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Abstract

In this paper we introduce a new version of ENO ( Essentially Non-
Oscillatory) shock-capturing schemes which we call Weighted ENO.
The main new idea is that, instead of choosing the “smoothest” sten-
cil to pick one interpolating polynomial for the ENO reconstruction,
we use a convex combination of all candidates to achieve the essen-
tially non-oscillatory property, while additionally obtaining one order
of improvement in accuracy. The resulting Weighted ENO schemes
are based on cell-averages and a TVD Runge-Kutta time discretiza-
tion. Preliminary encouraging numerical experiments are given.




i Introduction

In this paper we present a new version of ENO ( Essentially Non-Oscilla~
tory ) schemes. The cell-average version of ENO schemes originally was intro-
duced and developed by Harten and Osher in [1] and Harten, Engquist, Osher
and Chakravarthy in [2]. Later Shu and Osher developed the flux version of
ENO schemes and introduced the TVD Runge-Kutta time discretization in
[3] and [4]. The ENO schemes work well in many numerical experiments.
The new ENO schemes which we call the Weighted ENO schemes are based
on cell-averages and the TVD Runge-Kutta time discretization.

The only difference between these schemes and the standard cell-average
version of ENO is how we define a reconstruction procedure which produces a
high-order accurate global approximation to the solution from its given cell-
averages. The cell-average version of ENO schemes attempts to avoid growth
of spurious oscillations by an adaptive-stencil approach, in which each cell is
assigned its own stencil of cells for the purposes of reconstruction. For each
cell the cell-average version of ENO schemes selects an interpolating stencil in
which the solution is smoothest in some sense. Thus a cell near a discontinu-
ity is assigned a stencil from the smooth part of the solution and a Gibbs-like
phenomenon is so avoided ( see {5] ). The Weighted ENO schemes developed
here follow this basic idea by using a convex combination approach, in which
each cell is assigned all corresponding stencils and a convex combination of all
corresponding interpolating polynomials on the stencils is computed to be the
approximating polynomial. This is done by assigning proper weights to the
convex combination. To achieve the essentially non-oscillatory property as
the cell-average version of ENQO, the Weighted ENO schemes require that the
convex combination be essentially a convex combination of the interpolating
polynomials on the smooth stencils and that the interpolating polynomials
on the discontinuous stencils have essentially no contribution to the convex
combination. Thus, as in the cell-average version of ENO schemes, a cell
near a discontinuity is essentially assigned stencils from the smooth part of
the solution and a Gibbs-like phenomenon is also avoided. In addition to
this, the convex combination approach results in cancellation of truncation
errors of corresponding interpolating polynomials and achieve one order of
improvement in accuracy. Another possible advantage of Weighted ENO is
smoother dependence of data which may lessen some of ENO’s oscillatory
behavior near convergence and may help in getting a convergence proof.
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in §2 we wtroduce some notations and basic noilons and give the TVD
Runge-Kutta time discretization. In §3 we describe the procedure of re-
construction from given cell averages. In §4 we present some preliminary

numerical experiments,

2 Basic Formulation and TVD Runge-Kutta Time
Discretization

We consider a hyperbolic conservation law

Ty + f(u)a: = 0}

(e, 0) = (o). &
Following the basic ENO framework originating in 2], we let {I; x [t,,%,.4]}
be a partition of R x [0,17, where I; = [:Bj_%,mj_,_%] is the j-th cell, &; = j -k,
t, =n-7,and I is the stopping time. We denote {u(x;,1)} to be the sliding
averages of the weak solution u(z,t) of (2.1) i.e.

Wy, t) = ¢ [ u(z,t) da. (2.2)

Integrating (2.1) on the j-th cell I;, we obtain that the sliding averages
{ii(z;, )} of the weak solution u(z,t) of (2.1) satisly

Za(z;,t) = ®;(u)

= —Hf((z,45,1) — Fu(e;-1,1)] (2:3)

For evaluating ®;(u), we need to evaluate f(u(z,y1,t)) and f(u(z;_1,1)).
First of all, from given cell-averages # = {#;} in which %; approximates
#(x;,t), we reconstruct the solution to obtain R(x, %) = {R;(x,%)} which is
a piecewise polynomial with uniform polynomial degree r — 1, and in which
each R;(z,%) is a polynomial approximating u(z,t) on I;, We shall show
how to get R(z,%) from % = {@;} in §3. Next at each interface between
adjacent cells, R(z,@) may have two approximating values R;(x,, 1,%) and
Rz, L , @) for u(z,, 1,t). Here we need a two-point Lipschitz monotone
flux A(.,-) which is nondecreasing for the first argument and nonincreasing
for the second argument. Some possible choices are




