined by the constant lw(z,y;0)|., and k& > 0.

5. Incompressible Navier-Stokes Flow: Pressure and Velocity . In this
section, we follow the same line of reasoning that is used in sections 2.2 and 2.3, as well
as in section 3, to determine the far-field behavior of the solutions of the incompressible
Navier-Stokes equations (4.1). We show that the presence of viscosity and exponentially
decaying forcing in these equations does not affect the far-field behavior of the pressure
and velocity. That is, the far-field behavior of the incompressible Navier-Stokes solutions
is the same as that for the Euler Equations solutions. This is because we were able to
show, in section 4, that although the vorticity w(z,y;t) no longer has compact support,
its far-field behavior is dominated by exponential decay.

5.1. Velocity Behavior: All Time. In this section we will show that even with
viscosity and forcing present, the inverse-distance decay behavior of the velocity is still
valid. In fact, the presence of exponentially decaying forcing is not even relevant in
the arguments to follow. What is important, is that in the presence of diffusion, the
vorticity patch no longer has compact support for ¢ > 0.

As was done in previous sections, once we demonstrate 1 /r decay behavior for u
in all time, we determine the far-field behavior of the pressure p, and we then go back
and find the bound for the far-field behavior of u in finite time.
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As done in section 2 (see equation (2.7), which is still valid in the presence of
diffusion and forcing), we start by solving the Poisson equations

(5.1) -w, = Au

— A
w, = Av.

We want to solve these over all of %2, but as before, we first solve over the finite disk
D with boundary B = 8D, and then allow the radius of D, rp, to go to co.

We will focus on solving equation (5.1) for the first component u in velocity vector
u = (u, v), since the procedure for solving for v is analogous. Solving with TreorEM 1,
and integrating by parts leads to the expression

62)  uwwit)= 3 (felentiond) + [ [ oemnisldn),

with 7 = ((z — £)® + (y ~ 1)?)1/2. As previously stated, since we actually want to solve
the problem over all of R2, we let the radius of disk D, rp, go to oco.

In section 2, when we allowed w to have compact support, we knew that since w = 0
outside a large region, we could set

(5.3) Jim fB wlog(F) = 0.
That gave
(5.4) w(oyit) = o= [ [ wiem L5 dedn,

In addition, because of the compact support of w({,n;t), we had no problem with
encountering the singularity (£,7) = (z,y), as long as we assumed (z,y) outside the
support of w. At this point we were able to see clearly that u(z,y;t) ~ ¢/r for large
o (xz + y2)1/2

Now, however, with viscosity present, we no longer have the assumption of compact
support for vorticity w. What we do have is the exponential decay of w for large r. We
must now take into account the presence of the singularity at (¢,%) = (z,y), which
might possibly fall on the boundary B or inside the disk D.

In the case where the singularity potentially falls on the boundary B, we know
that since the radius of D is being extended to oo, we can just continue to extend the
radius of D so that the singularity is always contained in D, and bounded away from
the boundary B.

We now introduce

Lemma 1 Let r = (224 y?)1/2. Let disk D have radius rp and boundary 8D. Given
function f(z,y) such that

|f(z,9)| < r-e,

for large 7, then for all real o, such that o > 1, we have

lim flz,y)=0.

D=0 8D
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Proor Integrating f(z,y) about the boundary of disk D gives

./;D flz,y) = '[-HD f(z, (12 — 22)1/?) — f(z, —(r2 ~ 2?)/?)dz

-rp

+r
< [P0 + (- 22) o2l de
rp

= 2 rB"da:
-rp

= 4rj@
Clearly,

lim 4rl-o =0,

D=0

since & > 1. This implies

lim flz,y)=0.

¥p=—+co 8D

Qep [
Because of the exponential decay in space of vorticity w, we have at least

w(&,n; 1) log(F) < 1/F

for large 7. Therefore, if we allow disk D to be centered at singularity (z,y), Lemma 1
applies, and we have

(5.5) lim /;wlog(ﬁ) = (.

T Oeto

Now we have come to the point in our case where we can say

-1 -
(5.6) u(e,vit) = 5 [ [ w6 mityTdedn.

We note that since (y —5) < ((y — )2 + (z — £)2)V/2 = #,

(5.7) u(z,y;t) < cf];22 w(é,n;t)%dédnv

We still have the potential problem of encountering the singularity within our region of
integration.

To deal with the presence of the singularity, we treat it in much the same way we
treated the presence of the singularity when estimating the pressure p in section 2. Split
%2 into three regions: a disk D, centered at the origin, with large enough radius rp, so
that outside D,, w can be approximated by exponential decay; a disk D,, centered at
the singularity, with radius rp,; and the remainder, a region Dy = %2 — D1 — D2. We
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will choose the radii of D, and D, so that rp, + rp, < r, where r = (22 4 y2)1/2 is the
distance to the singularity. Then we have

. \ rro.. L1 rr 1 ¢ 1
* < . —_ . — . —_ .
u(z,y;t) < ¢ Vjﬂf(ﬁ,mt);dﬁdnfrjjmw(E,n,t)Fdﬁdv{+Jf132 w(E,n,t)FdﬁdnJ)
I L A
By equation (4.11), we know that there are some constants ¢ and k such that
(5.8) lwleo < ce~kr,

with r = (22 4 y2)1/? the distance from the origin.
We first examine integral I,. Within disk D, we can bound the maximum norm of

w by ce™*('=752), Substituting in this bound for w, and converting to polar coordinates
gives
1
(5.9) I < et ([ deay
Dy

inr pr
= c¢,e~Hr-rn) f f * 1dFde
o Jo
cze—k(f'—rpz) f];Dz
CrDze'k(""Dz)

for some constant C.
Next, for I, we again make use of the facts that we can bound w by exponential
decay, and that 7 never gets smaller than rp,. Then we have

w
= —déd
lo ./ ./;sa?-D,-D, T dedn
1
< —/] wdtdn
rDz R2_Dy-Dy

1
— déd
"D, '['/;z-Dlw { 7

c 27 poo
S j e+ rdrdf
T.Dz Dy

c oo

T‘D2 Dy

IA

IA

e~krpdr

A
Oy
|5
1]
>
P

25



for some constant C.
Finally, for integral I, since we never range outside the disk D, we can make
(z,y) >> (£,n). Then it is clear that

(5.10) . Il S C/'f‘,

for some constant C.

Now we choose rp, = r/3 and rp, = r/3, for example. (All that is required is that
the radii of the disks are proportional to r, and that their sum is less than r.) Then for
some appropriate constants ¢;, ¢ and k, we have

(5.11) u(z,yit) < Li+L+1L
1
S ) (e-—-kr + ,; + re—kr)

A

[
T.

Thus we have shown ¢/r decay behavior for u with viscosity. It follows that the far-field
behavior of u is given by

u < ¢fr.

In section 2 we discussed the fact that since u had ¢/r asymptotic behavior, u,
and u, had ¢/r? asymptotic behavior. In that case, we could reasonably claim that
the integrand of equation (2.12) never became singular, since the vorticity had compact
support (and thus the variables of integration (£,%) could always be bounded away
from the singularity at (z,y)). Thus, (2.12) was continuously differentiable, so we could
differentiate under the integral sign, and easily show 1/r? behavior for u,, u,.

With viscosity now present, and the support of vorticity no longer compact, we
show explicitly that differentiation under the integral sign is still allowable.

