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MOTION OF MULTIPLE JUNCTIONS: A LEVEL SET APPROACH

ABSTRACT. A coupled level set method for the motion of multiple junctions is
proposed. The new method extends the “Hamilton—Jacobi” level set forrme-
lation of Osher and Sethian [15]. It retains the feature of tracking fronts by
following level sets and allows the specification of arbitrary velocities on each
front. The diffusion equation is shown to generate curvature dependent motion
and this is used to develop an algorithm to move multiple junctions with cur-
vature dependent speed. Systems of reaction~diffusion equations are shown to
possess inherent properties which prohibit efficient numerical solutions when

applied to curvature dependent motion.
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Fioure 1. Triple junction, with prescribed velocities

1. INTRODUCTION

This article explores algorithms for the motion of multiple junctions. In many
situations, e.g., crystal growth, a material is composed of 3 or more phases. The
interfaces between the phases move according to some law. If the material is a metal
and its grain orientation is different in each region, then an isotropic surface energy
means that the velocity is the mean curvature of the interface. Or the velociiies of
the interfaces may depend on the pair of phases in contact; e.g., a different constant
velocity on each interface, as in Figure 1.

When there are only 2 regions and 1 interface separating them, the “Hamilton-
Jacobi” level set formulation introduced by Osher and Sethian [15] applies. The
resulbing numerical formulation allows fronts to self-intersect, develop singularities,

and change topology. The Osher-Sethian algorithm, if used in Figure 1, would
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produce a boundary between regions that has a non—empty interior; it wounld create
what appears to be a new region. Also the Osher-Sethian formulation uses a
continuous velocity and Figure 1 requires a discontinuous velocity function since
each interface moves at a different rate.

There has been hittle work done on the motion of multiple junctions. Only Taylor
[17] and Bronsard/Reitich [2] address this problem. Bronsard and Reitich propose
a system of reaction—diffusion equations to model the motion of triple junctions.
They show that interfaces in the soluiion to their reaciion—diffusion sysiem move
with a velocity proportional to the curvature of the interface. Taylor’s work is
based on a direct application of Huygens’ Principle and applies only to constant
velocities. Tﬁus, reither method allows arbitrary, physically consistent velocities
to be preseribed.

In section 2 we exploit the link between diffusion and curvature to derive a
method for curvature dependent motion of multiple junctions. These ideas motivate
section 3, in which we extend the Osher-Sethian algorithm to handle Figure 1, and,
in general, multiple junctions with specified, physically consistent velocities.

Our new method has several advantages over those of [17] and [2]. First, it is
eazy to program. Taylor’s approach involves the manipulation of geometric objects.
As the dimension of the problem increases, these objects are increasingly difficult to
manipulate. The interfaces in Figure 1 would be considered the union of small line
segments. In 3 dimensions small planar segments are used. The original Osher—
Sethian algorithm extends immediately to n dimensions, and so does the new one
introduced here. The line segments or planar segments must aiso interact with

each other. At various points a decision must be made to delete or insert segments.
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Visualization of the possible interactions to determine the conditions under which
segments are deleted/inserted is difficult (if not impossible) in higher dimensions.
No such decisions are required with our new method. It retains a key feature of the
level set approach; we simply use a contour plotter to find the front. All interactions
are handled by the underlying PDE,

The reaction—diffusion system possesses a small positive parameter ¢. This pa-
rameter causes difficulties in the numerical solution of the system when ¢ € Az,
where Ag is the spacing on the grid. The difficulties are inherent in the system,
not the numerical method. This is important because such systems are employed
in modeling dendritic crystal growth [11], and the development of the dendrites is
linked to the size of €. The only remedy to the nwmerical problems, which we will

see i section 4, is to take A—E‘“ < 1 which is impractical numerically.

2. DIFrpUsioN GENERATED CURVATURE DEPENDENT MoTION

It is well known that a link exists between curvature and diffusion [13,19]. We
first show how a splitting method applied to a reaction—diffusion equation leads to
an algorithm for propagating interfaces with curvature dependent speed. Then we

apply the method to multiple junctions.

2.1. Splitting a Reaction-Diffusion equation. Consider a splitting method

applied to

1
U = €Ay — Efu(u) {1

wRAPx R R
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where € > { is small. For example, if we have an iterate u", then first solve

ﬁt = eAl (2}
iz, 0) ="
until some time Ty and then solve
1 L3
ur = == fu(u) (3)

(e, 0) = a(z, Ty)

until some time 7, and finally set u"*! = u(z, 7}.). The key question is can (and if so
how do) we choose Ty and T, to get the right solution? A gualitative description of
the solution of (1) is offered in [16]. The solution approaches a piecewise constant
function whose values are the stable zeros of f{u). There are sharp transitions
between the regions in which u is constant, and these interfaces move. If f(u) is
bistable, and the wells are of equal depth, then the velocity of an interface is ex,
where & is the curvature of the interface. This is the case we are inferested in.

The splitting method (2),(3) is attractive because the individual problems are
well understood. We can always describe the qualitative behavior of both problems.
We can write down exact solutions for (2) immediately. The same may be done for
(3) under conditions on the initial data [9].

Suppose fu(u) = u(u + 1){u — 1). The phase plane diagram in Figure 2 clearly
describes the qualitative behavior of (3): Values less than zero are driven towards
—1 and values greater than zero are driven to 1. There are an infinite number of
pairs (T, T;) we may use in our splitting method. However, note thai for 7} large

enough, we can write the solution to (3) down immediately based on the phase
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FIGURE 2. Phase plane for (3} with f,(u) = u® —u

4]

F1cure 3. Circle of curvature at P

plane. For T} = co, we have that if initially u(®,0) < 0, then u(x,00) = —1 and if
u(xz,0) > 0, then u(z, 00} = +1.

So the solution to (3) can be computed rapidly if we take 7} = co. This seems
excessive but note that if we do so, then on the next iteration of the splitting
method (2),(3) the diffusion equation will be applied to piecewise constant injtial
data. Let’s consider the effect of this. For simplicity, we examine the special case
where the initial data is the characteristic function y of a connected domain 2 with
a smooth boundary. At a point P on the boundary (Figure 3), the local geometry

of the boundary is completely determined by the circle of curvatuze there. y has a
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x=0
F1cure 4. Side view of Figure 3 near P

lecal cylindrical symmetry about the center of the circle of curvature at P. Express
the diffusion equation in cylindrical coordinates with origin at €' in Figure 3. Near

P, x depends only the radial coordinate so we find

% - a3

ot RBR\  OR
Loy &y
= Ror T one (4)

This equation kas the form of an advection—diffusion equation in the radial direc-
tion, with advective velocity i;. The initial data for this equation is a step function
as depicted in Figure 4. The advective term will simply propagate the initial data,
preserving its shape. The diffusive term, for this initial data, produces the solution

(assuming that the position of the step is given by z = 0)

%(} —erf (?;:/5))

Observe the effect of both terms on the level set x = 0.5. The velocity of the

propagation is u}t;; that is, the curvature of y at P. The diffusive term does not

affect this level set, as the initial position of the level set {x = 0.5} corresponds to
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2 = 0. Thus, for a short time the level set {x = 0.5} will move with velocity equal
to the curvature.