(i) Engquist-Osher
b a
hEO(a,b) = [ min(f'(s),0) ds + [maz(f(s),0)ds + F(0);  (24)
0 0
(ii) Godunov

o _ ) mingcuf(u) if a < b,
h (a, b) - { mamaEquf(u) lf a > b; (2.5)

(iii) Roe with entropy fix

fla) if f'(u) > 0 for u € [min(a, b), maz(a, b)),
hEF(a,b) =< f(b) if f'(u) < 0 for u € [min(a, b), maz(a,bd)},
hLLF(q b) otherwise,
(2.6a)
where hLLF(a, ) is defined as

BELF(a,5) = §[f(a) + (B~ BO—a)l, B=  max |[w)].
(2.6b)
Finally we can approximate f(u(a;ﬂ;i,t)) by E(Rj(mﬁ%), Rj+1($j+%))
and f(u(z;_1,1)) by ?I(Rj—ml(zcj-%)’Rj(mju%))'

Hence we can obtain a numerical spatial operator L;(@) approximating
the spatial operators ®;(u) at each cell and

(VR

ii(zj,t) = ®;(u)
= “Hf(u(esp01)) - Flu(z_, ) (270)
= L;(t) + O(h™+') (in most cells ),

where
Ly(a) = _%[E’(Rj(mj«}-%)?Rj+1(wj+-;~)) - E(Rj—l(%—%): RBy(m;_1))]. (2.70)

Remark 1: Normally, we only can obtain ®;(u) = L;(%) + O(h7), because
we only use polynomials of degree r — 1 to approximate u(z,t). In general
upwind schemes, away from sonic points where f'(u) = 0, k(a,b) will be
either f(a) or f(b). In (2.7b) we need R;(x,T) only at the end points of cells,
and in the reconstruction procedure we shall describe, in smooth regions of
u(z,t),

u(a,;, t) = Rj(:c;f, 7) + O(hr1), (2.8)
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where, in general, % is the appropriate one of two end points of I;, and hence

F(R;(@141), Rysa(@541)) = Flule,
MRy (o) By ) = .
L;(@) = @;(u) + O(hr).

,8)) + O(hr+1),
18)) + O(R7+1),

up-a NIH

We can now evaluate £1(z;,t) numerically. For high order time dis-
cretization accuracy, we shall apply an (r + 1)-th order TVD Runge-Kutta
time discretization introduced by Shu and Osher in [3] combined with the
Weighted ENO schemes as follows: Let 4° = {@y(z;)} and for n =10,1,2,-

We compute:

a0 =g,
i=1
?._l,(‘) = 2 [aikﬁ(k) -+ ﬁ,‘kTLj(ﬁ(k))], ?: = ]-} 25 Y F: (2'9)
k=0
r+l = g7,
where all @ = {%;} approximate the cell averages {i(z;,1)} of the weak

solution u(z,t) at corresponding time t. Here we have ¥ = 3, if r +1 = 3,
and 7 =4, if r +1 = 4. Some of the schemes are listed in following Table. If
B < 0 which happens for ¥ > 4, then we use f}j(ﬁ) instead of L,(%), but in
this paper we set L;(@) = L;(#@). For details see [3].

TVD Runge-Kutta Schemes

Order g Bix CFL
3 a130=1 . Big =1 s 1
&20——4,&21—— ) Ba0=10, P21 =7

®ag = 5’ gy = 0, argg = 3 Bao =0, a1 =0, B3z =
2
4 a0 =1 ﬁlﬁm% 3
- 1
(.\’2(]:% 05'21=% ﬂZDI—Ttﬂ‘ZlmE
azp=L,a51 =2, 30 = 2 Pag = 5= fa1= T Pz =1 )
oy = 0, og1 = %342:%,043“—'% Bao =0, B4y = %542=0,ﬁ4a=-g

To complete the construction of our schemes we form our novel recon-
struction procedure.




3 The Reconstruction Procedure
3.1 The Purposes of the Reconstruction

In this section we present the reconstruction procedure which we shall use
to obtain a piecewise polynomial R(z, %) = { R;(z, %)} where each R;(x, @) is
a polynomial of degree » — 1 approximating the weak solution u(z,t) in the
j-th cell I;. The R(z, @) is required to satisfy

(¢) In each cell I;, Vo € I; and any given % € I;, we have

R(z,8) = u(x,t) + O(h7), (3.1a)
and
Ri(a%,u) = u(z], ) + O(hr+1), (3.18)

in smooth regions of u(z,t), where (3.1b) will lead to one order of improve-
ment in accuracy, see subsection 3.4 in this paper.
(¢4) R(z,u) has conservation form i.e. Vj

% ij RJ(:I:, ﬁ) dw —_ ﬁj. (3.2)

