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FINITE VOLUME METHODS WITH LOCAL REFINEMENT FOR
CONVECTION-DIFFUSION PROBLEMS

R. D. LAZAROV, 1. D. MISHEV, AND P. 5. VASSILEVSKI

ABsTrACT. Based on approximation of the balance relation for convection-diffusion
problems, finite difference schemes on rectangular locally refined grids are derived
and studied. A priori estimates and error bounds in discrete H'-norm are provided.
Numerical examples demonstrating the accuracy of the schemes for a variety of
model convection-diffusion problems are presented and discussed.

1. INTRODUCTION

The finite volume method (also called control volume or balance method) has been
used in many applications as a systematic approach for effective discretization of
conservation law equations (cf., e.g. Patankar and Spalding [13] for fluid flows). Pi-
oneering work in this area for one-dimensional elliptic and parabolic equations with
piece-wise smooth coefficients has been done by Samarskii in the early 60-ies (for
comprehensive presentation see e.g. Samarskii [14]}). Among the characterization,
Samarskii proved that the conservation property is a necessary condition for the con-
vergence of finite difference solutions for problems with discontinuous coefficients.
Recently this approach has been augmented by new techniques and results by Man-
teuffel and White [10], Weiser and Wheeler [18], Bank and Rose [3], Hackbusch [6],
Cai, Mandel and McCormick [4], McCormick [11].

An important feature of finite volume approach is that the approximations satisfy
exactly cell-by-cell conservation law (of mass, heat, momentum, etc.). A key aspect
here, is the choice of finite volumes (control volumes). In this context we distinguish
two principal ways of choosing these volumes: by cell-centered or vertex-centered
grids.
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Vertex-centered grid approximations are studied by Hackbusch [6], Bank and Rose
[3], Heinrich [7], Cai, Mandel and McCormick {4], McCormick [11], Samarskii, Lazarov
and Makarov [15], where the basic theory of the stability and the convergence analysis
is developed.

Convergence and superconvergence analysis of cell-centered approximations for el-
liptic equations on rectangles has been presented by Weiser and Wheeler in {18}, where
the relations of the constructed schemes with the mixed finite element discretizations
is used. This method has been used by Pedrosa [12] for efficient computation of fluid
flows in porous media, and by Ewing, Lazarov and Vassilevski [5], and Vassilevski,
Petrova and Lazarov [17] for elliptic equations for rectangular and triangular cell-
centered grids with local refinement.

While solving two and three—~dimensional problems a substantial reduction in com-
puter resources can be achieved in exploiting the local properties of the solution if
the discretization method takes advantage of these local properties. Grid refinement
procedures that consist of underlying coarse grid and patches of locally refined grids
(possibly in more than one level), have been used and discussed by many authors.
This approach has been also widely used in reservoir modeling (see, e.g., Pedrosa [12]
and references there).

Two important issues in this refinement approach have to be addressed: accurate
treatment of the interface between the coarse and fine regions, and efficient solution
methods for the resulting composite grid algebraic problem. In this paper we address
the first issue - construction of conservative cell-centered approximations on locally
refined grids for convection-diffusion second order elliptic equations that have optimal
order of convergence and satisfy the discrete maximum principle.

In order to produce monotone scheme for convection-diffusion problems a variety of
upwinding strategies have been used for a long time. However due to their first order
of accuracy there have been several attempts to modify them in order to improve
the accuracy, cf. e.g. Samarskii [14], Spalding [16], II’in 8], Axelsson and Gustafson
[2]. These approaches intend to construct second order accurate schemes while re-
taining unconditionally stable in maximum norm. Many of these investigations are
done under rather demanding assumptions for the solution (to have four continuous
derivatives). In this paper, while keeping required regularity of the solution to H¢
for 3/2 < s < 3, we derive monotone approximations on grids with local patch refine-
ment. We estimate the error in the natural discrete H'-norm and prove convergence
rates of O(h1/2) | or O(h?/2?) depending upon the interpolation (piece-wise constant
or linear) used and also depending if the simple or modified upwinding strategies are
used. These result can be considered as an extension of a previous paper by Lazarov,
Mishev and Vassilevski [9] and of the paper by Ewing, Lazarov and Vassilevski [5]
for the symmetric case.

The remainder of the paper is organized as follows. In §1.1 the problem is formu-
lated and in §1.2 the basic notations are introduced. §2 contains the derivations of
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the schemes. §3 deals with the main properties of the discrete problems. The error
analysis is presented in §4. At the end in §5 we provide extensive computer experi-
ments for a variety of convection- diffusion problems, including convection dominated
ones, in support of our theoretical results and to assess the applicability of the derived
schemes and error bounds. Some technical details are given in Appendices A and B.

1.1. Boundary value problem. We use the standard notation for Sobolev spaces
ik
W;”(Q)z{uELP(Q) : Due LP(Q), ol <m}, m=>20,1<p<oo

and W (Q) = H™(Q). The norm in H™(f) is denoted ||.||,,,,o and defined by

- 12 1/2
twmﬂs(gwmﬂ | |wﬁ£(ZNW%mJ ,

o=+
ull o = max sup | Dul,
© o |elgm zeq

where ||.||oq is the standard L*-norm in ). We also use Sobolev spaces with real
index m > 0 [1].

We consider the following convection-diffusion houndary value problem:
find a function u(z) which satisfies the following differential equation and boundary
condition:

div(—a(2)Vu(z) + blz)ulz)) = z) in§}
0 { AT ) = S

where 2 C R? is a bounded domain and I' = d{). The coefficients a(z) and b(z) =
(b,(z), by(z)) are supposed to fulfill for some constants a, and B, B, the conditions
(2) a(z) 2 a5 > 0, a(z) € WL (Q),
(u) I b,(il:) IS ﬂl) bi € Wgo(ﬂ) H
and in order to obtain coercivity is sufficient to hold
(i) (V. b(z)) > > 0.
The function f(z) is given in § and f(z) € L*().