Note that this argument applies to piecewise constant functions after 2 scaling
and/or translation. This means there is no need to consider specific bistable fy,(u);
it is the relative depths of the wells of f(u) that determines the velocity [16], not the
values attained within the wells. Therefore it is simplest to discard f.(u) completely
and apply diffusion to characteristic functions instead. However, we must still solve
the equivalent of (3); that is, how do we proceed after the characteristic function
has diffused for a short time? Since the level set {x = 0.5} represents the boundary,
the simplest course is to create a new characteristic function whose boundary is the
set {x = 0.5}. We can collect these observations together into a numerical method,

Suppose we want to propagate the boundary of a region D with curvature de-
pendent speed. The Diffusion Generated Curvature Dependent Motion Algorithm
1s:

Algorithm DGCDM:
(1) Initialize: ¥ = xp
(2) Apply diffusion to y for some time Typp
(3) “Sharpen” the diffused function (e.g.,if x < 4 thenset y = 0

else set y = 1) and then begin again.

The location of the interface is given by the level set {x = %}

An important consideration is the size of Tinop. The neglected angular term
in (4) will pollute the approximation at nearby points after some time. We can
make a rough estimate of the time in which the velocity is a good approximation

to curvature. Certainly, we must let the diffusion proceed for a long enough time
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that the level set y = 0.5 moves at least one grid point {otherwise, the chopping
step would keep the front stationary), so we require £Tepop 3 Az. The neglected
angular term will become important once the diffusive information has traveled a
distance on the order of the local radius of curvature, so we need Tc;mpll ‘& R

(recall & = ). Combining these gives

R Tch

R 2
Ae € Aer S (Am)

and so as long as the grid resolves the smallest radius of curvature on the grid,
there are acceptable Topop. Note that during a computation, Tep.p, may be varied
in response to changes in the character of the solution,

This method gives qualitatively correct results. The quantitative results are
also good. We can compute the exact velocity in the case of a circle, becanse
the curvature at any point on a circle of radius r is % Starting with a circle of
radius 0.15, the computed velocity is within 5% of the true velocity while the grid
resolves the radius of the circle (a circle shrinks under this motion, and the grid
1s not adaptive, so we must eventually fail to resolve the curvature). In addition,
it has been shown [1,7,14] that the above algorithm converges to mean curvature
motion in a certain sense. Briefly, Evans defines an operator #(t) as follows: given

a compact set Cp € R", solve

uy = Au

u(mx 0) = X&Co

At time ¢ > 0 define C; = {& : u(z,t} > %} Then we write Cy = H(t)Cy. The

set {H(t)}i>o is described as “heat diffusion flow”. Then the “mean curvature flow
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semigroup” is defined. Through nonlinear semigroup theory, it is proven that
lim M/ /m)"g = M(t)g forge C(B™),{>0

Thus, as the heat equation is iterated over smaller and smaller times, we obtain

motion by mean curvature.

2.2. Multiple Junctions. As stated, the method does not apply to curves with
multiple junctions, but it can be extended in a straightforward way. Any extension
we make should reduce to the original algorithm when there is only one region.
First, observe that for one region R it does not matter if we use yp or 1 — xn
to compute the motion since curvature is invariant under a change of sign. So we
could use two characteristic functions, xg and yge to compute the motion of dR.
We would apply the algorithm to each y independently and at the chopping step
we find the sets {x > 2} and {xge > 1}. Notice that these two sets are equivalent
to the sets yg > xpe and xge > ¥nr, and this guides us when there are more than

two regions to an extension of the DGCDM algorithm:

(1) Given a partition of R™ into regions R;,i=1,...,n
(2} For i = 1,...,n construct y;, the characteristic function of
I

(3) Yori=1,...,n diffuse each x; independently for some time
Tchop
(4) Fori=1,...,nset x; = {2 xi(z) > x;(2),7=1,...,n}
(5) Goto 3
The interfaces are given by {J;; . {xi = 2}. This new algorithm reduces to the

original when there are only two regions.
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xtytz=l

FIGURE b. Stable shape “Y” for update step in which maximum is taken

The choice of the update after each y; is diffused affects the stable triple junctions
that develop. For the above update step, the stable triple junctions are symmetric:
ones whose angies are all 120¢. Initially, and after each update step, the y; form a
partition of R™ and so we see that at these times the vector {x1(2), x2(2),..., xn(2))
is one of the usual basis vectors for R"; e.g., for n = 3 it is one of (0,0, 1), (0,1, 0),
or {1,0,0). The diffusion process is linear and since initially 3" x;(2) = 1, this is
true for all times. Therefore, at each time step, every point on the grid is associated
with a point on the surface Y 7o, #; = 1. This is best visualized in R? see Figure
5,

For n = 3 each point on the grid 1s associated with a vertex of the plane e4y+z =

1 in the first octant. As each y; diffuses, the points move out into the interior of
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Figure 6. Alternative update method has “T” shaped stable configuration

the plane. Taking as the update step the maximum y;, we divide the plane into 3
regions as shown in Figure 5. By choosing a different configuration on the plane,
we can select a different shape, as in Figure 6, which leaves a 90° angle fixed.

Calculations with both corfigurations follow in figures on the next few pages.

2.3. Summary. The idea underlying the DGCDM algorithm, that diffusion gen-
erates curvature, has been known for some time[13,19], and it seems o have been
considered not for computing curvature dependent motion but rather for image
enhancement. Found lacking in this respect, it has not been pursued further. The
DGCDM algorithm is known in image processing technology as an iterated median

filter. In [5], it is noted that “computer vision researchers know quite well that a
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median filter, iterated on a grid, remains steady after some iterations.” It would
seem that the derivation of the appropriate time to run the filter has not been car-
ried out. This “well known” behavier is caused by iterating the filter too rapidly;
i.e., taking Tinep too small, which prevents motion.

The DGCDM algorithm is not limited to curvature dependent motion. By using
a variable coefficient diffusion equation, we can obtain anisotropic velocities. It is
also possible to obtain constant velocities by following different level sets as the
algorithm progresses [14]. Specifically, if we track the level sei % — v;ff;;l/ ? then
the speed of the front will be v -+ ¢x. However, note that by doing this we lose
symmetry in that we may no longer compute with either y or 1 — . If we wish to

Y 2, otherwise the

compute with 1 — x then we must follow the level set % + ”Z:t"r?
level set will move in the opposite direction (refer to Figure 4}. This requirement
prevents the application of this methed te multiple junctions when the velocities
are constant, as will be made clear in the next section.

