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Abstract

New circulant block-factorization preconditioners are introduced and stud-
ied. The general approach is first formulated for the case of block tridiagonal
sparse matrices, Then estimates of the relative condition number for a model
Dirichlet boundary value problem are derived. In the case of y-periodic prob-
lems the circulant block-factorization preconditioner is shown to give an optimal
convergence rate. Finally, using a proper imbedding of the original Dirichlet
boundary value problem to a y-periodic one a preconditioner of optimal conver-
gence rate for the general case is obtained. The total computational cost of the
preconditioner is O{Nlog N) (based on FFT), where N is the number of un-
knowns, That is, the algorithm is nearly optimal. Various numerical tests that
demonstrate the features of the circulant block-factorization preconditioners are
presented.

1 Introduction

In this paper we are concerned with the numerical solution of second order elliptic
boundary value problems. Using finite differences or finite elements, such problems
reduce to linear systems of the form Au = b, where A is a sparse matrix. We con-
sider here symmetric and positive definite problems. The background of this study
is the preconditioned conjugate gradient method. Let M be a preconditioner for the
original matrix A. The construction of efficient preconditioners is motivated by the
achievement of the following two goals: (a) to minimize the relative condition number
k(M~1A) and (b) to allow for eflicient solution of the preconditioned system of equa-
tions Mv = w for given vectors w. The simultaneous guarantee of the above criteriais
the main objective of the studies in the field of constructing efficient preconditioning
methods.

One of the most popular classical preconditioning technique is based on various
incomplete LU factorizations of the matrix, see e.g., [2], [12]. The central idea of
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these methods is to approximate the exact factors in the Choleski (LU) factorization
of the given sparse matrix such that the resulting approximate {lower and upper) tri-
angular factors [ and U have an in advance specified sparsity structure. For some of
the pointwise incomplete factorization preconditioners it is proved (e.g., Gustafsson
[14]) that k(M-1A) = O(\/]V), where N is the size of the discrete problem. The
pointwise incomplete factorization algorithms are known (from practical experience)
as very robust with respect to problem coefficients but a possible disadvantage is their
inherently sequential nature. For parallel computation it is natural to look at block
versions of the incomplete LI/ factorization methods. The basic schemes of incom-
plete block-factorization methods were proposed in Concus, Golub and Meurant {10],
Axelsson [1], Axelsson and Polman [4], Axelsson and Eijkhout [5], see also Meurant
[19], {20] and Chan and Vassilevski [9]. Earlier results are found in Kettler [16], Ax-
elsson, Brinkkemper and [I'in [3]. The resulting convergence rate of the incomplete
factorization preconditioners is not optimal (for a standard choice of the blocks in
the matrix), 1.e., it deteriorates with 2 — 0, where h is the discretization parameter.
This can be considered as a disadvantage of the block-ILU methods, although they
provide highly parallel algorithms.

Another class of preconditioners based on a diagonal by diagonal averaging of the
entries of a given matrix A to form a circulant approximation C' was recently proposed
in [7] (see also [21] and [15]). This leads to an improper in general approximation of
the original Dirichlet boundary conditions with periodic ones. The use of the circulant
approximations is motivated by their fast inversion based on the FFT, For the model
problem, it is shown that the block circulant preconditioner can be constructed such
that £(C-1A) = O(+/N) which is asymptotically the same as for certain {modified)
ILU type preconditioners. The circulant preconditioners are highly parallelizable,
see e.g. [17] and [18], but they are substantially sensitive with respect to possible
high variation of the coeflicients of the given elliptic operator. In this respect they do
not provide obvious advantages over the more classical incomplete block-factorization
preconditioners.

The purpose of this paper is to relax the sensitivity of the circulant approximations
with respect to possible high variation of the problem coeflicients. Namely, we propose
averaging of the coefficients of the given differential operator only along one of the
coordinate directions (say, “y”). Thus if we have moderately varying coefficients
in the y-direction the resulting preconditioners that we propose will give reasonable
relative condition numbers.