From (¢4i) we obtain that the bilinear form arising from convection-diffusion equa-
tion (1) is a H}(Q2)-elliptic. Hence the continuous problem has a unique solution.

1.2. Notations. We suppose that £} is a rectangle with sides parallel to the axes
z, and z,. Extensions to the case of more general domains can be accomplished
using the technique described in Samarskii, Lazarov and Makarov [15, Chapter III,
p- 123] or by using triangular cells, cf. Vassilevski, Petrova and Lazarov [17] for the
selfadjoint case.

We consider the case of cell-centered grids, which owing to their good conservation
properties, are very popular in reservoir simulation, weather prediction, heat transfer
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etc. We cover the plane R? by square cells with sides of length 2. The grid points
are the centers of the cells (see, Fig. 2). We suppose that the Dirichlet boundary T’
passes through the grid points, as shown in Fig. 2.

The grid points are denoted by = = (z,2,) = (2, 2,;) = (ih,jh), where 4,5 =
0,1,2,..., N are integer indices. We introduce the following notations for various grids
in

G:{(ml,,-,xl,'j)eﬁ:i,j:OIZ N}

wi =wUqE, where v = {z € y:cos(z;,n) =F1} ,i=1,2,

here n is the unit outer vector normal to the boundary TI'.

Functions defined for z € w are called grid functions. We consistently use the dual
notation for the value of the function y at the grid peint & = (z,;,@,;); y(z) =
Y(@1,0,T2,5) = ¥i; and in the points (21425, = 1/2) = (214, %5521/2) and (24,
h/Za wz,j) = (3’1,&1/253"2,;5) s Yigt1/2 = y(%,i,wz,jﬂ/z), Yit1/25 = y(ml,i:}:llmmz,j)'

For a given function y(z), # € W we use the following discrete inner products and
norms:

= > B2y ) Nyllow = (¥,¥)7;

TEW

Z hz ”y” (y:y]é’ s=1,2.

me_,

We introduce the following finite differences for a grid function y(z):

(¢) forward difference Ay, ; = y;41,; — ¥s; and divided forward difference y,, =
Agy/h; _

(22) backward difference Ayy;; = y;; — ¥, and divided backward difference
Yo, = Ay /h;

We also introduce the discrete analogue of H! -norm:

!yﬁ,w = I[y51-| E + ”yiz] g:

Iyl = lvli,, + llli5,

Any grid function y(z) can be considered as an element of a vector space of di-
mension equal to n, the number of the grid points in w. In this case, we denote y(z)
by y € R™ and consider it as an n-dimensional column vector. Then yT will be the
row vector transpose of y.
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Fraure 1. Cell e(z)

s3
+
81 ) O 31
($1.i, 372,;;)
S

2. APPROXIMATION OF THE DIFFERENTIAL EQUATION.

First we consider a uniform mesh without local refinement. Let the domain § be
covered by a set of rectangular cells e. The finite difference approximation is derived
from the balance equation. We integrate (1) over each cell e

deﬁ—dﬂVuw)+M@u@ﬂir=Lf@ﬁh
and then using the Green’s formula we get
(2) /a [—aVu.n + ub.n] dy = /f(:z:)d:c

where n is the unit outward vector normal to the boundary of e. Splitting de =
st Usd Us, Us, (see Fig. 1) this identity can be written in the form:

(3) LW®+LthﬂLWM+&VM—LW®—LVM

+LW®+LV®—LW@~LV®

where we have denoted by
W = _G(Y)VU(T)'-@ a’nd V = b(’f)ﬂu(”f) H fOI' Y € Sika ‘52+')Sl: Sg.

The approximations that we exploit for fs'+ Vit dy and J,, Vidy lead to upwind
difference schemes. For the integrals [, o+ W dy and |, o Widy we use two different
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approaches. The first one as used in [14] and [5] reads

AN aord 2N — L L4 A L. 7.1 9
(%) ZANRY Wi = IR IR Rl B
w,(:c) = wl‘i,j = kl i,jAlyi,j! l =1 s 2,
where
T po,i ds -1
k1l1.7 = E 7161 a(31m23) ! k}-'hj‘ k1‘$+113
. -1
5 1 fwz,j ds " L
2= | 7T _ L= -
PV h 20 5t a(x‘l,i, S) } 2,‘!,] 2}1|3+1
and

sz‘,j = Yip1g — Yigr Da¥ig = Yi; — Yicr;-

DoYig = Yijer — Yig» Azyi,j =Yg — Yij—1-
The second one gives a modified upwind difference scheme MUDS [2] , [9]

K
(5) w+; ;=T - Alyi,'a [= ]-) 2)
b T TTRTBL R,
kl 14 _
wl,i,' - — Ay-,-,lml,2,
! V4 Byl kg
where
+ _ blat'*'l/zﬂh — bls’:_llzjjh
i~ g9 Yd = g
+ — bz’i’j+1f2h R b2,i|j_1/2h
2,4, 2 ? 243 2 )
The integrals fs?u V" dy and [, V;dy are approximated as follows
(6) vi(z) = vyy= (Bj-!-f'j - IB{&,J- Wigri + (B[t:‘j + IB[!},J-Dyi,j,

Ul(m) = Vi~ (Bf,z',j - lBl,i,j])yi,j + (Bl,z',j + ]Bl,i,ji)yz’—l,j-

In this way we get two different schemes—upwind difference scheme (UDS) based on
formulas (4), (6) and modified upwind difference scheme {MUDS) based on formulas
5), (6).

