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A COMPOSITE STEP CONJUGATE GRADIENTS SQUARED
ALGORITHM FOR SOLVING NONSYMMETRIC LINEAR SYSTEMS

TONY F., CHAN* AND TEDD SZETO!

Abstract. We propose a new and more stable variant of the CGS method [27] for solving
nonsymmetric linear systems, The method is based on squaring the Composite Step BCG method,
introduced recently by Bank and Chan {1, 2], which itself is a stabilized variant of BCG in that it
skips over steps for which the BCG iterate is not defined and causes one kind of breakdown in BCG.
By doing this, we obtain a method {Composite Step CGS or CSCGS) which not only handles the
breakdowns described above, but does so with the advantages of CGS, namely, no multiplications
by the transpose matrix and a faster convergence rate than BCG. Our strategy for deciding whether
to skip a step does not involve any machine dependent parameters and is designed to skip near
breakdowns as well as produce smoother iterates. Numerical experiments show that the new method
does produce improved performance over CGS on practical problems.

AMS(MOS) subject classification. 65F10,65I'25

Key Words. Lanczos method, conjugate gradients squared algorithm, breakdowns, composite
step

1. Introduction. Recently, there has been much activity in solving large linear
systems

1) Az =b

using iterative methods. Many of these are based on the classical Conjugate Gradient
(CG) method due to Hestenes and Stiefel [20], which solves symmetric and positive
definite systems using short recurrences, thereby minimizing work and storage, and
also has an optimal convergence rate due to a minimization of the residual in a given
Krylov subspace. For nonsymmetric systems, the Conjugate Gradients Squared (CGS)
algorithm, developed by Sonneveld [27], has proven to be an attractive method with
many advantages. Since it is based on the squaring of the residual polynomial of the
Bi-conjugate Gradient (BCG) algorithm [22], it maintains simple and short recurrences
but also has the added advantage of being “transpose-free” (i.e., not requiring mul-
tiplications by the transpose of matrix A). Moreover, with every two matrix-vector
multiplies in the CGS algorithm, we can advance two degrees of the Krylov subspace
whereas BCG advances only one degree with two matrix-vector multiplications. How-
ever, since CGS is based on BCG, it inherits some of the latter’s disadvantages as well.
Specifically, CGS encounters breakdowns (divisions by 0) under the same conditions as
for BCG, and the squaring of the residual polynomial also amplifies the erratic residual
convergence behavior in BCG causing worse numerical stability in practice [29].

Our goal is to overcome these disadvantages as best we can while retaining the
good properties, The problem of breakdowns in BCG has received a lot of study in the
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literature. There are essentially two kinds of breakdowns: one due to the nonexistence
of the residual polynomial as defined by the Galerkin condition in defining the BCG
iterates (since this breakdown is implicitly caused by encountering a zero pivot in the
factorization of the tridiagonal matrix generated in the underlying Lanczos process,
we call this a pivot breakdown), and the other is due to a breakdown of the particular
recurrence in BUG to compute this polynomial (since this kind of breakdown is directly
related to the breakdown of the underlying Lanczos process, we call this a Lanczos
breakdown). * Assuming no Lanczos breakdown, the pivot breakdown is easy to fix and
can be removed by a 2 x 2 composite step in the CSBCG algorithm, recently developed
by Bank and Chan [1, 2]. The unnormalized BIORES algorithm of Gutknecht’s [19]
also cures this breakdown using a three-term recurrence. Lanczos breakdowns are
harder to fix and many look-ahead methods have been proposed to remedy them
as well, see e.g. Freund, Gutknecht and Nachtigal [16], Brezinski, Redivo-Zaglia and
Sadok [8, 9], Brezinski and Sadok [3], Joubert [21], and Parlett et al [25]. Although the
step size needed to overcome an exact breakdown can be computed in principle, these
technigues can unfortunately be quite complicated for handling near breakdowns since
the sizes of the look-ahead steps are variable (indeed, the breakdown can be incurable)
and in practice has to be determined by carefully designed Leuristies often involving
user specified tolerances.

