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A COMPOSITE STEP BI-CONJUGATE GRADIENT ALGORITHM
FOR NONSYMMETRIC LINEAK SYSTEMS
RANDOLPH E. BANK* AND TONY F. CHAN!

Abstract. The Bi-Conjugate Gradient (BCG) Algorithm is the simplest and most natural
generalization of the classical conjugate gradient method for solving nonsymmetric linear systems.
It is well-kmown that the method suffers from two kinds of breakdowns. The first is due to the
breakdown of the underlying Lanczos process and the second is due to the fact that some iterates
are not well-defined by the Galerkin condition on the associated Krylov subspaces. In this paper, we
derive a simple modification of the BCG algorithm, the Composite Step BCG {CSBCG]) algorithm,
which is able to compute all the well-defined BCG iterates stably, assuming that the underlying
Lanczos process doesn't breakdown, The main idea is to skip over a step for which the BCG iterate
is not defined.
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1. Introduction. The Conjugate Gradient (CG) Method is one of the simplest
and most elegant methods in numerical computation. The algorithm itself can be
described precisely in only a few lines but yet it manages to possess many desirable
properties, including optimal convergence rate (minimizing the residual in a given
Krylov subspace) and a very short recurrence. For these and other reasons, the CG
method is one of the most popular iterative methods today.

Many attempts have been made to extend the CG method to solve general non-
symmetric problems. A fundamental result of Faber and Manteuffel [8] states that in
the general nonsymmetric case one cannot preserve both the optimality and the short
recurrence. Most existing methods can thus be classified into two classes. One class
of methods preserve the optimality at the expense of having a longer recurrence {(and
the associated increase in cost). The best known example is the GMRES method [20].
Another class of methods retains the short recurrence at the expense of optimality.
Among methods in this class are: BCG [15], CGS [21], BICGSTAB([23], QMR [12],
TFQMR[10] and QMRCGSTABI[5].

Among the second class of methods, the BCG method is perhaps the most natural
extension of the CG method. The BCG iterates are defined by a Galerkin condition
with respect to two Krylov subspaces associated with A and A7, and reduces to the
CG method for symmetric positive definite A’s. Although many other more sophisti-
cated methods have been invented since, the BCG method still remains competitive
for many practical problems [22].
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Tt is well-known that the BCG method is intimately related to the nonsymmetric
Lanczos iterative process for computing the basis for the two Krylov subspaces asso-
ciated with A and AT. The BCG method, however, does suffer from two sources of
numerical instability, both of which can be traced to the underlying nonsymmetric
Lanczos process. The first kind of instability occurs if the Lanczos process itself breaks
down (we refer to this as Lanczos breakdowns). Breakdowns of the second kind occur
if a principal submatrix of the tridiagonal matrix generated by the Lanczos process
is singular, because BCG pivots with that matrix implicitly {we refer to this as pivot
breakdowns). Pivot breakdowns occur when the corresponding BCG iterates are not
well-defined by the Galerkin condition, whereas the Lanczos breakdowns are due to
the breakdown of the particular recurrence use to compute the iterates, Although
such exact breakdowns are very rare in practice, near breakdowns can cause severe
numerical instability.

In this paper, we propose a simple modification of the BCG algorithm which
eliminates pivot breakdowns, assuming thet Lanczos breakdowns do nol occur. The
basic idea is to skip over one step of the BCG method explicitly when the correspond-
ing BCG iterate is not well-defined. The resulting algorithm is still very simple but
reguires the solution of a 2 x 2 linear system whenever a step is skipped.

There have been several related approaches proposed in the literature to stabilize
BCG. For symmetric A’s, Lanczos breakdowns cannot occur and there are several
natural ways to overcome the pivot breakdowns. Among the earliest are the method
of hyperbolic pairs of Leunberger [16] and a method proposed by Fletcher in [9]. Both
use a composite step similar (but different in the details) to ours. The SYMMLQ
method of Paige and Saunders [18] uses an orthogonal factorization method to solve
and update the solution of the tridiagonal systems generated by the Lanczos process,
In principle, all three methods above are mathematically equivalent in the sense that
they all compute the same well-defined BCG iterates.

