UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Multiresolution Based on
- Weighted Averages of the Hat Function

F. Arandiga
Rosa Donat

Ami Harten

September 1993
CAM Report 93-34

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90024-1555



MULTIRESOLUTION BASED ON
WEIGHTED AVERAGES OF THE HAT FUNCTION

F. ARANDIGA!*, ROSA DONAT!' AND AMI HARTEN?!
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functions with singularities, but need an error-control mechanism to ensure the stability of the compression
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1. Introduction. Consider the set of weighted averages of a periodic function f(z) of
period 1 corresponding to a uniform partition of [0, 1] of size hy, L.e.
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where the scaling function w(z) is a function of compact support that satisfies

/ w(z)dz = 1.
If the scaling function satisfies a dilation relation of the type

w(y) =2 aw(2y - 1),
I

— o0
then the sequence {{ f}“ j;’*}k—o of weighted averages on the sequence of nested dyadic grids
Xb = {ab}, ab=jh, 7=1,...,J; constitutes a discrete multi-resolution analysis (see
[11, 13]) in the sense that knowledge of the discrete values at a certain level of resolution

determines the corresponding values at all coarser levels, in fact the dilation relation for the
scaling function implies that

£ k1
i =2l
i

that is, f*, and therefore the local averages at all larger scales, can be evaluated from f*t!
without explicit knowledge of the function itself.

The multi-resolution analysis can also be viewed as a multi-scale decomposition of the
original signal. The key role here is played by the reconstruction procedure. To a given
discretization D f = { f}} one assoclates a reconstruction operator R, that approximates
the given function from its discrete values on the k-th level of resolution. For consistency,
the reconstruction operators must satisfy

k
o R
h’k )>— fJ
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DkRk = I i.e. < Rk(ﬂ.‘, fﬁ'),‘h_‘&)(
&

Defining Q(z; f) = Ri(2; %) = Raoilz; A1), we can write

Re(e; F7) = Role; ) + D Qulw, ).
k

Then, the multi-resolution process can also be viewed as the computation of succesively
coarser approximations to the original signal, together with the difference in information
between every two succesive levels,

At each level of resolution we can use the reconstruction procedure to predict f(z) and
its weighted averages at the next finer level of resolution

fkﬂ = Dk+17?«kfk-



The prediction errors
ko Fko_ fk
e =f-7f

measure our ability to predict D, f = f* from our knowledge of D;_, f = f*~1. Large predic-
tion errors at the k — th level indicate that new scales, not predictable from the knowledge
of the low resolution levels by our approximation method, are present at the & — th level.

It is easy to see that

ko : ok
D Rpe®* =0 ie., Za;egj_H =0
!

which means that only half of these values ave independent. Removing this redundancy, we
obtain the scale coefficients, d*(f)., There is a one-to-one correspondence between D, f and
its multi-resolution representation, i.e. the set (f°,d*(f),--,d*(f)). The scale coefficients
are directly related to the prediction errors, if these are small at a certain location on a
given scale it means that f is properly resolved on the particular scale at that location, thus
they can be set to zero, reducing the dimensionality of the discrete representation with no
significant alteration of the information contents.

This observation is the basis of the data compression algorithms associated to multi-
resolution settings.

Then, if a numerical problem can be embeded in a multi-resolution setting, we can
improve the efficiency of the numerical solution algorithm by applying data compression to
the numerical solution ([3, 14, 15]) as well as to the multi-resolution representation of the
solution operator ([5, 9, 2]). We can also reorganize the numerical solution algorithm as a
multiscale computation, where we solve the problem directly only in the coarsest level of
resolution and then advance from coarse to fine levels by prediction and correction ([5, 12]).

The choice of the scaling function is often dictated by the nature of the computational
problem. Recall that the discretization and reconstruction operators act on a space of func-
tions F:

D, + F—V,
Rk : VL—>.7:

Usually, the property D, R, = I determines the natural function space for the multi-resolution
sefting.

The simplest discretization procedure is by pointvalues, this corresponds to w = §,
Dirac’s é-function. The reconstruction procedure in this case is given by any interpolation
method (see [11, 13]) of the pointvalued data. The naturel function space F is, thus, that of
continuous functions.

When the weight function is the box function w = xjp,5, the discretization operators
compute the cell averages of the given function on each one of the grids X*, The reconstruc-
tion procedures have to be conservative, i.e., their cell averages at each level of resclution
coincide with those of f. Since the function always appears under the integral sign, the
natural function space is that of plecewise smooth functions with jump discontinuities,

The interpolatory and cell-average multi-resolution settings have been extensively stud-
ied in [11, 13]. We refer to those two papers for a complete description and to [13, 14, 15, 2,
1, 7]} for applications to various numerical problems. The point-value multi-resolution is most
appropriate when dealing with numerical problems that have continuous solutions. The cell
average formulation has been used succesfully in designing fast algorithms for the numerical
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approximation to solutions of conservation laws, which are piecewise smooth functions with
at most jump discontinuities.

The purpose of this paper is to study the multi-resolution setting corresponding to choos-
ing the hat function, w = X[_1,0) * X[0,1] a5 the scaling function. This multi-resclution setting
is most suitable for F of piecewise-smooth distributions, i.e, piecewise smooth functions
with a finite number of 4- singularitieg. The space of plecewige smooth digtributions is used
in vortex methods for the numerical solution of fluid dynamics problems. We expect that
the hat-averaged multi-resolution set-up will be useful for this type of problems,

The paper is organized as follows: Sections 2 and 3 review the basic facts about the
multi-resolution analysis and multi-resolution representation of a set of discrete data. A
more extensive description can be found in [11] and [13].

In section 4 we highlight the main points of the interpolatory and cell average multi-
resolution, which are described in more detail in [11] and {13}, for comparison and reference
purposes.

The core of the paper starts in section 5, where we describe the hat-weighted multi-
resolution and characterize the reconstruction procedures that are consistent with this multi-
resolution analysis. Reconstruction operators that are data-independent are also linear func-
tionals. They add a rich functional structure to the multi-resolution setting and the multi-
resolution representation, under certain circumstances, admits a pseudo-wavelets basis of
functions. This ground is covered in section 6, along with a detailed analysis of two data-
independent reconstruction procedures.

Section 7 is devoted to data compression techniques and their stability properties. Data-
dependent reconstruction operators are non linear functionals. They lead to efficient com-
pression techniques, however one must be careful to ensure the stability of the compression
algorithm. In this section we describe a modified encoding-decoding algorithm that leads to
a stable data compression algorithm.