Now we consider the case with local refinement, where some of the cells are refined
into a number of fine grid cells and introduced as a grid points the centers of the new
finer cells (see Fig. 2). The subregion covered by the refined grid is denoted by (2,
and the remaining part of Q is denoted by 2, i.e., § = O, UQ,. We assume that
the cells are squares. There are cells of two different sizes: coarse grid cells of size A,
and fine grid cells of size h; = -h,, where m is a given positive integer.

The centers of the coarse grid cells contained in ) define the coarse grid, which is
denoted by &. The set of coarse grid points in 3, is designated by &,, i.e., &, = & Q,.
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FIGURE 2. Coﬁlposite cell-centered mesh
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The coarse grid points in ), and the fine grid points in £2, define the composite grid
denoted by w. The grid points of the composite grid next to the boundary between
1, and 2, we will call irregular. All remaining grid points will be called regular.
From now on we will consider only the terms of the difference schemes in the z,—
direction. In the other direction the corresponding expressions are derived similarly.
We require that the finite difference schemes fulfill a conservation law. Hence from

[ wravi)a = fs“,(Wl+V1)d7+ (W, + V) dy

1,6—1,7+1 516,741

S1,0,542

we have
+ + i . . . » .
Wit T V141 = Wi T Vi Waig T Vg + Wi gao b V540

There exist various ways to approximate the fluxes w, ; ;. and vy;;4,, [ =0, 1, 2.
Next we consider two simple ways based on constant and linear interpolation.

2.1. Constant Approximation. We suppose that the grid function y(z) ,z € w
is extended in {) as a constant over each cell e(z), # € w. We have to consider the
modification of our finite volume schemes that have to be made along the interface
between §); and §,, i.e., at the irregular points. We use formula for non uniform
mesh (see Fig. 3) where for definiteness we assume h, = 3k,

2h —
Wy 441 = —mkl,i,ﬂv’—\z?}e,ﬁu 1=0,1,2,
here .
2 o1, ds N
ke'=———/ — ) Lk =k
Ly H (hc + hf o1,ic1 a(s, mz‘j)) 1hd bt
and

AyYijrt = Vil — Yiergad = Yigad — Yic1 j41 -
Note that (z;_;,¥;14), I = 0,2 are “slave” nodes and ¥;_; ;.3 = y;_y ;4,1 = 0,2
because we use constant interpolation. Since A, = 3k, we get

1 —
(7 Wigj+t = —§k1.i,j+lA1yi-i+l :
and
(8) v ig+ = (Brign = 1BriiWigar + (Brgju + [BriD¥ica g -

Because of the poor approximation properties we do not consider constant approxi-

mation for MUDS.
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2.2. Linear Approximation. We use this approximations for MUDS in irregular
points. In this case is supposed that y(x), # € w is interpolated linearly between any
two neighboring coarse grid nodes. For simplicity of presentation we confine again
only with the case h, = 3h;. We will need values of y at the points (z,; ;,z, ;) and
(@141, %2 ;42) Which are not grid ones (see Fig. 3). To get them we use the following
linear interpolation

2 1

(9) Yi-tg = V10 ¥ g¥iori-1s
2 1

Yicrgez T ¥t + gYi-tita-

We sketch the derivation of MUDS at the irregular points (see [9] for a detailed
derivation of MUDS at the regular points). First we write the standard central
finite difference scheme, i.e., [, V is approximated by the analog of central differences

2h

/-91,=',j (W4+V)ds = _hc +fhf kl,i,j [yi,j - yiml,j]

hiYior -+ bt
+b1,i_1/2,jhf [ f h;,3+ h ’J} + O(hZ)

1

_§kl,i,j [.%‘,j - yi—I,jJ + 512,5,,' [yé—l,j + 3%,3‘] + O(h?).

Next we substitute y;_; ; from (9) and represent the terms approximating f, V' in an
upwind manner

1 2 1
fsl W V)ds = ki, (yi,j ~ g¥i-1i41 — gyiml,jml)
.3

By (2 1
+=22 | S¥icngan + Yicngo + 3y | + O(R?)
2 3 3

1
ki [(yi,j - yi—l,j+1) -+ 3 (%‘-1,;,‘4-1 - ye‘—l,j—l)]
+ By~ lBu,J‘D Yis

2 1

+ (B i T |B11 ) §yi—1,j+1 + §y£—1,5—1

1
2
(
(
n ( 1,4,5 + I 1 th) (yg,j - yi—l,j+1)
1
3

B,
+ (% + |Bl,i,jl) (yi—l.:i+1 - yi—l,j—l) + O(h?).
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Finally, we get

[ Wavyds = =3 [k = QBuagl + Buss] B
$1,6,5
|

1
2
(15 ki — (2|By ;] + By ;,J] Azyi—l,j+1
(B 1, |Bl g )yt,;.‘
+(B

2 1
1,4,5 + |Bl KN ) (gyi—l,:f-i-l + .:;;yi—l,j—l) + O(hz) .