For general nonsymmetric matrices, Saad [19] proposed using Gaussian elimi-
nation with partial pivoting explicitly on the Lanczos tridiagonal matrices. More
recently, Freund and Nachtigal [12] proposed the QMR method (here we refer only
to the version withou$ look-ahead Lanczos) which eliminates pivot breakdowns by a
“quasi-minimzation” principle. Although the QMR method produces iterates which
are generally different from the BCG iterates, it can be viewed as an alternative
method for stabilizing the BCG method. Indeed, the BCG iterates can be recov-
ered from the QMR recurrences with little cost. Lanczos breakdowns are much more
difficult to eliminate. Freund, Gutknecht and Nachtigal [11} used a look-ahead Lanc-
zos technique to overcome the curable Lanczos breakdowns. The BMRZ method of
Brezinski, Redivo Zaglia and Sadok [2, 3], together with the strategy described in [4],
is also free from breakdowns except for the tncurable ones. However, these look-ahead
algorithms are usually much more complicated than the BCG method because del-
icate heuristics have to be employed to determine the best step size to use at each
iteration and the algorithm for actually performing a composite step of arbitrary size
is necessarily complicated. In our approach, a maximum step size of two is needed
and this simplifies the implementation a great deal. Our goal here is to derive a simple
modification to the BCG algorithm which is able to compute all the well-defined BCG
iterates stably, assuming that the underlying Lanczos process does not breakdown.
We note that the occurrence of the two kinds of breakdowns are related (see e.g.
[13, 14]) and our approach does not cure the more complicated Lanczos breakdowns.

The organization of the paper is as follows. In Section 2, we review the BCG algo-



rithm and the breakdowns. In Section 3, we derive the composite step BCG (CSBCG)
method and in Section 4 we prove that CSBCG is able to compute exactly those BCG
iterates which are well-defined. In Section 5, we discuss our choice of some heuristic
strategies for deciding when to take a composite step and some implementation de-
tails. Our stepping strategy, which does not involve any arbitrary machine-dependent
or user-supplied tolerances, is designed to avoid near pivot breakdowns as well as
to provide some smoothing of the convergence history of the norm of the residual.
Finally, in Section 6, we present the results of some numerical experiments.

Our main emphasis in this paper is the introduction of the composite step idea
and the derivation of the basic CSBCG algorithm. In a companion paper [1], we in-
vestigate different implementations of the CSBCG method, as well as study in detail
the connection of the CSBCG algorithm with the underlying nonsymmetric Lanczos
process, from which a convergence proof for the CSBCG algorithm can be derived.
We emphasize that we do not view the CSBCG method as a competitor for other
methods such as QMR, CGS, BiCGSTAB, TFQMR etc. Afterall, in exact arith-
metic, its iterates are a subset of those of BCG. Instead, our view is that since the
BCG method underlies many other product methods, its improvement will lead to
analogous improvements for those methods as well. For an example of this, see [6] for
an application of the composite step idea to the CGS method.

2. Breakdowns of the BCG Algorithm. Suppose we would like to solve the
following two related linear systems:

Az =b, ATE=1,

where A is a general N by N nonsymmetric matrix and we are given initial guesses
zq and Zg, with corresponding residuals r¢ = b— Azg and 7y = b— AT Z;. We assume
A is real in this paper; generalization to the complex case is straightforward. If one is
only interested in solving the first system, then 7y can be chosen arbitrarily, although
the performance of the method may depend on the particular choice.