In section 8, we report several numerical experiments that confirm our theoretical results.
We also compare the efficiency and accuracy of data compression algorithms based on multi-
resolution analysis of point-values, cell-averages and hat-averages.

2. Multiresolution analysis. We consider the interval [0,1] partitioned into J; =
2% . J, intervals of size hy = 1/J; by el =j.hy,j=1,...,Jp. Tosimplify our presentation
let us consider a periodic function f(z) with period 1, and assume that f is discretized on
this grid by local averages,

(1) f _<f1h w( ) jzls-"’JL

where <,> is the Euclidean inner product and w(z), the weight function, is a function of
compact support satisfying

(2) fw(m)d:c =1.

We construct the set of nested dyadic grids {X*}, & > 0 of size h; = 27%h, with
Ji = 2% . J, intervals by
(3) _{:LJ} *’L‘?:j'h'k& F=1

SR 5
Thus, a3; = &7



With each of the grids we associate a discretization {ff}%, of the function f(z)

m-———.

b
hk’)>E<f,w}“>, F=1,...,J

@ (Duf)y = JF =< fpmwl

where wf are scaled translates of w(z),
1 o —ak
AT Gatiiiel B Y
wJ hkw( hk )
Bach & represents a different level of resolution of the function f(z).
_ L
The set of values {{ fj,-"}j;l}k_ﬂ is called a multiresolution analysis of f(z), if for each

k the knowledge of {ff}7%, determines the values on the next level {77 “1};";1‘. This means
that the k-th level of resolution contains the information of all larger scales of variation.

It is proven in [11] that
(5) f=2 il
]
is equivalent to a dilation relation for the weight function w(2),

(6) w(y) =2 aw(2y - 1)

thus, if w(a) satisfies a dilation relation, the averages { ﬁ”} at the k-th level of resolution

- L
contain the information on all coarser grids and the set {{ f}"}f;i}k_o constitutes a multi-

resolution analysis of f(a).
Many of the functions w(a) that are used in numerical analysis automatically satisfy a
dilation equation. For example w(z)} = §(z), where § is the Dirac distribution, satisfies

{7) w(z) = 2w(2e) = ag = 1;
. 1 -1<2<0
(8) the box function w(z)= { 0 otherwise
satisfies
‘ 1
(9) w(z) =w(2e) + w2+ 1) = ag = auy =

14z ~-1<2<0

(10) the hat function w(z)=4 1-2 0<2<1
0 otherwise
satisfies
1 1 1
(11) w(z) = 5[{.0(23; -+ 2w(22)tw(2e+ )| ay=a_ = % =5




and the quadratic spline function

(= +22)2 -2< < -1
(12 w@) = oo T S e
0 otherwise
satisfies
w(z) = alw[w(Q:t: — 1)+ 3w(22) + 3w(2z + 1) + w(2z + 2)]
(13) = a’_2=a:1=-;—,a_1=ag=%.

All these functions w(z) form a hierarchy of functions w™(2) which is obtained by re-
peated convolution with a characteristic function

't 1 m
(14) W™ = W™ % X[=14am,8mis Sm = 5[1 - (""1) ],
with
(15) w® = 6(z)

Let of* denote the coefficients of the dilation equation (6) which is satisfied by w™, It is easy
to see that

(16) ot = S(of" + afiym).
The shift between xj-1,0; and xp 1) keeps the coeflicients of* as centered as possible around
! = 0, which is convenient for formulating boundary conditions.

Discretizing via a dilation relation and on uniform grids is by no means an essential
ingredient to the multi-resolution concept. The underlying idea of a multiresolution setting
is that knowledge of the function on a scale determines the values of the discretization on all
coarser scales.

Any linear operator, D, which is defined on a space of functions F and takes values in a
Eucledian vector space V of finite dimension J

D:F oV dimV =J

can be considered as a discretization operator on the space of functions F. We shall refer to
J as the resolution of the discretization.
A sequence of discretization operators {D; } with monotone increasing levels of resolution

{Jk}5 Le.
Dy F— VF dimV* = J,

Df=f eVt VfeF
defines a multiresolution setting (see [13]) if there exists a matrix Dy~ such that
(17) rank (Df™1) = Jyy
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and
(18) -t = Di

The above relations mean that f*~! can be evaluated from f* without explicit knowledge
of the function itself. Furthermore, it shows that if {D,} is a multiresolution setting, then
knowledge of the discretization of f(a) for some level of resolution implies knowledge for all
coarser levels.

In general, a given sequence of discretizations, {D;}, constitutes a multiresolution setting
if (see [13])

e The sequence is nested, ie.: Dy f=0=D;_f =0
o Bach Dy is reconstructible, i.e 3 Ry: DRy =1
where I is the identity operator in the corresponding finite dimensional space.
The decimation matrix, D¥™!, can then be defined as

(19) Dtnl =Dp Ry

Observe that since f*~! and f* depend only on the discretization operators, the same
is true for the matrix D¥~' in (18). It follows therefore that the matrix expression for D¥~?
in (19) is the same for any R; thus it does not depend at all on the reconstruction operator,
but only on its existence.

In the case where the discretization operators, D, are given by (4), D¥™! is a Toeplitz
matrix

(20 DE Y 5 = @;_y;, independent of k&
I f

but the framework is general enough to include discretizations corresponding to unstructured
grids in several space-dimensions, as well as non-local discretizations (see [13] for details and
examples).

3. Multiresolution representation. In the previous section we have made use of a
reconstruction operator R, that plays only an auxiliary role in characterizing a multiresolu-
tion setting. However, the multiresolution analysis allows for a decomposition of the original
signal into scales and, lLere, the reconstruction operator plays a significant role.

A reconstruction procedure for a given discretization D is an operator R such that (see

[13])
R:V—F

(21) DR =1

If the sequence {D,} constitutes a multiresolution setting, given f*~! = D,_, f and using
a reconstruction procedure at each level of resolution, we can get an approximation f* to
f*="Dif by

(22) F=P P Pi=DiRiy
We refer to PF_; as the prediction operator and to

(23) e = - e o pb Pl



as the prediction error.

The prediction errors measure our success in using the reconstruction procedure to pre-
dict f* from the knowledge of f*~1.

It is proven in [13] that

(24) DY = = DR
Thus,

(25) Ditek = 0.