For configurations on  + y + # = 1 in which the meeting point of the regions is
near the centroid point, triple points in the corresponding computation approach
the same shape as the meeting point. But as the meeting point moves towards
the edges of the plane this is no longer true. The precise connection hetween the

configuration on the plane and the stable angles in the computation has not been

established.

3. A CouprLED (OSHER-SETHIAN METHOD
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Iter. # 0 ¢X= 0.26E—02 dT= 0.50E-04

Her. # 3BC dX= 0.25E—02 dT= 0.50E-C4

Iter. # 780 dX= G.BSE-02 dT= 0.50E-04

Iter. # 1180 dX= 0.26E-02 dT= 0.50E-04

Iter. # 1580 dX= 0.25E—-02 dT= 0.50E-04

Iter. § 1980 dX= 0.25E-~02 dT= 0.50E-04

CONSTANT FIELD ~ VALUE 13 0

Figure 7. Motion of triple junciion under curvature
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Iter. § 0 dX= 0.178-02 dT= 0.25B-05

Iter. # 4000 dX= 0.17E~02 dT= 0.25E-05

15

Iter, § BOOD dX= G.17E-02 dT= 0.26E-0B

Iter. #12000 dX= 0.17E~02 dT= 0.26E-05

iter. §16090 dX= 0.17E—02 dT= 0.25E-05

Iter. #20000 dX= G.17E—02 4T~ 0,25E-05

FigUurg 8. Motion of triple junctions under curvature

k
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Iter. #24000 dX= 0.17E-02 dT= 0,25F--05

Iter. #28000 dX= 0.17E-02 dT= 0.26E-05

Iter. #32000 dX= 0.17E-02 dT= 0.25E-05

Iter. 36000 dX= 0.17E-02 dT= 0,25E-05

N

Iter. #40000 dX= 0.1YE~02 dT= 0.23E-05

lter. 44000 dX= 0.178-02 dT= 0,25E-05

CONSTANT FiEl

- VALUR I5 O

FIGURE 9. Motion of triple junctions under curvature (cont.)
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Ier. 48000 dX= 0,17E-02 dT= 0.2GE-05

lter. #88000 d¥= 0,17E-02 dT= 0.25E-05

— VALUE IS O

CONSTANT FIELD -~ VALUE 15 0

lter. g+ dy= 0.1YE—-023 aT= 0.25E-~05

fter. grer++ dX= 0,17E~02 dT= 0.868-05

— YALUB 15 0

CONSTANT FIELN — VALUE iS 0

Her. frree d¥= 0.17E-02 dT= 0.25R-05

er. gree+* dX= 0.17E-02 d¥= L2SE-05

CONSTANT FIELD - VALUE |8 0

F1eure 10. Motion of triple junctions under curvature {cont.)
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Iter. # 0 dX~= 0.85E—0R dT= 0.508-04

Iter. § RO dX= C.BSE-02 dT= 0.50E-04

\

1/

iter. # 40 ¢X= 0.25E-02 4T= C.50E-04

Iter. § 1230 aX= 0.R6E—0R dT= 0.60E-04

Lter. § 380 dX= 0.25E—-028 d¥= 0.50E--04

Iter. § 600 dX= 0.25E-02 dT= 0.50E~-04

/

Ficure 11. Motion of several regions under curvature
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iter. # 820 dX= 0.25E-02 dT= (.50E-04

Tter. # 1040 dX= 0.R6E~02 dT= 0.50E-04

19

]

Iter. # 1260 dX= 0.25E-02 dT= 0.50E-04

[ter. #§ 1480 dX= 0.25E-02 dT= 0.50E-0D4

Iter. # 1700 dX= 0.25E-02 dT= 0.50E-04

iter. # 1920 dX= 0.258-02 dT= 0.50F-04

Freure 12. Motion of several regions under curvature (cont.)
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Iter. # G dX= 0.R5E--02 dT= 0.50E~06 I[ter. # RB0 dX= 0.BBE-0R 4T= 0.85E-05

\

H

Iter. # :00 dX= (.25E-02 dT= 0.50E-04 Her. # 300 dX= 0.25E-02 dT= 0.50E-04

lter. # 500 dX= 0.25E-02 dT= 0.505-04 lter. § 800 dX= 0.25E-02 d¥= (.50E-04

Froure 13. Motion of spiral with “T” stable shape
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Iter. # 0 dX= 0.R6E—0R 4T= 0.50E-08 Iter. § 388 dX= 0.85E-02 dT= 0.25E-08

21

\

H

fter. # 500 d¥= 0.25E-02 dT= 0.50E-04 fter. # 1000 dX= 0.25E-02 dT= 0.50E-04

lier. § 1500 dX= 0.BSE-02 dT= 0.60E-04 lier. § 2000 dX= 0.25E-02 dT= 0.50F--04

CONSTART FIELD — VALUE 1S 0

FiGure 14, Motion of spiral with “Y” stable shape
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# 0 dX= 0.EOE-G2 dT= 0.560E--08

Iter. § R80 dX= 0.BCE-02 dT= 0.25E-05

T

S \

/

/

W”

Iter. #§ 680 dX= 0.20E-02 dT= 0.25E-05

iter. # 320 d¥= 0.20E-02 dT= 0.25E-04

W

Iter. # 720 dX= 0.20E-0Z dT= 0.25E-04

Ier. § 1120 dX= 0.20E-02 d¥= 0.25F-04

Y

F1aure 15. Motion of double spiral with “Y” stable shape
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Her. § 1520 dX= 0.20E-02 &T= 0.25E-04 Iter. § 1820 dX= 0.20E-02 dT= (.25E-04

/ J

Iter. § 2320 dX= 0.R0E-08 ¢T= 0,255-04 iter. # 2720 dX= 0.20E-0R dT= 0.26E-04
Ier, § 3120 4X= ©.20E—-02 dT= 0.256-04 iter. § 3520 dX= 0.20E-02 dT= 0.25E-04

FI1GURE 16. Motion of double spiral with “Y” stable shape
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3.1. Original Osher—Sethian. The original Osher-Sethian algorithm [15] is as

follows: given an initial hypersurface I'y, ¢hoose a continuous 1 : R™ — R such that
Top = {z € R": () = 0}
then solve

¢y = F|V4| (5)

¢z, 0) =19

and define

I')={z: ¢(e,t) =0}

The normal velocity of I'(t) is given by F'. It has been proven [4,8] that if F =«
then the above definition of T'{t) agrees with the classical notion of motion by mean
curvature, as long as it exists. It has also been shown that any continuous 3 may
be used; a typical choice is distance to T'y:

dist{z,I'g) if 2 “inside” Ty

P(a) =
—dist(e,Ty) if 2 “outside” I'y

We use this initialization for all our computations.