(¢41) Every R;(x, @) achieves the “ENO property” which will be specified
later,

3.2 The Interpolation on Each Stencil

Following the reconstruction procedure in [2], given the cell averages
{8}, we can immediately evaluate the point values of the solution’s primitive
function W(z) at interfaces between the cells {W(z;, 1)}, where the primitive
function is defined as

W) = [ ulz,t) de, (3.3)
hence
u(z,t) = LW (z), (3.4)
and obviously .
W(zj) = & % h (3.5)




To reconstriuct the solution, for each stencil S; = {(w.__, 1.2 PUREEIN |
b K L 3—1'-;-57 3-—-1‘-]-5} y 3+5,}3

we interpolate W(z) on S; to obtain a polynomial p;(z) i.e.
pj(331+%)WW(CE1+%), l—':j—'?","',j.

Obviously the corresponding polynomial E‘i—pj(a:) approximates the solution
u(z,t) i.e.

€T

u(z,t) = £p;i(z) + O(hr) Ve € (a:j_r+%,wj+%),

in smooth regions of u(z,t), where £p,(z) is the interpolating polynomial
with degree r - 1, see [2].

Also for each stencil S; = (mj_r+%,wjur+%, cee $j+%)’ we will define an in-
dicator of the smoothness I.S; of u(z,t) on §; as following: First we compute
a table of differences of {u;} on S,

gui—ﬂrl]’ FAN (7P IERRAN [T N

A
A [“j-—r+1], A2[“3‘-r+2]: Tt A2[uﬁ'—2]’

Ar-1 [uj-—r-l-l] )
where

A[ul] = U — Uy

is a difference operator. Next we define IS, to be the summation of all
averages of absolute values of the same order differences.
r=1
I1S;= (2 | A u;_, 6] 1)/L

I=1 k=1

That is for r = 2,
1S5 =| Alu; 4] |;

and for r = 3,
155 = (| Aluja] | + | Aluja] /24 | A2y |

We observe that if u(z,?) is discontinuous on S}, I5; = O(1), and if u(z,)
is continuous on S, IS; = O(h).




.[ICHLC .LUI Cd.(_-ll bl.vCI.lL.ll OJ‘) we OULd.lI.l —;pj(:l:) a.pproxilnaiing 'U(.'L', lj;) (841 Sj
and IS; indicating the smoothness of u(z,?) on 5.

In the following subsection, to reconstruct the solution in I}, we shall use
r interpolating polynomials {-£p;.;(2)}iZt on the stencils {S;,4}5-5 which
cover the I; to obtain a convex combination of them, and we shall explore
{75;14}izp to assign a proper weight for each of {-£p;,(2)};Z in the convex
combination for the purposes of reconstruction.

3.3 The Convex Combination of p;(z) on Each Cell

For each cell I; we have r stencils {S;,, }iZg = {(:c3+k_,,+a P Tjhortdy”

Tihil }}iZh which all include two end points :cj_ 1 and 7,1 of the j-th ceH

I;. We also have r mterpolatmg polynomials {Zp,,.(z)}izp on the corre-
spondmg stencils {S;,; }izo from previous subsection. The main idea of the
cell-average version of ENO is to choose the “smoothest” one from these r
interpolating polynomials. For Weighted ENO, instead of choosing one, we
use all r interpolating polynomials and compute a convex combination of
them to obtain the polynomial R;(z, @) as follows
R N r—1 aj d
j(%u) = kz_;.:o —er:; y @Pﬁ-k(:ﬂ)» (3.6)
i=0 f

where the weights af; > 0(k=0,12,--.r—1). Obviously R;(x,u) =
u(z,t)+O(h") in the smooth regions of u(z,t) which is the purpose of (3.1a).
Note that forany bk = 0,1,---,r—1, pj+k(:cj_%) = W(=z;_1) and pj+k(:cj+%) =
W (z;,1), hence we achieve the purpose of (3.2)

r—1 o{:i‘
P (e, 0)de = 71;];:30 ?“l“fb“;(Pj+k($j+%) — Piri(2;_1))
= (3.7)
= 1 {W(zjp1) —W(z;_1)} 5; rf - = U
=0

Note that no matter how we define {af};2}, R;(z, ) satisfies the purposes

of (3.1a) and (3.2).
Now we define {a},}77L to achieve the “ENO property”. Here we specify
the “ENO property” of R;(z,%) in the sense of corresponding {ad izl
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Definition i; The R;{x, %) has the “ENO property” if the correspondin
. Ty %) g
{ad }izt satisfy that
(i) If the (j + k)-th stencil S;; is in a smooth region of the solution
u(z,t), the o, satisfy
o
ey = O(1). (3.8a)
=0 1
(i1) If the (j+ k)-th stencil S}, is in a discontinuous region of the solution
u(z, 1), the o}, satisfy