Since

(26) rank(Df 1) = Jy_y,

relation (25) is a homogeneous system of J,_, linear equations for the J, components of e*.
We conclude that € can be expressed in terms of A, = J, — J;_, independent quantities,
which we denote by the column-vector d*.

In what follows, we shall consider only the dyadic case, thus J; = 2J;_;, and Ay = Ji_;.
When the discretization operators D), come from a weight function that satisfies a dilation
relation like (6), (25) becomes

(27) Y aehi =0
!

For 0 < m < 7, the weight functions in the hierarchy (14} satisfy dilation relations whose
coefficients have the following property

(28) loto] > D feul,

1#0

hence, since only half of the prediction errors are independent, it is possible to store the values
e} with odd indices and use the relation (27) in order to formulate a system of equations

(29) Z szregjwr - E 0521—16%4-2!-1

for the unknowns (ek, 5, ..., €% ). Condition (28) implies that the matrix of the system (29)
is strictly diagonally dominant and hence invertible.

Let us denote by G4~ and T¥_, the matrices that transfer {e}} into {d}} and vice versa;
ie.

(30) d* = Gite

(31) et = TE  d*

In the dilation relation case, we can use the same transfer matrix, Gi~*, for all weight
functions. Algorithmically, it can be expressed as

(32) di =efy LG < T

Be. (Gi Vi = dnimnje
For the first three members of the hierarchy (14), T¥_; can be expressed algorithmically
7



as follows,

ko = dF
(33) ofz) = §(2) { i i BT P
2j =
B gk
(34) w(@) = box function { ei’"l _ dfik 1£7<dh
€2j = T
ek. — dk
35 w{x) = hat function -1 A 1<5< T
(35) () { 6’;3;.- — "%(d}-i'd}.}.l) e g

In the general framework, the multiresolution analysis need not have a direct relation to
any dilation equation. In this case, one can also construct the transformations between e*
and d* as a generalization of the ones which are used for orthogonal wavelets.

It is shown in [13] that, in this case

(36) = Ghlet
with G,’j"‘l a Ji_1 x Ji matrix whose rank is J,_; and such that
(37) DEYGE_ ) = 0.

The inverse transformation is as follows,

(38) e =Tl d" = 857 (a Ty
where
(39) S = (DI D 4 (617 GY

we refer to [13] for a precise definition of GE™1,
From (23) we have

(40) =P yef =Pf 4+ T d

Observe that the number of elements on { ﬁ“'}fil is equal to the number of elements on
fE-t “-Ti'l lus the number of elements of {d* ‘-If_;‘. We can interpret relation (40) as sayin
i j=1 P 7 Jim1 € g

that d* represents non redundant information which is present on f* and is not predictable

from f*~! by the reconstruction procedure R;. Motivated by this interpretation, the com-

Y Y
ponents of d* are referred to.as the k-th scale coefficients of the multiresolution sequence.
Given f¥ € V¥, we define the column vector

dt
(41) p(FFy=1 i evh
d'
7o
It is shown in [13] that if the sequence {(D,,R;)} satisfies (21) and {D,} defines a
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multiresolution setting, there is a one-to-one transformation between f% and w{ = ), M, such
that

(42) p(FEy=MF5 P = M7 u(f).
The algorithms to carry out this transformation and its inverse are as follows:
w(fE) = M f* (Encoding)

Do k=1IL1
(43) Fiot = DTt )
& = G - PP

& = M~'u(f*) (Decoding)

“ [t = PP T

{ Do k=11
4. Interpolatory and Cell-average Multiresolution . All members of the hierarchy
(14) lead to discrete multi-resolution analysis with discretizations on the sequence of nested
dyadic grids {X*}}2

(45) X¥ = {2k}, af =4y, by =27, Jy = hi =24 J,
&
The multi-resolution settings derived from the first two members of the hierarchy, Dirac’s
delta distribution and the box function, have been described and analyzed in [11, 13].
Dirac’s delta function gives rise to interpolatory multi-resolution settings. These are
appropriate for mulfiscale representations of continuous functions. We highlight its main
properties here and refer the reader to [11, 13] for a more complete development.

(46) D, 1 C[0,1] — V*
(47) = (D)= flzf), 0<5<Jy
(48) Dﬁwl - 52:7,;' G]i:"l - 521'—1,;‘

The reconstruction procedure for this discretization is any operator R, such that

(49) Ry 1 V¥ — ([0, 1]
(50) 'Dkkak = fk

ie

(51) (Raf*) i) = Ji = F(e3);

that is, Ry is any continuous interpolation of the data f* at the grid points of X*.



If we denote

(R F* )W) = L (2 %)
the encoding and decoding algorithms are

ncoding})

="
—
“"lh
L —
It
=}
=
Sy
I
o~
el

Do k=1L,1
(52) ffﬂl_—:fé:fa _ ]-Sjs'fk—l
df = f§_1 = To(abi s %), 1<7< dy

L= M~ f*) (Decoding)

Do k=1,L
(53) -f_%a = fjknl’ _ 158
o= hoael, g Y +df, 1<j§<Jin

The second member of the hierarchy, the box function, leads to the so-called cell-average
multi-resolution. Now we have

(54) Dy : LM0,1] — V*

- 1 :
(55) B=uf)y =4 [, f@)e, 155 <0

where L[0, 1] is the space of absolutely integrable functions in [0, 1]. This analysis turns out
to be appropriate for data compression of discontinuous, piecewise smooth signals.
In this case

- 1
(56) (DF 1)y = "2*(521-_1,,«- + 83i,5)
and

- 1
(57) (GE Dy = 58215 — b2i5)

the reconstruction operator R, for this discretization is any operator
Ry : Vi, — LY0,1]

that satisfies
= S _
(58) (DR f¥); = Ef (Ruf*)()de = f}

The simplest way to construct R; is via its ‘primitive function’. Let us define the
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sequence {F}'} on the k-th grid as

F¥ = hkiﬁ' = F(z}) = jm fla)da.

Thus, F(z) is the primitive of f(2) and the sequence {FF} corresponds to a discretiza-

tion by point-values of F(2) on the k-th grid. Let us denote by I (z, F*) an interpolatory -
reconstruction of F(z), and define

(Raf*)(e) = (o 7).