This approach is very appealing because of the ease with which it handles difficult
numerical situations — topological merging, breaking, etc. No special action need
be taken in the event of such topological changes; a contour plotter finds I'(2) as
14 evolves. It does however require that there be no more than 2 distinct regions
involved. That is, there must be an “inside” and an “outside” which the interface

separates. If this is not true, then we cannot choose an appropriate 1 as above.




v>0 y<0
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v <0 y >0

1
|
|
1
|
|
|
|
|
|
|
|
- ol - — -

FigurE 17. Development of an Interior

As an example, consider the initial data in Figure 17. Suppose we cheose 4 to
be distance, having the sign indicated in the figure. The Osher-Sethian algorithm
produces a I'(¢) as on the right. We see that I'(¢) develops an interior, which we do

not want, So as described Osher—Sethian doesn’t apply to triple junctions.

3.2. Coupling. It seems reasonable that we could assign each region a separate
function ¢; and then evolve with Osher—Sethian. There are 2 approaches we might
take initially. First, we could write down a system of coupled Hamilton—Jacobi
equations for the ¢;. Second, we could evolve each ¢; independently according to
the original Osher—Sethian idea, and then periodically inferact the values of the ¢;
in some way, as was done for the Diffusion Generated Curvature Dependent Motion
algorithm.

The first approach was not successful.

The second method requires us to decide how the ¢; should interact, At the very

least, any interaction we choose must not move the initial configuration in Figure
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/

Frgurg 18. Deriving the interaction step

18 when the velocity is proportional to the curvature. We use this fact as a guide
in deciding upon an interaction step for the ¢;.

If we apply Osher—Sethian to each individual ¢; in the picture on the left in
Figure 18, then after a time the boundaries will look like the picture on the right in
the same figure. Near the edges where the individual houndaries nearly touch, we
have that some pair of ¢; are nearly equal, while the remaining ¢ is much smaller,
For example, near point A, we have ¢1 =~ ¢4, and we are far from the boundary of
@3 50 ¢ is much smaller than either ¢ or ¢5. The same is true at points B and C,
where ¢y &3 @3, and §1 & ¢a, respectively. The dotted line represents the original
positions of the zero level sets, and we would like these to be the zero level sets
after the interaction is complete. Along the dotted line, we have ¢: = ¢y near A,
$1 = ¢3 near C, and ¢» = ¢3 near B because each ¢; represents distance from the

zero level set. Therefore a correct interaction in this case would be

¢i = ¢ — max ¢; (6)
1E]
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This forces each ¢; o have the zero level set that it staried with, which holds the
triple point in place.
So the numerical method is
Algorithm A:
(1) For each of n regions, initialize ¢;, 7 = 1,..., n with distance
to the boundary of the i** region.
(2) Solve (5) with ¢;,i=1,...,7n as initial data up to time T™.

(3) For i =1,...,n, compule
# = ¢ — max;
i

(4) Fori=1,...,n, set ¢; = gPev
(6) Return to step 2.

We retain the generality of the original Osher—Sethian method in that we may
easily specify the velocity of the level sets. The previous methods can theoretically
he modified to provide different velocities, but the procedure is not direct, as the
Osher—Sethian method is. Also, no errors are made in specifving T*. That is, the
DGCDM algerithm relies on an approximation whose accuracy is controlled by the

choice of Typop, whereas (5) actually moves level sets with with normal velocity F.

3.3. Degenerate Level Sets. Algorithm A has a side effect. It is clearly seen
by considering an example. Look at Figure 19 in which the initial configuration is
shown on the left. After 23 s'teps of Algorithm A, the picture on the right results.
There appears to be some kind of instabilify in the algorithm. The problem is
that although (6) correctly locates the zero level seis of the ¢;, it also changes the

character of each ¢; near the zero level set.
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Iter. # 0 dX= 060802 dT= 0.26E-D6 Her. £ 4600 dX= 0HOE—02 dT= 0 25R-NA

FiGure 19. Applying Algorithm A

Freure 20. Figure 19, with ¢; marked
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Constder ¢4 in Figure 20, Since ¢4 represents the exterior of the shape, ¢, is
a cone. We have ¢y < 0 within the circle, ¢4 > 0 outside the civcle. When we
apply (8) to ¢4, we subtract larger values from ¢4 at points A, B, C than at points
D,E,F. In fact, at D, E, F we have maxi<jca¢: = 0 while at A, B, we have
max)cicaPs > 0 since each peint is within a region where some ¢; > 0. The
unintended effect of (6) is to create new local extrema in ¢q4.

The cumulative effect of Algorithm A is to create a level set in ¢4 that is shaped
like the original figure. This level set is very close to the zero level seti of ¢4. Thus,
¢4 eventually acquires a level set similar to that in Figure 17, and Osher—Sethian
no longer applies.

We can avoid this problem by observing that we do not have to set ¢; = ¢7** in
the algorithm. Instead, all we need to do is set ¢; equal to a continueus function
whose zero level set coincides with that of ¢7¢*. The simplest such furction is
again distance. That is, we replace ¢; = ¢P** in algorithm A by

(1 Fori=1,...,n
« (Generate a discrete representation of the zero level set
of ¢Pev.
o for each point on the grid, compute the distance to the
zero level set using the above representation.

e set ¢; equal to the computed distance
With this new algorithm, the initial data in Figure 19 evolves as in Figure 21.
3.4. Constant Velocities. The choice of curvature as velocity is a special one

because the curvature of ¢ is equal to the curvature of —¢. Therefore it does not

matier which sign of ¢ we choose to denote the “inner” region. Se in the case of a
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Iter. § 0 dX= .28E~02 dT= 0.23E-08

fter. # 2500 dX= 0.80E~08 dT= {.26E~06

Her. # 5100 dX= 0.98E-02 dT= 0.25E-06

lier. § 7700 dX= 0.88E-02 dT= 0.25E-06

Iter. #10300 dX= 0.88E—-02 dT= {,25E-06

Iter. #:2000 dX= 0.88E-02 dT= {28FR--06

0

FIGURE 21. Evolution under new algorithm
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lter. # 0 dX= 0.98E-02 dT= 0.26E-06

iter. # 1400 ¢X= 0.98E--02 dT= 0,35E--06

31

Iter. § 2900 dX~ 0.98E~08 dT= 0.25E-06

Iter. # 5900 dX= $.98E-02 dT= 0.26E--086

Iter. # 8900 dX= 0.96E-0R dT= C.25E-08

Iter. #11800 dX= 0.98E-02 d4T= 0.25E-06

Ficure 22. Evolution under new algorithm
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3

N

21 ¢, >0

~
(o8]

FIGURE 23. ¢ requires a discontinuous velocity function

circle shrinking under its curvature, we may use either ¢ < 0 or ¢ > 0 inside the
circle and the computed motion is the same.

