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ABsTRACT. The least-squares mixed finite element technique developed in our previous
work [8], applied to non-selfadjoint second order elliptic problems leads to a symmetric
positive definite bilinear form that is coercive uniformly in the discretization parameter.
I this paper we consider an approximate block-—factorization technique recently proposed
in [4] and which is well defined for positive definite block-tridiagonal matrices. The
method is analyzed and supported with extensive numerical experiments.

1. INTRODUCTION

In a previous paper [8] we developed a least-squares mixed finite element formula-
tion of the following class of problems:

-~V -AVu—b-Vu+cu = f in{,
(1) —AVu-n = 0 onlpy,
v = 0 onlp=00\Ty:

where £ is a bounded domain in R? or R? with Lipschitz boundary I = Tp Uy, I'p
has positive measure and n is the unit outward vector normal to 9f). The coeflicient
matrix A is symmetric and positive definite and the vector field b, the coefficient ¢ and
the right hand side function f are given.

Introducing the flux vector

o =—-AVu,

problem (1) may be rewritten as the first order system of differential equations in {2

2) o+ AVu = 4,
‘ Vio+bTAlo+cu = f,
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i  with
c-n = 0 only,
w = 0 onlp:

Then this problem is formulated as a least—squares minimization problem that leads
to a variational setting with a certain symmetric bilinear form a(u,o; v, x) given later
in (18)-(15). In our previous paper [8] we proved that provided {2 is convex and under
certain restrictions on V - b and ¢, this bilinear form is coercive in H(Q)4*! where
d = 2,3 is the dimension of the domain §2. That is, we have the estimate

(3) a(u,o3u,0) 2 C (lluli o +llollia)

for some positive constant C. The error analysis presented in [8] suggests that this
least—squares mixed finite element method may compete favorably with the classi-
cal mixed Galerkin finite element method. More importantly, in the present context
the above ellipticity estimate (4) allows us to construct efficient iterative methods
for solving the resulting system of linear equations. Note that the matrix we get is
symmetric positive definite and this, together with the strong ellipticity offers a po-
tential of using methods that have proven effective for scalar elliptic, symmetric and
positive definite problems. Hence the above properties provide a theoretical motiva-
tion for the approach taken here. Basically, we can precondition the resulting system
using a block diagonal matrix with blocks on the main diagonal that are precondi-
tioners for scalar second order elliptic, symmetric and positive definite, equations. We
choose in the present paper the block-ILU factorization method recently proposed in
Chan and Vassilevski [4]. This method is well-defined for any positive definite block-
tridiagonal matrix. The strong ellipticity estimate we derived in [8] makes the use of
this method very attractive, since it suggests similar convergence properties to those
obtained for the scalar case. We note, however, that many other powerful methods,
such as multigrid (cf., e.g., Bramble [2]) and domain decomposition (cf., e.g., Dryja,
Smith and Widlund [6]) are also applicable. In the present study, the block method
is implemented for the least—squares finite element method from [8] and numerical ex-
periments are conducted to assess its performance when the ellipticity estimate holds
and when this ellipticity is violated. (This is the case when a curl term in the bilinear
form is omitted.) We also consider the effect of increasing the size of the convection
term.

The remainder of the paper is organized as follows. In §2 we summarize the least—
squares mixed finite element method and the properties of the resulting system of
linear equations. In §3 we describe in some detail the block-ILU factorization method
we use. Finally, in §4 the numerical tests are presented.

2. THE LEAST SQUARES MIXED FINITE ELEMENT METHOD

In this section we summarize the key results from our previous paper [8] concerning
the formulation of the least—squares mixed finite element method and the main prop-
erties of the resulting system of linear algebraic equations since these are central to
the present scheme.

Consider problem (1). The coeflicient matrix A = (ar,s(m))f,ml ,z € CRY
d = 2,3, is symmetric positive definite and the coefficients a,, are bounded. That is,
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there are two positive constants, «y, ag such that

(4) ar{T¢ < ¢PAC € an¢T¢ forall(eR? andz € Q.