We prove the following theorem (a closely related theorem and proof can be found
in [6, pp.151-156}):

Tueorem 2 Define the function u;(z,y) to be

1 .
(5.12) w(e,w) =5 [[ €K& mav)dedn, =12
Let
1{1(5,71;33,3!) = logixs

b ] —_
I{2(6an;$:y) = a—{]ogf“—-'('%"@,

where

(5.13) =z - €2 +(y—n)2.
Then:
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(1) For g(z,y) continuous in K2, the function 'd(:c,y) satisfies

618 (o)== [[L o€ g Kl ns,0)dedn
(2) Suppose [g(€,n)|[ K€, n;2,y)| < 1/F for large 7, i.e., for large ¥ we have

Ig(faﬂ)l <1/(f;10g7:)7 itla
g, <7/(y-n), i=2

Provided that g(z,y) belongs to C! (i.e., g(z,y) has a continuous derivative)
in 2, the function u(z,y) satisfies

615)  (uCo)ee = 5o [ 9E D G Kl mi 2,0 dedin,

Proor We prove part (1) of the theorem by first verifying that the first order
derivatives of u can be obtained by differentiating equation (5.12) under the integral
sign. We do this indirectly. For this situation, it is only necessary to require that the
function g(x,y) be continuous (in C°) in R2. Define the functions

1 .
(5.16) up= o [ [ Ki(Pgle,n)dedn
where
. 1(# _1) +loge forF<e
5.17 kiiy={ 3(5-1) <
(5.17) () { log # for 7 > ¢,
and

—(f;—l)+”—3-" forF<e
(y —n)/7? for ¥ > e.

(5.18) Ki(7) = {
The auxiliary functions K differ from the fundamental solutions, K;, only in a
circular neighborhood N, about (z,y) where in contrast to K; they remain bounded.

(It is easily verified that K belongs to C1.)
We then have the following estimates:

1
s =l < = [ 1og — K§)g(e,m)ldedn

1 I & L |
o [ 1o (Ilogrl+-— 3+ llogl) dedr

1, . ~
5 ] / (|rlog 7 + —— + 3" + |7 log el) drdf
< 2M(e?log e+ €2)

1A

IA

where M is a bound for g. It follows that for ¢ — 0, the uf converge uniformly to u, in
R2.
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Also,

1 y
e =gl < o= [ 1 )ldcdn
< =/ Il( L22) dean
2r ]_ Y- -
= 271'/ f(l +2 Flf )drdg
< M[ ( +—+ i )dr
< Me+é?).

It follows, once again, that for € — 0, the ug converge uniformly to u, in R2.
Now, since the K are continuously differentiable, we may differentiate equation (5.16)
under the integral sign to obtain

Ous OK¢
(5.19) T = ——*ffm 5o 9, n)dédn.

Notice that

a d
aKl(E} e, y) = %1(2(6, 7 a:,y).

Let us now consider the candidate @ for the derivative of u; (i = 1,2) with respect
to z, obtained by dlfferentxatmg (5.12) under the integral sign; that is, consider the
convergent integral

(5.20) =5 [ sen)

Then we get the following estimate (for ¢ = 1,2):

Ous oK (E-—-m)

I -9 = 21:‘././&2( 72 )
31'{‘

27r g

“ﬂfo /{;icosen (§+1)dfd9
€ )

< Mfo (%2-+1)df

4
___<__ §ME

dfd

f,ﬂ)ldﬁdﬂ

1A

1A

That is, for ¢ — 0, the ?-‘-*;-f- converge uniformly to ® in 2. Then it follows, since
u; — u;, that @L exists, is continuous in R?, and is given by ®
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Thus, it is established that

1 0
(5.21) (e = 5= [ 9 M=K, w2, y)aedn
or
(5.22) (w)e = =5 [ |, o6, 0) 2 KilE,mi 2, )ded
. s/ — 271_ agg ,1? 66 $ ”?!I’y n’
where we make use of the fact that ?_&(%au) = —%%'—g‘—’tﬂ. Part (1) of Tueorem 2

has been proved.

We now prove part (2) of the theorem: to compute the second order derivative of
u,; from equation (5.22), all we require is that we have g € C!. We also require that,
for i = 1, g decay at least as rapidly as 1/(7log#) as ¥ — oo, and that, for i = 2, ¢
be bounded by 7/(y — ) (which is > 1) as # — co. We can apply Lemma 1 to discard
boundary terms, and integrating by parts gives:

(5.23) Ui)p = o jj;ez i(&mz,y) g(g, )dc‘dn.

Since ¢ € C1, we have that at least 9%5‘—”1 € C° Equation (5.23) is now in the
same form as equation (5.12). Thus, by the same arguments, we know that we can
differentiate under the integrai sign to obtain

(w)ee = am j [, K& miz9) g“"’)ded

~ e f,n,wy)
= -—6—5-2-; sz (6m) "L den

{ Yy !
= g [ stemp KT g
— a I{ E’n’ ’y)
= 5 ffmg(ﬁ, g dkdn,

and the theorem is proved. qep O

Note that the same proof techniques can be used to show that analogous results
hold for first and second derivatives in both = and y.

We now apply Treorem 2 to the velocity u(z,y;t), where the vorticity w(z,y;t)
replaces g(z,y) in the theorem, and the kernel of the integral is K, in the theorem. All
the requirements of the hypotheses are met, so we can differentiate equation (5.6) under
the integral sign to obtain the following expressions for the derivatives of the velocity
(see also equation (2.14)):

- 2 R k)
(5:24) “TE J ot m 055 dedn

= 2[00 yaeay
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and

(525)  u,, = — f -/s; w(E,mt) é?f’ (yf " dean
(5.26) = -—--ffw w(¢,m;t ag(y "?.Ex_é)dﬁdn
(5.27) _ “,r—ffW“’(f:W) (4(y-n12§m-6)2 (yr n)) dedn

We return now to the determination of the decay behavior of the derivatives of
the velocity component u(z,y;#). When determining the asymptotic behavior of the
velocity u itself, we saw from equation (5.6) that equation (5.7) followed, i.e., we knew

(5.28) u(e,i) < o [ [ 26 )dan.

From here, it was argued from equation (5.7) through equation (5.11) that as r — oo,
we have

(5.29) u(e,y;t) < =
Similarly, from equations (5.24) and (5.25), we have the bounds
1
u,<ef /; , w(émit)dedn

and

uno < ¢ [ [ Zywl6, s t)dedn

From this point we argue in the same way we argued for the velocity u itself that

(5]
(530) uz(may;t) S ;""5
and

C
(5°31) um(a:,y;t) S ﬁ
as r — oQ.

Nearly identical arguments, and the same decay rates, hold for the derivatives of u
in y, as well as for the z and y derivatives of the second velocity component v.

5.2. Pressure Behavior. The analogous equation to (2.2), and the scalar equiv-
alent to (4.1) is

(5.32) Uy + vty +vu, +p, = vAu+ f

vy + uv, + vu, + p, vAv + f,.
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We take the divergence of these equations, and recall the incompressibility condition,

(5.33) div(u) = div(u,v) = u, + v, = 0.

T 1

. 4 ea e .
Because the velocity has zero divergence, terms on the left hand side of the equation

A

will cancel (as in section 2), and we get
(5.34) ul +v2+2uv, + Ap=v ((Au)z + (Av)y) +V-F.

We note that equation (2.7) is unaffected by the presence of viscosity and forcing, since
it comes about by the zero divergence of the velocity, Equation (2.7) applied to the
right hand side yields

(5.35) 2 + 02 4 2u, + Ap = v ((—w,), + (w,),) + V - F,
and therefore
(5.36) uZ +v2+2u,0,+ Ap=V_F.

Notice that equation (5.36) is of the same form as equation (2.19), except for the
presence of the exponentially decaying right hand side. The presence of V - F does not
contribute to the far-field behavior of the pressure p, since we have required V - F to
decay so rapidly in space. Thus, the estimates on the decay behavior of the pressure
and the pressure gradient induced by a vorticity patch, given in (2.30) and (2.33), are
still valid. In addition, the estimates on the decay behavior of the pressure and the
pressure gradient induced by a rigid body, given in (3.18) and (3.19), are also valid in
the presence of diffusion and exponentially decaying forcing.