<— < max(0(e), O(h")), (3.86)
t=0 ~1

where in this paper we choose ¢ = 10—4.
Note that for the j-th cell I, if {a}}y satisfies the “ENO property”

r—1
(3.8), the R;(z,u) = kzn ﬁ%%pﬂk(m) will be a convex combination of the
= a.;f
=0
interpolating polynomials on the smooth stencils (3.8a), and the interpolating
polynomials on the discontinuous stencils have essentially no contribution to

Now let us define {a}i}z;ﬁ,
of = Cff(e+182,,), (3.9)

where C’g = O(1) and C’,‘i will be defined later for improvement of accuracy.
Note that because IS, could be zero and 1/z is too sensitive as z is near
zero, we add a small number € in the denominator. Also note that if (j+k&)-th
stencil S,,, is in the smooth regions of u(z,1)

=% —0(1
Zl:oﬂf (),

and if (j + k)-th stencil S;,; is in the discontinuous regions of u(z,1)
sk < max(0(e'), O(h™)),
1=0 !
hence these {of}iZ} (3.9) satisfy the “6NO property” (3.8). Here we assume
there is at least one of stencils {S;,4};Zg in smooth regions of u(z, ).

11
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Here no matier how we define the constants {Ci}i_}, we have achieved
the purposes of (3.1a), (3.2) and the “ENO property” (3.8). However we
can specify {Cf};Zp for (3.1b) which will lead out one order improvement in
accuracy in section §3.4, our last purpose of the reconstruction.

For analysis we assume that
u(z,t) € Crt, (3.10)

n [“’jmr+%vmj+r+%]-
" d . . . . .
.F01 each £p; ., (z) which approximates u(z,t) in I;, we express its trun-
cation error as

ein(2) =ul(z,t)— —d‘Pj-i—k(m)
= W' (z) — £pipn(z)

- fE{W[“” Tipb—rgds s ‘”j+k+%] ‘ II_IU("I’ - $j+k-l+%)}

-

I
= E%,»"W["’v Lith—ridsr' " “’j+k+%] ’ E_}O(m - $j+k—z+§)

™ T
Wl @ity Tl E{J{tm&&s(x = iphoiry)}
=Wz, 2t Tl ai{z) + O(h+1),
(3.11a)

. T T
where aj () = sg){hgﬁ(m pEITTTEY | 2

We express the truncation error for R;(x, )
Ei(z) =u(a,t,)— Ri(z, i) =W'(z)— R;(z,)

r—1 a-j_ r—1 of
=X S (Wie) - Epi(2) = % %k_jeﬁk(x)'

J =
o 7
=0 =0

Because of the assumption (3.10), V&, ky = 0,1, -+, r — 1,

| 1511, 1< O(R)

| IS4k — ISi10 [S O(R)

| o, — o, 1< 0(h2)

I W[3’7 $j+k1«-r+~1§v T $j+k1+%~] - W["BJ mj-}-kg-»'r’»{-%? T :$j+k2+%] lS O(h)
(3.110)

12




Txr 1 " P B I IO I /o -x LR Y
We have, from (3.11a} and (3.11bj,

Pl cxj
Ej(e) = ¥ - emnl@)

=S
?.=D
§ 5 [m)“’j+k—r+§a"',mj+k+%]'Gi($)+o(h’"+l) (3.11¢)
= {3::0 ’"faf (@)} Wiz, 2;_p1, - 3501] + O(RTH1),
k

1=0

The idea is that for any given point zY € [wj__, i+ 1], we define Cﬁ to make
the first term in (3.11c) equal to zero and we obtain

Ey(zs) = O(hr+1).

Of course the €} depend on %, Forzt € [:nj__;_,a:j_,_%], we denote 7, be the
number of positive terms in {ai(m;‘)}:c:l and 7, be the number of negative

terms in {a] (m;‘)};:;, then we define

1 if ak(:c*) =0,
- hl‘
¢ =1 weiep “k(”’ )>0, (3.12)

i if a,k(:cj) < 0.

1l (7)]

Here, obviously the C’;‘i are independent of grid size h. Now

Ej(w;) = { E ri:a ak(m*)}W[ j—r+%a " ':$j+%] + O(hT-H)
i=0
:{ . E ;:’IE— E r—1 }DV[ T, y—'r'+1 ' 5$j+%] +O(hr+1)
af (=)>0 E) ] ah(w*)<0 Z CJ
=0+ O(hrt+1)

= O(hr+1).
(3.13)

Remark 2: We have to have n, > 1 and n,, > 1 to guarantee (3.13).
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[®_1, j41], defining Ci by (3.12) gives us
Ei(z) = O(h7), (3.14a)
and
Ej(z3) = O(h7+1). (3.145)

Up to now, we have achieved all purposes of reconstruction (3.1a), (3.1b),

(3.2) and (3.8).