Next we introduce the standard L*~based Sobolev spaces in {2 and on the boundary
I" denoted by H*(§2), H*(T"), for any real s, with the standard norms, and the Sobolev
spaces of vector—valued functions, denoted by H*(Q)%. We also need the following
Poincaré-Friedrichs inequality for any v € H'({2) such that v =0 on ['p: there exists
a positive constant Cr = Cp(Q,I'p) such that

l2)lo.e < Crlv|ig-

We next introduce the constants

(5) = sup{1 + 57471},
sEN
and
CZ
— mind 0 i _ Yk _g.p
(6) Co mm{{), ;re% (2c + o +70FV )}

Finally, let
le(z)| < ey forallz € Q

hold for some positive constant c¢;. We require that the coefficients of the second—order
elliptic operator satisfy

(7) agEal+CQCIZ;1>0,

where a4 is defined in (4). Note, that in the case 0 < ¢(z) < ¢; and V- b > 0 we have
cog = 0, s0 &g = 3. The following inequality

bon<0 onl'y

is also assumed.
For the ellipticity argument, we need the curl operators

QCR? : curlq=01q2 — Qo
QCR® : curlq=(0vqs — Dge,3q1 — 13,0192 — Faqn),

where q = (¢1,...,¢2) and §; = ( ). Also, for a scalar function y and d = 2 we denote

curl x = (—Oax,O1x). Note, that the latter is a vector—function. Using the identity
curl Vy = 0 for a sufficiently smooth y we get from ¢ = —AVy that

(8) curl A7le = 0.




4 GRAHAM F. CAREY, ATANAS I. PEHLIVANOV AND PANAYOT S. VASSILEVSKI

Finally, we introduce the spaces

W, = {qe @) :V-qe LX)},
W, = {qeL*Q)¢ : curl A7 q € L2(Q)°,
0N s=1frd=92 and s =2fcrd=21
kU) ~ o 4 EUL W Ll, CLLivl 2 oINS o UJ’
W == {q€W1 'n-q=10 OnrN},
W = {qeWinW, :n-q=0 onTy, nAAq=0 onTp}-

The spaces Wi, Wy and W are equipped with the norms

lal@y = ldllde +1IV-dlfa
“q”%—l(curl) = ”q”g,ﬂ + “C'U.'l‘"l A_lq“g,ﬂi
Iy aiv.eurty = Nallso + 1V alf g + lleurl A7Mq|G g,

respectively. We emphasize that the functions in W satisfy the boundary condition
(10) nAAlq=0 onTp,

which will play an important role in the estimates to follow.

Let (.,.)o.qa be the standard inner product in L2() or L?(2)* and (.,.)or be the
inner product in L%(I')*, s = 1 for d = 2 and s == 3 for d = 3. Now we are in a position
to formulate the least-squares minimization problem: Find u € V = {x € H'(Q) :
x =0o0onTp} and ¢ € W such that

‘J(u,cr)‘z inf  J(v,q),

veV,qeWw

where

J(v,q) = B (curl A q, curl A“Iq)o 0
(11) +(V-q—|— bT.A_lq—i— cu——f,'V’-q—l—IJFF.zdl_lq%w:v—f)e,Q
+ (g + AVv, A g + AV)), o -

Note that we have applied the weight A~ in the term containing q + AVv and the
weight 8 > 0, a given positive parameter, in the quadratic term that contains the curl
operator,

The corresponding variational problem is: Find u € V, 0 € W, such that

12 a(u,o30,q) = (f,V-q+ b7 A g+ ev forallv e V,qe W,
0,2

where

(13) a(u, o3, q) = d(u, o;0,q) + Bleurl A7 o, curl A oo,
and

(14) i(u,05v,q) = (V-o+bTA o+ v,V -q+ A g+ cv)u,n

+ (o + AVu, A~ q + .AV”U))O,Q .

In our previous paper [8] we proved the following main result.
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Theorem 1. The bilinear form &(-,-;-,+) is coercive in the (larger) space V' x W
provided b-n < 0 on I'y and the inequality (6) holds. That is, there is a positive
constant C' such that

—

FIPRIEN ~ N AT T 12 . ey LAY n 17 — T — TX7
(15)  a{v,q50,q) 2 C(fjvlii,e +lialise + 11V - alloe) forallveV,geWw.

As an immediate corollary from this theorem and the definition of the bilinear form
a-,+;-,-) we get the following main coercivity estimate.

Theorem 2. The bilinear form a(,;-,) is coercive in V x W, i.e,, there is a positive
constant C' such that :

(16) a(v, 430, 9) = C ([10]2 0 + Nl aiv,curm)

provided inequality (7) holds and b-n <0 on I'y.

Remark 1. Note that the boundary condition n A A7 ¢ = 0 on I'y is not needed
for the coercivity estimates in Theorems 1 and 2. However, this boundary condition
is necessary to establish the validity of our important H!-ellipticity estimate for the
bilinear form on the finite element spaces.