Define the following two Krylov subspaces:

I{n(ru) =< To,ATo,Az'FQ, ...A"_lro >,

K (o) =< Fo, ATFo, (A7) Fo, .. (ATY"~*F0 >,

where 7y is arbitrary. Then the BOG iterates z,, = ®p + ¥y, Zn = Fo + §n are defined
by the Galerkin conditions:
1. yn € Kn(ro), #in € K (70),
2.0r, LK 7 LK,
The following algorithm computes the BCQG iterates z,’s by an efficient and simple
iteration [9]:

Algorithm BCG Solves Az = b and ATE = b given x4 and Zp:
Set o = b — Amn,pn = 7n, ?A"(} =b— ATﬁ'?g,ﬁo = Fg,pﬂ = ‘f'g,‘l'u.
Forn=20,1,..

Tn = ﬁ’prn;
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®n = pafOn;

ng1 = Tp— 0n Apn;
Tupl T Tpd 0nPn;
Fngr = Fn— an AT fn;
Zptt = Tp+ Oppn;
Pt = FpiaTasr;

ﬁnwﬂ = Pn+1/Pn;

Pyl = Tagl t+ Bat1Pn;
Prtr = Fap1+ Batabn.

End

It is well-known that, provided the above algorithm runs successfully to step n
(ie. o #0,p: #£0,i=0,1,...,n—1), then the iterates satisfy the following properties
[9]:

THEOREM 2.1. Let Ry = [P0, 71, e, Pnetl, Bin = [Fo, .., Fni] end similarly for
Pn,}sn. We have: . B

1. Range(Ry) = Range(P,) = Kn(ro), Range(Ry) = P, = K, (o).
2. RTR, is diagonal.
3. BT AP, is diagonal

As can be seen from the outline above, Algorithm BCG suffers from two kinds of
breakdown:

1. pn = #Iry = 0 but ry, # 0 (Lanczos breakdown),
2. o, = 0 (singular pivot).

The Lanczos breakdown can be cured via Look-Ahead Lanczos procedures [11] in
principle, but since the size of the look ahead step needed can be arbitrarily large and
in any case is not easily determined, such procedures are necessarily quite complicated.

In this paper, we try to cure the (simpler) o, = 0 breakdown, assuming that the
underlying Lanczos process does not breakdown. In other words, we shall assume for
the rest of this paper that p, # 0.

3. The Composite Step BCG Algorithm, Suppose Algorithm BCG runs
successfully up to step n and encounters a oy, = (. This implies that the updates of
Tptl, Tatls Pntl, Pnss 8re not defined, Our main idea is to avoid division by o, = 0
and look for a composite step update to obtain directly @49, Pny2, Ent2, Frnpa.

To this end, define:

Zn41l = OulTn — PnApn;

E:ra+1 = OnTp "PnATfjn;
Note that z,41 and %41 are scaled versions of rn,y1 and 7,41, but which remain
defined even if o, = 0. By construction and Theorem 1, we still have 2,41 € Kp4a(ro)

and Zp41 € K 2(70).
Next we look for zy,42, £, 42 of the form:

Lntz = wn+[pn;zn+1]fns

= Eﬂ + [ﬁn";jﬂ+1}fn

where f,, fu € R?. Note that z,41 € Knya(re) and E,41 € K o(F0).
4
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It follows that:
42 — TPp— A[pm zn-i-l]fn,
Fﬂ-{-? =y — ATlrﬁm En+1§fn-
The Galerkin condition of BCG requires:
(fim §n+1)T7'n+2 = 0,
(P 2n41) Frgz = 0,
which give the following 2 x 2 linear systems for f, and f,:

[ Apn Az ] i [ B ]
Zay1APn Zap1AZagr _fﬁf) Zop1ta |’

(1)

@ pTA s, pFA T 1A _ [ ofR
2 ATy 2l AT R || FP 2 |

n

Analogously, we lock for pp 42 and fp49 of the form:

Pn4e = Tpya+ (szn+1)9‘n;
5n+2 = Fn+2 + (ﬁnafn-i-l)gn)

where g,,§n € R2. Obviocusly, we have pp42 € Kpy2(ro) and ppyz € K} 1o(Fo).
The conjugacy conditions:
(ﬁnn En+1)TAPﬂ+2 =0,
Prs Zn41) AT Paga =0

give:
(3) [ f’?;APn ﬁ’,{Aan ] 97(11) - _ ~ﬁ$:Arn+2 }
§£+1Apn A1 A ggz) By Araye
and
(4) [ pEATp,  pTAT%p ] 7o) - _[ pr AT Fops ]
Z£+1ATI3n Zf.plATfn»;«l 5,(,,2) zf“ATFnW

Therefore, solving the above four 2 x 2 linear systems (1), (2), (3} and {(4) give
the updates from step n to step n + 2. With a combination of 1 x 1 and 2 x 2 steps,
one obtains the composite step CSBCG algorithm.