This is not true for general velocities. If we substitute -¢ into (5), then we must
have F(—¢) = —F(¢) for (5} to be invariant under the substitution. In particular,
if the velecity is a posiiive constant, then a circle will expand if ¢ > ¢ within the
circle, and shrink if ¢ < 0 there. So, for example, if we want to use the method of
the previcus section to propagate a line at a constant velocity ¢ we need ¢; and ¢a,
one for each side of the line, and we must use Iy = ¢ for ¢4 and Iy = —c for ¢;
when solving (5). Otherwise, the zero level sets will move in opposite directions;
the update step will not produce the correct position of the line.

Now suppose we want to assign constant velocities to each of the arms of a triple
junction (see fig. 23). Since the velocities are usually unequal we immediately see
that we must use a discontinuous F; for each ¢;. In addition there is the question of

liow to implement the transition from one velocity to the next at the triple junction.




MOTION OF MULTIPLE JUNCTIONS: A LEVEL SET APPRCACH 33

A discontinuous F in (5) produces a discontinuous ¢. The original Osher-Sethian
algorithm expects a continuocus velocity. But we can still apply algerithm B becanse
of the reconstructive step introduced in the previous section. Any discontinuities
introduced in ¢ will be eliminated when we reinitialize it. We need merely choose
an implementation for a discontinuous F; e.g., for Figure 23 we can solve (5) with

a1 if ¢y < @3
Fo=

ez i g <y
as the velocity function for ¢3. The dotted line represents the position at which
¢1 — ¢3; this is the line along which Fy is discontinuous.

In general, the velocity for ¢; depends on the relative sizes of the remaining ¢:

F; = Py if ¢; greater than all other ¢

The motion of triple junctions under constant velocities has been studied by
Taylor [17]. She develops a method which is an expression of Huygens’ Principle.
Consider Figure 24. For the initial configuration on the left, Taylor proceeds by
constructing a representation of the position of the front at time ¢t. Each represen-
tation is constructed independently of the others by first translating the i** arm
by a distance v;t and then extending the translation into a circle of radius v;t, as
shown in the figure. Then for each pair of regions a point that represents the mest-
ing of the regions after time ¢ has elapsed is found. If the velocities are consistent
there will be & common point after each pair of regions is examined. The construe- -
tion of these points follows the idea that the maximal intrusion wins. That is, of

the possible candidates for the meeting point, the one that represents the greatest
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/

N\

Fieure 24. Applying Huygens’ Principle

penetration of the faster phase is the point chosen. But this is precisely what (6),
the update step, expresses. Our computations agree with the hand drawn results
of Taylor’s algorithm [17]. Figure 25 shows a computation corresponding to Figure
24; iteration 600 is in close agreement with Figure 24. Other computations follow
on succeeding pages. The prescribed velocities for the computations are given in
Table L.

Taylor also claims that certain velocities de not produce a well posed problem.
One such situation is when all velocities are equal and {counter)clockwise. We may
still attempt a computation in this case, and we find that a spiral develops {Figure
28). The computation may not proceed farther for the spiral will tighten beyond
the resolution of the grid. The resulting figure is interesting and further study is

needed to understand how perturbations of the velocities would affect the formation
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TaBLE 1.

1
1
. |
Figure 25
!
12
1
Figure 26
1
1
Figure 27 1

Assigned velocities for Figures 25,26 27

35
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Iier. # 0 dX= 098802 dT= 0,108-03

Her. # 600 dX= 0.98E-02 dT= 0.10E-03

/

/

Iter. § 1200 dX= 0.98E~02 dT= 0.10E-03

fler. # 1800 dX= 0.28F--02 4AT= 0,108-03

Her. # 2400 dX= (.9BE-D2 47= 0.10B-03

lter. # 2808 dX= 0.88E-02 d7= 0,10B-03

Figure 25. Lvolution under new algorithm
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lter. # 0 d¥= 0.98E-02 dT= 0.iQ0E-03 Tter, # 600 dX= 0.98E-02 dT= 0.10E-03

37

i
(

/

Iter. # 1200 dX= 0.98E-0R dT= 0.10E-03 Ier. # 1800 dX= 9.9BE-02 dT= 0.10E-03

Tter. § 2400 dX= 0.88E~02 dT= 0.10E~03 Iier. # 26800 dX= 0.98E-02 dT= 0,108-03

/

Frgure 26. Evolution under new algorithm
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Her. # 0 dX= 0.98E-02 dT= 0.10E—~03 Iter. # 800 dX= 0.98E-02 dT= 0.10E—03

/

/

Her. # 1280 dX= 0.90E-02 dT= 0.10E-063 Lier. # 1800 dX= 0,98E-02 4T= 0.10E-03

[ter. # 2400 d¥= 0.98E-02 4T= 0.10E-03 Iter. # 2800 d¥= 0,98E-02 4T= 0.10E-Q3

Flraurge 27. Evolution under new algorithm
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lter. # 200 dX= 0.26F-02 di= 0.10E-03

/

FiGure 28. Development of a spiral

of the spiral.

4. SYSTEMS OF REACTION-DIFFUSION EQUATIONS

Recently attention has been given to fast reaction, slow diffusion equations as a
means of moving fronts or as part of a system describing dynamical behavior (e.g.,

crystal growth, see [11]). An example of this type of equation in one dimension is

uy = Ay — %fu(u) (7

where € > ) is a small parameter.

In section 4.1, we examine a system of reaction-diffusion equations proposed
to model friple junctions. Some computational difficulties are noted, and then in
section 4.3 we study equation 7 with various initial data to gain insight into the

nuimerical problems with a system of such equations.
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4.1. A Proposed Model. Bronsard and Reitich [2] propose the following model

for the study of triple junctions:

1
up = eAu— EVUW’(u) (8)
on R CR"

B xRT e R™

Boundary conditions are of Dirichlet or homogeneous Neumann type. Here, W :
R™ — I is a non-negative function which has 3 minima @,5, ¢, at which W = 0.
An example is W(#@) = |& — @2|# — 2§ — é2. W is a “triple well potential”; it
has three wells, one for each phase. A contour plot of the example W above with
selected wells is shown in Figure 29. Sample initial data for @(z,t) in the case of
Figure 1 is shown in Figure 30.

Bronsard and Reitich suggest via formal asymptotics that @(2,t) separates 2
into 3 regions in which i a &b, &, that there is a sharp transition layer between
each region, and that each tramsition layer moves with normal velocity ¢x. They
also derive an expression which determines the angles at which the interfaces meet

at the triple junction:

sin(fy)  sin(fy)  sin{fz)
Pba T Pie = Pea (9)

Here, &Y represents the energy required to malke the transition from phase z to
phase y. Each @ is the solution of a minimization problem involving an integral of
W (u); the minimization is over all ¢ paths in R™ connecting two minima of W.
The key observation for our purposes here is that if W(u) is symmetric then all

@%¥ are equal and hence we must have 0; = @y = 85 = 120°.




