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Computing a search direction for large-scale
linearly-constrained nonlinear optimization
calculations

M. Arioli, T, F. Chan, L. S. Duff, N. I. M. Gould and J. K. Reid
August 27, 1993

Abstract

We consider the computation of Newton-like search directions that
are appropriate when solving large-scale linearly-constrained nonlin-
ear optimization problems. We investigate the use of both direct and
iterative methods and consider efficient ways of modifying the New-
ton equations in order to ensure global convergence of the underlying
optimization methods.

Dedicated to the memory of Leslie Foz, our friend and teacher.

1 Introduction
In this paper, we comsider solving the problem

minimize f(x) (1.1)
zeR"

subject to a set of m linearly—in&ependent, general, linear equations

Az =b. (1.2)



1 INTRODUCTION 2

Here f is assumed to be twice continuously differentiable and its gradient and
Hessian matrix will be denoted by g(z) f V. f(z) and H(z) L Ve f(2)
respectively. We shall furthermore assume that H(z) is available and that
we wish to exploit this curvature information. Contrary to popular belief,
this last assumption holds for a wide variety of applications.

Problems of the form (1.1)—(1.2) sometimes arise in their own right (see,
for instance, the collection by Bongartz et al., 1993), but arise more com-
monly as subproblems within more general nonlinear programming calcula-
tions (see, for example, Murtagh and Saunders, 1978 and Conn et al., 1993}.
Although these latter subproblems may at first appear to have a different
form from (1.1)-(1.2),it is often possible to convert them to such a form so
that algorithms discussed in this paper are appropriate. One example is that
of wanting to solve (1.1)-{1.2) with the additional restriction that = satisfies
the simple bound constraints

I <z <, (1.3)

where the inequalities should be understood componentwise and any of the
components of [ and » may be infinite. The problem (1.1)~(1.3) may be
solved by a sequential minimization of the barrier function

lI’(iU, w, 3) = f(a') + Z ¢(mialis Uy, wfIIs 3%7 'HJ?,S::‘), (1-4)
i=1

subject to the constraints (1.2), where the shifts s = (s',s%) and weights
w = (w',w") are used in the definition of barrier terms, ¢. Fach barrier
term has the form

qﬁ(mi}lhui,wgasiswz"‘ﬂg?) - ’tﬂ;’l,b(ﬂ?,' - li + Si) + Iw:}'w(ui — & + 3?)9 (15)

where 1(a) is C* for all @ > 0 and has a singularity at the origin — exam-
ples are the logarithmic function ¥{a) = log(«) and the reciprocal function
P(a} = a? for any p > 0. The shifts are all nonnegative, the weights for in-
finite bounds are zero while those corresponding to finite bounds are strictly
positive. A variety of barrier functions have been proposed and the reader
is referred to Fiacco and McCormick (1968), Wright (1992} or Conn et al.
(1992) for detadls.

In Section 2 of this paper, we discuss general issues of convergence for
schemes for solving {1.1)-(1.2) and lay the foundations for the linear alge-
braic processes we shall employ; we formally state the aims of the paper in
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Section 2.3. In Section 3, we consider how convergence may be ensured in
the absence of constraints. We consider both direct and iterative methods
and suggest some modifications to the standard conjugate gradient iteration
to achieve our aims. We generalize these ideas for constrained problems in
Section 4. Specific direct methods appropriate for sparse problems are con-
sidered in Sections 5 and 6 and the combination of both direct and iterative
methods are considered in Section 7. We present some concluding remarks
in Section 8.

2 Minimizing the objective function

We consider iterative methods for finding a local solution to the problem (1.1)
subject to the linear constraints (1.2). We let z®) be the current iterative
approximation and consider how an improved iterate 2®*+1) may be found.

2.1 General considerations

We assume that 2(®) satisfies the constraints (1.2). A typical “linesearch”
type iteration would

o compute a search direction p*) for the objective function, which satis-
fies the constraints
Ap#) = 0, (2.1)

and for which p®7 g(2®)} is “sufficiently” negative, and

o perform a linesearch for the objective function along the search di-
rection to obtain z*+D = 2®) 4 a®p*) for some suitable stepsize
ol®) > 0, such that f(e®+9)is “sufficiently” smaller than f(z®).

The linesearch should ensure that one of the classical sets of “sufficient de-
crease” conditions is satisfied at a*+1) (see, for instance, Dennis and Schn-
abel, 1983, Section 6.3). Furthermore, whenever possible, advantage should
be taken of the “shape” of the linesearch function to derive an efficient algo-
rithm (see, for example, Lasdon et al., 1973 and Murray and Wright, 1992).
If the Hessian matrix of the objective function is positive definite, a search
direction close to that given by Newton’s method is desirable. However, in
general the Hessian may be indefinite and we need to take precautions to
ensure that the search direction is a sufficiently good descent direction.
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The (quasi-)Newton search direction, p®) and the corresponding La-
grange multiplier estimates, A(k}, satisfy the equations

(&) AT (*) 28
() () --(9) e

where B®) is a suitable symmetﬁc matrix. In order to provoke rapid asymp-
totic convergence, it is desirable that B®) should be a reasonable approxi-
mation to the Hessian.

We say that a matrix B is second-order sufficient if the condition

pT Bp > op’p for some constant o >0 and all p satisfying Ap=10
- (2.3)
is satisfied. We aim to use a second-order sufficient matrix B®*) as our
Hessian approximation in (2.2). For then equations (2.2) are both necessary
and sufficient for the solution p*} to be the global solution of the (possibly
nonconvex} equality constrained quadratic programming problem

minimize 1p? B®p + p¥g(2®) subject to Ap =0 (2.4)
pER™ .

(see, for example, Gill et al., 1981).
So long as B® is second-order sufficient and the matrix

Elk) def ple) _ H(m(’“)) (2.5}

is bounded, it is straightforward to show that the gradient of the Lagrangian
function, f(z®) + ABT (A2 — b), converges to zero, for any bounded se-
quence of iterates generated by the search direction obtained from (2.2} and
a “sufficient” linesearch. For, picking any full-rank n by n — m matrix Z
such that AZ = 0 (see, for instance, Gill et al., 1981}, Gill and Murray
(1974) show that the minimization of (1.1} subject to (1.2) is equivalent to
the unconstrained minimization of f(z + Zp,) with respect to the variables
p, so long as z satisfies (1.2). Moreover, equations (2.2) are equivalent to
the {quasi-)Newton equations

We note that ZTB®Z is positive definite whenever B®) is second-order
sufficient. Typical global convergence results for unconstrained optimization



2 MINIMIZING THE OBJECTIVE FUNCTION 5

(see, for instance, Dennis and Schnabel, 1983, Theorem 6.3.3), then imply
that
lim Z7g(2®) = 0 @27)

provided the condition number of the reduced Hessian, ZT B®)Z, is bounded.
"This latter condition is satisfied whenever B} is second-order sufficient and
ZTE® Z is bounded. As Z is of full rank, we finally infer from (2.7) that

lim g(z®)) 4 ATAE = (2.8)

for some sequence of Lagrange multipliers {,\(k)}.-

2.2 Computing a search direction

T'he most obvious way of determining a search direction that is close to the
Newton direction is to use a matrix factorization to compute the solution
to (2.2). Such a factorization should take into account the symmetric but
indefinite structure of the coefficient matrix.

A second possibility is to observe that the reduced-variable (quasi-}Newton
equations {2.6) provide the global solution to the unconstrained quadratic
minimization problem

minimize ¢(p,) ! 1T ZTB® Zp, 4 pT Z7 g(a*) - (2.9)

P ERTT™

whenever B is second-order sufficient. While it is certainly easy to imagine
solving (2.6) using a factorization of the reduced Hessian, this may be inap-
propriate if n — m is large and ZT B®)Z dense. In this case, it may still be
possible to calculate an approximation to the Newton direction by applying
an iterative method so long as it is feasible to form matrix-vector products
of the form ZTB%®}Zy, This may well be the case if Z is carefully cho-
sen to allow rapid computation of the subsidiary products Zv, B(k)(qu) and
ZT(B™®) Zv). Although an optimally sparse representation of Z may be com-
putationally expensive (see Coleman and Pothen, 1984), good choices may
often be obtained (see, for instance, Murtagh and Saunders, 1978, Coleman
and Pothen, 1986 and Stern and Vavasis, 1993).