4. Some Properties of the CSBCG Algorithm. We prove the following
lemma which we shall use several times later on.

LEMMA 4.1. Using either a 1 x 1 or a 2 x 2 step to oblain p,,Pp, we have:
L Ap, = pL Arn, = pL Ap, = o,

Proof. Suppose first that p,,, P, are obtained via a 1 x1 step, i.e. P = Fn+Fubn-1.
Then it follows that 71 Ap, = BL App — Bbr_1Apn = PL Apn = 0y, since pL_, Apn =
0. Similarly, we obtain r, AT 5, = pT ATP, = o,.
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Now suppose that p,, B, are obtained via a 2 x 2 step, i.e. pp = p —i—_ﬁsil_)zﬁn_.z +

#2,%,_1. Then it follows that #T Ap, = T Ap, — G537 Apn — 50,37 1 Ap, =
L Ap, = oy, since the last two terms vanish due to the conjugacy condition, O

We next show that

LEMMA 4.2. The four 2 X 2 coefficient matrices in Equations (1), (2), (3) and
(4) are identical and symmetric.

Proof. It suffices to show EE s1dpn = 13?:_42,,.{_1. From the defimitions of 2,44
and #,41, we have 52,1 Ap, = 0niL Apn — pnprt A’pn and 21 APy = oapL Arp —
pnBL Alp,. The lemma now follows from Lemma 4.1.

0

We can now show that a 2 x 2 step is always sufficient for skipping over the
breakdown of o, = 0.

LeMMA 4.3. Assume thal the Lanczos process underlying BCG doesn’t break
down, i.e. p; #0,i=0,1,.,n end Z,'{Hz,,.“ #0. If o, = pLApy = 0 then the 2 x 2
coefficient matriz in (1), (2), (3) and (4) is nonsingular,

Proof.
It suffices to show that if 6, = §L Ap, = 0, then £, Ap, # 0. From above, we
have 27,1 Apn = 23 41 An = ~puBy A’pn = ~Z8 {1 Znq1/pn # 0. D

An alternative proof can also be derived from noting that the tridiagonal matrix
generated by the underlying Lanczos process cannot have two successive singular
leading principal submatrices if A is nonsingular. For more information on the relation
between the CSBCG algorithm and the underlying Lanczos process, we refer the
reader to [1], where this relationship is used to obtain a convergence proof of CSBCG.
There 15 also a connection with the Hankel matrices defined by:

L3 U Ck L ]
1) _ . . . (o) _ . . .
Hy' = : : : ; Hy’ = : : : J
€k -+ Cap—1 Ck—1 '+ C2k-—2

where ¢; = Fg" A'ry. It can be shown that a pivot breakdown occurs at the k-th
iteration of BCG if det(H,El)) = [ and a Lanczos breakdown occurs if det(HS’)) =1{.
Thus, the above lemma corresponds to the following result: assuming that det(H ;(GD)) #

O for all k, then no {wo consecutive principal submatriz of H,El) can be singular. The
structure of these Hankel determinants was studied in detail by Draux [7].

Thus, with an appropriate combination of 1 x 1 and 2 x 2 steps, the CSBCG
algorithm is guaranteed to run to completion (provided that p, # 0). In the next
lemma, we show that, with some minor changes, a resuit similar to Theorem 2.1 still
holds.