Triple Well Potential

W (@) = i — || — ) ?|E — @.|*

e, = {0,0)
Hy = (I, 0)
i, = {0,1)

Ficure 29. Contours of W (@)
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First compenent of u(x,0)

Second component of u(x,0)

Ficure 30. Initial data for eq. (8), Figure 1
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Thus, if we choose

a= (cos(g-), Sin(%))

o 1w, . 1l
b= (cos(wﬁﬂ),sm(—"ﬁ— )

- Wr, . 197
€= (COS(_I_.'Z—)’Sm(E—))

with the example W given earlier, then all angles are equal to 120°.
Equation (8) consists of competing processes: the diffusive term will widen the
transition regions, while the reactive term will narrow them. The interfaces will

move when points are able 10 make the transition from one minimum to another.

4.2. Computations. The grid chosen was Q = [-0.1,0.1] x [~0.1,0.1]; the dis-
cretization is uniform in both directions. A smaller 2 was chosen to achieve smaller
stepsizes, arnd also to focus attention on the motion of the junction. The velocities
here are small; a focused grid shortens the time required to make a computation.
We use a basic b point discretization of the laplacian, and the explicit Euler method
in fime, No special discretization is needed for W.

Boundary cenditions will affect the motion of the triple point. If we use homo-
geneous Neumann conditions, then curvature will be introduced at the boundary
since the mitial interfaces typically do not satisfy the boundary conditions. If we
use Dirichlet conditions and the velocities are constants, then the interfaces will
be unable to move along the boundary. In most of our experiments we will use
homogeneous Neumtann conditions. This allows the interfaces to move along the
boundary when the velocities are constants. Also, there is still a {ime interval in

which the motion of the triple point is not corrupted by the boundary-generated
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curvature.

Our first experiment verifies a steady state solution from earlier sections. Dirich-
let boundary conditions are used. For initial data, we used Figure 30; the initial
angles at the triple point are 120°. Since the curvature along each arm is zero and
the triple junction initially satisfies equation (9), we do not expect any motion.
This is indeed the case for the coarsest grid and largest €: (&5, 155) as well as the
finest grid and smallest €: {1953, 1053

The next experiment starts with angles that are out of equilibrium. Here we use
Az = . The angles each initial interface makes with the z-axis are 180°, 30°,
and 315°. Intuition suggests that the initial direction of the triple junction’s motion
should be in the direction of the vector sum of the interfaces’ initial meeting. This
is also the case, as the triple point moves down and to the right. It continues down
and eventually moves off the grid.

Now we set ¢ = 0.0005, and repeat the above computation. In this case, we
expect that the motion should be slower, but we actually cbserve that the motion
terminates. Calculations are carried out in double precision, and a nen—constant
steady state solution of equation (8) is obtained in which all 3 interfaces clearly

possess non-zero curvature, in violation of the theory.

4.3. A Study of 1 Reaction-Diffusion Equation. In an attempt to better un-
derstand the behavior of the numerical sclution of {(8), we study a simpler problem
first. In this section, we examine in detail a single equation: (7), with f, = u® —u.
For certain initial data, an exact solution may be found to which we may compare

our computations.
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Figure 31. Types of initial data

4.3.1, Numerical Ezperiments. For numerical experiments, we have f,(u) = (u +
1)(u)(u — 1). The computational grid is @ = [—§, §] x {~3, ]. We use a larger
here because we can compute an exact solution below in which the interface will
move quickly and we want to study its motion over a longer time than would be
possible with the {2 of section 4.2. We worked with 3 different types of initial data
— a single circle, two disjoint circles, and two overlapping circles {see Figure 31).
The initial data assumes the values in the regions indicated. We began by

employing a straightforward discretization of (7):

n €At o Az I
u%ﬂ =uf; + oz [A+A_ 4 AiA“i] ug; ?fu(u?j) (10}

From [3], we know that the velocity is, up to O(e?), ex, where & is the curvature of
the interface. The qualitative behavior of regions like the initial data in Figure 31
under this flow is well understood [10]. The regions in which » & 1 should shrink
and eventually vanish, leaving « = —1 throughout 2.

Our emphasis is on the case of a single circle, for if we let 7(2) denocte the radius
of the circle at time ¢, and let rg = »(0) denote the initial radius, then % = —er~ 1

and so r(t) = rg - 26t Thus we can compare hoth the computed velocity and
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Initial Data

N 7

250

200

150

100

30

50 100 150 200 250
Space Step: 1.672-03

FIGUure 32. Initial data with complicated geometry
position of the interface with the exact values. The position of the interface is
determined by linear interpolation and the velocity is approximated by a central
difference of the interface position.

We chose € = 0.01, At = 0.00005, Az = %, lﬁ, 2—(1)5 and computed the solution
until it was constant. We found that for Ar = g% the solution never became
constant; instead it reached a non-constant steady state, which simply should not
happen. This occurred for each of the initial configurations shown in Figure 31.

Three questions come to mind: first, does this behavior (particularly the frozen
profile} persist for smaller €7 Second, does this behavior persist for more compli-
cated geometries (e.g., Figure 32)7 Third, does this behavior persist for other finite
difference methods? The answer to these questions is yes.

A variety of alternative methods were employed to solve (7). Table II lists the

approaches used in the space and time variables. The terms “b pt” and “9 pt”

refer to the number of points used to discretize the Lapiacian. The “G pt” stencil is
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TABLE II. Methods used to solve {7)

Space Time Accuracy |
5 pt Forward Euler (2,1)
9 pt Forward Euler (2,1)
5 pt Heun’s Method | (2,2)
9 pt Heun’s Method (4,2)
Implicit (5 pt) Forward BEuler (2,1)
Implicit (9 pt) Forward Euler {4,1)
Implicit NL-SOR. (5 pt) | Forward Euler (2,1
Implicit NL-SOR (9 pt) | Forward Euler {4,1)

the usual 4** order accurate approximation. The discretizations are explicit except
where noted. The first entry in the fable is just (10). The NL-SOR method is an
implicit, non-linear, successive over-relaxation scheme, which is described in detail

below.

4.3.2. Implicit NL-SOR. Treating the laplacian in (7) implicitly is easily accom-
plished by a variety of methods. Hewever, it is passible to include the reaction term
Bty (uf;) in the implicit formulation.

This gives rise to a system of non-linear equations to solve at each time step.