When considering iterative methods, we choose to restrict our attention
to the method of conjugate gradients. The application of the method to lin-
early constrained problems has been suggested by a number of authors (see,
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for instance Gill et al., 1981, Section 5.6.2.1). Moreover, as the conjugate-
gradient method produces a monotonically decreasing sequence of values of
the quadratic objective function, ¢(p,), it is possible to truncete the conju-
gate gradient iteration at a sub-optimal point for (2.9) while still maintaining
a fast asymptotic convergence rate (see, Dembo et al., 1982)).

2.3 Aims of the paper

We state our aims as follows. We wish to:

s determine a matrix B®) = H(2®) + E%® 50 that (2.3) is satisfied and
such that the perturbation E*) = 0 whenever H{2(®) satisfies (2.3);

¢ obtain E®) without incurring undue overheads above those normally
considered acceptable when calculating the search direction;

o ensure that [|E®)| is bounded relative to max(||Al}, | H (z*)||) — pro-
vided that {z*)} remains bounded, this will ensure that B%) is uni-
formly bounded;

e use the sparsity and structure of (2.2) to derive a sparse factorization
or effective iterative procedure; and :

¢ limit numerical growth to acceptable limits to ensure a stable algo-
rithm.

In this paper, we shall show how, to a large extent, we may achieve these
aims.

3 Hessian approximations and unconstrained opti-
mization

In this section, we review and develop methods which have been used suac-
cessfully in unconstrained optimization. We do this for two reasons. Firstly,
such methods may be viewed as prototypes for possible extensions to the
constrained case. Secondly, as we have already mentioned in Section 2.2, an
implicit elimination of the constraints results in an unconstrained problem.
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3.1 Direct methods

If we wish our linearly-constrained optimization algorithm to inherit the fast
asymptotic convergence rate of Newton’s method, we might try to ensure
that B%*) converges to the true Hessian matrix. In particular, we may choose
B®) to be H(z®)) whenever the latter is second-order sufficient.

We recall the precedent set from research in unconstrained optimization
by Greenstadt (1967), Gill and Murray (1974) and Schnabel and Eskow
(1991) amongst others, in which a modification to the exact second derivative
matrix in a Newton method is only made when the exact derivatives are
insufficiently positive definite. When there are no constraints present, (2.3)
is equivalent to requiring that B be sufficiently positive definite, that is, that

pT Bp > op’p for some constant ¢ >0 and all p. (3.1)

In particular, Gill and Murray (1974) and Schnabel and Eskow (1991) sug-
gest modified-Cholesky factorization methods which decide whether, and by
how much, the diagonals of the Hessian matrix need to be modified as the
Cholesky factorization of the matrix proceeds. The factors are then used to
solve the resulting modified Newton equations. Both pairs of authors are
very careful to ensure that the modifications made are bounded and that no
modification ensues when the Hessian is sufficiently positive definite. Ex-
tensions to large-scale unconstrained and bound constrained optimization,
using sparse factorizations, have been proposed by Gill et al. (1992), Conn
et al. (1991) and Schlick {1992).

We should also mention the philosophically-different but mechanically-
sitnilar class of £, trust-region methods (see, e.g., Hebden, 1973, Moré, 1978,
Sorensen, 1980 and Gay, 1981). Here perturbations of the form E®) =
p®)T may be made to H(z®) for some appropriate scalar u*) in order to
make B®) positive semi-definite. We note the difference of approach between
these methods and the modified Cholesky methods, in that perturbations
to the Hessian may only be made in certain low-rank subspaces with the
modification methods while any perturbation in an £, trust-region method
produces a rank n change to H(z().

3.2 Iterative methods

If we intend to use a conjugate-gradient method to (approximately) solve
(2.9), a different matrix-modification strategy is needed. Let B, =AY OF4
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and g, & ZTg(z®). Then we wish to (approximately) solve the uncon-
stratned problem,
minimize ip! B,p, + pL ., (3.2)
pER™™

using the method of conjugate gradients, starting with the estimate p, = 0.
If B, is positive definite, the method of conjugate gradients may be de-
scribed as follows. Let pS,“) =0, gﬁ,“) = g, s = —g§“> and B = B,. For

I=0,1,--- until convergence, perform the iteration,
a® = Ol B0 (33)
GRS ORIPN GO (3.4)
PICI RO BPNO Y ; (OO (3.5)
B = g8/ 161 (36)
s = gt 4 gD ) - (3.7
BU+Y = O (3.8)

(see Gill et al., 1981, Section 4.8.3). However, as we do not know in advance
whether B, is positive definite, we must be prepared to allow modifications
to B, if necessary. We consider two alternatives.

3.2.1 Methods using estimates of the leftmost eigenvalue

Firstly, we could compute a good approximation ff;, to the leftmost (most
negative or smallest if all positive) eigenvalue, 7;,. If the approximation is
sufficiently positive, we use B, unchanged. Otherwise, before the iteration
commences, we replace B, by B, — (% — o)1, where o is chosen to ensure
that B® is second-order sufficient. The Lanczos algorithm (see Lanczos,
1950 or Parlett, 1980, Chapter 13) may be used to estimate 7,,;,. We ob-
serve that this method has the flavour of an £, trust-region method (see
Section 3.1).

This approach may prove to be expensive unless care is taken. In par-
ticular, it is unnecessary to estimate 7, unless a modification is necessary.
Fortunately, we can use the well-known relationship between the conjugate
gradient and Lanczos methods (see, for instance, Golub and Loan, 1989,
Section 9.3.1) to avoid excess computation unless it is really justified. We
start by assuming that B, is positive definite and perform the conjugate .
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gradient iteration (3.3)-(3.8). We also form the tridiagonal “Lanczos” ma-
trix (see, Golub and Loan, 1989, Section 10.2.6) from the quantities involved
in the conjugate gradient iteration and estimate the leftmost eigenvalue of
this matrix; efficient methods for doing this have been proposed by Paige
and Saunders (1975) and Parlett and Reid (1981). If the tridiagonal matrix
reveals that B, is insufficiently positive definite, the iteration is continued in
“Lanczos” mode. That is, information from the conjugate gradient iteration
is assimilated in a true “Lanczos” process which then aims to calculate an
accurate approximation to the leftmost eigenvalue, ., , as a precursor to
restarting the conjugate gradient iteration.

Obtaining the leftmost eigenvalue in this way may still prove to be too
expensive. One possibility is to take the leftmost eigenvalue of the “Lanc-
zos” matrix at the time that it is discovered that B, is insufficiently positive
definite as an estimate of the leftmost eigenvalue of B,, or perhaps to con-
tinue for a few more “Lanczos” iterations before such an estimate is made.
Another possibility is to obtain an upper bound on the absolute value of the
eigenvalue and to shift B, by at least this amount. One such bound is given
by the inequality

Toial < 1B.lls < [1Bsllese = min(IB oy I1Bulle),  (39)
see Golub and Loan (1989, Section 2.3). If B, were explicitly available, it
would be trivial to calculate ||B;|.,;. However, in our case, B, is generally
only available as the product of matrices and the calculation of || B, |, is out
of the question. We may nonetheless estimate || B,|.;; using the algorithms
of Hager (1984) or Higham (1988) to estimate || B,[|.,. We must be cautious
here as such algorithms may underestimate the infinity norm.

Unless we compute an accurate approximation of 7, or a lower bound
for it, we may have to perform a number of conjugate gradient cycles. Fach
cycle ends when a negative eigenvalue of the Lanzcos matrix is found. Then
B, is replaced by B, — (%4 — )1, for some appropriate ¢ > 0, and the next
conjugate gradient cycle started.