THEOREM 4.4. For the CSBCG algorithm, let R, = [ro,r1,..., rn_;],Rn =
[Foy ...y Tn—1) where r;, 7; are replaced by z;, Z; appropriately if the i-th step is a compos-
tle step, and let Py, P, be similarly defined. Assuming the underlying Lanczos process
doesn’t breakdown, we have: _

1. Range(R,) = Range(Pn) = Kn(ro), Range(R,) = Range(P,) = K2(7).
2. RTR, is diagonal.
3. ISEAP,, = diag(Dy), k= 1,...m, where Dy, is either 1 x 1 or 2 x 2.

Proof. We shall prove the theorem by induction. The theorem is obviously true
for n = 1 or n = 2 depending on whether a 1 x 1 or a 2 x 2 step is taken initially.
Assume the theorem is true for index n. We shall prove that it is true for index n+ 1
or n -+ 2, again depending on whether a l-step or a 2-step is taken.
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If a 1 x 1 step is taken, the proof is very similar to the usual proof of the analogous
Theorem 2.1 for BCG and we shall not repeat that here,

So now assume a 2 x 2 step is taken. First, the relationships in {1.) above hold
by construction. Next, let us look at (2.} concerning Rntaz and Rp4z. Note that
the 2 new vectors in Ry, 2 are z,41 and rp45 and similarly for Rn+2. First we check
the orthogonality conditions for z,4+3. Note that since 2,44 is a scaled version of
Tps1, We have 2,44 1 7,7 < n by the usual inductive proof for BCG. Next, we
check the orthogonality conditions for ry43. By construction, rnqa L (Pa, Zns1). For
i < n, we have #Trnyp = ¥ (rn — F7 Ap — f,(,z)Az,,.,.l) = #Trn — V7T Apa —
f,(,z)r"/‘-r Aznp1 = 0 since each of the 3 terms on the right hand side vanishes by
the induction hypothesis. Therefore, we have ruyo L Span(Fo, ..., Fn—1,Pn, Zng1)-
But Span(Fa,....,Fret, P, Ent1) = Spanifa,...,Pr—1,%n, Zn41). Therefore, rnys L
Span(Fq, ..., a1, Py Zng1} = K 1(Fo). A similar argument shows that 74z L
Span(rg, ..., Pn, Znt1) = Knt1(ro).

Finally, we turn to (3.). Note that the 2 new vectors in Py 4o are zn41 and ppy2
and similarly for P, ;9. First, we check the conjugacy condition for zp41. If i < n, we
have pf Azpy1 = 0 because ATp; € K (7o) and 2,41 L K} (o) by the orthogonality
relation proven earlier. In other words, z,41 is A-conjugate to Span{fo, ..., fn-1). But
note that 7 Az, 41 # 0, which corresponds to the 2 x 2 block in (3.). Next, we check
the conjugacy condition for p, 2. By construction, py, 4z is A-conjugate to (Fn, Zny1).
For i < n, ﬁg'Apn_i_g = ﬁ?Af‘n+2 + (ﬁ?Apmﬁ?Aan)gn = () because each of the 3
terms on the right hand side vanishes due to the induction hypothesis. Therefore, we
have proved that p, 4 is A-conjugate to Span(pg, ..., Pn, Znt1). Similar relationships
hold for Z,41 and Pp4p. This completes the proof. O

Using the above results, it is easy to prove the main result of this section.

THEOREM 4.5. Assume that the Lanczos process does not breakdown, then CS5-
BCG computes, withoul breakdown, exactly those BCG iterates x;’s which are well-
defined.

Proof. By construction, ,42 = z, + f,(;l)pn + f,(,z)an. By induction, z, €
zo + Ku_1(ro) and p, € K,(ro). By definition, 2,11 € Knq1(re). It follows that
Tnt2 € o + Kn41(re). From Theorem 4.4, we have roy9 L Knyy. Therefore, @49
satisfies exactly the Galerkin condition defining the BCG iterate. O

5. Implementation Issues. We first prove some relations which simplify the
solution of the four 2 x 2 systems (1), (2), (3) and (4).
LEMMA 5.1, For the systems (1}, (2), (3) and ({), the following relations hold:
1. 2% = Fhtn = ot = o and s = Fhygtn =0, fn = o

~ o 2
2. pLATFoyy = PLAM4 = 0 and 25 ATFnyn = X Arnys = —pnsa/F&
(where ppys = Ff+2rﬂ+2), In = n.
8. pTATZ, 41 = PL Aznq1 = —Ony1/pn, where Onyy = 20, 12041,
Proof.