To summarize, equation (4.1) yields the following far-field decay behavior estimates
for the pressure gradient (for some constant ¢, and for r = (22 4 y2)1/2);

Pressure induced by a vorticity patch:

clogr
(5.37) Vp < -
Pressure induced by a rigid body:
[

5.3. Velocity Behavior: Finite Time. Turning now to the determination of
the far-field behavior of the velocity along its characteristic lines, we refer back to the
arguments given in section 2.3. The line of reasoning with viscosity present is almost
identical to that when it is absent. There is only one minor point to observe. Instead
of using equation (2.2) as our starting point, we use equation (5.32),

Uy + uuy +vu, +p, = vAu+ fy

v+ uv, +ov,+p, = vAv+f,.
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Decay behavior for the pressure gradient, in the absence or presence of a rigid body,
respectively, was given in equations (5.37) and (5.38).

The behavior of the pressure gradient in either case dominates the ¢/r® behavior
of the Laplacian and the exponential decay behavior of the forcing on the right hand
side. Thus, in the absence of a rigid body, equations (2.35) are still valid with viscosity
and forcing present.

Also, for flow induced by a rigid body, equation (3.23) still holds in the presence of
viscosity and forcing. The arguments put forth in section 3 (determining the behavior
of pressure and velocity induced by a rigid body) are also applicable with viscosity
and forcing present, again because the exponential decay behavior of the vorticity and
the forcing does not contribute to the overall decay behavior of the pressure and the
velocity.

Therefore, the arguments that follow after equations (2.35) and (3.23), to determine
the decay behavior of velocity in finite time, will be identical,

To summarize, we have shown that in finite time, and with viscosity and exponen-
tially decaying forcing present, the velocity u(z,y;t) induced by a vorticity patch can
be bounded by decay behavior

(5.39) u(z,y;t) < clog(r)/r3,

and velocity u(z, y;t) induced by a rigid body can be bounded by decay behavior
(5.40) u(z,y;t) < efrd.

This is the same decay behavior we found for the Euler equations.

6. Incompressible Navier-Stokes Flow: Vorticity Derivatives. Having shown
exponential decay for the vorticity w of incompressible Navier-Stokes flow, we wish to
show that both Dw and D2?w decay exponentially in space, as well. Here we define

= (1) ()=

and
1
Wey 2z, wl
w 22 w?
(6 .2) D3y = we = I 1= s | =w.
Way z, w
2 4
Wiy z2 w

Recall that in section 5, we were able to use the exponential decay behavior of
the vorticity w(z,y;t) to show algebraic decay behavior for u and its first and second
derivatives. We now make use of the algebraic decay behavior of the derivatives of u
to show exponential decay behavior for the derivatives of w(z,y;t).

We first examine Dw. Taking the z and y derivatives of equation (4.3), we find

(6.3) Wre F Wze + 0wy, = vAW, + fr — (Yw, + vw,),

(6.4) Wy + gy + VW, = vAw, + f — (uyw, +vw,).
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(Recall the stipulation that f and its derivatives be chosen to decay exponentially fast
in space.) Making the substitutions given by the definition of Dw above, these two
equations are the same as

(6.5) 7} +uzl + vz, = vAzl 4 fi - (uyz! +v,2%),
(6.6) 7l tuzl vzl = vAZ 4 f, - (uy2t +v,2%).

Define the vector function ®(z,y) to be

Vu
(67 o) = (ve ).
Equations (6.5) and (6.6) can now be re-written in vector form, which gives
(6.8) 2, + uZ, + vz, =vAz-d .24+ VS

We are now in a position to carry out the same steps we carried out in section 4
for showing the exponential decay behavior of z. We start by examining
Case 1: Suppose u < § (for some § > 0). Let

(6.9) z(z,y;t) = =5 (z, y; 1),

for some & > 0 to be determined. Recall that Z(z,y;t = 0) is bounded with compact
support. Substituting this back into equation (6.8) yields

(6.10) By (bu+ w82+ & 24 (u+280)%, +vE, — vAZ - f = 0.
Here, f = b=V f. We stipulate the following:
(6.11) VSl <e*, V¥a>0,

for some « such that @ > &. This ensures the exponential decay in space of f. As
pointed out in section 4, there exists an r; such that for all points at least distance r
from the origin, where r > r;, we know

|F] < |(6u + v82)3).

In addition, because the elements of ® are made up of the first derivatives of velocity
u, we know that ® decays like ¢/r? in space. Thus, there exists an r, such that for all
r > r,, each element of ® is smaller in magmtude than [fu + V62| Therefore, we let
ro = max(ry,7;), and examine all points further from the origin than r,. We suppose the
maximum in this region is attained at some point {zg, yo;15). Without loss of generality,
we assume that Z(zg,yo;to) > 0. Then, at this maximum point,

(6.12) 7 =0,
(6.13) A'z' 0.
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This yields

(6.14) #, = (bu+ v82)z + (v)VE + oz + \f/
<0 if b=b/v O Bl fciGunsn)

(Note that because of the magnitude restrictions we put on f , the sign of f has no
impact on the sign of Z;. In addition, because & decays to zero in space, the sign of the
® term also has no impact on the sign of %,.) Therefore, given the fact that u < ~&,if
we choose

=Y
i
T o

we know that

Z,(z, ;1) <.
This means that the maximum must occur at ¢ = 0, which gives
(6.15) |2(z, ¥; o < |2(2, 3 0)]eo < o0.
Since Z(x,y;t) is bounded, it is then clear that because
(6.16) z = e~te3,

z(x, y; t) decays exponentially as ¢ — oo for u < —§.

All the arguments given in section 4 for the velocity (u,v) taken at varying speeds
can now be applied directly here. Therefore, there exist positive constants ¢ and k such
that

(6.17) [Dwlo = [2(2, ¥ t)|oo < ce—*r

for r = (22 + y?)1/2, ¢ determined by the constant |z(z,y;0)].,, and & > 0.
We can similarly show exponential decay behavior for D2w. Taking all the second
derivatives of equation (4.3) yields

zl +uzl + vzl = vAz 4 fo - (ug2' + UpZy F V2 + 0,22 +uy2l + )
22, +uz? + vl = vAzZ2+ f,, — (u,2' + Uzl +v,.2% 4 v, 22 fu,2? + v,z2)
z;t + uz;y +vzl, = vAz; + foy — (ugyz' + Up2) + 0,y 2% + vzzz + u 2l + vyz;)
zit + uz:y + vzﬁy = quj + fop — (w2 + uyz; +v,,22 + vyz';’ + uy2Z + vyzg),

which leads to

w; +uw, +ow), = vAw'+f,, —u,, -z- (2ug2! +v,22 + v2,)
wi +uwl +ovwl = vAw 4 f - u,, 2 — (u,2! 4+ vz
w? + ww? 4+ vwl = vAwW+ fo, —u,, -z - (u,22 + vz:r::)
w +uw) +ow) = vAwi+f, —u, z—(u,z2+ u 2z, + 2v,22).
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Define the four-element vectors i; to be

1 = (2upuy,u,0)

¥
¢2 = (vmovoauy)
A — .. n ..\
¥3 - \U_.,,,G,U,uy}

'¢’4 = (Oa Vzy Uy 2’01,).

Define the vector function ¥(z,y) to be

¥y
(6.18) Woy)=| ¥ |,
¥3
¥y
and the vector function Uz(z, y) to be
U,, 2
| ugy,z
(6.19) Uz(z,y) = gy
u,,  Zz

Then the vector form for the equations for D?w becomes
(6.20) w,t+uw, +ow, = vAw 4+ VVf-Uz- ¥ .w.

We choose f to decay at a rapid enough exponential rate so that its second derivatives
(and thus VV f) decay at a rapid enough exponential rate. Also, we have already shown
that z decays exponentially fast in space, and that the second derivatives of u decay at
most like ¢/r?, Let

g=VVf—-Usz,

Now g is itself an exponentially decaying function. Therefore, analyzing (6.20) is equiv-
alent to analyzing the behavior of the following equation:

(6.21) W, +uw, +ow, = vAw+g—T-w,

Note that each element of ¥(z,y) decays at least as quickly as ¢/r2, so U(z,y) — 0 as
r — oo. It is now clear that equation (6.21) is of the same form as equation (6.8). There-
fore, all the arguments applied to equation (6.8) can also be applied to equation (6.21),
and consequently to equation (6.20). It follows that there exist positive constants ¢ and
k such that for large enough r,

(6.22) |D?w|eo = |W(, ;1) < ce™br.