Clearly (Rif*)(z) € L}([0,1]), and it is easy to see that DRy, = I.
The multi-resolution transform and its inverse are now

w(F5) = M f* (Encoding)

Do k=1L,1
e - <k ,
(59) A, ﬂlﬁ(fé’"iq + f5), 1<i <y
df = H(szafq =Ly (ehi s PP7Y), 1K<

FE = M~ u(f*) (Decoding)

Do k=1,L
= 1 ' - - : .
(60) fhi1 = H(Ik—l(mgi—l; FPFY—FEh+df, 1<i< gy
fE=offt - fk_, 1<i< Jyy

The next member in the hierarchy is the hat function. In the next section, we analyze
in detail the properties of the multi-regolution setting it defines, and characterize the recon-
struction operators as well as the natural function space for the discrete approximations.

5. Hat-weighted Multiresolution . We define the discretization operators as follows:

(61) Dy F—V,

(Duf); = I} =< fo0f >
where

p_o L &
wy = hkw(hk i)

and w(z) is the hat function (10). Hence

x — ek

6 Fen [ e i s L [ - e
(62) fj—h_kfwf_l 2)(1+ W ra,-|—h—k/w§ x h x,

Notice that there is an essential difference between this framework and those described
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in the previous section already at the level of the discretizations. In order to compute f¥ we
need to know the function in [o%,,2% 1] =[1,1+ k). In this paper, we assume that f(z) is
a periodic function. In the non periodic case, one has to extrapolate f(a) outside its domain
of definition .

From the dilation relation (11) or (in the spirit of [13]) directly from (62), we obtain

—_— 1, 1o 1
el = Zfé”jq + §f§j + ;sz£}+1-

thus the decimation matrix Df~! is given by

- 1 1 1
(63) (D 1):’,;‘ = 3525-1,3' + §5zi,j - 1525+1,j

Since we are assuming periodicity, the matrix in (63) has to be interpreted in a cyclic manner,
Note that rank(DE™1) = Jy_;.
The reconstruction procedures K are operators

(64) Ri:Vy — F
which satisfy
(65) (DeRef* Yy = Ff, 1<5 <,

Let us describe a procedure to compute the reconstruction operators for the hat-averaged
multi-resolution analysis which is a generalization of the 'reconstruction via primitive func-
tion’ developed in the context of cell averages. We refer to this procedure as reconstruction
via “second primitive”.

We start by proving the following lemma:

LemMma 5.1. Let f(z) be a periodic integrable function and let H(z) be a continuous,
piecewise smooth function such that H"(2) = f(z) almost everywere in [a§_,,z}] for each

j=1,+-J, +1. Then

| , . 1, . . . .
(66)  Fr=7p [ _(a}) - B, ()] + g (e — 20 + HE ), 1<j<J,
Proof.
o _}“f“’?—l ! %m'bf i i/“’fﬂ _ m—mj-“ i
i = e Juy Ff=)1+ " Yda + 7 s Fl=z)(1 7 dw
- ifm?"fr" N1+ 2T }—fm§+lﬂ"(')1—m“mf do
= . (a)(1 + 7 Y + e Jus a)( e Ydz

and integrate by parts. [
Consider the function

@ Y
(67) H(z) =/ﬂ /u flz)dzdy, oy = H(z§), 1<i<T+1.




This is a C? function that satisfies the lemma, thus
S : . .
(68) ff= "J{E(H}'H —2H; + Hf,), 1<j< /.
The function 67 is one of the “second primitives” of f(x). A more convenient one is

(69} H(z) = /: /ﬂy f(z)dzdy — ax

(70) o= jﬂ 1 fﬂ Y f(#)ddy

For this particular “second primitive” H§ = H(0) = H§ = H(1) = 0, and it is possible to
establish a one-to-one correspondence between the sets

(71) {ffYe,  and  {Hf}ED
In fact, from (68) it is easy to verify the following relations

(72) iHha =G+ OE =0 (F+2f+--+iff)  1i< e
and, since Hf = H§ =0, it is evident that the knowledge of the set { f}’ f;]l is equivalent
to the knowledge of the set {H} }ff‘.;{l. f% is related to values of H(z) outside of the interval
[0,1].

The observations above immediately suggest the following reconstruction technique: In-
. terpolate the point-values of the “second primitive” by any interpolation procedure I}, (z; HF)

and define
_ 42
(73) (kak)(m) = d—ngk(m; I:[k)

In general, I;(2; H*) is a continuous, piecewise smooth function. Its first derivative will
also be a piecewise smooth function possibly with discontinuities at the grid points of the
k-th level, thus its second derivative must be considered in the sense of distributions, An
appropriate definition for F is, thus, the space of distributions that can be represented
as piecewise smooth functions with delta function sigularities at certain locations of their
domain of definition.

To prove {65) we shall use the following lemma, whose proof is a straight application of
the definition of distributional derivative and shall be omitted.

LEMMA 5.2. Let I(x) be a piecewise smooth function of the form

" o-{2 i

Then, tts derivative in the distribution sense is

(75) £ 1(a) = I(e) + (1a(0) - L:(0))6(x)

13



where

d

i L) ifz<0
(76) Hay=4 % § '
E";IR(:’:) if & > 0.

Therefore, if the interpolatory function is defined as

(77) Li(z; %) = I ; () forz € [:Li'__l,:l.ﬂ 17 +1
and

7 & %
(78) (Raf")(2) = ﬁfk(i‘;ﬂ )

in the distribution sense, we have that

(79) (R F*)@) = T(@)+ 3o shoa—of) 2 €[0,1]

j=1

where fk is defined as

- d? .
(80) Ii(e)= o5hy(@)  forze 2F 2}, 1<i<T+1
and
d d
(s1) = [phan@ - Zhy@)]

3

Let us now prove {65);
(DR f*); = < Ruftswf >=<I(2)+ 3 8(x —af)sf,wf >
I=1

I
= <I(z),wf >+ sf <b(x—af),wf >
I=1

1 o & L, T %f

1 Y d2 J 1
N /m? Tz =5 I g1 (21~ Ydz + 8§~ >

= '}“(%Ik DCHES ? {Ik,j(mf) - Ik,j(mfua)] -
(da,Ik'H'l)(%) + hv {IR.J+1(3'J+1) Ik.s-{—l(a'.r)] +'9;rhl