The preconditioning technique we propose incorporates the circulant approxima-
tions into the framework of the LU block-factorization. The computational efficiency
and parallelization of the resulting algorithm is as high as of the block circulant one
([7], [18]). The straightforward application of our new circulant block-factorization
preconditioner to the Dirichlet boundary value problem leads to a relative condition
number s(M~1A) = O(\/N), i.e, of the same order as mentioned above. It is also
true that if the solution of the elliptic problem is y-periodic, then the related pre-
conditioner has an optimal convergence rate, i.e., k(M ~1A) = O(1). Based on this
observation we use a proper imbedding of the original Dirichlet boundary value prob-
lem to a y-periodic one (possible for rectangular domains) and this allows us to obtain
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a preconditioner of optimal convergence rate for the Dirichlet boundary conditions
case.

The remainder of this paper is organized as follows. In section §2 we describe
the general ideas of the circulant block-factorization method. A model analysis of
the relative condition number for two circulant algorithms based on averaging of
the coefficients is presented in §3. In §4 we show numerical tests illustrating the
convergence rate of the proposed algorithm for the considered Dirichlet boundary
value problem. The optimal convergence rate of our preconditioner for y-periodic
problems and how to imbed the original problem to y-periodic one is discussed in
§5. Next, in §6 we show some additional numerical tests illustrating the optimal
convergence rate of the circulant block-factorization preconditioner for the imbedded
y-periodic problem. Some conclusions are drawn in §7.

2 Circulant block-factorization

We consider the following model 2D elliptic problem,

— (a(z, ¥)uz)e — (B2, ¥)u,), = flz,9), V(z,y) €Q, (1)
0 < Cinin § a(:r:,y), b(:BaT ) S Cnax:

u(z,y) = 0, Y{iz,y)e ' = 99,
where @ = [0,1] x [0,1] is covered by a uniform square mesh wy, with a size & =
1/(n + 1) for a given integer n > 1. Problem (1) is approximated by the standard 5-
point finite difference stencil (the finite element method for linear triangular elements
leads to a similar result). This discretization leads to a system of linear algebraic
equations

Au = f. (2)

If the grid points are ordered along, e.g., the y-grid lines, the matrix A admits a block
tridiagonal structure (with blocks formed by the unknowns within a given grid-line).
A can be written in the following form

A =tridiag(—A;;_1, Aiiy —Aiipr) i=1,2,...,n,
where
j=0G-n+1,..,in, t=12,...,n,
A =diagla; i), J=0—-1n+1,...,in, i=1,...,n—1,
J=@~1n+1,...,in, ¢=2,...,n.

Ay = tridiag(—a;;.1, 05,541,

Ai,i—l = dmg(aj,j—n)a

The coeficients a, ; are positive and a;; > a;;_4 + @541 + @40 + @ j_p, 1., the
matrix A satisfies the maximum principle.

Using the standard LU factorization procedure, we can first split A= D - L —
U into its block-diagonal and (negative) strictly block-triangular parts respectively.

Then the ezact block-factorization can be written in the form,

A= (X - L)(I-X"U),
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where the blocks of X = diag(Xy, X,, ..., X, ) are to be determined. We have
A=X-L-U+ LXU.

Therefore
X=D-LX U,

which rewritten component-wise gives
XI = Al,l) and Xi = Ai,'i —_ Ai,i—lX,‘—.._llAi—l,iﬁ ‘l = 2, caay 12 (3)

It is well-known that the above factorization exists if A is, for example, positive
definite. This factorization can be used to solve system (2). This requires solution of
linear systems involving the blocks X;. Note that {X;} are in general full matrices
and the resulting (direct) Gaussian elimination algorithm can become too expensive.
The common idea of the block-ILU factorization methods is to approximate X; (or
X1) by sparse (band) matrices. The idea we explore in the present paper instead, is
to first modify the original matrix A in such a way that the resulting matrices from
the exact factorization of the thus modified matrix (in place of X;) are now circulant.