Thus, the exponential decay behavior of w, as well as that of its first and second
space derivatives, has been shown.
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7. Slightly Compressible Navier-Stokes Flow. In this section we make use
of our knowledge of the far-field decay behavior of the solutions of the incompressible
Navier-Stokes equations, to determine the far-field decay behavior of the simplified,
slightly compressible Navier-Stokes equations given by

(7.1) u+u-Viu+Vp = vAu+F
(7.2) e{p+(u-Vjp}+V.u = 0,

Here, v > 0, € > 0. The forcing function F(z,y;t), as well as all its derivatives, are
assumed to decay exponentially fast in space and to be ¢°°-smooth.

The discussion that follows of the decomposition of the slightly compressible so-
lution, can also be found in [11]. Formally allowing ¢ — 0, the limiting equations
become

(7.3) U, +(U-V)U+VP = vAU+4F,

(7.4) V.U = 0.

These limiting equations now describe incompressible flow. For the limiting equations
to be valid, however, proper initial data must be specified for consistency. Conditions
for the initial data will be presented below.

We will discuss the Cauchy problem in ®2. For equations (7.1) and (7.2), we give
the initial conditions

(7.5) u(z,y;0) = up(z,y); p(x,y;0) = po(z, ).

For (7.3) and (7.4), we can only prescribe initial velocity

(76) U(.’.C, y;(}) = UD(ma y)a
where
(7-7) V * UO - 0

is required for consistency.
If an initial velocity ug for (7.1), (7.2) is given, we construct U, so that

(7-8) V-U0=0, VXUO:VXUG
(1, Vo), = (1,u0)y,, (1, Vo)1, = (1,v)g,.

Here, we use the notation

(f,9)1, = f fR , f(@:y)g(z, y)dzdy

to denote the Lj-scalar product. According to [11], the incompressible problem (7.3},
(7.4) and (7.6) has a solution (U,P) in 0 < ¢ < oo which is unique up to a time
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dependent function P(t), which can be added to P. We fix P(t), a constant in space,
so that

(7.9) (1,po = P(-,0) = P(0)), = 0,
(lapt'f'pt‘l'(U‘v)P)Lg

I
=
v
[t

A theorem in [11] states the following:
Tueorem 3 Assume the initial data satisfy

V.uo=0(¢), po=P(,0)+P(0) +0O(1).

For any T > 0 and 0 < ¢ < (T), the compressible problem (7.1), (7.2), (7.5) has a
unigue solution in 0 <t < T. It can be written in the form

(7.10) u = U+u +0(e),
p = P+P(t)+p +0(e),

where (Wy,p;) are highly oscillatory in time. The functions (uy,ep,) and their space
derivatives can be estimated by the initial data

u; — Uy, e(po— P(-,0) - P(O))

and their space derivatives. ]

According to [11], u, and p, represent sound waves which oscillate on the fast time
scale t/e. (To first order, they do not create vorticity.) The O(e?) and () terms in
(7.10) contain the result of the interaction between the fast and slow time scales. We
may continue to expand out the slow part of the solution of the slightly compressible
Navier-Stokes equations from these terms. U and P, which are the solutions of (7.3),
(7.4), are the first terms in the asymptotic expansion of the solution of the slow part.
We have already analyzed the decay behavior of these first terms in the expansion.

To understand the decay behavior of the complete solution of the slightly compress-
ible Navier-Stokes equations, it remains only to carry out the decay behavior analysis
on the second term in the asymptotic expansion of the slow part. The reason for this
will be made clear presently.

Our next step, then, is to find the second term in the asymptotic expansion. We
do this as follows:

Define variables u’,p’ by

u=U+vw, p=P+PFit)+p.
Plﬁgging back into equations (7.1) and (7.2) we obtain

(7.11) uw+(U-Vi'+ (- VU4 (' -Vu'+Vy = vAW
(7.12) E{p,+(U-Vip'+(0'-V)P+(u'-Vi)p}+V-u' = g
where

(713) 0= (P, + P+ (U-V)P}.
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By (7.9), (1,41), = 0. The initial conditions for u’ and p’ are
w=u,-U, p'=p,— P(-0)—P0) at t=0.
We now determine the first term in the slow part of u’ and . We write:
w=eU, +u", p=¢ (Pl + Pl(t)) + p,

where we define Uy, P, as the solution of the linearized incompressible problem

(7.14) Up+(U-V)U, + (U, . V)U+ VP, = vAU,
(7.15) V-U; = €.
with

(L, A(y8))g, =0
and
U =U;, at ¢t=0.
Here, the initial data are defined as the solution of
V- Ue=a1(50), VxU,g=0 (1, Ui0)r, = (1, Vi), = 0.
Then the “error” or “remainder” terms satisfy the compressible correction equations

uy + (UM V)u” + (0 V)UD 4 (u” . V)u” + Vp” = vAu” + €F,,
e {p} + (UD - V)p 4+ (u- V)P 4 (u"- V)p'} 4 V - u = el,,

with

Ul = U4 e2U;,
P = P4 e*P,
F, = "“(Ul ) V)UI,
9 = ~{Pu+Pu+(U-V)R +(U,-V)P} - &(U, - V)P,

P, (t) is chosen so that (1,g,(-,1)) L, = 0. Note that the equations for u” and p” have
the same structure as the equations for u’ and g/, except that the inhomogeneous terms
have been reduced to O(e?). It is shown in [11] that this expansion process can continue
indefinitely. Each new term in the expansion will satisfy a linearized incompressible
differential equation which is of the same form as that which the previous term satisfies
(this is true from the second term in the expansion on). The inhomogeneous terms in
the successive differential equations for the error (or compressible correction) can be
reduced to arbitrarily high order in . Note, however, that the solution of the error
equations will be small only if the initial data are properly specified.
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The following theorem from [11} describes the form of the solutions of the slightly
compressible Navier-Stokes equations with two terms of the slow part expanded out,
and with proper initialization:

Tueorem 4 If the initial data for (7.1), (7.2) are chosen such that two time deriva-
tives of the solution are bounded independently of ¢ at timet =0, then

u = U4 U, +u; + Ofet),
p = P+Pt)+e (P +P,(1) +p, + O).

Here, U,, P, are solutions of the linearized incompressible equations, and u, = O(e?),
p1 = O(€) are highly oscillatory in time. The highly oscillatory part is suppressed further
if more than two time derivatives stay bounded at t = 0. m

In other words, the first two terms in the asymptotic expansion of the solution of
the slightly compressible Navier-Stokes equations give the solution of the slow part, up
to O(e?) (or O(e®) for pressure). The fast part can be suppressed to arbitrarily high
order of € with proper initialization.

Now, because each subsequent term in the expansion of the slow part will have the
same form as its previous term (from the second term on), we see that it suffices to un-
derstand the decay behavior of the first and second terms of the asymptotic expansion
of the slow part of the slightly compressible solution. This is why, with proper initial-
ization to suppress the fast part, it is valid to claim that the solutions of the slightly
compressible Navier-Stokes equations will exhibit the same asymptotic decay behavior
as the sum of the first two terms in the asymptotic expansion of the slow part of the
total solution.

At this point, we carry out the analysis of the decay behavior of the second term
in the expansion of the slow part.

The first step is to note that we can directly infer the decay rate behavior of
the function g, in (7.13), and its derivatives, from the already known behavior of the
incompressible velocity and pressure solutions. We do this now. From equation (2.20)
we get an equation for the time derivative of incompressible pressure,

2

(7.16) AP,=¢ Y D,-ng-

=1 t

From (7.3} and (7.4) it is clear that U, decays at most like VP, which in turn decays

at most like ¢/r? (see equation (5.38)). Using this decay behavior for U, in equation

(7.16), and carrying out the same analysis as is done in sections 2 and 3, reveals that

F, also decays like ¢/r2. It follows that g, decays like P, + ¢/r? (where P is a constant

in space). By similar arguments, we can find decay rates on VP, and V(U V)P, which
show that for large r,

(7.17) Vg, < ¢frs.