1.  p, were computed using a 1 x 1 step, then p, = r, + Bnpn—1. From this it
follows that pl 7, = rX7, + B,pL_,7u. The last term on the right hand side
vanishes due to Theorem 4.4. Analogously, we can show that 37 r, = Fir,.
If p,, were computed using a 2 x 2 step, then p, = rn + (Pn-2, Zn—1)gn—2.
Therefore, pT#y = rI#, + (pX_ofn, 21 17n)gn—2 = 7L ¥y, since the last two
terms on the right hand side vanish due to Theorem 4.4. Similarly, we can

AT

show 7 ry, = . rn. The equalities zf y1fn = E,T +17n = 0 follow from Theorem

4.4 directly. Finally, since the systems governing f, and fn have the same
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coefficient matrix and the same right hand side, we must have f, = fﬂ.

2. p?:ATF,H_g = ﬁf Arg 4z = 0 follow directly from Theorem 4.4 because Ap,, €
Kpsy and ATH, € K,4y. By construction, fgz)Aan =Tp—Tn42 —ff.l)Apn.
Therefore, we can write 743 Azn 41 = (FoypTa—TL. +2F,,+2—f,(,1) 2y 3 Apn)/ =
T?.:+2Fﬂ+2 / f,?), since the first and third term on the right hand side vanish
due to Theorem 4.4. (Note that if ¢, = 0 then f(z) # 0 otherwise the
first equation for the f system cannot be sai;lsﬁed ) Similarly, we can prove
that rp42AT 541 = rn+3rn+2/f( ). Since we just proved f, = f,, we have

2z +1A Fris = Z, +1Arn+2 = —pnya/ f,(; ), Finally, since the systems govern-
ing g, and §, have the same coefficient matrix and the same right hand side,
we must have g, = §n.
3. Since zu41 = Ontp — pnApn, it follows that pl AT 2.4 = (oprfZpg —
2 Fay1)on = zn+1zn+1/pn, since the first term vanishes by Theorem 4.4.
We proved earlier that pl AT %, 1 = p% Az,41 when we proved that the 2 x 2
coefficient matrices are symmetric.

o

With Lemma 5.1, we need to solve only the following two linear systems for f,
and g, for a 2 x 2 step:

[ ][] - 13
_3n+1/Pn [ fr(lz) - 0 1

[ Oy - n+1/Pn } QE) — [ 0 ]
—9n+1/Pn Cn-!—l g£,2) Pn+2/fr(12) ’
where (n41 = Fry g Aznyr.

These two systems can be solved explicitly for f, and g, giving:

fn = (Cn+lpm 5n+1)Pi/6n

and

In = (Pna2/Pn) CnPri2/Oni1),

where 6, = onaq1pl ~ 02,4.

We summarize the CSBCG Algorithm below. In the algorithmic description, we
have included a possible preconditioner B for A, and use the notation spi1, #a41
to denote the unpreconditioned and the preconditioned residuals respectively. Also,
we use the more natural notation (corresponding to BCG): oy, an41 for f(l) ,?)

respectively and F,41, Bnype for yg ), 9’5. ) respectively.