In order to obtain upwind scheme we approximate the first term in the above formula

ki g
+ (ZIBl,i,ji + Bl,i,j) /kl.i,j

2
(lel,i,jl + Bl,i,j)
kv + 21 Bl + B

ki
= e + O(hz) :
14+ (2!31,,‘,3’, + Bl,;’,j) /kl,‘i,j

kyij— (QtBi,i,jl + Bl,z',j)

In the last step we have taken into account that B, = O(k). In this way we define
the approximate fluxes w and v as follows:

1 kg ~

(10) Wi = 727 N (2|Bl,i,j' n Bl,i,j) /kl”:‘jAwt}j
1 ; —
= (1 " (2|Bl‘t.'jll+JBL£,j) /km,j) Lo¥isain
k14 —_—
P 214 (2131,1‘,;'-1-1ll"f'J;;,j-H) L Biige
1 ky ;s —
e 24 (2 | B1,542] 1"’*“ Jgj,i,jw) [F13+2 Eadigss
! kl’i’jﬂ A2yi—1,j+1

6 1 + (2'.81,,"]'_;_2! + Bl,i,j+2) /k1»51j+2
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and
A N £ - Y /o P Y
(11) Vi = (Buig = Brigl) i+ (Bris + 181l Vim0
1 —
~3 (Bl,i,j + |Bl,£,j[) AV TEw
Viij+1 = (Bl,i,j+1 = lBl,i,j-H!) Yijr + (Bl,ia‘+l + 1BLM+1D Yie1i41
Vygse2 = (Bll{,j+2 - |B1,i.j+2t) Yij+z + (Bl,i,j+2 + 1B1,i,j+2') Yi-1,541

1
+§ (31,e,j+2 + |Bl,i,j+2l) DgYica i -

3. FORMULATION OF THE DISCRETE PROBLEMS.
Two difference schemes derived in Section 2 can be written in the general form
{ Toew Doy (wF (2) — wi(@) + (uf (2) = w(z)) = [, f(z)ds inQ
y@) = glx)  onT

For MUDS the approximate fluxes wjt (z), wy(z), ujf (z) and w;(z) are defined by (5),
(6) at the regular and by (10) and (11) at the irregular points. In matrix terms we
write

(12) Ay =f

where in the right-hand side f we have taken into account the boundary conditions.
We will denote A, the matrix of the constant approximation (7), (8) in irregular
points and (4), (6) in regular points; for this scheme we denote

(13) Agy =f
Consider z = (z,; 5, %, ;) (see Fig. 3). We let

+ = .. . .
Bl,‘i*—l,j*{*l - Bls'fa.? + Bl,‘i,_?-{-} + Bl,‘i,j-{»Z )

We will use the following auxiliary result.

Lemma 3.1. Let b(z) € (WLte(Q))?, a > 0 and (V.b(z)) > By = Const > 0. Then
there exists a hy such that for h < hg it holds

[(B;:i,j —Byi3)+ (B — Bz,i,j)] > coh?,

24,7

where ¢y = B — O(h*), 0 < a < 1.
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FIGURE 3. Irregular cell e(z;; 1,24 ;41)

(5'31,1‘—1, 332,j+4) O °
o
(ml,i-—lamz,j+2) . ° (331,:':392,;'4«2)
(351,{—1:-’1’2,341) O 5 (31,1:’-’”2,3'4-1)
(T1-1,%2,5) o o | (B 7,5)
o
(331,1‘—1: wz,j—l) o] °

Proof. For the regular points see Lazarov, Mishev and Vassilevski [9]. For the irreg-
ular point & = (2, 4,%3,41) and the adjacent points (z;,, 2,;), (214 2 41) and
(®1,4, ®2,j42) in the refined region we consider the linear functional I

16 — byi1y2i+ bricipa4n T b1i-1ya 542 — 3b1ia/a 540
( 1) - 3h
_861($1,i—1a$2,j+1)
Oz, - '

The functional { is bounded for b, € W1 (e(z,;,2,,;)) and vanishing for all polyno-
mials of first degree. Hence

[1(B;)] < Ch*|by|14a00er 0 < < 1.

A similar inequality holds for b,. Using the triangle inequality and the assumption
V.b > 8, the desired inequality is obtained. [J]

Our goal now is to show that both schemes have unique solution. First we inves-
tigate some properties of UDS in the following lemma.

Lemma 3.2. Let z(z) and y(z) be grid functions satisfying y(z), z{(z) =0 on I'. If
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Ay is the matriz defined by (4), (6), (7) and (8) then the following formula holds

(14) Ty = -3 S ue)Be(z)

TEwW [=1

+ Z i IBl(fC)!sz(fC)Ktz(w)

TEW [=1

F Y3 (BHE) - Bi@) y(@)+(a)

+ 263 gB;(m) (z(:r:)z,y(m) - y(:c)Z,z(a:)) .

(The proof is provided in Appendix A.)
I we set z = y in (14) and use Lemma 3.1 we immediately obtain the following
result.

Corollary 3.1. If b € (ngﬂ(ﬂ))z, a > 0 then the matriz Ay is positive real, i.e.
its symmetric part is a positive definite matriz, and hence the UDS defined by (4),
(6), (7) and (8) has unique solution. Moreover we have the discrete H}-coercivily
estimate

¥ Aoy > CliyliZ,, -
We can write matrix Ay in the following form
Ay = A + A7)

where ASI) corresponds to the diffusion part and AE,Z) corresponds to the remaining
convection part. For Af)l) we have

(15) ZTAI(JI)Y = - Z wl(“’)zﬁ(m) + wz(a;)-ﬁ;z(w)
a:Ew»
= Z (alzlyzrz + szzgzyzzz) )
=
where

. = o e k],i,j/2 fOI‘jEG,?:ﬂO,
P77 T ks for the remaining indices

o = (v s s = kz',-,j/Q fOI‘Z'ZO,jZO,
27 Mg T Ky j for the remaining indices

(See Fig. 4.) In the same way we split the matrix A arising from linear approximation
into two parts
A= AN £ A®,
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For A() we get
ZTA(UY = Z (/Blﬁ-lyzlz -+ ﬁzmﬁzyﬁmzz)