3.4 One Order Improvement in Accuracy from (3.1b)

In this subsection, we shall see how (3.1b) or (3.14b) gives us one order
of improvement in accuracy by choosing T3 properly in each cell. Let us
consider the numerical spatial approximation (2.7b)

Lj(ﬁ) = “%[ E(Rj(:‘:ﬂ%aﬁ)aRjﬁ-l(wﬁ

h ) ))_
h(Rj._l(mj_% ), RBi(z;_g, )

)l
According to remark 1, in general, we only can achieve L;(@) = ®;(u)+0O(h").

Here we shall give the analysis of how (3.1b) lead to one order of improvement
in accuracy i.e.

b

uil—l [

Li(@) = ®;(u) + O(r™+1),
in most cells, 5
We notice that h(a,b) ( see (2.4), (2.5) and (2.6) ) is equal to either f(a)
or f(b) away from sonic points. Let us consider three cells in a smooth region,

say cells I;_,, I, and I;,,, which are away from sonic points.
If f'(R(=, u)) > 0 in the cells, We have

Lj(ﬁ) = “%[f(Rj(mj+%}ﬁ)) - f(Rj—l(mj—-%ﬁ rI‘3))]

Now if in the j-th cell we chose 23 to be the right end point of the cell i.e.

2% = 2,1 to define corresponding C’,‘; and in (j —1)-th cell we also chose a%_;
to be the right end point of the cell i.e. &y, ==z; 1 to define correspondmg

-1
Ci™, then by (3.14b) we obtain that
Files05) - (e ) = By (5) = O,

14
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J“l(wj—-z') u(“"g-—— ‘n) = Ly wj—%) = O(h
Thus
Li(@) =~/ (a0 b)) — F(u(a;_prta))] + O(hH0),
If f'(R(z,u)) <0 in the cells. We have
L; ( )= “‘};[f( +1(w3+1 u}) — f(Rj(xj_%:ﬂ))]-

Now if in the j-th cell we chose z% to be the left end point of the cell i.e.

z% = x;_1 to define corresponding C’;’; and in (j -+ 1)-th cell we also chose z*
to be ‘she lett end point of the cell i.e. z*

Ci*| then by (3.14b) we obtain that
Rj+l(mj+%) - u(mj+%atn) = E; ( 3+ ) (hr+1)

Ri(z;_1) = ulz;_1,1,) = By(z;_1) = O(h7H).

d—g

7+1

T = @y to define correspondmg

Thus
Li(w) = —3[f(ulzj41,t0)) — Flulz;_1,4.))] + O(R7 ).

Hence in the smooth regions of the solution and away from sonic points,
the numerical spatial operators {L,(#)} approximate the spatial operators
{®;(u)} in the order of O(h7+!) if we choose z3 properly in each cell.

We specify zy in each cell in the following way:

First we compute f'(#;). Then

(i) if f'(@;) > 0 we chose x% to be the right end point of j-th cell i.e.

T = X.,1
¥ J+5?
(i) if f'(w;) < 0 we chose % to be the left end point of j-th cell i.e.
¥ =x._1
J i—3?

(iii) if f'(i;) = 0 we chose a% to be either the right end point or the left
end point of 7-th celli.e. 2% = $J+1 or % =2; 1.

Now if the j-th cell is in the smooth regions of the solution and away from
sonic points which means f'(%;) # 0, then in general f'(R(z,%))- f'(@;) >
around the j-th cell I;, hence according to the above analysis

Li(@) = &;(u) + O(hr+1), (3.15)

15




Because sonic points are isolated, in general, we obtain (3.15) in most of the
cells and obtain
1,;(3) = ®;(u) + O(h)

in a bounded, in fact small, number of cells near which there are sonic points
as h decrease to zero.

Remark 3: We have achieved one order improvement in accuracy. For
r =2 and r = 3, the cost of computing between the Weighted ENO schemes
and the corresponding standard ENO schemes ( with the same order ) are
comparable on sequential computers. But on parallel computers the for-
mer schemes are less expensive than the latter ones because the latter ones
need more highly costing data transportation among cells not within short
distance.

3.5 The Schemes when r = 2

The purpose of following two subsections §3.5 and §3.6 is to spell out the
details of the general schemes for two specific values of r, perhaps to help
people to implement the schemes.

In this subsection, we consider our schemes when r = 2, In this case we
only use linear interpolation to achieve the “ENO property” and 3rd order
accuracy ( in numerical experiments, we achieve 4th order accuracy ) with
conservation form.