We recall that a circulant matrix C has the form (¢ ;) = (c(j_k)modN), where
N is the size of C'. We will denote for any given coefficients {cg,¢yy...,¢,_1) by
C = (egy€1y...,Cq_q) the circulant matrix

Cg € Ca ... Cpq
Chwt Cp O Cp—2
€ € ... Cnoi  Co

Any circulant matrix can be factored as
C=FAF*, (4)
where A is a diagonal matrix containing the eigenvalues of C, and F'is the Fourier

matrix !
—_ ‘27{3:,;’51'
F= vn {e }
Here ¢ stands for the imaginary unit.

We define now the general form of the circulant block-factorization preconditioning
matrix C for the matrix A by

0<4,k<n—1"

O = tridiag(-—c.i'i_l, Cs','i? _C',‘H—l) 7= 1, 2, NN IS

1

where C;; = Circulant(A,; ;) is some given circulant approximation of the corre-
sponding block A;; (to be specified later). In what follows we use the exact block
LU factorization for the preconditioner C'. Note that the recursion (3), performed for
C, is closed in the class of circulant matrices. That is, the corresponding blocks X;
are circulant and therefore the solution of the preconditioned system involving the
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matrix C can be performed efficiently based on the FFT using the representation (4)
for the blocks {X;}.
A detailed study of the properties of two averaging strategies for deriving circulant

approximations of the blucks A, ; is given in the next section.

3 Model analysis of the relative condition number of
two circulant block-LU factorization precondition-
ers

T'wo different approaches for circulant averaging are applied and studied in this section
in the context of comstructing circulant factorization preconditioners. We denote
the resulting preconditioned algorithms by CBF1 and CBF2 respectively. A model
analysis of the relative condition number x(C-1A) is performed for the special case
of the Laplace operator, i.e., when a{z,y) = b(z,y) = 1. The matrices in the case of
this model problem are equipped with a subscript 0, i.e., we denote by Ag and Cj the
matrices constructed for the Laplace operator.

3.1 Circulant block factorization preconditioning I

Algorithm CBF1
To determine the block matrix C we introduce the following mean-values

1 n

Figrr = Do G
j=(—1)n+1
1 in

ai“il_l - Z aj:-j"'l

R imli-1)nt2
1 in—1

Gii1 = O Do G
j:(‘iM1)n+1

_ _ - _ b
;50 = @9+ G5+ 0;51+ 8,51+ 2

where p is a positive constant independent of n. Now we define the circulant matrices
Ci 41 and C; by the relations

Ciix1 = (0i441,0, ..., 0) = 8y 091, where [ is the identity matrix,
Cio= (80,831, 0,...,0,—d;; 1)

Finally the preconditioning matrix can be written in its block tridiagonal form as
follows:

C = tridiag(—C; 1, Cig, —Ciiyr)



The way of averaging used above is the same as in [7]. We get directly from the
definition of C that it is symmetric (like A). Furthermore, the matrix C, satisfies the
mazimum principle, where the added diagonal term % guarantees the strict diagonal
dominance. These properties are summarized in the next lemma.

Lemma 1 The preconditioning circulant matriz C defined by the CBF1 is symmetric
and positive definite.

Model analysis of the CBF1 algorithm

Consider A, = tridiag(—1, B, —1I) where B = tridiag(—1,4,—1) and the corre-
sponding circulant preconditioner computed by Algorithm CBF1, C, = tridiag(—1,
D,—I) with D = (2+ 268+ &, —$,0,...,0,—8), f = ==L,

Consider also G = tridiag(—1,2,—1) and H = (26 + 5,-5,0,...,0,—8). Then

we have

C, = IQH+GQI.

We next estimate the condition number #(Cy'Ay). Let ¢; be the j-th unit vector
and y be an arbitrary n-vector. Then

P
H = G+ "ﬁwéwf — Blerel + e,eT),
H = BG+ ;‘%I - [(el + e (e, +e,)T —egel — eneﬂ .
Since the matrices (e; +€,)(e; + ¢,)T and G — e;el — e, el are positive semi-definite,

we have P
yTHy < 28yTCGy + ;JT@J.