In addition, following a line of reasoning analogous to that above, one can determine
the decay behavior for the derivative of g;, and show that for large r,

(7.18) (g1): < efrt.
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7.1. Vorticity Behavior: Linearized Incompressible Part. Qur next step is
to show that the vorticity for the linearized incompressible term (or second term in the
expansion of the slow part) of the slightly compressible flow decays exponentially fast
in space, as it did for the non-linear incompressible flow. If we define the vorticity W,
to be the curl of the velocity (in two dimensions), then

(7.19) Wiz, y;t) = Vi, = Uy,

together with equations (7.14), (7.15) and (7.13) give the vorticity equation for the
linearized incompressible term in the solution expansion:

(7.20) Wlt + UWI:B '+' Vle + W(Ul * V + V * Ul) = VAWI,

where U = (U, V) and W = V, — U, are the velocity and vorticity of the incompressible
flow equations (7.3)-(7.4), respectively.

Carrying out an analysis almost identical to that of sections 4 and 6, we first assume
that for some

é6>0,
we have
U< -6,
For some & > 0, we let
W, = e~%0

and substitute this into our equation for vorticity. This leads to the following equation
for @

(7.21) &, = (6U +v&)a
~(U + 208), — (V)3,
+vAG - f,

where

(7.22) f=(U,-V+V.U,)eb=w.

Since W and its derivatives decay exponentially fast in space (see section 6), and since
U, and V- U, are known to be bounded in space, we can assume that f itself decays
exponentially fast in space. This can be guaranteed as long as 4 is chosen so that W
and VW decay faster than e-é=,

At this point, the equation for & has the same form as equation (4.5) in section 4.
Once we go far enough away from the origin so that the behavior of f is dominated by
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that of the other terms, the arguments given in section 4 for the boundedness of & will
apply here as well. Choosing

§=16/v,

we can show that &(z, y;t) is bounded in the maximum norm. Consequently, W, decays
exponentially in the z-direction in space in the case where U/ < —§. As done in section 4,
the introduction of a moving coordinate system allows us to show that for I/ , V at any
speed, there exist constants ¢ and k such that

(7.23) [Wile < ce~Fr

for r = (22 + y*)*/2, with ¢ determined by the constant |W,(z, y; 0}, and k> 0.

7.2." Velocity Behavior: Linearized Incompressible Part — All Time. Now
that we have shown exponential decay behavior for the vorticity W, of the second term
in the expansion of the slightly compressible flow solution, we wish to analyze the decay
rate for the linearized incompressible velocity term, U, = (U1, ).

We start by finding the Poisson equation to describe U,. From (7.19) we have

le = Vi:c:x:_Ulmy
Wy = Viey — Ungy-

From (7.15) we get

Ul:cy + Viyy = ez(gl)y
Ulza: + Vl:cy - 62(.91).1:-

From these equations we find our Poisson equations

(7'24) AUI = le + 62(91):1:
(7.25) AVy =W, + €(g1),

We solve only for U}, since the procedure for finding V, is analogous. Tueorem 1 tells
us that the solution U,, over some region D € 2, can be written

1 . 1 .
(126)  U(e,yit) = 5= [[ Wiylog(@)dedn + — [ e2(g,); log()dedn
(7.27) = L+1
for

F= (o= €7+ (v — )2/,

Integrating I, by parts gives

(138)  h=-— ( J, Walemstytog@ + [ wie,n t)(—y;—ﬂ)*didn)
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In the limit as the radius of D goes to oo, the boundary term goes to zero. Therefore,
the solution of the Poisson equation for U; over all of 2 can be written

It

1Y 1 (y - 7]) 1 2 =
Uewit) = ~5- [ wiilPdedy + = [[ g, log()dedn
(7.29) = I® I

We know that W, is at least bounded in space (equation (7.23)), and that Vg, decays
like ¢/r3 (equation (7.17)). By carrying out estimate calculations in the same way as
was done in earlier sections (see, for example, section 5), we can show that, at worst,

I® < ¢fr

I < efri

Thus, for large r, we have shown that
(7.30) Uy(z,y;t) < ¢/r.

This bound can, in fact, be made sharper, if we take into account the known decay
behavior of the vorticity W; from (7.23). A sharper bound for this term will not
necessarily be of use to us, however, in our overall estimates,

Note that the elements of the expression for U; (7.29) meet the hypotheses of
Tueorem 2, s0 it can also be readily shown that

(731) Ulm(w$y;t) S C/?"z,
(732) lez(way;t) S C/T.S_

It is clear that analogous results will hold for first and second order derivatives in both
z and y.

7.3. Pressure Behavior: Linearized Incompressible Part. We find an ex-
pression for the pressure P, of the linearized incompressible term by taking the diver-
gence of (7.14), and making use of (7.15):

(7.33) AP, = —(X(g)). + (U + U)X (gy), + (V + V;)ex(gy),
+20,Us, + 2V, Vi, + 2U, Vi, + 2V, U, )
+rvAelg,.

Note that each term in the expression for AP, is bounded by at least ¢/r4 for large r.
(See, for example, equations (7.17), (7.18).) Thus, one can make use of the arguments
similar to those of sections 2 and 3 to show that for large r, the gradient of the pressure
of the fast part is given by at most

(7.34) VP, < c/r.
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7.4. Velocity Behavior: Linearized Incompressible Part — Finite Time.
In this section we make use of the method of characteristics to determine an improved
decay rate for the linearized incompressible velocity U, = (U;, V;) in finite time. From
equation (7.14} we know that

(7.35) U+ UU + VU, = G'(z,y;1)
(7.36) Vit UVee + V¥, = GA(a,yit)
where

(7.37) Gl(z,y;t) = U U, - VU, +vAU, - P,
(7.38) GHz,y;t) = ~U)V,— WV, +vAV, — P,

Notice that each element of the functions G and G? decays at most like c/r?,
Now, the total derivative of U, can be written as

du, dz dy
(7.39) T U + ("&?)Ulz + (:,})Ulu

vy dr dy

E = Vi + (E)‘fla: + (dt )Vly'

If we have velocity written as

dz dy
(7.40) 5 = U, ="
then standard characteristics arguments tell us that
dl, 0 A 5
(7.41) - = efr?, 7 =

Equations (7.40) and (7.41) are now of the same form as equations (3.24) and (3.25).
Therefore, the arguments that follow (in section 3.2) are identical to those we would
use here. In the presence of a rigid body, then, the fast part of the velocity is bounded

by

(7.42) U; <e¢/fr?

for large r and for some finite time ¢ (0 < ¢ < T < o0).

7.5. Slightly Compressible Flow: Total Decay Behavior . In the previous
sections, we learned that the second term in the asymptotic expansion of the solution
of the slightly compressible equations exhibits the same decay rates (in pressure and
velocity) as the solutions of the incompressible equations. As implied by Tueorem 4,
assuming proper initialization, the sum of first two terms in the asymptotic expansion
will give us the solution of the slightly compressible flow, up to O(et). The first term in
the expansion is the solution of the simplified incompressible Navier-Stokes equations
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(7.3), (7.4), and the second term in the expansion is the solution of the linearized
incompressible Navier-Stokes equations (7.14), (7.15).

Therefore, for large enough r = (z2 + ¥2)1/2, and for an appropriate constant ¢, the
decay behavior of the compressible velocity in all time can be given by

(7.43) u=U+eU, +u, +0(e!) < ¢fr,

(see equations (5.11) and (7.30)). Recall that because we can expand out terms from

the slow part of the solution indefinitely, and since each term in the expansion is the so-

lution of linearized incompressible flow equations, it can be shown that the compressible

correction will also decay in the same way as the first two terms in the expansion.
The decay behavior of the gradient of the pressure is given by

(7.44) Vp=V(P+ P, +p + O() < efr?,

(see equations (5.38) and (7.34)). The decay behavior of the compressible velocity in
finite time can be given by :

(7.45) u="U+eU, +u; +O(e!) < ¢/r?,
(see equations (5.40) and (7.42)). Similarly, it also follows that
(7.46) Du < ¢fr®

(7.47) Dl < ¢frs.