Here we only give the reconstruction procedure for r = 2. Let us construct
the solution in each cell I;,. We have two stencils S; = (a:j__ 3,8, 1,%; +1) and
Sip = (3:‘?__1“, 41 Tind ) corresponding to I; = [:cj__% J“*“E] On these two
stencils, we obtain linear interpolations

pi(e) = 8 + 2 (2 — x)

and )
da:pJ'i—l(m) = u + 1 — (SL‘ - $j)3

and two indicators of smoothness I.S; =| @t; — ;.4 | and IS, =| 'EEH_] i |.
The reconstructed solution R;(=,a) w111 be a convex combma,tlon of £ pJ( z)
and Zp..4(z) ie

o
Rj("”: ) = W“,faﬁsdzpa( )+ iy . +QJ dmp.;'-kl(x) (3'16)

16
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where of = Ci/(e + 18%)2, of = Cijle+ 15%,,)% and € = 10-%. We shall
specify C§ and CY in the following two cases. .

Ca'se 1: ¥ f'(@;) > 0, we choose ot =x;,.1. We compute aﬂ(¢j+%) = 2h2
and a{(mﬂ%) = —h?, and obtain 5, = 1 and 75, = 1, hence C§ = 1/2 and
C{ = 1. Thus
o1

0 2{£-§-ISJ)2
1

i (317&)
A = @iy
in (3.16). .
Case 2: If f'(u;) < 0, we choose @} = z;_1. We compute af](mj_%) = —h?

and a{(wjm%) = 2h2, and obtain 5, = 1 and #, = 1, hence Cj =1 and
Ci =1/2. Thus
J o 1
Op = (15372

J_ i
N T ISP

(3.170)
in (3.16).

3.6 The Schemes when r =3

In this subsection, we consider our schemes when r = 3. In this case
we only use quadratic interpolation to achieve the “ENO property” and 4th
order accuracy ( in numerical experiments, we achieve 5th order accuracy )
with conservation form.

Here we only give out the reconstruction procedure for r = 3. Let
us construct the solution in each cell I, We have three stencils S; =

F
(wj—%smj—%imj—%3$j+%)) Sj+1 - (wj—%)mjwévmjvi-%’mj*kg)’ and

Site = ($j_:1,$j+%, a:j#%,wj_l_g) cc.)rr'espondmg. to I; = [a:j_%, :::H%]. On these
three sten(:lfs, we obtain quaératlc interpolations
d - ﬁz'—2ﬁ2'_1 +’l—t1'_2 2 ﬁi—-ﬁz‘_g .
=Di() = 202 (2~ 2;_1) + =552 (2 — )+
_ I T R S
Uj—1 24 ’

dipj-i-l(m) = wﬁlﬁ%miﬂﬂ__l(m _ 3;3)2 + E‘.ﬁ'_liflﬂ_(m — mJ).{..
o S Tipa—2aide
Uy — 24 ,

17




. 57 . TN i 5T . 7
Epiga(e) = METdli(p g, 32 4 222N (g )4

ﬁj+1 » Ez'.[.z—?;fil +ﬁi,
and three indicators of smoothness L?'j = (| ﬁj___l — G g |+ | G — U |)12+
! Uy =284 + 85y |, 1S5, = (] 4, = U | +_| Ujpy — U; |2/2‘f‘ f Y1 — 2"{3‘ +
_1 | and IS, = (| 84y — @, | + L0 — Ujy /2+ | Ujpy — 284y + G5 |-
The reconstructed solution R; (3: @) will be a convex combination of £p;(z),

#£p501(z) and £pj15(2) Le.

o of od
Ry(z,a) = mdmpj( z) + mﬁmﬂ(m) + W%Pﬂz(m)a
i P (3.18)

where of = Cf /(e + IS2)3, o = Cf /(e + 152, )?, o = Cf /(e + 152,,)? and
e = 10~%. We shall specify C’(,, ¢4 and C} in the following two cases.

Case 1: If f'(%;) > 0, we choose 7 = z;,1. We compute abz Tj1) = 6h%,
al(:r:H;) = —2h% and a2($J+1) = 2h3, and obtain 5, = 2 and 5, = 1, hence
C§=1/12, ¢{ =1/2 and C} = 1/4. Thus

1
12(5+IS’)3

2

o
ap =
{' = 2(e+IS’+1) (3.19q)
i
1=

4(E+ISE+1)

in (3.18). '
Case 2: If f'(@;) < 0, we choose @t = z;_1. We compute ap(z; %) =
—2h3 al( _) = 2h3, and az(:cj__) = —6A® and obtain 5, = 1 and g, =

hence Cf = 1/4, Cf =1/2 and ¢ = 1/12. Thus

af7. = 4(e+]f55)

a = af;:f§;;j§ (3.19b)

i_
g
12(e+152 Ze2)®

in (3.18).