Now, applying the Lax-Milgram lemma, the existence and uniqueness of a solution
of the variational problem (12) follows. We have:

Theorem 3. Let f € L?(Q). Then. the problem (11) has a unique solution (u,0) €
V x W provided the inequality (7) holds and b n <0 on I'y.

Accordingly, let us consider the discrete problem. First we define finite clement
spaces Vp and W), corresponding to V and W. Let 7;, be a partition of the domain {2

into finite elements, i.e., let Q = {J K andlet & be the maximum diameter of the
KeT,
elements. We suppose for convenience that the same partition is used for the definition

of the finite element spaces for both u and ¢ although this is not necessary.

Let P(X), & C R? be the set of polynomials of degree k on T and let K denote the
master element, Suppose that for any K € 7, there exists a mapping Fr : K S K,
FK(I%) = K. Let the components of Fy be (Fg); € PS(RP), :=1,...,d. As commonly
used, we have the correspondence v, (z) = 94(2), qn(z) = §,(&) for all & = Fg(&),
# ¢ K and any functions 9, and §; on K.

We define the following finite element approximation spaces (of piecewise polyno-
mials of degree k and r respectively for V;, and W)

Vi = {meCQ) : wlx = talg € Pu(K), forall K € Ty, and v = 0 on r},

W, = {qh € CUM : (qn)ilg = (@n)ilg € P(K), i=1,...,d, for all K € Ty,

nA A lqp = 0 at the nodes on I'p,
n-qp =20 at the nodes on I'y }-

In general, we suppose that 1 < s < max(k,r), where s is the degree of the polynomials
used in the mappings Fg, K € 7.
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Note that in the general situation with a curved boundary, we may wish to use
curved elements. In this case and in the case of nonconstant coeflicient matrix A
the boundary condition n A 4710 = 0 on I" can only be satisfied at the boundary
nodes. Hence W} is not a subspace of W and this leads to the following (mildly)
non-conforming finite element method:

Find up, € Vi, op € Wy, such that

an  alun,on;vn,qn) = (f,V-aqn + " A qy +evp) forall vy € Vi, qn € W .

From now on we assume that I' = I'p, i.e., we have Dirichlet boundary conditions
only. However, all results below hold in the general case (with mixed boundary con-
ditions) provided that the corresponding auxiliary problems have sufficiently smooth
solutions.

Since the coercivity property (15) does not depend on the boundary condition (10),
it follows that the coercivity estimate holds in the finite element spaces V3 and W3, as

well. We have,
(18)  a{vh,qnvi,qr) 2 € (”’UhH%,ﬂ + |I<1h||§:(div,cuﬂ)) for all vy € Va,qn € Wa .

This also implies that the discrete problem (17) has a unique solution. Also from a
standard argument it follows that the condition number of the resulting linear system
is O(h™2%). The final estimate that we will be actually relying on is based on the
following embedding result (cf., Pehlivanov and Carey [9]):

For Q convex we have

(19) larlli,e < Cllaa|lfdiv,curn  for all qp € Wy

For this estimate the boundary condition n A A7 '¢ = 0 on T and its weak validity
for the elements from W) is essential. This last estimate and Theorem 3 imply the
H1l-ellipticity of the bilinear form af(-,-; -, -).

Theorem 4. There is a constant C > 0 such that
(20)  alvh,qn; v, qn) > C (fJonlll o + larllf ) for all vp € Vi, dn € W,

provided inequality (7) holds and § is a convex domain.

Remark 2. Note that the assumption “$2 is a convex domain” can be somewhat relaxed
(cf. [9]). For example, in the case & C R? the domain ! may be a curvilinear polygon
with no concave angles.

3. BLoCK-ILU METHOD FOR POSITIVE DEFINITE BLOCK—TRIDIAGONAL MATRICES

The weak statement (17) corresponding to the least-squares formulation leads to
a symmetric positive block system and therefore is amenable to iterative solution
by block schemes. In this section we present in some detail the block-ILU method
proposed in Chan and Vassilevski [4], with the specific parameters that we choose for
the present problem.




LEAST-SQUARES MIXED FINITE ELEMENTS, II 7

The method is defined for any given block—tridiagonal matrix A with positive defi-
nite symmetric part. Note that this is a much larger class than the class of M-matrices
for which the more classical block~ILU methods (cf. Concus, Golub and Meurant {5],
Axelsson and Polman [1]) have proven existence.

Consider the block tridiagonal matrix

A1 Ay 0
Ay Ay Ags
A — . .