Recall that the highly oscillatory parts of the slightly compressible solution can be
reduced to an arbitrarily high order of ¢ with the proper initialization. Bounding the
first two time derivatives, for example, gives us

u; = O(e?) and p; = Ofe).

Knowing this decay behavior reveals to us that at some point in space, the nature of
the slightly compressible Navier-Stokes flow changes to that of flow that can be modeled
by the wave equation.

To see this, we again examine the relative sizes of each term in the Navier-Stokes
equations at a large distance from the source of the flow (assumed to be centered at the
origin). For some appropriate constant ¢, we have

0=, +uu, +vuy+p, ~vAu < u+e/rS+e/rs+p, —cfr4,
O0=v +uv,+ov,+p, —vAy < v +cfrf4e¢/rd + p, — cfrd,
O0=p+up. +op, + (u; +9,)/€ < p+efrite/rt+ (u+v,)/e
We see from the above that we may discard the convection terms at large distances,

with an error of at most O(1/rt). The equations that now model the approximate flow
behavior at large distances are taken to be

ut +Pz = 01
Uy +Py 05

Pt + (uz + vy)/ez = 0.
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Solving these equations is equivalent to solving the wave equation for the pressure p.
(We may also view it as solving the wave equation for the divergence of the velocity u.)
To see this more clearly, we take the space derivatives of the velocity equations, and

the time derivative of the pressure equation, which vields:
Uy = ~Prxy
vut = =Dy
= 2
P = —(ug+vy,)/e

Substituting the first two equations into the third gives
1
(7.48) Pu = ?‘;AP'

In the far-field, once the velocity components have essentially decayed to zero, the
pressure component is still relatively large. Therefore, it is possible to model the flow
in the far-field simply by solving the wave equation for the pressure p. Inflow boundary
conditions for the pressure can be taken to be those numerical values calculated for P
in the near-field.

8. Numerical Calculations. In this section, we calculate numerically the solu-
tion (u,v,p) of the slightly compressible Navier-Stokes equations (7.1), (7.2). To this
end, we make use of a grid generation package, CMPGRD 3], and a generalized dif-
ferential equations solver CGCNS [5] (which is still under development). The solver is
written specifically to solve problems on computational grids generated by CMPGRD.
The class of problems that are meant to be solved by CGCNS are systems of parabolic
and hyperbolic equations which can be written in the form

Su
'5'{ = f(ua u.z',-iuz;a:_p " ')'

When discretized in space, the PDE system becomes a system of ODE’s of the form

dUu
df F (U)a
where U is a vector of all solution values at all grid points. The main functions of the
code can be broken down into the following four subsections:
1. Initialization and Setup
2. Time Stepping
3. Computation of F(U)
4. Saving Results
Item (3) is application dependent, and all sections of code pertaining to item (3) were
modified to model our specific equations. Item (2) is mostly application independent,
except for the actual determination of the size of the time step to be taken, At. The
determination of the time step depends on the set of equations being solved. We describe
in section 8.1 how At is calculated.
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The actual time-stepping routine implemented in our experiments is the second-
order accurate midpoint rule. For the equation

du
7y = F(U),

the midpoint rule is defined to be

U = U(t)+%}'(U(t))

U(t+At) = U(t) + ALF(UY).

8.1. Determining the Time Step. In this section, we determine analytically
the maximum size of the time step allowed when numerically calculating the solution
(u,v,p) of the slightly compressible Navier-Stokes equations

(8.1) Uy = ~ul, —vu, —p, + vAu
vy = —uv, —vv, — p, + vAv
Py = —up, —vp,—u/e? —v, [

For the sake of analysis, we freeze the coefficients. We discard the viscosity term,
since the viscosity coefficient v is small compared with the other terms, and will not
significantly impact the outcome of our analysis. We then work with

(8.2) u = ~Uu,—Vu, ~p,
v, = —Uv,~Voy, -p,
P = _U.Pz: - pr - ‘U.E/Cz - vy/éz

where U and V can be considered constants.

In order to make use of CMPGRD in conjunction with the calculation of the solution
to our equations, we must start by converting our equations from Euclidean coordinates
(z,y) to computational coordinates (r,s). It is assumed that there exists a smooth

mapping with inverse from (z,y) space to (r,s) space. Conversion formulae are as
follows:

8 ] d
5z = "ot g
d 0 a
o = "or T
L P S T N )
3z = Tegr T Vetep gy g t e ey
& _ r2£+2rs~ai+32—§-2—+r 2+.s 9
dyt ~ vor? V¥Ords  Tv9s? T War ' Wgs
where
or, or,
Tep = ::—a?'*'szg
e 2Ar # 2As
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The frozen coefficient Navier-Stokes equations transformed to computational space
then become

(8.3) u = —(Ury+ Vry)ur = (rz)p, — (Us, + Vsy)ua — (82)P,
v, = _(Ur:: + Vry)vr - (rﬁ)pf - ([I'S."é + V'S‘y‘)vs - ('Sv)ps
e = ~(Urg+Vr)p, — (re/é), — (r,/e®)v,

—(Us, + Vsy)Pa - (31:/52)“3 = (sy/ez)va

To write this system of equations in matrix form, we define W to be the vector of
solution components,

W = (u,v,p)7.

Then system (8.3) is equivalent to

(8.4) W, = AW, + BW, = P (%) W

with smooth 27-periodic initial data
W(r,0) = f(r).

The differential operator P(%), with r = (ry,7;) = (r, 5), is defined by equation (8.4).
Matrices A and B are

[ —(Ur, +Vr,) 0 -7, i

A= 0 ~(Urgy + Vr,) —7,
| (/€ —(r,/e)  —(Ur,+Vr,) |

[ —(Us, +Vs,) 0 -8,

B = 0 —(Us, +Vs,) —s,
—(sz/€%) —(s,/¢)  ~(Us;+Vs,) |

At this point, we discretize our equations in space only (the method of lines). We
introduce the following notation:

Let A = 2r/(N 4 1), N a natural number, denote the grid size in both the r and s
directions. A two-dimensional grid is defined by the grid points

rj = (thﬁ.hh) ju = 03 :E:la iz: o

We define the grid functions to be



For the sake of the analysis, we assume the grid function to be 2x-periodic. Thus,
W; =W(r;) = W(jih+ 27,5k + 21) = Witn41:
Define the linear translation operators E, and E,by

(ExW)jiga = Wi
EW)inie = Wi

We then define the forward, backward, and central difference operators in terms of
the translation operator. The forward, backward, and central difference operators are
defined respectively (in the r-direction) by

Dy, = (E'-E°)/h
D., = (B®-E)/h
Do = (E!=E:")[2h=(Dy, +D_)/2

i

Analogous definitions hold in the s-direction.

Before applying the difference operators to our equations, we first consider their
application to the restriction of ef(wrI} to the grid. (Here, (w,r) = wir +wys.) We
consider the discretization in the r-direction only, since the discretization procedure in
the s-direction is analogous. We find that

hDr+ei(w,I‘) — (eiwlh _ l)ei(w,l‘)
hD,_efwX) = (1 — emiwih)gi(wr)
2hD,pef@ Tt} = 2sin (w, h)efwr)
The forward and backward difference operators are first order accurate in space, and

the central difference operator is second order accurate in space.
Discretizing equation (8.4) with central differencing yields

(8.5) W, = AD,oW + BD oW,

with initial data

0 = f
1,32 = f31.32'

We first consider initial data that consist of one wave,

fjl.j2 =

1 . .
T e:(w,r,)f(w)_

We assume the solution can be expressed as a single Fourier component, and make the
ansatz

eflw T )ﬁ}(w).
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Substituting this back into equation (8.5) yields
W, = (iAsin (w h)/h + i Bsin (wyh)/h) W (w, 1).

: 3 : e 3 J LU DU D | P
We see thatl application of the difference operators in Fourier space is equivalent to

multiplication by the symbol P(iw), which is defined to be
P(iw) = {Asin{w, h)/h + iBsin (wh) /.