The system has the form

At
u%+1 — eAt {g(n + i, AL s l:&y:t)] i + Tfu(ug‘_*_l} = UZ (11)

where g(n, A%, AY) is some approximation to the laplacian at time level n. We
then solve (11) via the following (assuming that g(n, AT, A%} is the 5 point ap-

proximation to the Laplacian):

(1} Let vg-}) =ul, seb k = 0.
(2) Forj=1,... ,N
Fori=1,... N

Solve
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€At rep1 1 r At
o (550 o5 ol ol - ] + ~ ful2) =y (12)

for z, and set

UE:H) ={1- w)vg-c) +wz (13)

(3) Compute the residual of (12), call this r.

(4) If r < TOL, then take ujj* = vgc"'l) else k = £ + 1 and return to (2).

The solution of the non-linear equation (12} is accomplished via Newton’s method

(%),

with an initial guess 2 = v; i ; typically 2 iterations suffice. With this method, much

larger time steps may be taken; for figures 33 through 35, we used At = %5.

4.3.3. Resulls. I{ turns out that the behavior of the interface is highly dependent

Ax

upon the relative values of Aw and . For =% near 2.0, the interface did not move at

all after a short time in all 3 cases. It was not until -éf‘l came near 0.5 that correct
motion was observed.

Figs. 33,34,35 show the computed interface position and exact position for ¢ =
0.01, Al = 0.01, Az = &, 53, 54 and the NL-SOR method. Figs. 33,34,35 show

the corresponding computed and exact velocity,

-

Note the case where 9;_ = 2.0 (Figure 33}; the interface has stopped moviag,

which 1s qualitatively incorrect. The other cases, %3’— = 1.0 and 0.5, are much
better. (An explanation of the oscillatory nature of the computed vélocity is given
in section 4.4) Most disturbing, however, is (Figure 34). Here the front behaves

qualitatively as we expect, but the velocity is off by fairly large margin. It is a

cause for concern because we cannot tell, in a situation where we do not know the
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Front Pesition: Computed (dash) Exact (solid)

>
N
A

0.2

0.15

0.1

0.05

deltaX/eps: 2 Time

Speed comparison; eps: 0.0025
0.25 T T T " T T T T

0.1} =

0.05 & —

o 1 2 3 4 5 6 7 8

deltaX/eps: 2 Time

Fraurg 33. Position and Velocity comparisons, [
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Front Position: Cemputed (dash) Exact (solid)

0 L 1 1 1 1 4 1 i
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
deltaX/eps: 1 Time
Speed comparison; eps: 0.065
0-25 T T T T T T H T

0.2

0.1

0.05

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

deltaX/eps: 1 Time

FicUrE 34. Position and Velocily comparisons, IT
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Front Positien: Computed (dash) Exact (solid)

o
]
Lh

0.2

0.1

0.05

0 i 1 A 1
0 0.5 1 1.5 2 2.5
deltaX/eps: .5 Time
Speed comparison; eps: 0.01
0.25 T T T T

0.2

0.15

0.1

0.05

O 0.5 1 1.5 2 2.5

deltaX/eps: .5 Time

Fircure 35. Position and Velocity comparisons, I
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correct qualitative behavior, if the velocity is correct. Yet the incorrect velocities
may persist beyond the point of feasible grid refinement.

We have not included pictures for smaller ¢ because they yield no new informa-
tion; they are essentially the same. The frozen profile occurs for —Ae—x =2 2.0 in both

of the other initial configurations, and for more complicated geometries (Figure 32).

4.4. Discussion. It is convenient for the following discussion to write (7) as

T, = eAT — %R(T) (14)

where T(x,t) and R{T} are interpreted as temperature and reaction rate, respec-

tively. Now consider a semi—discrete approximation to (14)

013y € - 11
5T Ao [ARAL 4 ALALT, - ~R(T) (15)

This approximation yields a simple intuition. The idea is that (15) describes a
physical system which is a grid of “fuel elements” connected by thermal conductors
(see Figure 36).

Each “fuel element” (gridpoint) has a temperature T;;. We think of the interfaces
that develop as “burning” fronts which separate “hot” points {points near one of
the stable zeros of R(I")) from “cold” points (points near the other stable zero
of R(T)). Points within the interface are “igniting” (making the transition from
“cold” to “hot”).

Within this framework we can reformulate our basic question: why do we obtain
frozen profiles? A frozen profile in the langnage above is a “fire” which has stopped
“burning”. That is, “fuel elements” are no longer “igniting”, even when they are

near points already “burning”. Consider the most extreme case, where a “cold”
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FraurEg 36. Grid for intuition

element is completely surrounded by “hot” neighbors. Let Thot and Th,g denote
the stable points of R(T), so that T}, > Thoa.

The “cold” center point receives heat via conduction along the thermal condue-
tors (gridlines). This is the contribution of the term €eAT'. The maximum rate at

which heat comes in is, using {15),

4e
W(Thot - Tcofd) (16)

If the reaction, +R(T), can absorb heat at this rate (or faster) then the center
point will not “ignite”. Comparing these two expressions would give a relationship
between ¢ and Az to avoid freezing in this case. However, we can make a more gen-
eral statement. Note that our intuitive approach relies only upon the reaction R(T)
and heat conductivity along the grid. Boundary conditions, time discretization, ete.

play no role in producing the frozen profile. Consider a general discretization of



54 BARRY MERRIMAN, JAMES K. BENCE, AND STANLEY J. OSHER
(M-

s _, 37 Kap(Th ~ Ta) - %R(Ta) (17)

ot feqd

where Kqp > 0 and {T,}aece are values on a grid G. Make the following

Assumption 1 {Maximum Principle). If the initial and boundary data for (17)

satisfy Toora < Ta({]) < Thot, then Thorg < Ta(t) < Thot fort > 0.

This is not unreasonable. For discretizations like (17} the principle would have
to be violated at the boundary first, which reasonably discretized Neumann or
Dirichlet conditions will not do.