3.2.2 Methods which modify the matrix as the iteration proceeds

Secondly, we could modify B, as the conjugate gradient iteration proceeds.
We have to be careful here as general perturbations to B, will destroy the
conjugacy properties of the algorithm and affect the convergence of the iter-
ation. Fortunately, the conjugate gradient algorithm provides all the infor-
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mation we need to be able to build a second-order sufficient B, if the original
was insufficient while maintaining the required conjugacy. The key is to note
that each iteration (3.3)—%3.8) computes the curvature sPT B along the
current search direction s, If this is negative, or small relative to the size
of 39), the original B, is indefinite and must be modified.

We will make use of the identities

sUHOT RO = g for §=0,---,1, (3.10)
gHOT G =g for j=0,--0,1, (3.11)
gHOTEY = 0 for j=0,-.-,4, and (3.12)

sHDT gt} g41)T ((141) (3.13)

(see, for instance, FIetéher, 1987, Theorem 4.1.1, and Gill et al., 1981, Section
4.8.3.1). We first note that it is trivial to embed the identity

IsEFONE = Hgd* V15 + B2 1P 113 (3.14)

within the conjugate gradient iteration (3.3)-(3.8) and, as we have already
computed all quantities on the right-hand side of (3.14), we may recur USQ)HE
at almost no cost. The identity (3.14) follows from the definition of ¢t in
(3.7) and the linesearch condition (3.12). Thus we may compute the Rayleigh
quotient

. SHUT g0 (1)

Pold” =™ ”Sg+1)|!2

(3.15)

It pgf dl ) < & for some small & %Y (n+1)e > 0 (and where o is the required

tolerence in (2.3)), B is judged to be insufficiently positive definite and we
replace (3.8) by
B§r+i} — BE?) 'i_ 9(1-}-1)1)94-1)1,9—1-1)1', (3.16)

where 80+1) is given by

O.(I+1)”ng+1)”§ _ Sgl+1)T Bg)sng}

g(H'l} _
?
(’UgH-l)TSEv,H‘l) )2

(3.17)

the scalar ¢ > ¢ and ot is any vector for which

VT — 0 for =0, 1 (3.18)
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The definition (3.17) ensures that

4+1) DT g1 (1)
Pnew =
[s$ 0113

= o) > g, (3.19)

Moreover, as {3.16) and {3.18) ensure that

B+ = (BY 4 6(’+1)v§"§"1}v§’+1ﬂ")39) = B g (3.20)

for j = 0,---,{, the conjugate gradient method generates the same sequence
of I iterates if we replace B by B{*Y,

Our strategy may be summarized as follows. Implement the conjugate
gradient iteration (3.3)-(3.7) and (3.14). At each iteration, evaluate the
Rayleigh quotient (3.15). Then set

r I+1) (40T - 1) -
B+ — { BW 4 gl+1) {41, (+1) if pf)ld) < T

3.21
Bgl) otherwise ( )

~

and continue the iteration. Notice that each time B is updated, we need
to store an extra vector VT and thus it would seem that we can
only continue this strategy so long as we have sufficient room. We also note
that, since the cost of a matrix-vector product increases as we add extra
rank-one terms, we may also wish to end the iteration on efficiency grounds
if many modifications are required. Actually, in at least one important case,
we will shortly show that it is theoretically possible to avoid the storage of

the vectors g+ {1},
A nice consequence of the above modification is that
s B > s B > 7|18 (3.22)
for all ¢ < {. Hence, if [ iterations are performed, and s, = ¥i_, v;s8)

any vector lying in the (Krylov) space searched by the conjugate gradient
iteration, (3.10}, (3.20) and (3.22) imply

is

sTBYs, = EI —0 ; o Vi SOT B = Ewa UESE’)TBU) ®
> UZL avfsg’)T (’) = & Xio 0ist3 (3.23)
> S o uist) = 1 Zlls. 113 > olls. I3
I+1 + 1 [41

Thus the Rayleigh quotient, and hence the smallest eigenvalue, of B re-
stricted to the (Krylov) subspace investigated is bounded away from zero.
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We would also like to say something about the size of any perturbations
made. If the Hessian is modified on the I-th conjugate gradient iteration,
(3.16) and (3.17) combine to show the perturbation satisfies the bound

(1), (1), (41T T TP T | il

BRI = (OO o BO ) i
(3.24)
If the initial B, has smallest eigenvalue m;,, we may use the boundedness
property of the Rayleigh quotient (see Parlett, 1980, Section 1.5) to replace
(3.24) by

sV l08 113
(v (I+1)T (*+1))2

”9(z+1)v£r+1)v£r+1)ﬁ*)“ S (0(r+1) Wmm) (3_25)

Thus, in order to bound the size of the perturbation, we need to choose i)

s0 that the ratio .
g I

def |l
w(oi™) = T (3.26)
(i7" s )
is bounded.
There are two “obvious” — obvious in the sense that, followmg (3.10)

and (3.12), they automatically satisfy (3.18) — choices for oY namely

D) = B and (3.27)
WHD o), (3.28)

The first choice is unlikely to be useful as there is then no guarantee that
the denominator of (3.26) is nonzero. Fortunately, as we shall now show, the
second choice (3.28) provides a satisfactory perturbation.

When v{*) is given by (3.28), (3.13) implies that

w(git) = s HEN gl (3.29)

Using (3.14) and the definition (3.6), it is straightforward to show that

w(gd™) =14 pH0w(g) > 1. (3.30)
But, as
o+ o0 4 B gy (3.31)
9; = Y Sgr)TBgr)Sg) 2 %27 .
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from (3.3) and (3.5), the identity (3.11) implies that

4z
o o - it

and hence that
ST BO 0 = _ T pA o0 (3.33)

But then, the relationships (3.31) and (3.33) give that

2 G
I+1 i nT py (1 DR
160 = 11 + 2o BO o0 4 ol B0 o)
i

2
{ ” l o7 (1 ! 1 n
= ”92)”2 2 (r)TB(r) (1)3() ) ‘|‘( (I)TB(I) (,))21|B() ()“%
B P
= 161 (g e 1895 -
(3.34)

Combining (3.6), (3.19), (3.29) and (3.34), we obtain the bound

ﬁ(r+1)

12113 n.a
(S(I)TB(I) (1})2”3()3()“2
H

g” g( .(z) ) ”BU)HZ 1 Bzr 2
B (s£’>TB£’>s§'>) T (e

(3.35)
Finally, (3.30) and (3.35) combine to give
B! BY|I3
( (i’+1)) =14 ” (mH w(ggl)) < ” (1)2“ (3.36)
Pnew Puew
and thus (?)
|
Hg(Hl)g{Hl)Q(Hl)T)H < (O.(H«l) _ T’Tmm)” o IZ (3'37)
new

The inequality (3.37) thus furnishes us with an (albeit large) upper bound
on the possible perturbation to B, in terms of the initial data B, and the
tolerance p{hy > &.

The scalar ¢{**) should be chosen so that (3.37) is not too large, but
may also be used to control the size of the step

(f+1))”5(f+1)”2
gU+1)

(3.38)

(H+1)))2
0f(i'+1)|]{,),gzl—1—1)||2 _ ”g ”2

- s, = A
Sg!-i-l)TBgi'-H) gi’+1)
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in (3.4). Notice how the curvature, P, from iteration [ may affect the size
of any perturbation (3.37) in iteration [ 4+ 1. In particular, if modifications
are made on two successive iterations, a small choice for o) can lead to large
pertubations in (3.37) since, when a perturbation is made, pg?ew = o, Thus
it may be worth picking ol” :-0(|;B£’>|1); preliminary numerical experience
indicates that this is so (see Section 3.2.4).