We compute the eigenvalues A\ (G) = 4sin® k=1,2,...,n. Hence A\(G) >

kw
2(n+1)?
(nf1)2 and we get yTGy > my%. We obtain
n+1)%p
y"Hy < (2/3 + L‘&%) y' Gy,

2
Amin H1G) > ——.
( ) p -+ 4

To estimate Ay, (H1G) we rewrite H in the form
_ p, P T T
H=p8G+ EI ) [(e1 + en)(er + en)’ — (€1 — €,)(ey — €4)”] .

Using now the fact that the matrix (e; — e, ){e; — €,)T is positive semi-definite, we
get

B
yTHy > ByTGy — §yT(€1 + e, )(e; +¢,)Ty. (5)



In order to estimate the last term we use the following estimate from {7},

4 1
yi(ertea)(er+ea)y <m (';Z + 2}") yTHy.

\F vy

Substituting this inequality in (5), we obtain

nyTHy,
Sp+2

50+ 2
yTGy < L

1.

Amax{ H1G) <

Therefore 502 1 99 o
w(H-1G) < P +2 P+8),.
P

We summarize the above results in the following theorem.

Theorem 1 The preconditioning matriz C defined by the CBF1 algorithm satisfies
the following relative condition number estimate,
(39 + 22p + 8)
. 6
2, (5

n(Cgle) <

Remark 1 The optimal value of the parameter p = +/1.6 is easy to compute. Then
the estimate

£(C51A) < (2v10 + 1)
holds.

3.2 Circulant block factorization preconditioning II

Algorithm CBF2

The second approach of defining block circulant approximations can be interpreted
as simultaneous averaging of the matrix coefficients and changing of the Dirichlet
boundary conditions to periodic ones. We introduce now the following mean-values,

1
Qiikr = n U5 itn
j={i-1)nt+1
1 & d;
in'i’_l = - z a.T!J_l + -
n )
1 n—1 d’:
il = 2 Gijar T
F=(i—1)nt1
1 in

Qo = — D G

(i)
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where
d:' = min(dgl): dz(n))a

and where
a0 = G110 — G132~ Qi
1 — 9 ?
4B = 4. : —ay : — s ,
i - (=1 fi-Dntl ™ Claind 1 (i=2)nd1 7 F-1)nd1,intl (i—1)n+1,(i—1)nt2>
Vi=2,...,n—1,
Ju = Up—1)n+1,(n-ntl ™ 4 (n-1in+1,(n-2)n+1 ~ Hr-1jnil,(n~1)n+2
n 9 )
and
d(n) _ Unmn — Appe1 — Opon
1 - 9 »
n} _ C
di = Cinin — Qinfi-1)n — Gin,(i+1)n — Lingn-1s Yi= 2,...,n—1,
dn = Tp2n2 — @p2 (n—1jn — Tn2n2-1
" .

2
The circulant blocks are defined explicitly by the formulas
Ciizar = (8i41,0,...,0) = 8,441,
Cii = (@iz00—8i1,0,...,0,—8;; 1)
Then the block-tridiagonal preconditioning matrix €' is defined by
C = tridiag(—Ci;_1, Chpy —Ciign)-

Lemma 2 The circulant preconditioning matriz C defined by the CBF2 algorithm is
symmetric and positive definite,

Proof: The symmetry follows directly from the construction of €', which is obtained
by a block diagonal-by-diagonal averaging of a symmetric matrix. We have also from
the definition, that C satisfies the mazimum principle like the matrix A. Finally,
we get the positive definiteness from the strict diagonal dominance of C in the rows
corresponding to the mesh points adjacent to the vertical boundaries. n

Model analysis of the CBF2 algorithm

The corresponding circulant preconditioner is Cy = tridiag(—1, D, —I) with now
D =(4,-1,0,...,0,—1).