Now we can show that if conduction is too weak, frozen profiles appear:

Theorem 1. Assume the mazimum principle holds and assume the initial date
takes on only the values Tho and Toorg. Then no Ty will ever cross the threshold

value T, if

maxyr,,,, <7<, ~R(T)

; 1 (18)
€ pea Kap(Tp — To)
in Lr(T
]n11np05T§Th.,f LR(T)| > 1 (19)
€ ZﬁeG’ Kep(Tp — Ta)
Proof
Consider a point T, such that T = T,oq. Then
aT, . 1
—-8—:1 = ¢ Z Ao.ﬁ(T’@ - Ta) - *E"R(Ta) (20)
feG
1
S € Z Kvaﬁ(f};oi A Tca!d) - ER(TQ) (21)
BEG

by the maximum principle.
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Now, if the right hand side of this inequality is negative at some Tj satisfying
Teota € Ty < T,, then T,(t), which has Ty (0) = T4, can never exceed T, But

this is the same as saying

|

and this is just {18).
The other condition follows from considering a point Ty such that To(0) = Thpe
and looking for a positive right hand side to the inequality obtained from the

maximum principle, [

Now we can apply Theorem 1 to (10). Here Kop = i, and solving the condi-

tions (18), (18) for £2 we obtain

Az > \/ 4(T}mt - Tcafd)

ma‘XTco!d LT LT R(T)

_'/:\_:_E_ > 4(Th0t - Tcofd)
€ |mi1]Tcnltl £T<LTo R(T)I
For the choice of R(T) in our numerical experiments, Tho; = 1, Teora = —1, and

with T, = 0, the above expressions are identical, giving

Ax | 42)
T > Q/T\/§ 4.5 (22)

as the condition for frozen profiles. As we noted in section 4.3.1, the critical ratio
is 2.0 so the above estimate is off by a significant amount.
The explanation is that the theorem takes a worst case approach. It describes

the ratio for which motion cannot possibly occur, regardless of the configuration of
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F'raurg 37. Extreme case for freezing

the initial data. Intuitively, different initial configurations lead to different freezing
ratios, One would suspect that it is less likely that a single “hot” point with “cold”
points on all 4 sides (Figure 37) will freeze than the same point with “cold” points
on only two sides. The motivation is that the center point will receive more “heat”
in the former case. This is borne out via numerical experiments.

For the initial data in Figure 37, the computed freezing ratio is 4.0, which is
much closer to that predicted by the theorem.

As an aside, we see that the oscillation in the computed velocities in Figs.
33,34,35 1s expected. The interface moves in a jerky fashion, the reaction term
pulling values toward Th, and 7.,z and the diffusion term spreading them out,
The initially sharp front spreads, becoming less sharp, and then the reaction term
“snaps” points back to the stable values. So motion of the front will occur only if
enough heat is conducted so that a point can get close enough to the other stable

state so that the reaction term pulls it in.

4.5. Summary of Reaction—-Diffusion approach. Using a reaction—diffusion

equation is an attractive idea in that curvature dependent motion can be calculated
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without the need for compuiing a numerical approximation to the curvature itself,

In two dimensions, the curvature of ¢(z, y) can be expressed as

¢zw¢§ - 2¢a:y¢x¢y -+ bey@l’f;

 + 627 2
and in 3 dimensions the Gaussian curvature is
‘?Samr ¢zy ¢mz
1
@48y + 2y o b b b (24)
¢zz‘ qbzy ¢2.z

with the expresston for mean curvature no more tractable. The denominators above
can be difficult to deal with numerically. There is also the issue of which discretiza-
tions to use for the needed derivatives. Avoiding the approximations of (23),(24)
is desirable, aside from computation time saved.

However, there is an inherent problem in the numerical solution of these reaction—
diffusion equations: the grid must resolve the width of the transition region. More
unsettling is the example of section 4.2, which showed that a significant error is
made even if %ﬁ 2 1. ¥or our problem, %3"— < 1 is vequired, and the computational
expense therein implies that we must employ other methods.

It should be noted that detailed studies of spurious solutions to nonlinear dif-
ferential equations were conducted in [8,18]. The emphasis in [18] is on computing
steady state solutions to ODEs and PDEs containing nonlinear source terms via
iteration in time. They show that a spatial discretization can produce spurious
steady state solutions even when the original equation has only one steady solu-
tion, even when used with linear multistep methods in time. They also note the

misconception that simply taking a smaller time step will alleviate the problems.
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Our equation does possess a steady sfate solution for particular initial data, but
none of the examples we have computed fall into that class. Therefore, our results
are different though clearly related. The work in [6] considers a more general prob-
lem and shows that insufficient spatial resolution can yield smooth spurious steady

solutions.

5. SUMMARY

This work began because of the amasging pictures of [11,12]; see Figure 39. The
system solved there possesses an equation like (7), and our experiments suggest that
a basic finite difference method on a regular grid (as was used in [11, 12]) provides
an inadequate solution unless one takes Az < ¢, which is impractical numerically.
More problematic is that the system of equations is intended to model dendritic
crystal growth, and the size of ¢ affects the development of the dendrites. To
correctly capture the dendrite growth for small ¢ with a fast reaction, slow diffusion
equation is numerically infeasible. The analysis of section 4.4 shows that this is
unavoidable and purely a result of the numerical method used. These results suggest
that coupling the Osher-Sethian algorithm to equations describing the phenomena
in [E1,12] is the best approach mumerically.

There are several areas requiring further investigation. First, is there a more
efficient way to perform the re-initialization step of section 3.37 Osher, Smereka,
and Sussman are currently implementing a method that avoids explicit location
of the zero level set. They solve a PDE whose solution converges to the distance
funcéion used in initializing the method. This has the advantages of being faster

and applicable more frequently than the chopping step, so that discontinuities do
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ter. § 0 dX= 0.26E-02 dT= 0.108-03 Her. # 200 dX= 0.B5E—02 dT= ¢10E--03

/ /

Fiaure 38. Tightening spiral; velocities equal, all clockwise

not develop as rapidly. Under the current algorithm discontinuities develop and are
then removed. Second, the behavior of a triple junction as the velocities approach
the same magnitude and clockwise orientation is unclear. As noted in section 3,
if the velocities are set in this manner, we find after the first update step that we
have a spiral (see Figure 38). The triple point has reformed at the center of the
spiral, and if we were to continue the computation the spiral would wind up further,
beyond the resolution of the grid. This phenomenon needs to be understood. Third,
what other stable shapes might we discover if a different update step were taken?
Rather than using

$i = ¢; — maxg;
J#d

we might imitate the alternative chopping schemes of the diffusion algorithm in
section 2.2, by using some convex combination of the surrounding ¢; rather than
the maximum. Fourth, the connection between the shape on the plane z-+y-+2 = 1

and the stable shape exhibited in computations by the diffusion algorithm needs
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to be clarified. Finally, the DGCDM algorithm may lead to method for computing
convex hulls. Given a set S, set the diffusion coefficient I on that set to be 0,
and start diffusion generated meotion on some large ball containing S. The ball will
collapse down onto the D) = 0 set, and equilibrate at its convex hull.

There are currently only two algorithms for moving multiple junctions. Each
method has limitations which our new method does not. Qur method handles
general velocities directly and easily; the others either do not or require lengthy
asymiptotics to do so. There are no numerical difficulties, as in the reaction—diffusion
system and the method is easy to implement in many dimensions. The Coupled
Osher-Sethian Method is a powerful new tool for moving multiple junctions. The
one advantage of the reaction—diffusion system propossd by {2] is in the area of
analysis. Their approach may provide an avenue for understanding the theory

behind the motion of multiple junctions, whereas ours will efficiently compute it.
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FIGURE 39. Intriguing slide from {11}
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