Perhaps more seriously, if pgéw is small, but no perturbation is made
during iteration !, while p(H'l) < &, the perturbation at iteration [ 4 1 is
likely to be large. In order to prevent this, it may be worth restarting the
computation from the last iteration, say iteration k, for which pggw is large,
but replacing & by max(7, p{oklﬁl)). Then, a small perturbation will be made
at iteration k+1 — as the test at iteration !+ 1 has already determined that
B, is insufficiently positive definite, we may as well perturb it in a controlled
fashion.

We should also remark that it is possible to choose

oY) = (D 4 g B g0+ (3.39)

for some scalar £7). A simple, but tedious, calculation reveals that the
perturbation bound (3.25) is minimized for all such o8 when €0 = 0. It

is not known if there is a choice for v{*") which gives a better perturbation

bound than {3.28).

Finally, we mentioned earlier that although it would appear that we need
to store all the update vectors Vgt this is not the case. Recall, we
only need to access B, and the update vectors in order to form the matrix-
vector product B O From (3.21), we may write

z
BY =B, +) g0 gD g T (3.40)

=1

where #() = 0 on iterations for which pm > 0.
Thus, we need to be able to calculate

i
BOSD = B0 + 360606070 = Bad 0, (341

i=1
where

i
OS] Z (g 50 g (P, (3.42)

i=1
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But, we may combine (3.7), (3.11) , (3.13) and (3.42) to obtain the relation-
ship

P = T 00 0
_ (R )0 4 (T ()0 _
. 9(a+1)(gg+3}ngm))ggm) + E::l e(i)(_ggi)ngHU +ﬁ(1+1)g§f)ff’sg))g§z)

9(a+1}(g£1+1)’1‘sg+1))ggwl) + ﬁ(“‘l) Ei=1 g(i)(ggi)ng) )ggl‘)

_9(r+1)”gg+1)”ggg+i} +ﬂ{’+1)w§0.

(3.43)

Thus, rather than storing all the vectors \/f—)—(ﬁgy} , we merely need to re-
cur the vector w{" from iteration to iteration, using the relationship (3.43).
Alternatively, if we define us) by the relationship

wl) =~ g lzul?, (3.44)

(3.43) reveals that
w0 = o) 4 gD GlH+D) (3.45)

and we may thus calculate (3.41) using (3.44) and the recurrence (3.45). We
should caution the reader that significant numerical cancellation may occur
in the recurrences (3.43) and (3.45) and numerical experience suggests that
the relationships should only be used with caution.

3.2.3 Other methods

The only other similar method we are are aware of is that by Nash (1984).
Here, the equivalence between the conjugate gradient and Lanczos methods
is exploited in a method which calculates a LDLT factorization of the tridi-
agonal Lanczos matrix. Whenever this matrix is indefinite, it is modified in
a numerically stable way and Nash shows that any perturbation so induced
is bounded. The main drawback appears to be that the method needs all of
the Lanczos vectors to calculate the solution to (3.2) and it not clear that
economies may be made to prevent this.

3.2.4 Numerical experience

We now investigate the performance of the two distinct approaches described
in Sections 3.2.1 and 3.2.2.
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We constructed 51 problems of the form (3.2}, where n—m is 100, each B,
is of the form Q7 DQ, ) is a random Housholder matrix, — the entries in the
Housholder vector are uniformly distributed between —1 and 1 — and g, is
a vector with entries 100. The diagonal matrix D for the i-th problem has 2
negative eigenvalues; the eigenvalues themselves are randomly selected from
a uniform distribution across the interval [—100 min(1,/25),100min(1,2 —
i/25)]. We report results for tests on 11 of these 51 problems. Similar
behaviour was observed on the remaining 40 problems and, for brevity, we
omit the details from this paper. The salient features of the 11 considered
problems are given in Table 3.1.

Table 3.1: Characteristics of test problems

problem | -ve evals spectrum problem | -ve evals spectrum
0 0 [0.0007, 100] 30 60 [-160, -0.02] U [1, 80]
b 10 [—20, —0.4] U [0.004, 100] 35 70 [—100,-0.4 U [0.2,60]
10 20 [—40, —1] U [1,100] 40 80 [—100, —0.06} U [2, 40]
15 30 [-60, ~0.3] Lt [1, 100] 45 80 [—100,~1] U1, 20]
20 40 [-80,-0.02]U[1, 100] 50 100 [-100,-0.7]
25 50 [—100, —0.5] U [0.6, 100] ‘

In Table 3.2, we illustrate the behaviour of the methods outlined in Sec-
tion 3.2.1. We first report, in the column headed “Lan”, the number of
iterations {matrix-vector products) required by the Harwell Subroutine Li-
brary Lanczos code EA15 (see Parlett and Reid, 1981) to locate the leftmost
eigenvalue of B,. We note that the number of products required invariably
lies between 4(n-m) and n—m and indicates that the first method suggested
in Section 3.2.1 is Likely to be impractical.

In the other columns of Table 3.2, we report on the method suggested at
the end of Section 3.2.1 in which we perform a number of conjugate gradient
cycles. Each cycle ends when either the norm of the gradient (residual) is
smaller than 107%, in which case the method terminates, or when negative
curvature is encountered, at which point an estimate #,,;, of the leftmost
eigenvalue, Ty, of B, is obtained using the inequality (3.9) and the Harwell
Subroutine Library MC41 that uses the method of Hager (1984) to estimate
the one or infinity norm of a matrix, Then B, is replaced by B, ~(#min—0)I,
for some appropriate o > 0, and the next conjugate gradient cycle is started.
We report the exponent (logarithm to the base 10) of the norms of the per-
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o= 10° o=10" =10 o=
o | Toan | BT [ T 5o [ BT ol | me [ 5 | TBL [ ol [ me 5t [ BT | Tl [ me [ &
0 74 - 5 0|73 - 5 0 | 73 - 5 0|73 - 5 0|73
5 57 3 4] 1 14 2 {4 1 18 2 0 1 19 2 [ 1 19
10 56 3 0 1 13 §f. 2 0 1 16 2 0 1 i8 2 [ 1 18
15 73 3 0 1 16 2 1] 1 19 2 0 1 20 2 0 1 21
20 60 3 0 1 14 2 1] 1 17 2 0 1 18 2 1] 1 i8
25 75 3 0 1 14 2 0 1 18 2 0 1 19 2 0 1 20
30 93 3 1] 1 13 2 0 1 16 2 0 1 18 2 0 1 18
35 89 3 0 1 15 2 i] 1 18 2 0 1 19 2 0 1 1%
40 81 3 0 1 12 2 0 1 17 2 1 1 19 2 1 1 20
45 86 3 0 1 12 2 0 ] 16 2 1 1|18 2 1 1 |19
50 66 3 0 1§12 2 0 1|15 2 1 1|17 2 1 1 |17

Table 3.2: Methods which estimate the leftmost eigenvalue.

Key: pr = problem, Lan = number of matrix-vector products required by
EA15 to find T, || El] = exponent of norm of perturbation, ||p|| = exponent
of norm of solution estimate, ne = number of times my, was estimated, it
= number of matrix-vector products required by conjugate gradients.

turbation matrix F and the solution estimate p, — we recall that the main
purpose of perturbing B, is to guarantee a reasonable bound on p, — to-
gether with the number of times that 73, was estimated and the total num-
ber of matrix-vector products required, in the columus headed “|| E[}”, “[|p{|”,
“ne” and “it”, respectively. We give these statistics for a range of values of ¢
and note that results identical to'those reported for ¢ = 1 were also obtained
for smaller values of 0. We note that the solution is obtained, in all cases, in
an extremely modest number of matrix-vector products. Unfortunately, the
one-norm estimator typically overestimated the two-norm by a factor of two,
and consequently the perturbation used was larger than sirictly necessary.
This has the pleasant property that the resulting perturbed matrix B, is well
conditioned but tends to bias the solution p, towards the steepest descent
direction, —g,. We also note that, in all examples, a single estimate of the
leftmost eigenvalue proved adequate.