= 'EE[I{.?"+1 20] + Hf_\]= ff
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The predicted values f* are computed as follows:

fzk}-q = (Dknk—lfk_l)j =< Ry JFh whjog >
Jr-a
= <L pwh1>+ Y, <8@—af)wh >
=1
1 wgJ""l d2 :Lz 1
= = [ fteu@+ S e ¢
k ""'zj—'a
]. /SJ;J d2 ’L% 1
— —1; x 1———J~ dz
Ay, E da? * 132 hy )

= Elg (Ik-1,j(f”£j-2; HY—on (@b H ) + Loq 5(255; Hk_l))
Analogously,
= (DyRuea /Y =< Rucd P70 008 >

= }%g (Ikul,j("”%j—ﬁ HA =YY = 2Ly (s HY ) o Limy (287405 Hk"l))
Thus,
(82) fo= < Ry ffwf >

7 (L, W B - 28, (af HA ) o Iy (el HY 1))
Since f(z) is.periodic, and H(0) = H(1) = 0 we would like to extend (69) periodically

outside the unit interval. This would also avoid the ’awkward’ choice of Hj, 4; as a base
point for the interpolation. However, lemmia 5.1 would then imply that

o 1 | )
(83) s = " [H'(1) — H'(0)] + E(H},‘H —2HS + HEY )

1 1
- /0 F@)da o+ g (B + )

since this periodic extension would not, in general, be a C* function.
Since

9:’6

[ -2 = [ e - S e

when f(z) is periodic, it is easy to prove that
i 1

(84) Y FE = fo f(z)dz
j=1

Equations (68) and (83) 1mply that, Hy 41 = H(1+ k) = Hy + by f) f(z)de, ie. the sets
{fF}H jk, and {H] ’”}J"“l U fa f(=)dz} are also equivalent in the sense that knowledge of one
implies knowledge of the other and viceversa. It is then advantageous to work with functions
which have zero mean. Instead of the discrete set {fF} we consider the set {ff — h, 3 fF}.
These represent the hat-averages of a function with zero average.

15



Without loss of generality, we can assume that f(2)is a function such that fol flz)de =0
and consider its second primitive (69) extended periodically outside the interval [0, 1]. Then

Fl d k
(Ruf*)(2) = oz s HY)

o
—

is given by
I o (2) = Lo ()
Notice that, since
Ik—l(mgi; Hk“l) = Ik-x(mfmli Hk"l) = H}"' = Hy,
we have that

(85) eﬁj—i(f) = fzk}'—i - fzj—1
1 . g 3
= “f;g[ﬂﬁ”j - 2HY i+ HEY )~
1
hj,

2 . - . - 2 .
“F%(Héjﬂ —- I ek H ) = “h_%egj——l(H)

(ij_l(mgj—z; HEY =20 Yad, s H* D) + 177 (2d5 Hk—l))

(86)

thus, with the periodic choice, €5 ;(f) = €(f), i.e. the prediction errors for f are also
pericdic.

As we Liave pointed out in section 3, the relation D¥~'e* = 0 means that the prediction
errors at the k-th level can be expressed in terms of Ji_, independent quantities, the k-th
scale coefficients d*.

Since the discretization operators in (62} come from taking the hat function as the
weight function, we can define the transfer matrix G§~* as in (32). We refer to this choice
as non-orthogonal,

On the other hand, we can also define the transfer matrices in a wavelet-like manner, as
in (37) and (38). We refer to this choice as orthogonal.

It is interesting to notice that both choices lead to the same algorithms and the same
scale coefficients for the interpolatory and cell-average multiresolution transforms, but this
is not so for the hat-average case.

Let us describe the orthogonal and non-orthogonal choices for the hat-averaged multi-
resolution.

5.1. Non-Orthogonal case.

We rewrite relation Df~'e* = 0 as

1 i
k % k .
3 = T 51 T 56241 1<i< Sy,

(87) € 5

hence we have enough information with the odd indices of €*, i.e. with d* 1= G{~eF, where
GY~1is the Jy_y x Jy-matrix

(88) Gy i = Baicrye
We recover ef with the algorithm:

16



(89) i = 1<j<J
e’ﬁ'j = —%(d;-”' + d;,cH) L7 S Jdpar

That is,

. S s if ¢ is odd
oy fe (27 -1}
(Tx'-1)is { —$(8iay + bimagjery) i s even

5.2. Orthogonal case.
This case corresponds to the choice of Gi~! that mimics the wavelet framework, which
is accomplished by taking (see [13})

(GE i = (1Y agja

which in this case is just

(90) (Gi iy = ""”}L'ézi—z.j + %524-1,5 - %52;',;,'-
It is easy to check tha$
rank(GE~1) = Jy
and
DHGT) =0,
Sy in (39) is the Jj, x J; banded matrix:
(91) (Se)ig = 1—16(6"“2’5 + 668 + Biyn ).

To recover e, from d* = G¥~'e”, we have to solve the system of linear equations:
(92) Spe* = (G e

which decouples into two separate systems for the odd and even components of €, i.e.

1 . 3, 1, 1 . .
(93) 1—66'}2"(;-;1)-1 + §325—1 + “fgeé(i~1)—1 = 5655", 1<i< s
1. 3 . I 5 1, 1., .
(94) ‘igeg(i+1) + "8“8!2":' + 'i_"é'eé(i-—l) = —“de - de'"-;-z, 1<iS

Let e°% and e®¥*® denote the column-vectors of the J,_; odd and even components of e*,
respectively, and let €°9¢ and é°?*® denote the RHS of (93) and (94), respectively. We rewrite
(93) and (94) in matrix form

~

(95) Seodd - éodd’ -Beven even

I
(v 1)

where § is given by (91). )
These systems can be solved in O(J,_;) aperations using the LU decomposition of 5.
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An explicit derivation is given in Appendix A.
Unless otherwise stated, in the remainder of the paper we compute the scale coefficients
with the non-orthogonal option. The multiresolution transform and its inverse, are:

w(f¥) = M f* (Encoding)

Do k=1L,1
= 3 (s + 275 + Pl 1242 i
df - fzﬁ'—1 - fzﬁq

= m%(ﬂ'&q = I Naki o HE), 1<é< iy

(96)

fE = M~u(f*) (Decoding)

Do k=1L
Boi=fh +d
= %(}If“l —OFr —ortVak s HRY),  1<i< Jy
S =2 = 3(Fhei + Fhas 1<i< S

Up to this point, we have not specified the kind of interpolatory procedure to be used.
The choice of a particular type of procedure depends on the particular application at hand.