Algorithm CSBCG:

Po=715 Fo=P
g0 = Apo;  do=ATHo
po = 13’(1;?’0
n—0
Begin LOOP:
o = =T
n = Pnin
Zn4l = OnTr — Padn, Zn41 = OnTn = Pnln

Yn4+1 = Azn+1; gn+1 = ATEnJrl

Bny1 = E,T+1Zn+1

Cntt = 1 Unt1

If 1 x 1 step, Then
&y = Pn/an
prtl = bnt1/oh
Brt1 = Pr+i/pn
Tp4l = Ep + UnPn; T4l = Ep + Anfp
a4l = P — Unin, rn.+1 = rn - anQn
Prgl = Zna1/On + BpyiPry Prar = Zngi/0n + BuyiPn
Intl = Ynt1/On + Brg1tn  Gngr = Fng1/0n -+ Bnt1dn
ne—n-+1

Else
6n - O'nCn+1Pﬁ - 9n+1
On = Cp1P5 /0n;  Ong1 = Ong1pl /b,
Tpiz = &n+ AnPp + Mnp12n41; $n+2 n+ Qnfn + an+lzn+1
n43 = np — UpQn — an+1yn+1: rn+2 = — Opfp =~ a‘n+lyn+1
Bzypys = rny2; BT Zngn = Fuge
Ptz = Fnpatni
ﬁn+i = Pn+2/ﬂn; ﬁn+2 = Pn+26n/9n+1
P42 = Zng2 + BnaaPn + Bryatnar; Ptz = Enga + Bnt1Pn + Brizinna
Gnt2 = APn+2; Fntz = ATﬁn-q-z
ne—n+2

End If

End LOOP

At every step we compute the matrix-vector product g, 11 = Az,41 in anticipation
of a 2 x 2 step. In case a 1 x 1 step is taken, this may appear as an extra cost. However,
note that

Apni1 = Azpgifon + Bug1Apn

and therefore the vector g, 41 can be used to update the vector gn41 = Apny1 without
an extra matrix-vector produci. Therefore the number of matrix-vector remains two
per step, the same as in the BCG algorithm.

We next consider the issue of deciding between 1 x 1 and 2 x 2 updates. Our goal
is to choose the step size which maximizes numerical stability. We have experimented
with several decision processes based on the sizes of the elements in the 2 x 2 matrix

Op "9n+1/,0n
_Bn-[»i/Pn Cnpa
9



and deciding locally whether to choose the 1 x 1 pivot o or to use the matrix itself
as a 2 x 2 pivot. Such schemes usually make reasonable decisions with respect fo
the matrix factorization, but, based on our numerical experience, are somewhat less
satisfying with respect to the behavior of the CSBCG algorithm itself. ‘Thus we are
led to develop a heuristic based on the magnitudes of the residuals. If the (potential)
residual from a 1 x 1 update satisfies || rn41 [|<]| ra ||, then we choose a 1 x 1 update.
Otherwise, we consider the {potential) residual r, 45 for a 2 x 2 update, and choose a
2 x 2 update if || rnp2 ||<|| #n41 |- This test mathematically simplifies to choosing a
2 x 2 update only when

(5) I Prga l1> max {{| v [}, [} 7 |1} -

Care should be taken in implementing the above tests so that no overflow occurs
in the computation of {{r,41|| and ||rn+2|| unnecessarily. We shall describe a simple
scaling procedure for achieving this. Define vp4n = 8,7n42 = 8nrn — (utr1pS Apy —
Ont1p2 Aznt1. Then the test |Jrap1]] < [|rn]] can be replaced by ||zn41ll < |onilirall
and the test ||rnt1]] < {rn42|] can be replaced by |8nlilzns1ll < |on|l|lvns2]]. Note
that the new tests have no possibility of overflow even if ||ro41fl or ||Ph4o]] can be
arbitrarily large. The following code fragment implements our test:

I | 2n41 <N 7o | |oel, Then
1 x 1 Step
Else
Ung2 =l $arn — phlat1dr — Ont1PnYnt |
If vnalow| <|| zn41 |] 16n], Then
2 x 2 Step
Else
1 x 1 Step
Fnd If
End If

When (5) is safisfied, taking two 1 x 1 steps would result in a “spike” in the conver-
gence history of the residual norm. By making a 2 x 2 update in such circumstances,
we effectively cut off such spikes. Note that this strategy not only eliminates near
pivot breakdowns, but also provides some smoothing of the convergence history of
the norm of the residuals. Moreover, this is achieved without any machine-dependent
or user-supplied tolerances. We emphasize that CSBCG does not make the residual
norm decrease monotonically, L.e. it can’ eliminate all spikes, only those that are due
the small pivots.