In this paper, we “square” the CSBCG method to produce a new Composite Step
CGS (CSCGS) algorithm, We also propose a practical adaptive stepping strategy to
cure both exact and near pivot breakdowns, as well as to provide some smoothing
effect to the residuals. CSCGS, then, is a transpose-free method that can overcome
near pivot breakdowns in CGS while preserving the short recurrence and transpose-
free properties of CGS. Existing implementations of CGS can be easily modified to
incorporate CSCGS, as a maximum look-ahead step size of 2 is sufficient. We also
apply the Minimal Residual Smoothing algorithm of Schénauer and Weiss [26, 30, 31]
to the CSCGS iterates in order to further smooth the convergence behavior.

Several related algorithms have been recently proposed to cure breakdowns in
CGS. By squaring the unnormalized BIORES algorithm, Gutknecht [19] derived an
unnormalized BIORES? algorithm which overcomes exact pivot breakdowns in CGS.
The MRZS method (and several variants) proposed by Brezinski and Sadok [4] goes
a step further and overcomes exact Lanczos breakdowns as well (with the exception
of incurable breakdown). Brezinski and Redivo-Zaglia are currently developing prac-
tical heuristics for overcoming near breakdowns in CGS [7]. Extensive testing and
comparisons among these methods remains to be done.

We note that all look-ahead versions of a basic method are essentially equivalent
in the sense that, given the same step size, they all compute the same uniquely de-
fined iterate at the end of the look-ahead step. The different methods differ only in
the details of the stepping strategy and the recurrences used in carrying out the step.
The composite step approach seeks to achieve this with a minimal modification of the
usual implementation of BCG and CGS, in the hope that the empirically observed
numerical stability of these methods will be inherited. In trying to cure only one of
the two possible breakdowns in CGS, we make a conscious decision in favor of having
a simpler modification of CGS instead of a version which is less prone to breakdown

! In other literature, what we term the pivot and Lanczos breakdowns, are also known as true and
ghost breakdowns {5], Galerkin and serious Lanczos breakdowns [15], hard and seft breakdowns [21].
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but more complicated. Thus, the CSCGS method should be viewed as one in a spec-
trum of methods with varying degrees of breakdown protection and complexities of
implementation.

We begin this paper by giving a brief review of the CSBCG method in section 2,
followed by the description of CSCGS (section 3). Section 4 gives further details of
implementation inciuding the decision strategy for when to take a composite step.
This is an important practical issue; the strategy we have chosen does not require any
user specified tolerance parameters, thus further simplifying the method. In section 5,
we discuss Minimal Residual Smoothing and its effect on the convergence behavior of
CSCGS, and finally, results of numerical experiments are reported in section 6.

2. Composite Step BCG. Given initial guesses of 2, and &, to the solutions of
linear systems Aa = band AT = b, respectively, the BCG algorithm produces iterates
of the form

Ty = 2o+ Ynj Zy = &g + Y
with residuals

Py =0 — Az . = b— A%,
where

Un € I{n('r@) = Spa,n{'rg, A"”Os LR An*l"'ﬂ};

I € K (o) = span{fy, AT%y, ..., (AT 725},
and such that the following Galerkin conditions are satisfied:
ry L K2 7 LK,
One standard way to implement the algorithm is as follows [22, 13}:

Algorithm BCG

re = b~ Azy; Fo=b— AT,
Po = 7o, Po =1
Po — ”“%17‘0
For n=140,1,...
Op = jﬁ‘APn
aﬂ = pﬂ/on
Tagl = Pn — anApn; Fu-{-l = 7‘:71 - anATfjn
Tpgr = &+ O Pp; 5""1.+1 =&, + @, Py
Pr1 = 7‘?;1+17'n+1
Bryr = ;nl

Prt1 = Tni1 + BagaPni Prt1 = Fagr + Bryidn
End

We can see that there are two possible kinds of breakdowns in the above routine:
1. p, =0, but v, #0 (Lanczos breakdown)
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2. 0, =0 (pivot breakdown)

The first kind of breakdown can be handled using look-ahead techniques, but this can
be quite involved and must be done in a careful and sophisticated way, as in [3, 8, 9, 16].
The second kind of breakdown can be cured more easily using the composite step idea
mentioned earlier. Since it is this composite step technique we will be using for CSCGS,
we will describe in more detail how it is implemented in the CSBCG aigorithm.