Data independent interpolatory techniques lead to reconstruction operators that behave
as linear functionals. In this case, the multi-resolution transform has an additional functional
structure. On the other hand, data dependent interpolatory techniques lead to reconstruction
operators which are non linear. These turn oui to be appropriate for maximal compression
of 'singular’ signals.

We proceed now to study various examples of data-dependent and data-independent
interpolatory procedures, the reconstruction operators that are derived from them, and the
special properties of the multi-resolution representations obtained in each case.

(97)

6. Linear reconstruction operators and multi-resolution bases. When the re-
construction operators, R, are linear functionals, the prediction operators P,f +1 are matrices
and the multi-resolution transform is a linear operator which describes a change of basis
vectors,

Following [13], let us denote

L-1
AL = [ B =Pf, ... PR, AR =1,

k=m
it is easy to prove that
. L -
(98) fl= 30 ARTo  d™ + A .
m=1
With the following definitions:
(67); =64, 1<igT
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Thw
k=1

ot = T8l 1<i< ey (i e V)

gt = AkSIm e V2 Y = ARy = Z(n:"), sl e yvE

we can rewrite (98) as

3 I
(99) EDID

Thus,

d:n ﬂlL"‘i"qu DL

BM = ({{J’zm‘L ir—“lm }m 17{‘:01 }

is a basis in V¥ such that the coordinates of any f¥ € V% in this basis are the components of
the multi-resolution representation u{ f¥). These coordinates can be computed by algorithm
(43).

On the functional side, let us denote

o = Rl U = Ry

thus, @5, ¥/~ € F. Using the linearity of the discretization operator, it follows immedi-
ately from (99) that for any f € F

(100) (ReDif)e)= 30 3 d(WHa) + S (Pulirt™ (@)

The multiresolution representation (100) may also correspond to a multi-scale decompo-
sition. In order for this to happen, a sufficient condition is that

(101) 3 Jim Ot =g e F

If (101) holds, then we have the following

(102) (Raf*)() = (Ro*)(w) + ZZ CHEMTHE))
where

(103) Ry [ () = iﬁ’*@f

and )

(104) ¢ = lim $PF

L—4o00

The sequence {(’Dk,ﬁk)} is referred to as the ”hierarchical” form of {(D}, Ry )}
We refer to [13] for more details, but we do point out that the existence of the lmit
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function ¢f in (101) implies on one hand
Dkﬁk =T
and also that

~

(R Dp )R-y = Hy_y

Jyp-1

Ru(Dif) = Rier(Diorf) = D, dF ()i
i=1

thus the multi-scale decomposition of f(z)
) _ R _ L
Refz, ) = Ro(z, ) + 3 Qula, f)
k=1

where

Qu(er 1) = R, %) = R, 70
Ji -

admits a representation in terms of the functions {¥f};*7*. Hence the set {{yF}/*7'}_, is
referred to as the basis of ’ genela,liaed wavelets” corresponding to {(Dy, R;)}
I the sequence {(D, 'RL)} o is completein F, e, if forall f &€ F

Jim [[RsDsf — =0
then

By = ({{iﬁf}t{l 15, {@he,
is a basis in F. The expression of any f € F in this basis is
oo Jm-1
(105) F=20 2, dr(Hlr + Z(’D”f) 5.

m=1 §=1

, the coordinates are the coeflicients of the multi-resolution representation of f in the
original sequence (see [13]).
Notice that R, is, in general, different from R;,; however, if

(RiDy )R- = Ryr
(this property characterizes "hierachical” reconstructions) then, it is shown in [11, 13] that
Ry =Ry
The limiting process is not needed in this case because
m,L

W= RL@E - Rm&f"‘ - (PI“, VL 2 m.

and the multi-resolution representation corresponds to the multi-scale decomposition (102)
with RL RL



Let us concentrate now on hat-weighted multi-resolution representations. In the previous
section, we defined

b /2 :
(106) R ) = o (w3 HY)

-

where I,(z; H*) is an interpolatory reconstruction of the set H;" = fH ;L;') i<y < d
Because the reconstruction procedure is based on an interpolation of the point-values of the
“second primitive”, many properties of the interpolatory multi-resolution setting carry over
to this framework.

LEMMA 6.1. If the interpolatory reconstructions I, are hierarchical, so are the corre-
sponding reconstructions obtained by (106).

Proof. The hierarchical property of the interpolatory reconstructions means that if

(107) of = y(ef; %Y 1<ji<d,
then
(108) Iy HY) = Iy (2, H*Y),

To prove that
5 7 & - k
Ry(@i f*) = s L HY)
is also hierarchical, ohserve that
s e 1. y - > o ke 2 . -
(DuRues 1) = 4 {Tcr(ahors H¥Y) = 20y (s B* ) o+ Do (el HPY)}

Thus, the set I}j’“ in (107) are the values of the “second primitive” of the function (‘f?,k_i f_"'“i)(m)
on the k — th grid. Hence

A N —_ d2 . . d2 R 5 X o
RiDyRiei (o) = gzl ) = gl (@ YY) = Rt 74 (0)

which completes the proof, O

The relation between the hat-averaged multi-resolution representations of a function
and the associated interpolatory multi-resolution of its “second primitive” can be further
exploited. We can obtain multi-scale decompositions of the first from the multi-scale decom-
positions of the latter.

Assume that

I

(109) I HY) = 3 HP@} () @f(e) = Lu(; 6])
j=l

is hierarchical, Then (see [13])

Ji
(110) B(e; HY = L (0 B = 3 B (H)@hyoa(2)

j=1



Differentiating (110) and taking into account that

di(f) = —d‘(H), 1< < i

we obtain
(111) (mﬁmﬂ(mLﬂUm““j%ﬁmﬂdﬁ#ﬂﬂ
Hence
(112 (o) - (') = S HE),
(113) (R /") (@) = (Rof)a) + éi df (¥} ().
with

¥i(e)= - h’“ < @hioa(@)y 1257 < Jhon

2 da?

Moreover, differentiating (109) we get
Rt (z) = Z 2%( 2);

= %;22@%(1)""2 (Hi + Z(IIH*I )) da =5 (:L)

I=1

Jip—1
= H{”ZJd 2%(“')+Efa (Zlhz 7P (2 )
imj+
Jp—=1 N
= > Fel@)
i=1
where
@) = 0 b ab(a),
I=i+1
Note that

Zjdmggoj(q’) - da 2Ik(1'12.76h) =40

if I, is at leat first order accurate.