An—l,n~««2 An——l,n—l An—l,n
0 An,n—-l Ann

The block-entries of A are assumed sparse. In our least—squares formulation these
blocks are banded. More specifically, let us consider, for convenience, uniform trian-
gulation on a rectangular domain (2, using linear triangular elements for both v and o
and ordering the nodes along vertical grid lines. The blocks A;; are then tridiagonal,
A;i—1 are lower bidiagonal and A; ;4 are upper bidiagonal. However the entries of
these matrices are themselves 3 x 3 matrices (corresponding to the components of o
and u).

The block-ILU factorization matrix C is defined as follows. Let {R;} denote a set
of restriction matrices that transform vectors of the size of the block A;; to a lower
dimensional vector space of a small and fixed size m. Then we perform the following
approximate factorization algorithm.

Definition 1. {Block-ILU factorization)
(i) Set
Z, = Ay and let Z; = RT Z, Ry;

(ii) Fori=2,...,n
Z;= A; — Ai,i—1R§l1Z;11Ri—1Ai—1,ia

and let
Zi = R,TZ,‘R,'-

Then the block-ILU factorization matrix is defined as

1 0
Az 2y
C — " . .,
- An—l,nWZ Zn—l
0 An,n——l Zn
(21) I Z7 Ay 0

I Zy 1Az

I Z;ilAn-l,n
I
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This algorithm requires the exact inverses of the reduced blocks Z; which are of rel-
atively small size m x m, and that size we can control. In [4] it is shown that the
above algorithm is well-defined for block-tridiagonal matrices with positive definite
symmetric part and for any choice of full rank restriction matrices. In addition, by a
model Fourier analysis, for the Poisson equation, on a n x n grid the following spectral
relation was proved in [4],

vIAv for all v-

1/ n+1)’
TAv <vTov < -
(22) VviAv <v Ov_{1+8(m+1)

The restriction matrices in this case are defined for any ¢ = 1,2,...,m, as

2 -1 0

That is,

] 2 ) kym "
qr = m 1 sin nr 1 i

Note that R; can be viewed as a projection on the space spanned by the first m smooth
(low oscillating) modes.

In our coupled least—squares system we use restriction matrices of block—diagonal
form with three components, each component being defined as above. That is, we
simultaneously project u and the components of ¢ along each vertical line as described
above independently of each other.

The block-ILU factorization matrix C is used in a preconditioned conjugate gra-
dient (PCG) method for solving systems with the original matrix A. Since at every
iteration step in the PCG method we have to solve a system of the formx Cv = w for
a residual vector w, it is clear that those solutions are based on the standard forward
and backward recurrences using the factored form in (21). These recurrences involve
solution of systems with the block matrices Z; and matrix vector products with the
sparse matrices A; ;1 and A;_1 ;. For the solution of the systems with blocks Z; we
use the following Sherman-Morrison—-Woodbury formula

- —1
Z7t = A7 + A A R (Zi—1 — Rf_iAiml,iAEIAi,i—lR;flll) Ri—yAio1 i AR
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Note that the m X m matrix
Zioy — Ri_qAi—1,:A7;" Ai i RE

can be formed explicitly based on m actions of A;;' and then factored or inverted
exactly. We assume that we can efficiently solve systems involving the blocks {A7'}.
Note that for 2-D domains {2 these systems are banded. In 3-D one has to ap-
proximate them, but since they are well-conditioned this is not as difficult. (The
well-conditionedness of {A7;'} follows from the ellipticity estimate (3).)

QOur numerical experiments in the next section indicate that a spectral relation
similar to (22) with the same asymptotic behavior with respect to (%)2 holds in the
coupled system case provided the ellipticity estimate (3) is satisfied. The experiments
that we present next show a deterioration in the convergence properties of the above
defined block-ILU factorization preconditioner in the case when the ellipticity estimate
(3) is not present; that is, the case when the curl term in the bilinear form is omitted.
In that case the bilinear form is coercive in H{div; ©) norm only. In Cai, Goldstein
and Pasciak [3] multigrid numerical results were presented for a bilinear form that is
only H(div; Q) coercive which do not perform as well as in the case of elliptic problems.
This is in agreement with our results since the block—ILU method we use can be viewed
as a two—grid multigrid applied for the reduced Schur matrices Z;. However, for special
discretization spaces (e.g., the Raviart-Thomas spaces) used for the vector unknown o
with a bilinear form that is only H(div; Q) coercive in Ewing, Pasciak and Vassilevski
[7] stabilized versions of the hierarchical method from Cai, Goldstein and Pasciak [3]
were developed. Also, for the same spaces and bilinear form as in [3] and [7], in
Vassilevski and Wang [11] an optimal order multigrid method was proposed (for 2-D
problems only). This is one possible alternative for problems that are only H{div;{2)
coercive. The other alternative is to use the curl term in the bilinear form as chosen
in the present paper. '

4, NUMERICAL RESULTS

In this section we consider problem (1) with coefficients A = a(z)I, where I is the
2 % 2 identity matrix, a(z) is given (see below), b(z) = (z1,z2), c(z) = (521 + z2)* + 1,
Q C R? is a square domain with corners (0,—1), (1,0), {(0,1), (~1,0). The exact
solution for all experiments was

2, .2
U= 621;1-{-1:2 .