In Tables 3.3 and 3.4, we illustrate the behaviour of the methods outlined
in Section 3.2.2. Once again we consider a range of values of the smallest
allowable perturbed eigenvalue, o, and report the exponent of the norms
of the perturbation matrix E and the solution estimate p, together with
the number of rank-one modifications made to the initial B, and the total
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o) = 10° oAl = 102 o =10 o =1

pr | HEN [l [ nm [ 3t (| WAL [ fpll [ mm | 3¢ || UER [ |l | nom § it || REN | ol | nm | it
1] - 5 ] 73 - 5 4] 73 - 5 i] T3 - 5 [¢] 73
5 5 2 4 15 4 2 T 28 5 2 12 82 4 4 14 115
10 ] 1 6 14 6 1 9 23 (i 3 17 65 5 4 29 182
15 4 1 6 14 3 2 11 26 6 3 35 102 10 5 43 200
20 6 2 5 12 6 2 9 24 5 3 60 136 9 4 47 200
25 7 3 4 9 6 3 16 25 7 3 61 147 6 ‘4 62 | 200
30 3 0 7 7 2 1 22 22 8 3 68 134 10 4 69 200
35 3 0 7 7 2 1 20 20 5 3 65 124 8 4 68 200
40 3 0 7 7 2 1 19 19 5 2 75 137 6 4 63 200
45 3 { 6 6 2 1 17 179 - 6 2 68 113 8 4 66 | 200
50 3 i] 6 6 2 1 15 15 6 2 75 131 4] 4 T 200

Table 3.3: Methods which modify the matrix as the iteration proceeds,

Key: pr = problem, ||E|| = exponent of norm of perturbation, ||p|| = expo-

nent of norm of solution estimate, nm = number of rank-one modifications

made, it = number of matrix-vector products required.

o) = 10® a0 = 10? o =10 =1

pr || B [l [ 2m |t [ WEN [ Pl [ om | 36 | EEB] § Upll | nom | it §] HE | Hpll | nm | it
i - 5 0 73 - 5 0 73 - 5 4] 73 . - 5 0 T3
5 5 2 4 13 4 2 7 23 ! 2 12 54 4 3 19 200
10 3 1 6 12 6 1 9 20 4 3 26 58 3 4 34 | 200
15 4 1 6 12 4 2 11 22 4 3 48 68 19 i 36 200
20 5 2 5 10 5 2 9 i8 7 3 79 200 4 .8 50 | 200
25 i 3 4 ki 6 3 16 18 21 4 85 117 21 12 68 | 200
30 -3 0 T 7 2 1 22 22 5 3 78 200 T 57 200
35 3 0 [ T 2 1 20 20 18 5 95 200 21 8 59 94
40 3 0 7 7 2 1 19 19 2 2 100 { 102 3] 3b 200
45 3 0 6 6 2 1 17 17 2 2 100 | 101 20 11 63 200
50 3 0 6 6 2 1 15 15 2 2 85 85 3 8 63 200

Table 3.4: Methods which modify the matrix using the recurrence,

Key: pr = problem, ||E{| = exponent of norm of perturbation, ||p|| = expo-
nent of norm of solution estimate, nm = number of rank-one modifications
made, it = number of matrix-vector products required.
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number of matrix-vector products required, in the columns headed “[|E||”,
“Ip||”, “am” and “it”, respectively. We impose an upper bound of 2(n —m)
iterations per test and regard the method to have failed if this bound is
reached.

As we have already suggested in Section 3.2.2 the choice of ¢(¥) signif-
icantly influences the size of the perturbation made and, as predicted, a
choice 0@ = O(||BY|)) gives the smallest perturbations. Nonetheless, the
perturbations reported are quite large in some cases and invariably lead to
larger p, than those obtained from the methods of Section 3.2.1. Moreover,
the condition numbers for the final matrices B, obtained using the methods
which made rank-one changes were often significantly larger than those for
the full-rank change methods which results in a higher average number of
matrix-vector products for the rank-one methods.

In Table 3.4, we illustrate the behaviour of the methods outlined in Sec-
tion 3.2.2. in which the matrix-vector products are formed from the relation-
ship (3.41) and the recurrence {3.43). We observe extremely large perturba-
tions for ¢ = 10 and 6 = 1. On closer examination, we found that this
was due to the instability of the recurrence and would thus rule this version
out.

So far it is unclear whether it is desirable to allow larger perturbations in
a relatively small subspace, as constructed by the methods of Section 3.2.2,
or to settle for smaller, but full-rank, perturbations as suggested in Sec-
tion 3.2.1. In Table 3.5, we illustrate the consequences of embedding the
matrix modification techniques within an unconstrained optimization code.
At each iteration, a search direction is obtained by solving a subproblem
of the form (3.2) using a (non-preconditioned} conjugate gradient method
— of course, as the problem is unconstrained, m = 0 and Z = I. The
conjugate gradient iteration is terminated when the norm of the gradient of
the quadratic model is smaller than {|g,]| min(0.1, ||g.[|>®), with a safety-net
termination if more than n + 10 conjugate gradient steps have been taken.
The matrix B, is modified whenever it is found to be insufficiently positive
definite. We consider modifying the matrix by: :

¢ the method of Section 3.2.1 in which the leftmost eigenvalue is calcu-
lated by the Lanczos process and o = 107%;

¢ the method from the same section in which the leftmost eigenvalue is
estimated using an approximation to the one-norm with the same value
of o} and
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Lanczos estimate
name n its fe mv | nm time || EA15S nm | EA15 time
BROYDNTD 500 34 71 1041 25 7.34 2865 14.28
BROYDN7D | 1000 35 79 1657 26 21.62 5408 52.88
CHNROSNB 50 46 66 598 2 0,51 58 0.04
DIXMAANA 3060 6 14 12 1 0.16 4 0.02
DIXMAANE 3060 i 14 144 1 0.63 154 0.63
DIXMAANI 300 7 14 971 1 3.92 269 1.07
ERRINROS 50 i 69 | 127 842 6 0.73 247 0.16
GENROSE 1060 80 | 162 3479 64 3.44 3030 2.99
GENROSE 500 432 | 861 | 22178 | 414 | 121.18 21743 106.09
MANCINO 100 12 24 17 1 52.36 26 1.02
SPMSQRT 100 20 38 539 14 1.28 663 1.55
SPMSQRT 10600 59 1 123 7450 53 | 175.18 9664 216.90
£ estimate low rank
name n its fe mv | nm time §| its {e mv | nm | time
BROYDNTD 500 251 544 2374 | 242 27.92 40 76 463 29 4.78
BROYDN7?TD | 1000 452 985 4218 | 443 101.89 63 | 121 T 51 | 15.67
CHNROSNB 50 993 | 1996 | 11634 | 968 8.95 45 65 543 2 0.50
DIXMAANA 300 5 12 13 1 0.12 6 13 10 1 0.14
DIXMAANE 300 7 14 120 1 0.52 15 30 2863 5 1.18
DIXMAANI 300 T 14 770 1 3.11 7 15 912 1 3.68
ERRINROS 50 62 102 587 4 0.57 63 & 107 602 5 0.60
GENROSE 160 =>1001 - - - > }17.62 71 | 133 | 1318 41 1.48
GENROSE 500 >1001 - - - | > 107.57 274 | 548 | 5125 | 170 | 32.87
MANCINO 100 12 24 22 1 52.57 12 20 18 1| 49.60
SPMSQRT 100 12 24 165 5 .45 13 26 161 4 0.44
SPMSQRT 1000 398 864 | 42282 | 110 994.29 36 T2 636 25 1 17.64

Table 3.5: Embedding the methods within an unconstrained optimization

code,

Key: its = number of iterations performed, fu = numbers of function eval-
wations required, muv = number of matrix-vector products required (not in-
cluding EA15 if used), nm = number of iterations on which a modification
was necessary, time = cpu time (IBM RS/6000 320H seconds) required (not
including EA1S if used).
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¢ the method of Section 3.2.2 in which all the required rank-one terms
are stored and o!¥ = 1.0. -

We stress that the only difference between the three illustrated algo-
rithms is in the approximate solution of (2.9) and the consequent modifica-
tion (when necessary) of B,. We use the test problem set given by Bongartz
et al. (1993), selecting all unconstrained problem classes with 50 or more un-
knowns and reporting on those problems for which negative curvature was
encountered. For each problem and each method, we give the number of
iterations performed (its), the numbers of function evaluations and matrix-
vector products required (fe and mv), the number of iterations on which a
modification was necessary (nm) and the cpu time in seconds on an IBM
RS/6000 320H workstation required to solve the problem (time). For the
method in which the leftmost eigenvalue is calculated by the Lanczos pro-
cess, we report separately the total number of matrix-vector products and
the time required for by the calls to the Lanczos algorithm, EA15 (EA16 nm
and EA15 time, respectively).