Suppose, then, in running the BCG algorithm, we encounter a situation where
o, = 0 at step n. We see that the values .1, &, 11,741, Fuyy are not defined. CSBCG
overcomes this problem by skipping the n + 1 update and computing the quantities in
step n + 2 by using scaled versions of r,,, and #,,,, which do not require divisions
by ¢,. More specifically, auxiliary vectors z,,; € K,2(ro) and Z,,1 € K o(F,) are
defined:

(2) Zntt & OpTyugpd
(3) = OpTp — pnApn:
Zagr = Unf:n-i-l

= Oufn — P ATﬁn-
These are then used in looking for the step n + 2 iterate:
ZTpyz = Tyt [pna zn+1]fna

5’:;+2 = &+ [ﬁns §u+1]f1u

where f,, f, € R
The corresponding residuals are :

(4) Tryz = Tp— A[pmzn-{-l}fn:
(5) "Fn+2 = fp— ATmnagni-i]fn'

Similarly, the search directions in a composite step are found using

(6) Prtz = Taga+ [P, Zns1ldn,
(7) ﬁn+2 = 1":ﬂ-i-? + ~:n En-i-l]gn,
where g,,, i, € R%.

T T
To solve for the unknowns f, = ( fr(,l), 5,2)) and g, = (g,(;l), g,{f)) , We impose the
Galerkin condition of BCG:

(ﬁna 2ﬂ+1)TTn+2 - 07
and the conjugacy condition:
(ﬁm zn-j—l)TAPn-kz =0,

and solve the resulting two 2 x 2 linear systems:

(8) [ ﬁfTApﬂ ﬁZAZn_;_l ] [ YE;)] — [ ﬁ?;”'n ]
21?51+1Apn gg-z-iAzn-i-l n ) 531-{-17'11

©) [;sz‘Ap,, Ph A% ] [g{; ] - [ga:{’Arm ]
3;{+1Ai’3n Ef+1AZn+1 n Z1T+1A”‘n+2

4



A similar process solves fn and g,. It is now possible to compute 2,13, .42, Tuis,
Tnye and thus, advance from step n to step n+2. The Composite Step BCG algorithm,
then, is simply the combination of the 1 x 1 and 2 x 2 steps. It can be proven [1, 2],
provided the underlying Lanczos process doesn’t break down, that the use of 2-steps
are sufficient for CSBCG to compute exactly those iterates of BCG which are well
defined.

Ideas similar to the Composite Step approach were used earlier by Luenberger [23]
and Fletcher [13] in the case where A is symmetric. Note that in this case, there are
no Lanczos breakdowns and mathematically, CSBCG and the methods in [14, 23] all
produce precisely the same iterate x,,,. However, the details of exactly how =z, is
updated are different. Thus, CSBCG can be viewed as a generalization of [14, 23] to
nonsymietric A.

3. Composite Step CGS. The Conjugate Gradients Squared method is an at-
tractive alternate to BCG for reasons mentioned earlier. However, breakdowns exist
in the CGS algorithm analogous to the breakdowns encountered in BCG. The purpose
of this paper is to cure the pivot breakdowns using a composite step technique sim-
ilar to CSBCG (Section 2). We will assume for the rest of this paper that Lanczos
breakdowns do not occur.

Suppose CSBCG were to take only 1 x 1 steps, then we could square CSBCG in the
same way CGS squares BCG (see [27]). First, we must express the CSBCG quantities
in polynomial form. Since the residual r, = b ~ Az, of any iterate @, € @y + K, ()
can be written in the form r, = ¢,(A)ry, where ¢, is a polynomial of degree < n and
¢,(0) = 1, we can write the CSBCG residual as

T = ¢11(A)'P0'
Similarly,
D = ¢n(A)TG,
Znyl = £n+1(A)TO'

We can now obtain squared CSCGS polynomials

r C0% = Gl A)rg

R0 = g (Ao

with corresponding iterates of the form 2§°9%% € zg + Ky, (7).