4.1 Scalar Conservation Laws

In this subsection we use some model problems to numerically test our
schemes. We use the Roe flux with entropy fix as numerical flux and choose
r = 2 which means we uge a linear polynomial to reconstruct the solution,
and r = 3 which means we use a quadratic polynomial to reconstruct the
solution, and we expect to achieve 3rd and 4th order accuracy respectively
( at least away from sonic points ) according to our analysis in the previous
section.

Ezample 1. We solve the model equation

Uy -+ u, =0 -1<z2<1 (4.1)
u{z,0) = ug(x) uy{z) periodic with period 2, '

Five different initial data uy(z) are used. The first one is ug(z) = sin(rz) and
we list the errors at time t=1 in Table 1. The second one is uy(z) = sin*(wz)
and we list the errors at time t=1 in Table 2.

TABLE 1 ( 7/h=0.6, t=1)

[ Ly error | Ly order | L, error L, order

r=2

80 2.81D-03 1.22D-02

160 1.99D-04 3.82 1.11D-03 3.46
320 1.06D-05 4.23 4.27D-05 4.70
640 5.09D-07 4.38 1.55D-06 4.78
r =

80 1.41D-05 6.34D-05

160 3.01D-07 5.55 1.71D-06 5.21
320 8.21D-09 5.20 2.12D-08 6.33
640 1.89D-10 5.44 4.54D-10 5.55
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TABLE 2 ( 7/h=0.8, t=1 )
! L, error | L, order| L error |L, order

o=

80 1.78D-02 7.24D-02

160 3.12DD-03 2.51 1.87D-02 1.95
320 2.47D-04 3.66 2.04D-03 3.20
640 1.40D-05 4.14 9.14D-05 4.48
r=3

80 1.48D-03 4.84D-03

160 5.44D-05 4.77 2.24D-04 4.43
320 1.09D-06 5.64 7.51D-06 4.90
640 1.67D-08 6.03 9.77D-08 6.26

Here and below [ is the total number of cells and the step size h = 2/] in all
scalar examples.

For the first two initial data, we obtain about 4th ( for r = 2 ) and
5th ( for r = 3 ) order of accuracy respectively in the smooth region in
both L; and L, norms which is surprisingly better than the 3rd and 4-th
order, the theoretical results. We note that standard ENO schemes applied
to the example with the second initial data experienced an (easily fixed) loss
of accuracy, see [6], [7]. No such degeneracy was found with our present
methods.

The third initial function is

1 —Lgegl
2y — b — % == K
to(2) { 0 otherwise,
the fourth is
10 i 3 3
up(T) = (1~ () ~15 S N < 15y
otherwise,

and the fifth is

ug(z) = ¢=300=%

We see the good resolution of the solutions in Figures 1-3 which are obtained
by our scheme with r = 3. Linear discontinuities are smeared a bit. We
expect to fix this in the future using either the subcell resolution technique
of Harten [10] or the artificial compression technique of Yang [11] together
with the present technique.
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Figure 3( r/h=0.6)
The zclution by WENQ at T=0.5
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Fzample 2. We solve Burgers’ equation with a periodic boundary condi-
tion
ut—i—(%u?)mzﬂ -1<z<1

u(z,0) = ugla) ug(z) periodic with period 2. (4.2)

For the initial data ug(z) = 1 + Jsin(wz), the exact solution is smooth up
to ¢t = 2, then it develops a moving shock which interacts with a rarefaction
wave.

At t = 0.3 the solution is still smooth. We list the errors in Table 3. Note
we also have about 4th ( for » = 2 ) and 5th ( for r =3 ) order of accuracy
respectively both in L, and L_, norms.




TABLE 3 { 7/h=0.6, t=0.3 )
{ Ly error | Ly order{ L. error |L_ order
r=2
80 3.47D-04 1.78D-03
160 2.53D-05 3.78 1.17D-04 3.93
320 1.80D-06 3.81 9.81D-06 3.58
640 1.36D-07 3.73 7.88D-07 3.64
r=3
80 8.60D-06 8.53D-05
160 2.62D-07 5.04 1.83D-06 5.55
320 8.94D-09 4.87 7.50D-08 4.61
640 4.87D-10 4.20 3.41D-09 4.46

At t = 2 the shock just begins to form, at ¢ = 1.1 the interaction between
the shock and the rarefaction waves is over, and the solution becomes mono-
tone between shocks. In Figures 4-5 which are obtain by our scheme with
r = 3 we can see the excellent behavior of the schemes in both cases. The
errors at a distance 0.1 away from the shock ( i.e. | # —shock location {> 0.1
) are listed in Table 4 at t = 1.1. These errors are of a little larger magnitude
than the ones in the smooth case of Table 3 and show about 4th { for r = 2
) and 5th ( for » = 3 ) order of accuracy respectively both in Iy and L,
in the smooth regions 0.1 away from the shock. This shows that the error
propagation of the scheme is still very local.