Note that, although the full-rank modifications appear to be efficient in
solving the linear system (Tables 3.2 to 3.4), the number of matrix-vector
products (and hence, normally, the time) required by the nonlinear solver
greatly increases when such a technique is used. This is undoubtedly be-
cause of the bias towards steepest descent and indicates that, although the
perturbations from the low-rank method may be larger, the modifications for
such methods do not tend to upset the positive-definite subspaces of B and
retain the Newton-like convergence properties in these subspaces, Closer
scrutiny of the runs indicates that the low-rank method appears to move
more rapidly into regions where there are relatively few negative eigenvalues
than the other methods. It is also clear from Table 3.5 that if a full-rank
method is used, it is important to get good estimates of the leftmost eigen-
values - the method in which estimates are used is significantly less efficient
than the Lanczos-based method where exact values are calculated. We also
observe that, generally, the run-times of the Lanczos-based method, even
discounting the EA15 times is inferior to that of the low-rank method. Thus,
any of the other methods suggested in Section 3.2.1, which attempt to esti-
mate the smallest eigenvalue more efficiently than EA15, are unlikely to be
competative with the low-rank technique. Thus, we feel that the low-rank
modification methods hold considerable promise for the iterative solution of
(large-scale) nonlinear optimization problems.
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4 Hessian approximations and constrained optimiza-
tion

As far as we are aware, the only serious attempt to generalize the methods
of Section (3) to solve general, large-scale, linearly-constrained optimization
problems is that by Forsgren and Murray (1993). All other methods we are
aware of are either only really appropriate for small-scale calculations as they
distegard problem structure (see Fletcher, 1987, Section 11.1, or Gill et al.,
1981, Section 5.1, for example) or implicitly assume that n—m is sufficiently
small that coping with dense matrices of order n — m is practicable (see, for
instance, Murtagh and Saunders, 1978).

4.1 Matrix factorizations

Firstly, note that the coefficient matrix,

(k) AT
ey el (B
K& = ( A 0 ), (4.1)

of (2.2) is inevitably indefinite — it must have at least m positive and m
negative eigenvalues, If B®) is a second-order sufficient matrix, Gould {1985)
showed that K must have precisely m negative and n positive eigenvalues,
Thus any matrix factorization of (4.1) must be capable of handling indefinite
matrices. Moreover, in order to be efficient, one would normally try to exploit
the symmetry of K in the factorization. The natural generalization of the
Cholesky {or more precisely LDILT) factorization in the symmetric, indefinite
case is that first proposed by Bunch and Parlett (1971) and later improved
by Bunch and Kaufman {1977) and Fletcher (1976) in the dense case and
Duff et ¢l (1979) and Duff and Reid (1983) in the sparse case. Here a
symmetric matrix K is decomposed as

K =PLDL*P?, (4.2)

where P is a permutation matrix, L unit lower triangular and D block di-
agonal, with blocks of size at most two. Each diagonal block corresponds
to a pivoting operation. We shall refer to the blocks as 1 by 1 and 2 by 2
pivots. Notice that the inertia of K — the numbers of positive, negative and
zero eigenvalues of K — is trivially obtained by summing the inertia of the
pivots.
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As we are particularly concerned with the large-scale case in this paper,
it is the Duff-Reid variant that is of special interest. We note that the per-
mutation matrices are used extensively in the factorization of sparse matrices
to keep the fill-in at an acceptable level. Unfortunately, the Harwell Sub-
routine Library (1990) implementation, MA27, (Duff and Reid, 1982) of the
Duff-Reid variant sometimes proves inefficient when applied to matrices of
the form (4.1) as the analysis phase treats the whole diagonal of K as en-
tries. Thus a good predicted ordering supplied by the analyse phase is often
replaced, for stability reasons, by a less satisfactory ordering when the factor-
ization is performed, resulting in considerable extra work and fill-in. Ways of
avoiding these difficulties, and of taking further advantage of the zero block
in K, have been suggested by Duff et al. (1991), and form the basis for a
recent Harwell Subroutine Library code MA47 (Duff and Reid, 1993).

If B®*) is known a priori to be second-order sufficient, as for instance
would be the case if f(z) were convex, we wholeheartedly recommend the
use of MA27 or MA47 to solve (2.2). When there is a chance that B*) may
not be second-order sufficient, alternatives to solving (2.2) must be sought.

4,2 Torsgren and Murray’s sufficient pivoting conditions

We say that the first » rows of K*) are B®)-rows, and the remaining m
rows are A-rows. Forsgren and Murray (1993) show that, if the pivots are
restricted to be of certain types until all of the A-rows of K*) have been
eliminated, the remaining un-eliminated (Schur-complement) matrix, g
is sufficiently positive definite if and only if B®*) is second-order sufficient.

Until all A-rows of K*) have been exhausted, Forsgren and Murray only
allow the following types of pivots:

b, pivots: strictly positive 1 by 1 pivots occurring in B®)_rows of K®),
a_ pivots: strictly negative 1 by 1 pivots occurring in A-rows of K (&),

ba pivots: 2 by 2 pivots with a strictly negative determinant, one of
whose rows is an B®)-row and the other of whose rows is an A-row of
K®),

They further restrict the pivot so that its determinant is greater than a
small positive constant so as to limit any growth in §%). The motivation
behind this choice of pivot is simply that if ¢ A-rows have been eliminated,
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the factorized matrix has exactly i negative eigenvalues. Thus, when all A-
rows have been eliminated, the factorized matrix has precisely m negative
eigenvalues and hence any further negative eigenvalues in 5 (*) can only occur
because B'*) is not second-order sufficient.

Once §%) has been determined, Forsgren and Murray form a partial
Cholesky factorization of it, stopping if a pivot is insufficiently positive. If
the factorization runs to completion, B*} must be second-order sufficient.
The (quasi-)Newton equations (2.2) are subsequently solved using the fac-
torization. If an insufficiently positive pivot is encountered, a search arc is
obtained as a nonlinear combination of a search direction derived from the
partial factorization and a direction of negative curvature from the remaining
unfactorized part.

An obvious variation is, instead, to form a modified Cholesky factoriza-
tion of $®), If no modification is performed, the true Hessian H(z®)) must
be second-order sufficient. Otherwise, a suitable perturbation E®) will have
been produced. In either case, the Newton equations (2.2) are solved using
the complete factorization,

The main difficulty with Forsgren and Murray’s approach is that any
restriction on the pivot order can disqualify potentially advantageous sparsity
orderings. While it is always possible to choose a pivot according to the
Forsgren-Murray recipe, the available choices may all lead to considerable
fill-in. Nonetheless, we shall consider a number of variations of this scheme.

5 Methods using ba pivots

In this section, we consider a scheme which uses a restricted version of Fors-
gren and Murray’s (1993) pivoting rules. Specifically, we consider what hap-
pens if we choose the first m pivots to be ba pivots.