TEW
1 . . _
+€ Z [ﬁllo,j_lAzy_l,jAle,j—l - /61,0,5+1A2y—1,jA120,j+1]
F=14,7,..
1 R - [
6 2 [ﬁZ,i—l,DAlyi,—1A2zi—1,0 - ﬁz,i+1,0A13’i,—1A2zi+1r0]
1=1,4,7,... :
where
ﬂ "',8 _ k]ﬂilj‘/z forjaﬂ,i=(},
17 Pl — kygi for the remaining indices
kpi;/2 fori>0,j=0,
By = ﬁz,i,j == ]‘;: ' f ‘rine inds
2 or the remaining indices
and
w k!,i,j » kl,i,j

B = = T —
T @B+ B Tk Y T T+ B kg
Applying the Cauchy inequality to the zT A(l)y and taking into account that fc,’i,j and

‘l’;’l,i,j are less than k;; ; we get
7 1/2 1/2
|zT Altly| < (E +Cgh) (ZTASI)Z) / (yTA((f)y) / ,

where the constant C, depends on the values of the coefficient a(xz) only locally, i.e.,
cell by cell. To derive a lower bound we need the inequality

Pk — ki — 1Byl
ki + 1Bl

[6u(2) |k
2ky(x)

>0, Pi=1+4+
rEw
[=1,2

Consider auxiliary matrix A{l) obtained by replacing in (15) the coefficients o , o
with 8y, f,. For z =y combining

5
(E - C’lh) yTAWy <vTAM)y  and P-1yT Aty < yr Ay
we get

5 7
(16) Pt (g - C'lh) v Ay < yT AWy < (g + Czh) yT APy .
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For the constant ) is also valid the remark above. The derivation of Lemma 3.2,
(14) and (11) gives us

2T APy = zTAE,Z)y-{—

Qo | =

Z [(-BI,O,j + IBl,o,jl) Z231—1,3‘3130,;;
7=1,4,7,...

1
- (B1,0,j+2 + |B1,0,j+2f) Azy—l,jzﬂo.ﬂz]

z {(Bz,i,o + |Bz,i,0|) Kﬁi,-izgzzi,o
4

7

39 300

+1
3.

— | Byig20 + |B2,i+2,0t) A1yi,~1zzze+2,o] .

-

Similarly as (16) was derived we find

1 5
(g - Cah) yT Ay < yT Ay < (5 + c4h) yT Ay
The above inequalities show the following theorem.

Theorem 3.1. Ifb{z) € (W{}o“"“(ﬂ))z, a > 0 then MUDS defined by (5), (6), {10)
and (11) has a unique solution. Moreover the following inequalitics hold

1Y Ay < yT Ay < 7,97 Apy,

[vT Ayl < 75 (vT Ao 0)' /(37 Agy)'/2,

where Ag is the matriz of constant approzimation, and A is the matriz of linear
approximation.

Remark 3.1. P is in fact local Peclet number plus 1 and -y, depends on P. This
shows that condition number of the matriz A5'A can become very large when P is a
large number,

Corollary 3.2. If b(z) € (Wc}o“*““(ﬂ))z, o > 0 then the matriz A is positive real.
Moreover the discrete H}-coercivity holds

y Ay > Cllyl
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4. ERROR ESTIMATES

n o U T TN me 11,\.-},-‘

AW AN )

The error "u&l‘y'"IS esented here is done in the 5chl'cu framework of the met!
developed in [15] an [ |. We consider only the case when a(z) = 1. Let
z{z) = y(z) —u(z), zew
be the error of the finite difference method. Substituting y = z + » in (12) (13) we
obtain
(17) Az =1— Au =1,
Then using (3)-(17) we transform ¢ in the following form

Sl -] )]

=1
-E-E{{fs?bludfy——uf] - [fs!b,ud'y—u;]}ngl—i—zbzm@b

where the local truncation error 1 has been split up into two terms
2

b= 3 (@) - @) b= 3 (@) - )

=34 1E51

(18) m= gu dy —wy, gy = f budy —w

St

Here 1; is the error of approximation of first derivatives, and 1), is the error of
approximation of the second derivatives.

Note that the components of the local truncation error ; and y,; are defined on the
shifted grids wj', { = 1, 2. Using summation by parts and the Schwarz inequality, we
get

(hay2) = S5 Inf (@) —m(2)] (=)

=] T€Ew

LY Y (@) Ee)

[z=1 we,_,_,t‘l‘
1/2 1/2

2 2
< X @] [ B
=1 pewt I=1 pewit

< (Il 4 lima1l2) lzlhe -

Likewise

(%25 2) < (e T + 2112 2l
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Summarizing these results and using the corollaries 1 and 2 we obtain the following
main result.

Lemma 4.1. The error z(z) = y(z) — u(z), z € w of all considered finite difference
schemes satisfies the a priori estimate

(19) umwscémmeMW)

where the components n;, w1, I = 1,2 of the local truncation error are defined by
(18) with approzimate fluzes wi , wy, vi, v;, [ = 1,2 determined by (4), (6), (7)
and (8) for UDS and (5), (6}, (10) and (11) for MUDS. (The constant C' does
not depend on h or z.)