We have then obtained the ODE

W, = P(iw)W(w,1),
the solution of which is given by

W(w,t) = PR,
The solution in Euclidean space is then represented by

W(r,t) = ePlMtei@ N,
The eigenvalues of the symbol P(iw) are given by

(sin(w1 h)Ur, + sin(w  h)Vr, + sin(w,h)U s, + sin(wzh)Vsy)

Al - _i h
Ve+b+c+d+e+ f)
’\21/\3 - Ali (h€)
where
a r2 (cos(w; h)? — 1)
b = s2(cos(w,h)? —1)
¢ = r2{cos{w h)? 1)
d = s2{cos(wyh)? —1)
e = =2sin(wh)r, sin(wh)s,
f = =2sin(w,h)r,sin(w,h)s,

We now find an upper bound on the magnitude of the largest eigenvalue of P(iw):
Let Unazs Vina, be the magnitudes of the largest values of u and v taken over all possible
(z,y). Then, taking an upper bound over all possible wavelengths w gives

Unaz(Irsl +1s:1) + Vinaa(Iry| + |5, ])

h = )\lma:m

| Al <

and

\/r: + 82+ 12+ 82+ 2ir,lls, | + 2|r. s, A

< A .
|’\2|} [’\3| = “‘lraz + hﬁ mazr

n
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Next we must determine an appropriate time step At for our numerical method.
If Ayoe is the magnitude of the largest eigenvalue of the symbol P(iw), taken over all
wavelengths w, then for some appropriate constant C.s1, we choose At so that

Aty = efl

The constant C,y is determined by the time-stepping routine implemented. For second
order Adams-Bashforth, for example, it is safe to choose C.s1 = 1/4. For the midpoint
rule, we choose C,5; = 1/2. (See, for example, [1].) In other words, we choose At)
so that it lies within the stability region of the time-stepping method chosen.

mar

8.2. Numerical Experiments. In this section we examine the numerical out-
come of directly solving the two-dimensional slightly compressible Navier-Stokes equa-
tions (7.1), (7.2), in & finite time interval. We are interested in simulating the flow in
an infinite domain induced by a vorticity patch with compact support.

In our experiments, we carry out our calculations over two-dimensional square
regions of increasing size,

The first step in the computational process is to calculate appropriate initial con-
ditions. We specify a stream function, ¢, to have compact support. Then we write
u(z,y;t = 0) = up(z,y), v(z,y;t = 0) = vg(z,y), and over the entire computational
domain we set

Up = _¢y1 Yg = ¢:xz

Initial velocity then has compact support. (It follows that the initial vorticity also has
compact support.) In addition, the initial velocity has zero divergence (V.uy =0). The
initial pressure, p(z,y;t = 0) = py(z,y), then satisfies the following elliptic equation:

—_ 2 2
Apg = "*uoz - 2U0yvgr — 'on.

Prescribing the initial velocity so that it has zero divergence at initial time, also
ensures that two time derivatives of the pressure component are bounded independently
of € at initial time. For the first time derivative of pressure this is clear directly from
the pressure equation

€? {pt + up, + 'vpy} +u,+v, =0
At time t = 0, we have
€2p, = —¢? {upz + vpy} = e20(1).

(Recall that all space derivatives of (u, v, p) are bounded for all times.) To see that the
second time derivative of the pressure is also bounded, we take one time derivative of
the pressure equation to obtain

€py = —€* {(up, )y + (v9,) ) = (uy + v,
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First note that at t =0,

(uz + vy)t =0.

This can be seen by taking the space derivatives of the velocity equations, and making
use of the elliptic equation for the pressure p. Next we examine the term

(upx)t + (Upy)t = up, + 0Py + up, + UPyt-

Each term in

UiPs + vtpy

is bounded independently of € at ¢ = 0, so it only remains to consider whether the same

holds for_

UPoe + vpyt *

Taking the appropriate space derivatives of the pressure equation yields

1 1
UP s + VPt = H(u)vap) - gu(um + vy)z - gv(u‘z + vy)y‘)

where H(u,v,p) is an expression in u, v, p and their space derivatives. At time t = 0,
the divergence terms are zero, which shows that at ¢ = 0,

Upz + UPyt = 0(1)
Thus, at t = 0 we have,
€’py = €20(1),

indicating the boundedness of the second derivative of the pressure at initial time.

Once we have been able to bound the time derivatives at initial time, it follows
that the time derivatives are bounded independently of € for all time. Choosing initial
data in this way is called initialization by the bounded derivative principle. For details,
see [8, 9, 10].

By properly initializing our initial data the way we have, Theorem 4 would lead us
to expect that a portion of the fast part of our solution not be excited. In addition, the
fast part of the velocity components should be suppressed by a factor of € more than
the fast part of the pressure component. In fact, by Theorem 4 we know that the fast
part of the velocity will be O{e?), whereas the fast part of the pressure will be O(e).

To solve for the initial value of p, over the entire computational domain, we use an
elliptic PDE solver CGES [4]. Initial boundary conditions are set to be ug = 0, vy = 0,
Po = 0, which is consistent with the fact that each initial function has compact support
over the domain.

Once we have calculated appropriate initial values u,, vy, and pg, we feed them
into the Navier-Stokes equations solver. We calculate results from time ¢ = 0 to time
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t = 0.5. We run the calculations specifying Mach number to be 0.1 (i.e., €2 = .01), and
viscosity coeflicient to be 0.1, The time step At varies with the spatial discretization.

Mathematically, it is only necessary to specify two boundary conditions: one for the
first velocity component u, and one for the second velocity component v. The pressure
component p, on the other hand, satisfies the pressure equation, which assumes a known
velocity field. The pressure equation specifies the change in pressure of a fluid particle
along its trajectory. Therefore, if the particle is leaving the computational domain (as
it does in our examples), its pressure must be calculated as part of the solution, and
cannot be imposed arbitrarily.

Although it is not necessary from a mathematical point of view to specify p on
the computational boundaries, the particular solver that we use makes it necessary,
from a computational point of view, to specify some boundary condition for p. To
this end, we make use of an extra line of “fictitious” grid points just outside our true
computational grid. The equation for the pressure p is applied at the computational
boundary, and then the value of p at the fictitious grid points is extrapolated from the
value of p computed at the line of grid points just inside the computational boundary.
This process for computing p at the boundary is equivalent to specifying that the normal
component of p at the boundary be zero. Thus, the boundary conditions specified for
our calculations are

Upggy = 0
Vpady = 0

6pbddy =0
on

We assert that it is reasonable to specify zero Dirichlet boundary conditions for the
velocity components, since, as we have seen, the velocity decays at least like ¢/r2 in
space. (Note that it would not be reasonable to specify zero boundary conditions for
the pressure, since the pressure induced by a vorticity patch decays only like ¢/r, which
is not rapid enough on a relatively small computational domain.)

One thing we are looking for in our experiments is evidence of the different time
scales involved in the computation of the slightly compressible Navier-Stokes equations.
By Tueorem 4 above, we expect the pressure component still to contain some small
element in the solution that varies on the fast time scale. We will see evidence of these
different time scales in the experiments that follow. Notice especially in experiments
2 and 3 how quickly the fast part of the pressure component spreads over the domain
in time, as compared with the slow spread of the velocity components, in which the
fast part has been well suppressed. The fast part of the pressure is still very small in
magnitude, however.

In each experiment, the parameters listed are specified as follows:

¢ ¢ = (Mach Number)?2 =001 = ¢=0.1.
¢ v =Viscosity Coefficient= 0.1.
¢ Time Interval: ¢ € [0.0,0.5].
e Time Step Size: At = 0.0017.
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Space Step Size: Az = Ay = .05.
Initial Stream Function:

¢ = ae’r,
where

a=1/50; b=-50; r=azx2+y2

¢ Initial Velocity Components:
Uy = —¢, = —2abyed
vg = ¢, = 2abzedr

Initial Pressure: Solve for p given u and v where
' — g2 2
Apy = —u?_ — 2ug, v, — Vo,

For all experiments, we keep the space size of the mesh constant so that the time-step
remains about the same, despite the varying sizes of the physical domain over which
the problem is computed.