In what follows, we shall drop the superscript (k) unless it is absolutely
needed for clarity. '

5.1 Algebraic considerations

Let us first suppose that we have chosen a pivot sequence so that the first
m pivots are ba pivots, Algebraically, this is equivalent to constructing a
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permutation P for which

By A7 | B
PTKpP=1 A 0 | A |, (5.1)
BY, A7 | By

where By, and A; are both square matrices of order m, A, is non-singular
and P may be partitioned as

Pll 0 P13
P = P21 0 P23 . (5.2)
. 0 P32 0

{The actual pivot sequence would interlace the i-th and m + i-th rows of P
for i = 1,---,m). This permutation implies a corresponding partitioning

P y4l g 9
(A):P A and (0)=P 0 (5.3)
P2 g2

of the solution and right-hand side of {2.2). Thus, to solve (2.2), we obtain
auxiliary variables ¢; and A, from the equation

B, AT 1 1 '
G0

and subsequently solve the equations

-1
By AT B
(B” - (B Ag)( A0 ) ( A, )) P2 = ~go—(BL A7) ( > )

(5.5)

(2 4)(3)--(8)-(B)n oo

and therefore require decompositions of the matrix

T
(iﬁ: o ) (5.7)

and

and its Schur-complement,

wl
B AT B
5= Bzz - (sz Ag‘) ( Alll 01 ) ( Al; ) y (5-8)
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in PTKP. These decompositions would be performed implicitly if we fac-
torized K as (4.2) with the pivot sequence defined by P, but a number of
salient points may be made if we consider (5.7) and (5.8) explicitly.

5.2 An equivalence to reduced-variable methods

Since A, is non-singular, we have an explicit form for the inverse of (5.7),

s |
By AT _ [ 0 AT’ (5.9)
A, 0 - AIT —AITBllAl_l ! )
Gill et al. (1990, Theorem 7.2) observe that this enables us to rewrite (5.8)
as
_ T _{ PL P I
S =Z2"B7Z, where Z = ( PL PL EYRNE (5.10)

and the matrix Z satisfies AZ = 0. The equations (5.4)—(5.6) are then
equivalent to the reduced (quasi-}Newton equations (2.6), together with the

extra equation
AT X = —g; — Bupy — B (5.11)

for the Lagrange multipliers. Thus forcing ba pivots until we have exhausted
all the A-rows of K is equivalent to finding a representation of the null-space
of A and using the reduced-variable method described in Section 2.1. In
particular, the Schur-complement matrix, §, is a reduced Hessian matrix.

5.3 Boundedness of perturbations

Because of the relationship (5.10), the norm of § satisfies
ISIH< (1+ 147 A1 BY (5.12)

and thus element growth may be controlled by using an appropriate threshold-
pivoting tolerance when factorizing A,. Therefore, if one of the modified
Cholesky methods cited in Section 3.1 is subsequently employed to factorize
S, the perturbation matrix £ will remain bounded.
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5.4 Appropriate orderings

As the same permutation may be used at every iteration of the nonlinear
programming algorithm, it may be worth investing considerable effort in
producing a good ordering. As we are primarily concerned with large prob-
lems, it is essential to try to ensure that the chosen permutation P introduces
as little fill-in within the Schur complement and the factorization of 4, as
possible. Notice that each be pivot requires that we select a row and column
of A and that the selected column of A defines the row of B used.

Without loss of generality, we describe how the first ba pivot is deter-
mined. The same procedure may then be applied recursively to the Schur-
complement of this pivot in K to determine ba pivots 2, -+, m. Suppose that
we consider the permutation

B a|bl af

T a 0|d O
PPKP = b, a. | Bn A% ; (5.13)

a, 0 AR O

where & # 0 and 3 are scalars, b, and @, are n — 1-vectors, a, is an m — 1-
vector, and By and Ay are n — 1 by n— 1 and m — 1 by n — 1 matrices,
respectively, Then, a simple calculation reveals that the Schur-complement
of the ba pivot in PT K P, is

(93
Ap 0 a?
(5.14)
Notice that no fill-in occurs in the zero, bottom block of 5;. We now follow
Markowitz (1957) by picking the ba pivot to modify the least number of
coefficients in the remaining n + m — 2 order block of PTK P, as the Schur

complement is formed. Thus we aim to minimize the number of nonzeros,
n, in the matrix

a(i’i)(af o>+a("’3)(bz‘ az“)—ﬁ(%")mz‘ 0.  (5.15)

There are two cases to consider.

Following Duff et al. (1991), we call a ba pivot a tile pivot if § # 0 and
an ozo pivot when 3 = 0. We let n,{v) denote the number of nonzeros in
the vector v and n,(v, w) give the number of overlaps (the number of indices
i for which both v; and w; are nonzero) between the vectors v and w.

()@ ova( )t @-n( G e o).
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A simple computation reveals that, if we choose an oxo pivot, the number
of nonzeros in the matrix (5.15) is

n, = 2n,(a,)[n, (@) + n.(6.)] - n,(e,, b.)’, (5.16)
while a tile pivot yields
ny < 2n.(a,)[n,(a:) + n.(b.)] — no(ay, b)) + [n,(a,) — n.(a,,b)]* (5.17)

(the inequality in (5.17) accounts for the possibility of exact cancellation
between the terms in (5.15)). Thus, if A has rows a,,, ¢ = 1,---,m and
columns a,, j = 1,---,n and B has columns b, § =1, -, n, one possibility
is to pick the ba pivot for which

|as ;] > v max | (5.18)

for some pivot tolerance 0 < v <1 and for which

2(n.(a,;) — D(nla,, )+ n,(b,) — 1) — no(a,,,b,)* when b;; =0
op; = 2(ns(ay,) — D(ny(ac,) + ny(be;) — 2)—
(o, b, ) — 1)% + (n,(a,,) = no(ay, ke, ) — 2) when b;; #0
(5.19)
is smallest. However, as computing n,(a,,, b,,) may prove to be unacceptably
expensive, we follow Duff et al. (1991) and overestimate (5.16) and (5.17)
by assuming that, except in the pivot rows, there are no overlaps and thus
pick the pivot for which

ot = { 2(ns(ar,) — D(na{a.} + n.b,;) — 1) when b;; =0
" . 2(nz(ari) - 1)(nz(a’c,') + nz(bc,-) - 2) + (nz(ar‘i) - 1)2 when bJ',J' # 0
(5.20)

is smallest. It is relatively straightforward to compute and update the
nonzero counts required to use (5.20). Indeed, as n,(a,,) and n,(a.,)+n,(b,;)
are, respectively, the row and column counts for the matrix

B}
(%), oo

the schemes described by Duff ef al. (1986, Section 9.2) are appropriate.
Although this section has been concerned with direct methods of solution,

we observed in subsection 5.2 that the use of m ba pivots is equivalent to

calculating a change of basis so that a reduced variable method can be used.
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If, after performing such pivots, our aim is subsequently to use an iferative
method to (approximately) solve the resulting unconstrained problem (2.9),
a different strategy for selecting the ba pivots is appropriate. For then, our
aim should be to obtain as sparse a factorization of A, as possible — so
that the matrix-vector product ZTB*)Z can be formed as economically as
possible (see Section 2.2) — and the interaction between A and B® is mostly
irrelevant. A good ordering in this case may be obtained by minimizing the
Markowitz count

085 = (na{an) — D(mi(as,) ~ 1) (5.22)

over all indices i = 1,--+,m and j = 1,---,n which satisfy (5.18). Alter-
natively, one might select the column index 7 to minimize n,(a.,) and then
pick any ¢ which satisfies (5.18).

5.5 Dense rows

The main disadvantage of the schemes described in this section is that, by
restricting the pivot order, the fill-in within the Schur complement may prove
unacceptable. This will be the case if A contains dense rows since then the
Schur complement will almost certainly be completely dense.

A possible way of alleviating this difficulty is to allow all of the pivot types
suggested by Forsgren and Murray (1993) (see Section 4.2). A drawback
is that, by allowing b, and a_ pivots, we may introduce fill-ins into the
“zero” block of (4.1) and, thereafter the Markowitz costs (5.19) and (5.20) are
inappropriate. Appropriate Markowitz costs in this case have been suggested
by Duff et al. (1991). Preference should still be given to pivots involving
A-rows if at all possible.