The stopping criterion in all tests was

Terv—1

~————rT C_l T <1078,

ry C g

where rg is the initial residual, r is the current residual and C is the preconditioner

(21) as explained in §3. The initial iterate was chosen as €' (r.h.s), where r.h.s.
was the right—hand side of the discrete problem.

First, we want to test the effect of the curl-term and the boundary condition (10)

for o on the performance of our iterative method. We also investigate the asymptotic
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behavior of the method with respect to the mesh size & = 2/n and the block size m.
For this set of experiments a(z) = z% + 1. The scaling parameter § was either 1 or 0
(corresponding to including or excluding the curl-term). The results are summarized
in Tables 1-4. As we expected, there is a deterioration of the rate of convergence when
the coercivity estimate (3) is not satisfied. Also, we see that the curi-term is more
important for the iterative method than the s-boundary conditions.

For the remaining part of this section the curl-term and the boundary conditions
for o were included and we have set m = 8 for all experiments.

Next, we consider the cases when ¢(z) = —5 and ¢(z) = —100. We do not have
the coercivity estimate (3) in these cases because inequality (7) does not hold but we
can prove an inequality of Garding type. Then it is still possible to get a numerical
solution with good accuracy if the mesh is sufliciently fine. The results from Table &
indicate that the number of iterations increases when the coefficient ¢(&) is negative
and when |¢(z)| increases,

Finally, we study the role of the convective term and the scaling parameter 4 > 0 of
the curl-term in the bilinear form. Setting a(z) = € > 0, we vary € and . The results
are summarized in Table 6. As we can see, better iterative performance is achieved
when # < e. Also, it turned out, that we obtained higher accuracy in these cases
(not reported in the present tables). Note that we were able to stabilize the number of
iterations when e decreases with properly chosen parameter 3. This result is interesting
since it suggests that the least-squares method can be very stable and gives good results
even when the coefficient € is relatively small. However, we emphasize that the exact
solution here is regular and has no rapidly changing behavior. In the general case one
should expect the solution to develop layers and in such cases special discretization
strategies in a neighborhood of these layers, possibly with local refinement of the mesh,
are needed.

TABLE 1. Performance with curl-term and o—boundary conditions

Number of iterations
n m=1 m=2 m =4 m =28
80 99 76 55 36
40 52 40 29 19
20 27 21 16 11
10 15 12 9 7
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TABLE 2. Performance with curl-term
and without o—boundary conditions

Number of iterations
n m =1 m=2 m=4 m=3
40 178 164 132 96
20 86 74 60 40
10 41 35 26 14
TABLE 3. Performance without curl-term
but with o-boundary conditions
Number of iterations
n m=1 m=2 m =4 m = &
40 322 313 318 316
20 164 162 157 139
10 78 75 61 31
TABLE 4. Performance without both the
curl-term and the o—-boundary conditions
Number of iterations
n m=1 m =2 m=4 m = 8
40 325 322 321 331
20 172 17 174 169
10 89 89 84 49

11
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TABLE 5. Effect of varying ¢; m = 8

Number of iterations
n c(z) = -5 | ¢(z)=-100
40 21 68
20 12 24
10 7 9

TABLE 6. Effect of varying € and g; m = 8

Number of iterations
€ J7) n =10 n = 20 n = 40 n =80
0.1 10.0 38 127 296 690
0.1 1.0 24 56 128 283
0.1 0.1 12 22 49 98
0.1 0.01 6 10 18 34
0.01 0.1 34 103 239 532
0.01 0.01 20 45 101 217
0.01 0.001 11 20 39 7
0.01 | 0.0001 7 10 18 33
0.001 0.001 19 50 120 289
0.001 | 0.0001 11 28 56 109
0.001 0.00001 7 14 26 49
0.0001 0.0001 14 46 117 288
0.0001 0.00001 8 24 59 120
0.0001 0.000001 8 13 28 60
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