Consider the matrices G = tridiag(—1,2,—1) and H = (2,-1,0,...,0,—1). Then

Ay = IQRGHGRT
C() - I®H+G®I

We next estimate the condition number k(Cy'Ay). Let e; be the j-th unit vector
and y be an arbitrary n-vector. Then

H = G- (eel +e,el),
H = G- [(61 + e, )(ey + e, )T — el — eneﬂ .
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Since the matrices (e; +e,)(e, +€,)7 and G — e;eT — ¢,.eT are positive semi-definite,
we have
yTHy < 2y" Gy

which implies .
1

yT(H + =Dy <TG+ =Dy
To estimate A, [G~1H] we rewrite H as

1

H=G- 5 [(81 + en)(el + en)T - (61 - en)(el - €n)T]
Using again the fact that (e; — ¢, )}(e; — e,)7 is positive semi-definite, we get
1
y"Hy > yTGy — 5yT(er + en)(ex + en)Ty (7)
In order to estimate the last term, we borrow the following estimate from [T7},
T T 1\ 7 1
Y (61+6n)(61+8n) yS n 4+;F y (H+El)y
Substituting this inequality in (7), we obtain
1 1
y (G + — Dy < 3ny"(H + — 1)y

We compute the eigenvalues of G, A\,(G) = 4sin? k =1,2,...,n. Hence

kar
2(n+$1)?
AM@) = % and therefore G — %1 is symmetric and positive semi-definite. We rewrite
the matrices Ay and Cy now as

1 1
AO = I®(G+El)+(G_EI)®I
n2

1 1
Cy = I®(H+T—1—ZI)+(G——I)®I

Then for an arbitrary n?-vector z it follows that

1 zTAyx <3
5= TTCpm —

Therefore the following theorem holds.

Theorem 2 The preconditioning matriz C defined by the CBFZ2 algorithm gives a
relative condition number estimated by

K(C51Ay) < 6n. (8)




We point out that the above model analysis shows a better relative condition number
estimate for the CBF2 algorithm in comparison with the CBF1 one.

In general the estimates obtained in this section are similar to the related ones
for the block circulant preconditioners as introduced in [7]. The difference in our
construction is that the averaging procedure is only along the y-coordinate direction
of the lines of w,. This fact assumes some particular advantages for problems with
moderately varying coefficients in the y-direction. Furthermore we show in the next
sections, that based on the CBF2 algorithm we will be able to construct an optimal

order preconditioning algorithm for the considered elliptic boundary value problem.

4 Numerical tests I

In this section, we compare the convergence rate of our methods to the block circulant
(BlockCr) and peintwise circulant {PointCr) preconditioners as introduced in [7], and
the modified incomplete factorization LU (MILU) preconditioner (see e.g. in [2]). Our
preconditioners are denoted by CBF1 and CBF2 respectively, following the notations
introduced in §3. The test problem we used is taken from {7], and is

a ou d € du

— Tty — — — ginf{?2 —_— =

= lasemZ]+ Lo+ St = few) @
on 8 = [0,1] x [0,1], where ¢ is a parameter. The computations are done with

double precision on a SUN SPARCstation 2. The iteration stopping criterion is
|lrNee[1/Ir®]] < 10-8, where 77 stands for the residual at the jth iteration step of the
preconditioned conjugate gradient method.

Tables 1a+1d show the number of iterations as a measure of the convergence rate
of the compared five different preconditioners. All of these preconditioners are char-
acterized by the estimate &(C~1A) = O(n), or the expected number of the iterations
have to grow as N;; = O(y/n). The presented data demonstrate a slightly more quick
growth of N;, with n, but in general the obtained results are in a good agreement
with the theory.

The circulant preconditioners are competitive with the incomplete factorization
MILU preconditioner for relatively small values of e. This reflects the diagonal by
diagonal (block) averaging of the coefficients, used in the circulant approximations.
Such a fact was already observed in [7}.
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The comparison between the circulant preconditioners introduced in [7] (BlockCr
and PointCr) and the circulant block factorization ones shows similar features. The
CBF2 algorithm demonstrates some (predicted) advantages in comparison with the
CBF1 algorithm {or relatively large values of ¢ only.