To handle breakdowns, as in CSBCGQ, if we encounter o, = 0 in the n** step of the
CGS algorithm, we will need to take a 2 x 2 step. We formulate this first by writing
the polynomial equivalents of equations (4), (6), and (3):

(10) ¢n+2('ﬂ) - ¢n - ﬂqpnf:gl) - 19§n+1fr{=2)’
(11) ¢n+2(ﬂ) - ¢n+2 -+ Ilibnggal) + ‘En+lgf(22):
(12) fn-l-l(ﬂ) = o.nq!’n - Pn'ﬂd)ﬂ-

Squaring equations (10) and (11), we obtain:

arz = P+ [ 51)]2?92"1’3. + { 7(12)}2192534—1
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“2f:£1)1?¢ﬂwn - 2fr(l2)19¢n§n+1 + 2ffgl)fr(12)1?2¢ngn+19
2 2
Vher = ¢hia+t [4}1)} vr + [ '(12)] 2
+2gs(11)¢n+2¢’n + 295;2}¢n+2€n+1 + 29£1)g$12)¢n5n+1'

i cnd ralotiana ta dafinn tha asantitian 4L & N 2
Th‘JS, we see that we will need relations to define the QUanivivies Pping1y UnGntls Sndlr

Pni2¥ns Pry2bns1. From equations (12) and {10), we can write:

¢n£n+1 = Gn¢3: - Pn'ﬂqsn'l/)n
leﬂgﬂ-i-i anqt’nd)n - pnﬁ/‘/}g
5121«1—1 = o-g¢f2'5 - 2anpnf‘9¢'n'¢ﬂ + ple'ﬁz"!)f;
n+2%n nYn = Jn n— Jn nhntl
P p2?P Guths — fEO9PE — FD0p,¢
¢n+z§n+s = ¢n§n+1 - frgl)'ﬂ%bnfnﬂ - f,(,z)ﬁﬁi,l_l.
All of these quantities can be defined in terms of ¢ (= r§9995), 2 (= pg5¢C¢S), and

®nP,. What remains, then, is the updating of ¢,9,. I the previous step wasa 1 x 1
step, ¢, 1, is defined as

1l

¢n¢n d 4512: + ﬂnqanfbn——h
where the term ¢,%,_, can be updated (as in CGS) by the relation

¢n¢n—1 = ¢n—1'l/}n—1 - an—179¢721—1'

However, if the previous step was a 2 x 2 step, we cannot use this because the mixed
term ¢,10,_; doesn’t exist. Instead, we use the fact that

'l)bn = ¢’n + 'ﬂbn—2951122 + £nnig$z232'

Hence,

¢u¢n = ¢7?; + 9'1(3322 n¢n—2 + 91(;2-22¢n§n~11

where the terms ¢,4,_, and ¢,£,_, can be updated by the relations ¢, ,.,9, and
$n12€na1 which have already been computed.

4. Implementation Details. One simplification we can perform is in the process
of finding coeflicients f, and g,. As shown in [i} (Lemma 5.1), the systems (8) and
(9) can be simplified and the two systems can be solved explicitly for f, and g,:

(13) fn - (Cn+1pfnen+1).p:21/6n
(14) n = (Pn+2/pﬂ5anpn+2/en+l)a

where p, and o,, are defined as before, and

(npr = 2;{,+1Azn+15
= (o, AbRya(A)ro),
Oy = 531+1Zn+1,
= (Fo, 53+1(A)7‘0),
by = UnCn+1Pr2a - 9r2s+1-
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Fortunately, all of these quantities are already computed.
As far as deciding when to take a 2 X 2 step, we need a practical stepping strategy
that will skip over exact breakdowns. We use the same criterion as in CSBCG [1, 2J:

(15) Hragall > max{||rall, I7npll}

If this condition were met and we performed two 1 x 1 steps, it would result in
a “peak” in the residual convergence. By taking a 2 x 2 step, we skip over this and
obtain a smoother, more stable method. In order to avoid unnecessary computation
of [|7n42]l, we express condition (15) in the following algorithm:

If (firnaall < {l7all) then
choose 1 x 1 step
else
if (JIrnsall < H7ngell) then
choose 1 x 1 step
else
choose 2 x 2 step
end
end

In order to implement the above test efficiently, and stably, we need to arrange the
associated computations in a careful way. Our approach follows that in [1, 2], but
the details are somewhat different. Since we do not have r,,, yet, and do not want
to compute it unnecessarily (if we decide to skip over it), we use the fact that that
€ntt = OnPuy4q to obtain the relationship s,,; = o2r,,;. Hence, the first condition,
I7ns1ll < l|7n]|, can be written:

H8nall < aaflrall.