6.1. Piecewise polynomial interpolation. Let § denote the stencil
S=8(r,8)={-s,—s+1:+,~s+71} r<e<0, r<1

and let {L,,(y)}mes denote the Lagrange interpolation polynomials for this stencil

—s4r 3
Lm(y) = H (y J) ’ Lm(i) - §i,m, i€ 8.

) - m —
j=—s,j#m J

It is clear that

m=-—s

. . —s4r ' z — :L‘R-:
q}"(a:; HY r,8) = z H},*,mLm (—hk——f—)

interpolates H(z) at the points {a§_,,---,2}_,;,}. Thus,
Lz, H*) = ¢f (z; H*, 7, 3) zef,e2f], 1<ji<J+1

is a piecewise polynomial function that interpolates H(x) at the points {:E}L}j;'{'l Using the
reconstruction via “second primitive” technique, described in section 5, the reconstruction

operator is defined as

Ji
(R f*)(2) = L(z; H*) + 3 8(z — af)s}
j=0
where

- ! d? . ' '
(2 H‘L) = ;E-é-z-qj-‘(m;ﬂ““,r,s) T & [a:;-'_l,s:;-“]

and

s¥ = %q}‘“(m; H* r,8) — %qf(m, H* 7, s)]mm?
The prediction operators are given by (82). It should be noted that when I is obtained
by piecewise polynomial interpolation, the prediction operators can always be expressed in
terms of the f* without explicitly using (and computing) the values H*.
Here, we shall consider only centered interpolation procedures. They correspond to
situations where the interpolatory stencil is symmetric around the given interval.
Hr=2s+2, q;"('l,, H* 7, s)is the unique polynomial of degree 25 4+ 1 that interpolates
H(z) at the 2s + 2 grid points {z¥_,.,, -+, 2], }. Notice that, formally,

L(z, H*) = H{z) + O(h)***?
thus, differentiating twice (in regions of smoothness)
Ry(ws; F¥) = f(x) + O(h)™.

Hence, the reconstruction thus obtained is, formally, of order 2s. In what follows, we denote
by p the order of (formal) accuracy of Ry.
Following steps similar to those in [12, 13] we get the following encoding and decoding
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algorithms for reconstructions of order p, derived from centered interpolation procedures of
order p + 2.

p(f*) = M f* (Encoding)
[ Do k=1L,1
(114) fE7t = 3(FBie + 275 + i), 1<e< S
df = flios = Yia Blfnta + £, 1<9< i

FE = M~ *u(fF) (Decoding)

Do k=1,L
(115) Fioa=d T B+ TS, 12650,
=2 = §(Fies + Fhia)y 1<i< Jpy
where
p=2 = f= ‘%
(116) p=t = B=Bbi=—

p=606 = O=132,0= 5507 53

We are considering only the periodic case, thus f¥ ,; = fF Vk,i. In the non periodic
case one possibility is to lower the order of the interpolation procedure near the bound-
aries; another possibility is use extrapolation in order to get the extra values needed for the
interpolatory reconstruction.

Let us consider now the limiting process L — oo in (101)
(@) = Re(ei @) = RpAnsl
where we start by setting
o = b7

at the points of the m-th grid and then repeatedly apply P+,
It is proven in [13] that, when the linear operators R; are translation invariant, i.e.

(117) (Rudi: e — aha) = (Ridf*)(2) Vg
and the same for all levels of resolution, i.e.

(118) (Rip16 7 )(o) = (Ri83*)(22) Vg
convergence of the single sequence

(119) RpAES] —
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guarantees that

1

m, L
2 2 28

Moreover
T :B g
g = SP(h_ - 1)
where
(120) o) = polho)

In the periodic case, we take the same stencil V4, k thus, convergence of the single se-
quence

(121) Rp@yt = RpAF63° — g

implies the existence of the hierarchical reconstructions R

The continuous differentiability of the limit functions in the interpolatory case, can
be used in the cell-average context to prove uniform convergence of (121) to a continuous
function (see [12], Appendix B)

If the limit function is at least C%, a similar argument proves uniform convergence of
(121) to a continuous function in the case of hat-weighted averages. We sketch a proof of
this fact in Appendix B.

6.2, Cubic Splines, Let I.(z; H*) be the unique piecewise-cubic function (i.e, I; is a
cubic polynomial in each {#f_;,2}], 1 < § < J;,) which satisfies

L L(ebi B =H}, 1 <5< T,
.WIL(::: O;Hk)——mfk(:b + 0 HM I=1,2,1<7< J; ~1
3. WIL(O Hk) = ‘3;1'-[,!,(1 H ), l= 1,2.

In each interval [z} z51, J} 1< 7 < Jy, Li(z; H*) has the form

. ak — a)? @ -2k )3 .
(122) Ii(z; HY) = Mj—z( Jﬁhk ) + ﬂ’ifj( Gh; ) + Af(w —2f_)+ By
where
. h2 HY — HY hy,
By = H} {— M;. g A= _J._E_u - F*(M,- — M;_4)

and My, My, ..., M; (= My) solve the system:

25



T2 10 0 17, ; Hy-2H+H; e -
1 5 1 (2} M, HE 2’;}"‘ HE “1&
3 3 . M, mx.:..’.;ﬁz;t.,.a. ¥
0 % ., 0 . ) ‘Jc
(123) | @ - o e =3 =3
0
0 - 3 ; \ b
Do oy sl ] e | LA
| | z |

Since the reconstruction is the second derivate of the interpolatory cubic spline, we
only need the coefficients M; which can be computed in O(Jy) operations using the LU
decomposition of the coefficient matrix (see Appendix A).

The cubic-spline interpolation is hierarchical (see {13}), hence [, = I, R, = R; and
the limiting process is not needed. Moreover, it is translation invariant in the periodic case,
therefore ¢§(x) can be described in terms of the single function @f(z) = I(2;6f), for each

k, by
Ph(2) = Ph(a — ih).
The corresponding "hat’ multi-scale decomposition of f can then be easily obtained.

7. Data Compression. Multi-resolution representations of a set of data enable us to
obtain data compression by replacing u(f) with a truncated o(f*)

(EL

(124) M=o u(Py=| o | eV
f_‘D

where

(125) (@) = be(dhs ) = {

df  otherwise

The crucial numerical issue is the stability of the data-compression procedure. We would
like to formulate conditions on Dy, R; and €, so that

(126) W=l <Ce,  Fr=M"tr (MY,

where C' is independent of L.