Finally we point out that in contrast to BlockCr and PointCr, the last three
algorithms have a preferred ordering direction of the mesh points. This is a well
known fact that MILU converge faster for problems with a y-dominated anisotropy
(i.e., when %Ez—f’% > 1}, being important for various practical applications. The pro-
posed circulant block factorization algorithm converges faster for problems with a
z-dominated anisotropy (when blocks A, ; are closer to diagonal matrix and the given

circulant approximation improves).

5 Preconditioning of y-periodic problems and peri-
odic imbedding of Dirichlet boundary value prob-
lems

Consider the problem (1), with modified boundary conditions:

- (a(a:, y)ur)m - (b($a y)'u'y)y = f(way) V(a:,y) €} (10)

where @ = [0,1} x [0,1], u(0,y) = u(1,y) = 0 Vy € [0,1], and u(z,0) = u(z,1), and
g—‘y‘(m,O) = g—’;‘(m, 1) Va € [0,1]. The second set of boundary conditions are periodic
and the related elliptic problem is called y-periodic one.

We assume that a uniform mesh wy,, with stepsizes i, =1/(n+1) and b, = 1/n is
used. The 5-point finite difference stencil (like to the linear triangular finite elements)
reduces the differential problem to a system of linear algebraic equations

Au = f.

Under the assumption of ordering the meshpoints along the y-grid lines, the matrix
A admits the form,

A = tridiag(—Ai,i_l, Ai,i: _Ai,c'-l-l) ?, = 1,2, ey Ry

where
( ai,l _ai‘z 0 _a‘?l,ﬂ \
_0}2,1 a"z,.z _9313 0
0 _ag,z a13’3 0
Ai,i: ) 0 =12, y 1
0 a:’!..—2,n—2 _q;—z,n—l 0
0. wa;—l,n——z a;—;,n—l _a:?.ml,n
e e 0 e )
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and A;;.1 At = 2,3,...,n are diagonal matrices.

One can see that the matrices A, ; have the same sparsity structure as the circulant
approximations C;;, introduced in §3. Moreover, for the model problem (a(z,y) =
b(z,y) = 1), all blocks of A are circulant. Therefore the block LU factorization
recursion (3) remains closed during the elimination process into the class of circulant
matrices.

In other words, the block LU factorization (3) defines a fast solver for the y-
periodic discrete Poisson problems. By a standard “freezing coefficients” analysis of
variable coefficients problem {cf., e.g., Bank [6], or the classical papers by D’yakonov
[11] and Gunn [13]) one easily gets the following theorem.

Theorem 3 Let the matriz A correspond to the finite difference approzimation of
the y-periodic problem (10). Then the circulant block-factorization algorithm CBF?2
defines an optimal order preconditioner C, i.e., k{C-1A) = O(1), uniformly in the
mesh parameter h — 0.

Periodic imbedding of Dirichlet boundary value problems to y-periodic
ones

We consider now the following imbedding of the original Dirichlet elliptic boundary
value problem (1).

Lu=F, Y(z,y) € {0,1] x [-1,1] (11)
where £(z,y) is an extension of the differential operator L{z, y) related to the equation
(1), and F(z,y) is a corresponding extension of the right side function f(z,y), defined
below. We have

L{z,y) for 0<y<1

['(33: y) = )
L{z,—y) for —1<y<0

This means, that the coefficients a(z,y) and b(z,y) of the operator (1) are extended
outside £ as shown above (i.e., using even-extension}. The solution u and the right-
hand side f are extended in odd-fashion. For example, we have

fle,y) for  0<y<1
f'(:c,y) - H
—f(z,—y) for —1<y<0

and boundary conditions

u(0,y) =w(l,y)= 0 Vyel[-1,1],
1) = N Vee[1), and 2 1)= 1) Veelo]
u(z,1) = u(z,—-1) Ve e[0,1], an 6y(:c, )= ay(m, x ,1].