To estimate ||7,,;4]|, we use the fact that we can write f, explicitly as in (13) and
rescale the r, ., update by defining v, ., as follows:

— 2 2 ! ' ! y
(16) Vago = 6ﬂf‘"+2 = (5,17'” —_ A[an(ﬁnuﬂ + ’Un) + a"+1(6ﬂtn+1 -+ 'U)n.*.l)],
where af, = (4193, @y = O,y1p2, and vh, w), ., are scaled versions of v,, w4,

[ A— 4 /
P = é‘n'vn = énun - anbn — CQptiCntis

’ _ ' '
Wop1 = f-r"nfi""n-l-l = 6ntn+1 ™ O Chpy =~ an+1dn+1'

Thus, the condition ||r,41|] < l|7n4al] can be expressed as:

(17) Exllsnpll < onllvnsall-

Unfortunately, evaluating the exact [|v,,,]| using (16) requires one more matrix-vector
multiply. Hence, for practical purposes, we use the following upper bound to approxi-
mate ||, 4||:

(18) ”Vn+2[| < Hérlen»“ + ﬁ”&n(suun + 1'3,.,) + a':1+1(‘§ntn+l + Dy, )|l,
ki



where 2 || 4] (e.g. from power iteration), and where the quantities &, &,, 9,, %, are
values based on the estimate |(1] = |78 Aspi1] & &[|Fol|llSngsll-

This approximate test may be misleading in the rare case where the 2 x 2 matrix
in equations (8) and (9) is near singular, but is not revealed by the approximation
(18). This will result in a 2 x 2 step where a 1 x 1 step is desired. Hence, we include
an additional check to monitor this case by computing the exact value of {,,; which
requires an additional matrix-vector multiplication. In doing this, a matrix vector
multiplication is wasted only in the rare cases where a 2 x 2 step has to be aborted.

1t is important to note, then, that even with the approximation, our stepping strat-
egy still avoids exact breakdown. Moreover, we want to emphasize that this stepping
strategy not only skips exact breakdowns, it is also designed to yield smoother resid-
uals. It may use more composite steps than necessary to overcome exact breakdowns,
but it has the advantage of not involving any user specified tolerance parameters.

In Table 1, we present the CSCGS algorithm. Note that the variable r, is defined
as the CSCGS residual », = ¢2(A)r; and p, = P2(A)r,. Note also that if only 1 x 1
steps are taken, we have exactly the CGS algorithm. For 2 x 2 steps, we use some
quantities from CGS, but also introduce some new quantities such as f,13 = ¢,&,41.

Note that there are 5 matrix-vector multiplications required for a 2 % 2 step,
whereas in two steps of CGS, only 4 are needed. This is the price we pay for the com-
posite step. However, it is still a considerable savings from BCG and also significantly
less work than QMRS [17] and TFiQMR [10], where an extra matrix-vector multiply
is required at every step.

5. Residual Smoothing. One other technique we can incorporate to obtain
smoother convergence is the Minimal Residual Smoothing (MRS) algorithm, due to
Schénauer and Weiss [26, 30] and further extended by Zhou and Walker [31] and Brezin-
ski and Redivo-Zaglia [6]. The idea is to generate a sequence {1, } using the relation
Yo = (1 = 9. 0n_1 + Mu2,, where x, is the iterate of a particular iterative method and
7, 18 chosen so that the new resulting residuals b — Ay, have monotone decreasing
norms and {|b — Ayl < |6 — Awz,||s, for each n. Note that although doing this will
not cure the problem of breakdown, it does track the true residual more accurately,
and in a smooth fashion, as shown in [31].