However, even if we allow all types of pivots suggested by Forsgren and
Murray, there are still cases where the Schur complement becomes unac-
ceptably dense. In the next two sections, we consider methods which aim to
avoid such difficulties.

6 Delayed pivoting Methods

Suppose that 4 contains m; rows with a large number of nonzeros and that
the remaining m, = m—my rows are sparse. Then it is likely that if any of the
dense A-rows is included in an early pivot, the remaining Schur complement
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will substantially fill in. It therefore makes sense to avoid pivoting on these
rows antil the closing stages of the elimination when the Schur complement
may be treated as a dense matrix. However, the Forsgren-Murray pivoting
rules may conspire to make this impossible.

Let us suppose that we have eliminated the sparse m, rows of A and
n, rows of B®*) using Forsgren and Murray’s pivoting rules and that the
remaining Schur complement 5 is relatively sparse excepting the my A-rows.
Thus, we may no longer use ba or a_ pivots and are restricted to b, ones. Let
us further assume that there are no longer any acceptable b, pivots, possibly
because all the diagonals in B®*)-rows are negative or more likely because
the remaining b, pivot will cause unacceptable fill-in when eliminated. At
this stage, we are no longer able to take Forsgren-Murray pivots.

Now assume that a b_ pivot — a negative 1 by 1 pivot occurring in a B®)-
row of § — would be acceptable from the point of view of fill-in and stability.
We aim to investigate the consequences of using this pivot. Remember that
our goal is only to modify B®) if it fails to be second-order sufficient.

6.1 The condemned submatrix

We pick a nonsingular, square submatrix, the condemned submatrix C, of
S which contains all the A-rows and perhaps some of the B®*)-rows (but
not the b_ pivot row) of S and has precisely m, negative eigenvalues. The
condemned submatrix will be eliminated last of all and thus any B} -rows
included in € will not be generally available as pivots. The aim is that,
when only the rows which make up € remain to be eliminated, § will have
precisely m,; negative eigenvalues and hence K will have exactly m negative
eigenvalues. ‘

The Schur complement $ has at least m,; negative eigenvalues. A suitable
C may be obtained, for instance, by picking max(n, — m,,0) a_ followed
by max{m — n.,0) ba pivots. A factorization of the condemned submatrix
should be obtained, As C is invariably dense, a full matrix factorization is
appropriate and, because we may subsequently need to modify the factors,
we recommend the QR or LQ factorizations. This of course limits the scope
of the current proposal because of the size of C' which can be accommodated.
We note that the dimension of C cannot exceed 2m,.
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6.2 The consequences of pivoting

With this choice of C, § is a permutation of the matrix

; (6.1)

where (8 is the candidate b_ pivot. If we were now to pivot on C instead of 3,
we would have eliminated all m A-rows of K*) and, because of the choice of
(', the factorized matrix (the submatrix of K®) corresponding to eliminated
rows) would have exactly m negative eigenvalues. Thus B%) is second-order
sufficient if and only if the matrix

T T
(2 E)- (2w w

is sufficiently positive definite. In particular, if § — sT C~ls, is insufficiently
positive, B*) is not second-order sufficient and should be modified.

I

B—s1Cts <o, (6.3)
we modify B%*) by replacing # by at least s7C~'s; + 0. Conversely, if
B—sTC 15, >0 >0, (6.4)

it is safe to pivet on 3 as the reduction in the number of negative eigenvalues
available through using g is reflected in a reduction in the number of available
negative eigenvalues in the Schur complement C — 5187 /B. This follows
directly from the inertial identity

In(C — $,87 /8) = In(C) + In(f — s1C™'sy) — In(f), (6.5)

where In{M ) is the inertia of a given matrix M (see, e.g. Cottle, 1974). We
then pivot on the possibly modified value of # and replace C by C — 5,57 /8
— we update the matrix factorization to account for this (see, Gill et al.,
1974). We repeat this procedure until we have eliminated the remaining
Sy, Tows, at which point, the only non eliminated portion of K ) is the
(updated) matrix C.

Alternatively, once it has been determined that B*) is not second-order '
sufficient, we might modify all remaining B®) pivots. One possibility, in the
same vein as Schnabel and Eskow (1991}, is to insist that all diagonals are
larger than the sum of the absolute values of the (remaining) off diagonal
terms in B(*)-rows.
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6.3 Other pivot types

If the only possible pivots in B*)-rows are zero or small, we may again test
them one at a time to see if they might be modified and then used as pivots.
If the test reveals that the matrix is not second-order sufficient, we may
modify the tested pivot and pivot on it. But, if the test is inconclusive, we
must reject the potential pivot and pass to the next.

It may be better to consider 2 by 2 pivots,

ﬁll ﬁl?
( B B ) ’ (6.6)

arising from the B")-rows of §, especially when the only possible 1 by 1
pivots are small or zero. Then S is a permutation of the matrix

B Bz 3?1 321?2

21 By 312'"1 3:21; : (6.7)
$11 dm C | S

S12 S S | Sas

and B™®) is second-order sufficient only if the matrix

P11 Pz 511 -1
— C (s s 6.8
( ﬁza Bz 531 (311 21) 68)
is sufficiently positive definite. As before, if (6.8) is indefinite, the potential
pivot (6.6) should be modified before use. The inertial result

m(e-w w (% 5) (2))-

T
meyemn(( G2 0 )= () e ) - B2 3
(6.9)

once again indicates that the updated C after the pivot inherits the correct
number of negative eigenvalues.

7 Mixed direct-iterative methods

Another possibility is to combine the iterative methods of Section 3.2 with
a variation on the direct methods of Sections 5 and 6 so as to counteract the
latter’s difficulties with unacceptable fill-in.
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We suppose we have started a factorization of K using Forsgren and
Murray’s (1993) pivot scheme, have eliminated all the A-rows and n, B®).
rows, perhaps modifying pivots as we proceed, but that the remaining Schur
complement matrix is too large and dense to proceed further. This is-equiv-
alent to permuting the matrix K to produce a partition (5.1), where By,
and A, are now n, by n, and m by n, matrices, respectively. As before, a
similar permutation and partition of the solution and right-hand side vectors
enables us to decompose the solution process into successively solving the
three systems of equations (5.4)—(5.6). We have been careful to arrange that
the matrix (5.7) has a sparse factorization but unfortunately the matrix
(5.8) is too large and dense for us to factorize. However, the relationship
(5.8) indicates that matrix-vector products between S and a given vector
v are possible, each product requiring the solution of an intermediate lin-
ear system, whose coefficient matrix is (5.7}, sandwiched between a pair of
sparse-matrix-vector products. Thus we may contemplate solving {5.4)-(5.6)
by solving (5.4) and (5.6}, using the factorization of (5.7), and (5.5}, using
an appropriate iterative method.

It is convenient to view the solution of (5.5) as the solution of the related
problem

minimize 495 B.ps + pL0s, (7.1)
paER™T e

where B, = S and g, = ¢, + Bhhg, + A7X,. Then we may use any of
the iterative methods discussed in Section 3.2 to compute an appropriate,
approximate solution to (7.1), modifying B, il necessary.

8 Conclusions

We have examined several approaches to the solution of structured linear
systems of the form (2.2} which arise as subproblems in optimization cal-
culations. We have indicated a method for modifying the matrix during a
conjugate gradient iteration that maintains second-order sufliciency with a
bounded error. We have shown in practice that this technique chooses good
search directions. We have also explored direct factorization techniques and
have described a method for a stable factorization with modifications to sat-
isfy the second-order sufficiency condition while preserving sparsity. For a
general purpose robust solver, it is likely that a combination of these meth-
ods will be required. A software package incorporating many of these ideas
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is currently under development (see, Gould, 1993).
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