The problem (11) is y-periodic with a solution coinciding to the solution of the
problem (1) in £ = [0,1] x [0, 1].

We call the problem (11) a y-periodic imbedding of the original Dirichlet boundary
value problem (1). As a result, applying the algorithm CBF2 to the problem (11), we
obtain spectrally equivalent preconditioner that requires O(N log N) operations per
iteration for solving the corresponding discrete problem (1).
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6 Numerical tests I1

The numerical tests presented in this section illustrate the optimal convergence rate
of the CBF2 algorithm for y-periodic problems, and of the y-periodic imhedding
approach. Like for the reported results in §4, the computations are done with double
precision on a SUN SPARCstation 2. The stopping criterion of the preconditioned
conjugate gradient method is {|rNie|| /i|r°|| < 10-%, where 7 is the residual at iteration
step 7.

The function f(z,y) = 4r2z(z—1) [sin(ery) ~ £ cos {27 (z + 2y))] —2+ ez +1)
e*1¥] corresponds to the exact solution u(z,y) = z{z — 1)sin2ry. The boundary
conditions u(0,y) = w(l,y) = 0, u(z,0) = u(z,1) and g—;(fb‘,ﬂ) = g——;‘(m,l) are also
assumed. The stepsizes of w; are respectively h, = nlﬁ and h, = L,

In Table 2a the numbers of iterations of the CBF2 preconditioned conjugate gra-
dient iterative solution related to the y-periodic problem (9) (see §4) are given. The
results are the same for n = 8,16,...,256, since the preconditioner has an optimal
condition number.

Finally, in Table 2b the number of iterations of the CBF2 preconditioned conju-
gate gradient iterative solution related to the y-periodic imbedding of problem (9)
are reported. The imbedding procedure is as described in §5. The boundary con-
ditions are respectively modified to u(0,y) = u(l,y) = 0 u(z,—1) = u(z,1) and
g—;‘(x, -1) = g—‘;(m, 1). The stepsizes in wy, are b, = nlﬁ and h, = 2. The results are
also independent of n = 8,16,...,256 because of the optimal condition number of
the preconditioner.

Both sets of results (in Tables 2a-2b) demonstrate an attractive efficiency of the
circulant block-factorization preconditioning algorithm CBF2 for solving periodic and
Dirichlet elliptic boundary value problems.
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Table 1a: Number of iterations for different preconditioners, € = 0.

n N | BleckCr | PointCr | MILU | CBF1 | CBF2
8 64 11 12 g 10 10
16 256 13 16 13 13 13
32 | 1024 17 20 19 17 17
64 | 4096 22 25 27 21 21
128 | 16384 28 33 40 28 28

Table Th: Number of iterations for different preconditioners, e = 0.01.

n N | BlockCr | PointCr | MILU | CBF1 | CBF2
8 64 12 12 9 10 10
16 256 15 16 13 13 13
32 1024 20 20 19 17 17
64 | 4096 25 26 27 22 21
128 | 16384 33 34 40 28 28

Table 1c: Number of iterations for different preconditioners, e = 0.1.

n N | BlockCr | PointCr { MILU | CBF1 | CBF2
8 64 12 12 9 11 10
16 256 16 16 13 13 12
321 1024 20 20 19 18 16
64 1 4096 25 27 27 22 19
128 + 16384 35 36 39 29 25

Table 1d: Number of iterations for different preconditioners, e = 1.

n N | BlockCr | PointCr | MILU | CBF1 | CBF2

8 64 i3 14 9 13 9
16 256 18 19 13 17 11
32 | 1024 25 27 18 23 15
64 | 4096 35 35 26 30 20
128 | 16384 50 51 38 41 26

Table 2a: Number of iterations for CBF2 preconditioner; y-periodic test problem.

¢ [10.00 [0.01]0.10 | 1.00
N, T 135 [ 9
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Table 2b: Number of iterations for CBF2 preconditioner; y-periodically imbedded
problem,

e [10.00]0.01 [ 0.10 | 1.00
Nl 1 315 |9
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