I'inally, we mentioned that in this paper we have only derived one particular im-
plementation of the CSBCG algorithm. Other variants, all mathematically equivalent
but with different rounding error properties, are presented in {1].

6. Numerical Experiments. In this section, we will present a few numerical
results for the CSBCG method. We emphasize that the purpose of these experiments
18 to show the stabilizing effect of the composite step strategy on the BCG method
and not to show that the CSBCG method is better than other competing methods.
For comparisons of the BCG method with other nonsymmetric CG-like methods, we
refer the reader to [22].

Our first examples concern the model convection diffusion equation

—Au+ fu; =1
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in € = (0,1) x (0, 1) with the Dirichlet boundary condition © = 0 on Q. This prob-
lem is discretized on a uniform 33 % 33 mesh with 1089 vertices. We used continuous
piecewise linear finite elements with no upwinding. The standard nodal basis func-
tions were used for the finite clement space. We consider the cases § = 10, leading
to a relatively easy problem, and £ — 1000, leading to a more difficult problem. As a
linear system arising from partial differential equations, these examples are somewhat
artificial because the mesh is uniform, because no upwinding was used to stabilize
the discretization, and because we used no preconditioner. Although this leads to a
more standard test environment, we note that the resulting linear algebra problem is
generally made more difficult to solve by these choices. These calculations were per-
formed in double precision arithmetic on a DECstation 5000/240 using the standard
F77 compiler.

For these two test problems, we compared the BCG and CSBCG algorithms. The
BCG algorithin was implemented using the same code as for CSBCG, except the pivot
test was modified to always choose 1 x 1 update steps. We chose to measure error in
terms of the relative residual, given by

er = logm (“ Tk Ht; / “ To ”82)

We began with the initial conditions zy = Z4 = (0 and rg = p, and iterated until the
relative residual was less than 1074

The convergence history for the cases # — 10 and 8 = 1000 are given in figures 1
and 2, respectively.

-1 4
-2

~3

Fig. 1. Convergence history e v. k for 8 = 10. BCG ileraies are open bozes, CSBCOG iterafes are
filled bozes (1 X 1 steps) and filled civeles (2 X 2 sieps).

We note that for the case § = 10 the CSBCG algorithm works exactly as pre-
dicted, computing a subset of the BCG iterates, and smoothing the convergence his-
tory by skipping the “spikes” in the BCG history through the use of 2 x 2 steps.
'FThis is also true initially for the case § = 1000, but we note that after & = 40,
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F1a, 2. Convergence history ex v. k for # = 1000. BCG tierales ave open bozes, CSBCG iterates
are filled bozes (1 X 1 sieps) and filled civcles (2 x 2 steps).

the two methods begin to compute somewhat different iterates. We attribute this to
accumulated roundoff error.

Finally, we consider a contrived example which is chosen to illustrate the potential
superior numerical stability CSBCG has over BCG. The matrix A is a modification
of an example presented in [17],

(®) a=(5 V) e

Le., Ais an N x N block diagonal matrix with 2 x 2 blocks. Furthermore, by choosing
b=(1010 -7, we set 0g = ¢! and we can forsee numerical problems with BCG
when ¢ is small. In exact arithmetic, BCG converges in exactly 2 steps if ¢ £ 0. In
finite precision {in MATLAB on a SUN Sparc station IPX with machine precision
about 10719}, the relative error in the solution after 2 steps of BCG are (for N = 40)
1.5 % 10712,2.5 x 1078,4.9 x 10~* for ¢ = 10~%,107%, 1077 respectively. Note that
the number of digits lost are approximately —log,q¢€, as expected. On the other
hand, the corresponding relative errors for CSBCG are less than 10~ for all 3 cases,
demonstrating the effectiveness of the composite step strategy.
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