TABLE 4 ( 7/h=0.6, t=1.1)

{ Ly error | Ly order | L error |L,, order
r=2

80 1.22D-04 3.441D-03

160 5.31D-06 4.52 6.79D-05 5.66
320 3.74D-07 3.83 2.62D-06 4,70
T =

80 1.86D-05 4.84D-04

160 8.16D-07 4.51 4.80D-05 3.33
320 1.34D-08 5.93 1.19D-06 5.34
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Ezample 3. we use two nonconvex fluxes to test the convergence to the
physically correct solutions. The true solutions are obtained from the Lax-
Friedrichs scheme on a very fine grid. We use our scheme with r = 3 in
this example. The first one is a Riemann problem with the flux f(u) =
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%(ug — 1)}{w? — 4), and the initial data
U z <l
ug(z) =
of2) u, x>0
The two cases we test are (i) u; = 2, u, = —2, Figure 6; (ii) v, = -3, u,

Figure 7. For more details concluding this problem see [2]
Figure 6 ( 7/ =0.3)
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The second flux is the Buckley-Leverett flux used to model oil
recovery (2], f(u) = 4u?/(4u? + (1 — u)?), with initial data u = 1 in [—1, 0]
and u = 0 elsewhere. The result is displayed in Figure 8.
Figure 8 (7/h=04)
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In this example, we observe convergence with good resolution to the en-
tropy solutions in both cases.

In all the examples that we have illustrated above, we observe that the
schemes are of about 4th ( for r = 2 ) and 5th ( for » = 3 ) order of accuracy
respectively and convergent with good resolution to the entropy solutions.

4.2 FEuler Equations of Gas Dynamics

In this subsection we apply our schemes to the Euler equation of gas
dynamics for a polytropic gas,

u=(p,m, E)T

f(u) = qu+(0,P,qP)T (4.2)
P=(y—1){E - }pg*)

m = pq,

where v = 1.4 in the following computation. For details of the Jacobian, its
eigenvalues, eigenvectors, ctc., see [2].
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Uy €T < 0
uplz) =
U, z > 0.

Two sets of initial date are used. One is proposed by Sod in [8]:
(e, ) = (1,0,1); (o, P,) = (0.125,0,0.1).
The other is used by Lax [9]:
(o1, @1, P) = (0.445,0.698,3.528);  (p,, 4, P) = (0.5,0,0.571).

We test our schemes with » = 3 and set e = 10 only in this example. We
use the characteristic reconstruction and Roe flux with entropy fix formed by
Roe’s average as numerical flux. For details see [2]. The results are displayed
in Figure 9-10.

Figure 9a (7/h=04,t=2)

DENSITY at time T = 2

1 s

b=01
e
n

-6 -4 -2 0 2 4 [
dt/h =0.4

Figure 9b (7/h=04,t=2)

VHLOCITY at timae T =2

0.9}k a "’"ﬂ
0.8}

h=01
53
[r}




33

h=ti

h=0.1

PRESSTURE attime T = 2

L

1.4

-4 -2 [+ 2
de/h = 0.4

Figure 10a ( 7/h =0.2,t =1.5)

DENSITY st time T = 1.5

4

1.2

Q.6

0.2

— j

-6

1.6

- -2 ] 2
di/h = 0.2

Figure 10b ( 7/A=0.2,: =1.5)

VELOQCITY at time T = 1.5

1.4p

0.6 -

O

0.2

F

dtyh = 0,2

28

aF




ER-Ig
ak
2.5

A3

"
& -4 -2 o 2 3 L3
dt/h = 0.2

Ezample 5. In this example we shall test the accuracy of our schemes
( r = 3 ) for the Euler equation of gas dynamics for a polytropic gas. We
choose initial date as p = 24-sin(rz), m = 2+ sin(wz) and E = 2+ sin(wz),
and periodic boundary condition. The solution was obtained by applying the
schemes to a very fine grid. For time ¢ = 1 when shocks haven’t formed, our
schemes achieve 5th ( = 3 ) order accuracy in all three components, see
Table 5. We can also see the solution for time £ = 1 in Figure 11.

TABLE 5 ( 7/h=0.6, t=1 )

{ Ly error | Ly order | L. error |L_ order

DENSITY

80 1.16D-04 8.60D-04

160 2.85D-06 5.35 2.53D-05 5.09

320 5.89D-08 5.60 5.97D-07 5.41

MOMENTUM

80 1.25D-04 1.13D-03

160 3.061>-06 5.35 3.22D-05 5.13

320 7.55D-08 5.34 6.44D-07 5.64
ENERGY

80 1.28D-04 1.20D-03

160 2.85D-06 5.49 4.04D-05 4.89

320 7.04D-08 5.34 7.74D-07 5.71
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