For each surface plot presented, the maximum and minimum values of the function
are labeled directly on the plot.

8.2.1. Experiment 1: Flow in a 2x 2 Square. Experiment 1 is computed over
the square (z,y) € [-1...1,~1...1}. In this 2 X 2 square, the mesh is 40 x 40 (i.e., 1600
grid points).

Initial maximum and minimum values are given by:

p:(min,maz) = (~0.197E + 00,0.405E — 03)
u: (min,maz) = (-0.383F + 00,0.383E + 00)
v: (min,max) = (—0.383E + 00,0.383E + 00)

Final maximum and minimum values are given by:

p:{(min,maz) = (-0.367F — 01,0.371E — 02)
u: (min,maz) = (—0.137EF +00,0.137E + 00)
v: (min,maz) = (-0.137E + 00,0.137E + 00)

Figure 8.1 is a surface plot of the initial velocity component u. Figure 8.2 is the surface
plot of velocity component u at time ¢ = 0.5. Figures 8.3 and 8.4, respectively, are the
surface plots of of the initial and final velocity component v. We see that the velocity
“blobs” have diffused somewhat, but that there has not been much convection over
time, The zero boundary conditions for the velocity are seen to be appropriate.

Figures 8.5 through 8.10 are the surface plots of the pressure, from initial pressure
at time ¢ = 0.0, to final pressure at time ¢ = 0.5, with increments of ¢ = 0.1 in between.
The initial pressure “sink” diffuses somewhat, and a small component of pressure is
seen to spread rapidly over the domain through time. A clear pattern of spread is not
yet discernible, so we run the experiment on a larger domain next.
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8.2.2. Experiment 2: Flow in a 4 x 4 Square. Experiment 2 is computed over
the square (z,y) € [~2...2, -2...2]. In this 4 X 4 square, the mesh is 80 x 80 (i.e., 6400
grid points).

Initial maximum and minimum values are given by:

p:(min,maz) = (-0.198F + 00,0.390EF — 03)

u : (min, maz) (—0.383F + 00,0.383E + 00)
v:(min,maez) = (—0.383E + 00,0.383E + 00)

Final maximum and minimum values are given by:

p:(min,maz) = (—0.274F —01,0.837E — 04)
u: (min,maz) = (—0.136E +00,0.136E + 00)
v:(min,maz) = (—0.136E + 00,0.136E + 00)

Figure 8.11 is a surface plot of the initial velocity component u. Figure 8.12 is the surface
plot of velocity component u at time ¢ = 0.5. Figures 8.13 and 8.14, respectively, are the
surface plots of of the initial and final velocity component v. Once again, we see that the
velocity “blobs” have diffused somewhat, but that there has not been much convection
over time. The zero boundary conditions for the velocity are still appropriate.

Figures 8.15 through 8.20 are the surface plots of the pressure, from initial pressure
at time ¢ = 0.0, to final pressure at time ¢ = 0.5, with increments of ¢ = 0.1 in between.
The initial pressure “sink” again diffuses somewhat, even slightly more than on the 2x 2
region. This is because there is not as much reflection of pressure from the boundaries
in this case. Again, a small component of the pressure is seen to spread rapidly over
the domain through time, and a pattern of spread is becoming discernible. We will still
run the experiment on another larger domain.

8.2.3. Experiment 3: Flow in a 8 x 8 Square. Experiment 3 is computed over
the square (z,y) € [—4...4,—4...4]. In this 8 x 8 square, the mesh is 160 X 160 (i.e.,
25600 grid points).

Initial maximum and minimum values are given by:

p:(min,maz) = (-0.198E +00,0.392E — 03)
u: (min,maz) = (—0.383E + 00,0.383E -+ 00)
v:{min,maz) = (—0.383E + 00,0.383F + 00)

Final maximum and minimum values are given by:
p:(min,maz) = (-0.247F —01,0.332E —~ 03)
u: (min,maz) = (-0.136E + 00,0.136E + 00)
v:(min,maz) = (-0.136E + 00,0.136E + 00)
Figure 8.21 is a surface plot of the initial velocity component u. Figure 8.22 is the surface

plot of velocity component u at time ¢t = 0.5. Figures 8.23 and 8.24, respectively, are
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the surface plots of of the initial and final velocity component v. Here, too, we see that
the velocity “blobs” have diffused somewhat, but otherwise there is not much spread of
velocity over the domain. The zero boundary conditions for the velocity continue to be

Figures 8.25 through 8.30 are the surface plots of the pressure, from initial pressure
at time ¢ = 0.0, to final pressure at time ¢ = 0.5, with increments of ¢ = 0.1 in between.
The initial pressure “sink” again diffuses somewhat, at about the same rate as it does
on the 4 x 4 region. A small component of the pressure is seen to spread rapidly over the
domain through time. This is consistent with the assertions of Tueorem 4 of section 7,
and our discussion in section 7.5, where it was predicted that the fast part of the velocity
solution would be reduced to O(e?), but the fast part of the pressure solution would only
be reduced to O(e). A pattern of spread of the small fast part is now more clear. We
observe a circular pressure wave (small in magnitude) spreading out from the pressure
sink.
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Navier—-Stokes Equations, nu=0.1000 , u
t= 000 dt=1.7E-03 Mechf = 1.00E-01

Minw Q,58E+(0 Max= 0.38B+080

Frc. 8.1. Region 2 x 2 - Initial Velocily u, 40 x 40 Mesh

Mavier—Stokes Equations, nu=0.1000 , u
t=  0.50 dt=1,YE-03 Mech# = 1.00BE-01
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Fi1G. 8.22.  Region 8 x 8 - Final Velocily u, 160 x 160 Mesh
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FiG. 8.26.  Regton 8 x 8 - Pressure p, t = 0.1, 160 x 160 Mesh
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Min= ~{0.73E-01 Nax= 0.28E-03
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9. Summary. In this paper, we carried out a mathematical analysis of the decay
rates in space of the solutions of the slightly compressible Navier-Stokes equations.
This was accomplished by decomposing the slightly compressible solutions into a sum of
solutions of incompressible Navier-Stokes equations, and a compressible correction term,
Since the incompressible solutions vary on a slow time scale, and since, with proper
initialization, we can ensure that we do not excite the fast time scale solutions, all decay
rate analysis was done on the slow part of the solutions of the slightly incompressible
flow equations. This technique simplifies the analysis process considerably.

We discovered that if we considered the solutions within a finite time interval, we
could achieve sharper bounds on the space decay rates than otherwise could be achieved
when considering the solutions throughout all time. This is useful in a computational
context, in that, numerically, we always will be calculating our solutions over a finite
time interval. Our theory allows us to determine how large that time interval can
become before the decay rates no longer are valid.

We performed numerical experiments which bore out our assertion that the de-
cay rates for the velocity of the slightly compressible flow are relatively rapid: rapid
enough to allow us to simulate an infinite domain problem over a finite domain without
specifying especially complicated outflow boundary conditions. We showed that the ve-
locity components of slightly compressible flow decay much more rapidly in space than
does the pressure component. Velocity, in fact, will decay to zero at a large enough dis-
tance, whereas the pressure component continues to be relatively large. We determined,
therefore, that reasonable outflow boundary conditions could consist of specifying zero
Dirichlet boundary conditions for both velocity components, and extrapolating the pres-
sure at the boundary.

Were we to increase the size of our computational domain, so as to be able to
determine the solution in the far-field, it was shown analytically that while the velocity
solution would essentially be zero, the pressure solution could be well approximated by
the solution of the wave equation. Inflow boundary data for the pressure in the far-field
could be taken to be those numerical values calculated for the pressure on the outflow
boundary of the near-field.

We plan to continue these numerical experiments in future work. The first step
would involve carrying out the numerical coupling of the slightly compressible Navier-
Stokes equations with the wave equation.
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