In order to use the estimate (19) of Lemma 3.2 we have to bound the norms of
M, f1, I =1,2 defined by (18). We state the estimates for the local truncation error
components in regular points, proved in Ewing, Lazarov and Vassilevski [3]

3
(20) Im(e)] < ChmHulpz, 5 <m<3,

and in Lazarov, Mishev and Vassilevski [9]

(21) | ( )l < { Chm”bfnl,oo,ﬂluim,a for MUDS}
x
I ¢ [h:bllo,oo,ﬂlullﬁ + hmllbzlh,m,nlwm;} for UDS,

where l <m <2;e=¢;4;Ue;;forl=1ande=e;; Ue;,; forl =2,

Now we consider the components of the local truncation error for the MUDS
at the irregular points (2;,,2,,4:), { =0, 1, 2. We remark here that we split the
schemes into two parts only for convenience of the analysis. We replace (10} by

1 1

W = —— 2B, .|+ B, ;.
1l1:J 2 (1 + 2|Bl,1"j! + Blli’j + | 1,1:J| + 1!1’33)
2 1
X Wi — g¥i-vi+ T QVi-1g-1) o
! ( ! +2\By il + B )
Wy = —— s i

1,4,5+1 2 1 + QlBl‘i,j+1| + Bl'{,j.l..l 1,5+1 15+1

X [y;‘,j+1 = yi—l,j-}-l} )

1 1
Wy 5. = —= + 2 B i3 + B ia
11 :J+2 2 (1 .,{».. 2|Bl’i‘3+2l “*% Bl’t‘3+2 I 1, ,J+2| 1, ,J”}”?)

2 1
X [yi,j+2 - gyi—l,j+1 = gyz‘~1,j+4] s
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and (11) by
Vigg ~ B;,-, [gye 1,5+1 + y;—l;,m} +3y¢,3] )
Vygijp1 = % [yi-—l,j+1 + Byi,j+1] ,
Vigjez = &%ﬁﬁ ["g’yi—l,j+1 + %yi—l,j+4 + Syi,j+2} .

Note that wy; ;1 + vy ;40, { =0, 1, 2 is not changed. Consider 7;. By construction

X .
+2|By; ; By =1+C{(z)h?
(1 + 2|By il + Brija Briiul + B, ’W) 1(@)

where C;(z} ~ b3(z). Then in the point (z,;, 2, ;) we have

T 1',3}' | - — d 10
N1 T2,5) f(m) 8:c1 ¥+ wy ()
2 2 1
= /(M‘) 3.2‘21 d’]" 'i" (1 + Clh ) ‘Uf,"j —_ gui-—l,j—{»l —_ gui-—l,j—l

Taking into account

2 1
Uiy — gui—l,j+1 - g”i~1,j—1

< C(luliz+ hmul,z), 1<m <2

and the estimate (see [5])

Ju 1 2 1 3
s(ird) 0Ty dy - 2 [ui,j ~ gli-tin T 5“5—1,j_1] < Chmtul, 2, g <m <2,
we get
| 3
(22) (214 225)] < O™l 2, g <mS 2.

With the similar argument we obtain the estimate (22) for n{zy; 29 ;4) ,1 = 1, 2.
The inequalities (20) and (22) imply

S o) < Ol 1(2 . iuawﬂ)

rCw TER,

< O Y[ull o + A% ul 0 0)s

here (, is a strip with a width 4k around the interface between (y and Q, (coarse
and fine grid regions) and % <m<2,0<a<].
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The first term in the right is estimated by the well-known II'in’s inequality {15}, [5]

ki
lellog, < C6%lulug, 0<a<y,

where () is a strip in {} with a width §. Therefore, we have

1/ 3 5
(29) |mm=(z@wﬂ <O, S<m< .

TEw 2

In a similar way we can estimate 7,(z).
For the component ,(x) we prove in the Appendix B the upper bound

(24) i lh < Ca7 B[l onllttllmg, 1 <m <2
Summarizing these results we get

Theorem 4.1. If the solution of the problem (1) is Hm—regular, 3 < m < 2 then
for the MUDS is valid

ly = wlly < CA™1 14 B8 ([fbally o + [B2lli02) ] Billmsa -

Here
5= 1 %<m§2,
3—m 2§m<%.

With the same approach one can prove the following result for UDS,

Theorem 4.2. If the solution u(z) of the problem (1) is H™—regular, 2 < m < 3
then for the UDS is valid

ly = ulli < CBY2 [1 4+ RY2(bill1 00,0 + [B2ll1.0,0)] l1ellm,c

5. NUMERICAL RESULTS

In this section on the basis of model examples we study the error behavior of all
considered schemes. We consider three test problems. In first two examples we solved
(1) with the velocity field

(25) by = (1 + z cos(a)) cos(a), by = (1+ ysin(a))sin(a),
where the angle was a = 159.

Problem 1. Consider a smooth solution with a diffusion coefficient a{z) =1

10 exp(—5%), r < c,
U(&:) = { 0 p( cz—'r'z)’ ,>

where ¢ = 0.125, r2 = (x — 20)2 + (y — )2, 25 = 0.8, y, = 0.7.
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TABLE 1. Problem 1, MUDS

ho/hy

error (1)

order

error (2)

order

10

1

0.284.10+2

0.284.10+1

0.870.10°

0.285.10+1

0.365.100

0.291.10+1

0.250.10¢

0.296.10+1

0.132.10+1
0.135.10+!
0.136.10+1
0.138.10+1
0.745.100
0.681.109
0.694.10°
0.700.10¢
0.232.10°
0.243.10°
0.249.109
0.252.109
0.691.10-¢

1.105
1.078
1.094
1.100
0.825
0.987
0.971
0.979
1.683
1.487
1.479
1.474
1.747

20 0.132.16+1
0.398.10°
0.172.109
0.825.10-1
0.745.10°
0.119.100
0.459.10-1
0.236.10-1
0.232.10°
0.328.101
0.119.10!
0.610.10-2

0.691.10—1

1.105
1.128
1.085
1.599
0.825
1.742
1.906
1.806
1.683
1.859
1.948
1.952
1.747

40

80

=T O QO = =F| O Q| | T QY Qa2 e | =T QO G2

160

We choose two different domains ! = Qg), [ = 1, 2 for local refinement to in-
vestigate the influence of the interpolation along the boundary of Q,. When the
support of u(z) is in le) = {0.5 <z <1, 05 <y <1}, the error caused by the
interpolation is eliminated and we get approximately second order of convergence.
This shows that when |u}, g, is comparatively small we can expect good results using
schemes with local refinement. The worst possible case is when the solution u(z)
has a large gradient along the boundary of {},. We tested this case for a subdomain
ng) ={0.7<z <1, 0.7 <y <1}. The results show O(23/2) convergence rate in the
discrete Hl-norm, i.e., we lose half of order of accuracy which is in agreement with
Theorem 4.1.