To incorporate Minimal Residual Smoothing into the Composite Step algorithm,
use {z,} from CSCGS. Choosing this set of {z,} will provide a more stable basis for
smoothing than would, say, CGS. Then, we generate y, as described above for 1 x 1
steps and for 2 x 2 steps, define y, = (1 — %, )¥n_2 + 7,2, and choose 7, to minimize
15 = Agal-

The MRS algorithm we have implemented (shown in Table 2), is one of several
smoothing techniques described in [31]. Although we have selected this particular
algorithm, note that the others perform similarly.

6. Numerical Experiments. All experiments are run in MATLAB 4.0 on a
SUN Sparc station with machine precision about 107¢, We shall use CSCGS* to refer
to an implementation of CSCGS where the norm estimate is not used in the composite
step decision strategy (i.e., all matrix-vector multiplications are performed).

6.1. Example 1. We begin the numerical experiments with a contrived example
to illustrate the superior numerical stability of composite step methods over those



TABLE 1
Algorithm CSCGS

po =g ro; po=tig=ro; bo=en=App
Compute k = estimate for || A]
ni—§
While method not converged yet do:
On = 73 by
Onil = Opln — ppbyn) eny1 = A‘In+1
Sny1 = J?;rﬂ — PnCnén — Pnlnti; Engl = ”5:1-1-1”; ¢n = ”""ﬂEl
% Decide whether to take a 1 x 1 step or a 2 x 2 step.

I ént1 < 02¢n, Then % rsall < firal
one-step =1
Else

Bnit = 73 Spg1; bn = tdobny1; bn = O'ntfnprz, -0
Gy = Cnpf{; é’n+1 = 9n+1p,2;
tn+1 "—: Fuln — Pnén .
Ty = nur} — depby, — d’ni—lcn+1; by = 6ntn:i-1 - &ncn-i-l - &n+1ﬁ5n+1
f’n-i—Z = Elé'l?‘rﬂ“ + fﬂ“&n(‘snun -+ ‘i‘n) -+ an-{-l(‘sntn-l-l + '&’n)“
I 62¢n41 < 02Dpya, Then % Iras1l] < llrasall
one-step = 1
Else
dnp1 = Asni1; Qi1 = ngn+15 bn = onlnp1pl — 93;+1
H62€,41 < 02843, Then % Test again with true &,
one-step = 1
Else
one-siep = (}
End If
End If
End
% Compute next iterate,
If one-step, Then % Usual CGS
Xy = Pn/g'n
nt4l = T — C“'n(en, + Cn+1/0'n)
Bppl = Bp + Xa(Un + Gnit/0n)
P+l = 'Fg’rn+1§ Bn = prs1/pn
Ungpl = Ppil + ﬁn(In-t-l/ani Entr = Aun+1
Pr4i = Uny1 + ﬁn(@nvl-l/JH + ﬁnpn)
bn-—}-l = €n41 'i'ﬁn(cn-l-l/o'n + ﬂnbn)
[ |
Else % 2 x 2 step CSCGS
Oy = Cn-]-lﬂi/&n] Opt1 = 8n+1P121/6n
Up = U — Opbn —@npiCnp; Wpi1 = Tntl — GplCugt — a’n+1dn+1
Py = T — Alen(tn + va) + @np1(tngr + W)
Zni2 = Tn -+ [au(un + 'Uﬂ) + C\fn+1(tn+1 + 'wn+1)]
Priz =4 ratas Bn = pnt2/Pn; Bnti = Onpniz/Ontr
Unt2 = Tuya + Bntn + BnpiWnii; enyz = Alnio
Ptz = Ung2 + Bn(Vn + Bubn + Bat1dnt1) + But1(Watt + Budnst + ButiSnsr)

bpys = Apnys
7 by b 2
End If
End While




TABLE 2
Algorithm MRS for CSCGS

Set 55 = r§5CF5 Yy = 8o = 2§5°%5 and ug = vy = 0

Let &,,d,,&,,... be consecutive iterates of the CSCGS method
(using either 1 x 1 steps or 2 x 2 steps).
Forn=1,2,3,..
Pn = é‘:n - i‘n—l;
Uy = Uy + Apn;
Up = Upu1 + Puj