Problem 2. Consider a solution u € H™(), m < & which support is in Q, = {0.5 <
<1, 0.5<y<1} and a smooth coefficient a(z),

a(z)=[1+10(z* +y2)] 7", u(z) = $(z)¥(y),

| sin® (W%") , z € (dy, 1),
¢la) = { 0, 1 otherwise,
— Sill2 (W%) » ¥ € (d21 1)3
V)= { 0, i otherwise,

where d; = d, = 0.875.
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‘TABLE 2. Problem 2

ne | hefh; | UDS MUDS N
10 1 0.128.10° | 0.101.10° 100
3 10.855.10-! | 0.494.101 331
5 |0.606.10—! | 0.193.10—1 804
7 10.470.10—1]0.120.10-' | 1519
20 1 0.138.10° | 0.174.10° 400
3 |0.545.10-1 | 0.149.10— | 1261
5 10.355.107* [ 0.569.10-2 | 3004
7 10.265.10-! | 0.447.10-2 | 5629
40 1 0.743.10-1 | 0.836.10-1 | 1600
3 10.311.10-1 [ 0.599.10-2 | 4921
5 10.194.10-1 | 0.248.10-2 | 11604
7 | 0.141.10-1 | 0.786.10-3 | 21649
80 1 0.443.10-1 | 0.466.10-1 | 6400
3 10.165.10-1 | 0.197.10-2 | 19441
5 {0.101.10-* | 0.850.10-2 | 45604
7 10.293.10-2 | 0.207.10—3 | 84889

21

We compare the H1 error for both schemes, UDS and MUDS. In the last column
of Table 2 the number of unknowns N is shown. It is clear from the results in Table
2 that MUDS is superior to UDS and it is also seen that a prescribed accuracy can
be achieved for less unknowns when local refinement is used.

Problem 3. Consider a smooth solution u with a boundary layer along line x =1,

u(z) = 4ey(l —y) (1 - %I;(g’/[g‘:—i) )

a coefficient a(x) = £ and two different velocily fields. First is (25) and second is

(26) by =2y(1 ~2*) + 01z, b, =-2z(1—-y?)+0.1y,

We refine in the strip along the boundary layer Q, = {0.7 <z <1, 0<y <1}
. The objective is to compare the behavior of the finite difference scheme (MUDS)
with and without refinement. We report the discrete >, L? and H! norm in the first,
second and third row in Table 3 correspondingly. For mildly dominated convection

(e = 10~2) the scheme with local refinement shows better accuracy for both velocity
fields.



22

R. D. LAZAROV, L. D. MISHEV, AND P. S. VASSILEVSKI

TABLE 3. Problem 3, b(«) defined by (25)

n, | h/hy [normje=1 e=10"? le=10"3
L 10.214.10—4 | 0.207.10° | 0.623.10~2
1 L2 10.840.10-5 | 0.241.10-1 | 0.148.10-2
40 H' 10.489.10-4 | 0.842.10° | 0.106.10
L 10.263.10-2 | 0.580.10-1 | 0.252.10~1
3 L2 10.111.10-2 | 0.807.10-2 | 0.722.10-2
H!' 0.633.10-2 | 0.478.10° | 0.506.10°
L 10.565.10—° | 0.215.10° | 0.624.10—2
80 1 L? 10.222.10-50.195.10-* | 0.941.10-3
H' [0.138.10— | 0.893.10°% | 0.360.10-1
TABLE 4. Problem 3, i(z) defined by (26)
ne | ho/hs | norm e =1 e=10"2 |g=10-3
L> 10.244.10-2 | 0.166,10° | 0.125.10°
1 Lz 10.121.10-2 | 0.311.10-1 | 0.211.10!
40 H' 10.536.10-2 | 0.377.10° | 0.363.10°
L> 10.216.10-2 | 0.417.10-1 | 0.316.10°
3 L* [0.111.10-2 {0.115.10-1 | 0.281.10—!
H' [0.600.10-2 ] 0.110.10° | 0.179.10+!
L 10.123.10-2 { 0.698.10-1 | 0.247.10—1
801 1 L? |0.615.10—%{0.143.10-! | 0.232.10—!
H' [0.280.10-2 | 0.175.10° | 0.132.10+!
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Ficure 4. Composite cell-centered mesh
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6. APPENDIX A

We prove Lemma 3.1 for the case shown on the Fig. 4.
Consider the following inner product

2T Ay

2

= T )% [(vf &)~ wi(@) + (5 (0) ~ ()

zEW 1=1

- YY) [(wf(z) — w(2)) + (v (z) - vi(2))]

=] T€w

2
= ZI;
=1
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We represent the term [; for the case of Figure 4 in the form
L=3 2 422+ 2,
J<0 Vi j>0i<0 2020
or

Li=A4+A+B+B,+Ci + 0,

2

2 .
=2 wf —w, (o= v — v
=1 =1

Expressions for A,, B, and C; were derived in [5]. For A, we have

zz {( 145 IBiI:i,J") Yirrg + ( 1ig T |B 1 13') y"w’f] Zig

7<0 Vi

-2 [(Bl,i,j = lBl,i,jI) Yi; + (Bl,i,j + 1B1,i,j|) yiwl,j] % ;

J<0 Vi

and after using partial summation we get [9]

D3 1B Dy B 7

J<0 ¥4
+ ZZ Bl,i,j (zi,jzlyz W yi,JA Z; g) + E Z ( 155 1 z,j) Yii%ij
J<0 Vi <0 Vi

In the same way

>3 ok = vraal 2 = 2 fof o1~ vaena] o

7>04<0 i>0

+ Z Z |B1,i,j|K1yi,jzlzi,j - Z |Bi|:_2’jl (9—1,;.' - y—z,j) Z_2;

iSbic1 >0
+3. 3. By (Z Dy - yi,jzlzi,j) + B, Y17

I>0i<—1 i>0

D IDY ( Vi Bl,,-,:,-) Yii %,

F>0di<-1
Using the fact that By _, ; = Bf_; ; we finally get

E Z IBl,i,j[zlyi,jzlzi,j + z Z Bz (zi,j_A—iyz',j - yi,jzlzi,j)

§>0:i<0 7>04i<0

'%'ZZ( 1,0 Blm)ymza"i'zvl ~1,;%-1d — > Bi1¥-1,i%-1

J>0i<—1 i»0
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Expression for C, is derived similarly

¢, = Z z IBl,z‘,j“Aulyi,jzglzi,j + Z Z By (zi,j_A_Iyi,j - yi,jzgﬂi,j)

i20420 ‘ I204>0
+ .. c . + T . .
+ Z Z (Bl,i,j Blﬂ,J) Yij%ij + E (Bl,o,jyﬂ,::z@,:r Ui,ﬂ,izﬂ,ﬂ)
201420 >0

Summarizing these results and taking into account the equalities

-+ —— R . ,
VI 1541 = V05 T Vo 4 T P42

B i1 = Bro; + Biojr + Bigjva

we get the assertion of the lemma.

7. APPENDIX B

Here we investigate the local truncation errors g, fi, and prove the inequality (24).
For the component g,(z) we have

o7 zz,; H{I4+0.5}h ; d
(27) i) = fm‘g’j-f-{I—D‘S)h l(ml,i——lfms)u(ml,i—-l/mS) 5
bl,i~1f2,j+lhf lbl,iu1/2,j+l|hf
- 2 - 9 Ui 541
bl,i-l/2,j+lhf lbl,i—1/2,3'+l|hf
- 2 + 2 i—1,5+1

Using the equality

(bl,i—lfz,jH _ Ibl,i—lﬂ,j-ﬂl) w1 + (bl,i—l/z,j+l + lbl,i—lfz,j-i-!]) Uit ipn

2 2 2 2
3uijpr + Uiy biic1jaipt |, i—apgel =
= bl,i—1/2,j+l( i 1 13+1) - ( 4/ e 2/ . Alu'i,j+1
3U; jpt + Uit 54 Ui g4 ™ Uind
= b1,i-1f2,j+l ( ot ) Lit ) + b1,z‘-1/2,j+l ( =Lt 4 It )

bl,i-——l 2,5+ Ibl,iml 2,'—H'| e
— ( 4/ J + 2/ J &luiﬂ_‘_[
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we represent formula (27) in the form

r PTIapa
x,;+{i+0.5)n

28 = f by(zy,. - d
(28) () {mz,ﬁ(:—o.s)h 1(3’1, 1/2,5)”($1,a 1/2:3) 5
RITH l_l_-u._ "
— bl,£—1/2,j+lhf( it y =104+ )]
ui—' ,- _ui— ‘.
—bui-1y2,54ihy ( e i 13“)
bicappithy | ric1sa b\
+ ( /; hiie S /2 2t Al’“’i,j#-
Thus yields
3h; —
(29) | (z)] < ll(blau)l‘i'T[bl,i—-lﬂ,j-f-l‘|A1ui.j+l|

h
+Zflbi,£—1/2.j+l|

Uiot,i41 — WUid gpi| s

where the bilinear functional I(b;, u) is defined by

@a,j+{14+0.5}k

60 b = [

DB 20 SJULE 12y 8 ds
2 i +{(I=0.5}k it/ 8 )l 1i172:9)

3u; 4 + Ui 54
_bl(wl,i—l/Z: $2,j+l)hj ( = 4 Lot ) .

We consider w; ;1; — %;_3 ;41 as a linear functional of u for a fixed z € w*. This
functional is bounded in H™(€), 1 < m < 3 and vanishes for all polynomials of zero
degree. Therefore, by the corollary of the Bramble-Hilbert lemma we get

(31) v g1 = Ui el S Cluliz+ ™ MHuly,g), 1 <m < 3.

Hence for the second term in the inequality (29) we get

3h —
Tf|bl,i—1/2,j+z|V—\-lui,j+z| < Chlbiloo,alluliz + A" Hulnz), 1 <m < 3.
Similarly we estimate the third term in (29) by

h
f
1 [61,6-1/2,344] lui~1,j+1 B ”’i~1,j+l'

< Chibylocoa(luhz + ™ Hul,z), 1 <m < 3.

The functional I(by, %) is estimated in the following lemama, proved in Lazarov, Mishev
and Vassilevski [9].
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Lemma 7.1. If the solution of problem (1) is Hm-regular, 1 < m, then for the
bilinear functional 1(by,u) defined by (30) the following estimate is valid:

(b1, 0)] < CH™{bylyoalullzs 1 < m < 2.

Above remarks give us the upper bound for |y, (z)} which coincides with the esti-
mates (21) for the regular points.
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