_ T T, .
T]n - sn—luﬂ/uﬂuﬂ?
Sp = Sp—t — Mnlly,
Un = Yne1 — Tntn,

Uy = (1 - Th’a)un;
vy — (1=, )v;

without composite step. Let A be a modification of an example found in [24]:

e 1
A=(_1 €)®IN/27

ie, Ais a N x N block diagonal with 2 x 2 blocks, and N = 40. By choosing b =
(1 01 0 --) and a zero initial guess, we set 05 = ¢, and thus, we can forsee
numerical problems with methods such as BCG and CGS when ¢ is small, Although
these methods converge in 2 steps in exact arithmetic when € # 0, in finite precision,
convergence gets increasingly unstable as ¢ decreases. Table 3 shows the relative error
in the solution after 2 steps of BCG, CGS, and their composite step counterparts.
Note that the loss of significant digits in BCG and CGS is proportional to O(e~!) and
O(e~?), respectively, whereas the accuracy of CSBCG and CSCGS is insensitive to €.

TABLE 3
Ezample 1
Rel. error in the soln. after 2 steps (N = 40)
[ BCG | CSBCG | CGS | CSCGS
c=10"1 15x107 2 [ 1.1x 1079 [ 25 x 1078 0
e=10"% | 25x107® | 1.1x 107%% | 1.0x 10° | 1.1 x 107%¢
ex= 10712 1 49x107* | 2.0x 10728 | 1.3 x 10% | 2.0 x 10~2®

6.2, Example 2, This example comes from the Harwell-Boeing set of sparse test
matrices [12]. The matrix is a discretization of the convection-diffusion equation:

L{u) = —Au + 100(2u, + yu,) — 100w

on the unit square for a 63 x 63 grid. We use a random right hand side, zero initial
guess, and left diagonal preconditioning. Figure 1 plots the number of iterations versus
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the true residual norm for CSCGS* and CGS, and smoothed versions of these: MRS
on CSCGS* and TFQMR [14]. This is done in order to illustrate the cutting off
of the “peaks” of CGS, as seen in this figure. Specifically, note that the maximum
point of the CGS curve is around 10*° whereas it is only 10° for the Composite Step
version. For this particular example, the CGS residual stagnates at 10~¢ and so does
its smooihed counterpart TFQMR, whereas CSCGS* reaches the stopping criterion
lrallZlirll < 1075,

log(residual norm)
)
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10° ¢
1 o'm 1] [l 1 ] i
0 50 100 150 200 250 300

iteration number

Fi1q. 1. Fzample 2a

The next plot, Fig. 2, shows the same example with different axes: the number of
matrix-vector multiplications versus the norm of the residual. Instead of CSCGS*, we
now illustrate the behavior of CSCGS - using the norm estimation strategy described
in section 4 . Recall that for CSCGS, an extra matrix-vector multiply is required when
a 2 x 2 step is performed. Note, however, that this does not make a significant impact
when compared to the previous figure. We see that even with the approximation, the
composite step method manages to control the wild behavior of CGS and eventnally
converge to the desired residual tolerance, In this example, the total number of 2 x 2
steps taken is 23, whereas 133 1 x 1 steps are taken. The 2 X 2 step was aborted 2
times.

Hence, Figures 1 and 2 clearly indicate the advantage of CSCGS and MRS(CSCGS)
over CGS for this example matrix,

6.3. Example 3. The next example, taken from [11], is a discretization of

L(u) = —Au+ 265y, — 100,
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on the unit square for a 40 x 40 grid. We use a random right hand side, and the
same preconditioning and stopping criterion as in the previous example. Figure 3
illustrates the superior behavior of MRS(CSCGS) as compared with not only CGS,
but also Bi-CGSTAB [28], another transpose-free product method, as well as CSBCG.
We did not include the CSCGS plot, so as not to over-complicate the picture, but
mention that it converges in about the same number of matrix-vector multiplications
as MRS(CSCGS). We see that the new method reaches the desired tolerance with less
work than the other methods. There were 239 1 x 1 steps and 37 2 x 2 steps.

Acknowledgement: We would like to thank Claude Brezinski for his helpful
comments and suggestions.
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