7.1. Linear Reconstruction operators. Let & denote

(127) & =Ty (d* - d*),
then
~ A L
(128) fF=fr=>" Ane™
m=1
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this shows that

L
(129) |ALE™ | < Cemy D em S e

m=1

is a sufficient condition for (126).
By Lax’s equivalence theorem, convergence is equivalent to stability + consistency.
Therefore, convergence of the limiting process

also implies stability of the data-compression procedure.

7.2. Error Control. The strategy (124) gives us direct control over the rate of com-
pression through an appropriate choice of the tolerance levels {¢; }f=,. However once we
use the truncated values (125) in the corresponding decoding algorithm or multi-resolution
representation of f(z) we get an error which can be estimated by analysis but cannot be
directly controlled. This strategy is therefore suitable for applications where we are limited
in capacity and we have to settle for whatever quality is possible under this limitation.

There are other applications where quality control is of utmost importance, yet we would
like to be ag economical as possible with respect to storage and speed of computation. To
accomplish this goal we present a modification of the encoding algorithm which keeps track
of the cumulative error in a predetermined decoding procedure and truncates accordingly.
This enables us to specify the desired level of accuracy in the decomposed signal as well
as in the reduced functional representation. As to be expected (from considerations of the
uncertainty principle), we cannot specify compression rate at the same time,

Given any tolerance level ¢ for accuracy, our task is to come up with a compressed
representation

(130) {(d*,...,d"), f*}
such that
L _ L — L _ FL
(131) “ f - f Hoo""‘ 121%}1& lf: fs l S Ce

for f& which is obtained by decoding the compressed multi-resolution representation. A
modified encoding procedure that accomplishes this task is described algorithmically as fol-
lows:

1. Compute the multi-resolution analysis of the input data by

DO k=1L,
(132) DO j=1J,
{ fit = (TS + 275 + fhiv)
2. Set
(133) p=r



3. Calculate

(DO k=1,L

fﬁfﬁz = (DkRk—lfkuthk 1

(zﬁ’;‘_l—{-l = tf‘(;@h-;-!—_ - .h AR B (f_k,:_l f.l;:_t)afk)
Pt =R+ 5

(134) ! (DO j=d,1,-1

= (DkRk-1fk_l)2j—1

&=ty -~ ) - (P = 7))
o=+ lef_l

AN fzy = 2 (f'u 1+f23+1)

Let us denote the error at the &-th level by EJ‘ , e
(135) Ef = - Jf

and the prediction error by Ef%, i.e.

(136) EFR = fzj e /i
Let us prove that
(137) HEfj-iloo S @t | B* ooy § = Jima +1,1,-1
In fact, since
(138) Yy i1 =ERR L —tn(BER L~ Ei7Y 6)
we have
|BSE = BN > @ = | Byl = 1B ST E s
[ESR - B <=
|ESr il = |EE il S BT+ 1 BRR o — BT < EY oo e
On the other hand,
(139) BYy = EPR — (BPR — B¥ Y, )

for each § = Jy3,1,—1, thus

|EfR — B > 6 = |EBoaf = |Ef 7 <[ E5 oo
and

|EfR_ Efuﬂ <€ =

|ESyal = |EP < |BPR - Ef -+ 1Ef T S ek | BY oo -
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Let us prove now that

(140) Bl < a4+ 2l B o d=1,J4
Since
—_ o 1 = =
(141) Y= Ef - “Q'(Eé"j-a + B 1)

|BPR -~ BFY < g =

= - 1, ~
By = 2B~ 5(B + Bl

1, - - 3 o
|- 3BPR = B+ 5B

1 3. =n_ 1 -
< gatg IE 7 e tglat [ 270 o)
< g+2f B
&I_ld _
[E;)R—- E}‘_1| > € =
Ik k=1 ]' k-1 =k 3 k=1 1 Al
|E5] = |2857 - §(Ej + Byl £ §|Ej |+ 5132j+1l

IA

— 1
2| B oo +560

Recalling that E° = 0, we get from (137) and (140)

(142) B ok en + 2] B oo < 3025 es
i=1

taking

(143) g = /281

we get

(144) |7 = =l B [t 3

If the reconstruction operators R; are linear functionals, the error-control technique we
have described allows us to control the quality of the decoded data instead of the compres-
sion rate. If the reconstruction operators are non linear (data dependent) this algorithm
guarantees the stability of the data compression procedure, while a simpler algorithm like

(43),(44) does not.

From the above analysis it seems that a sensible choice for the tolerance levels is

(145) & = €pp1/2

In our numerical experiments we observe that the computed error bound is much closer to ¢

than to eL/2.



7.3. Non Linear Reconstruction Operators., It is clear that the accuracy of the
reconstruction technique plays a key role in the efficiency of data compression algorithms
of the type (124). The scale coefficients are directly related to the prediction errors, which
measgure our success in using the reconstruction procedure to climb up the ladder from low-
resolution to high-resolution levels.

For piecewise smooth signals with a finite number of singnlarities, adapt data depen-

111 LERy. LERiA T, gilipel O 1hites .

dent reconstructions of order p manage to keep the relation

Ry f*(z) = f(2)+ O(h})

valid over a larger region than linear (= data independent) reconstructions of the same order.

For discontinuous plecewise smooth signals, data compression algorithms based on cell-
averaged multi-resolution and ENQ reconstructions give much better compression rates than
the corresponding algorithms with linear reconstructions (see {11, 7]). Moreover, the Subcell-
Reslution technique of [10} applied to the ENO reconstructions gives maximal compression
of piecewise polynomial functions with a finite number of discontinuities.

In the same fashion, ENO reconstruction techniques in the hat-averaged multi-resolution
cantext lead to more efficient data compression algorithms for piecewise smooth signals with
a finite number of é-singularities. The space of such functions is used in vortex methods for
the numerical solution of fluid dynamics problems.

It is conceptually easy to modify an ENO reconstruction to account for singularities
within a cell. This is the so-called Subcell Resolution technique ([10, 11]). Let us describe a
SR technique in the context of hat-weighted multi-resolution.

Assume

fa) = P(e) + §(z — 24)

where P(2) is a smooth function and ,; € (a}_y, 3') We know that R, f* is given by
(79),(80), thus it is represented by a smooth function in the interval [z}_;, z¥] and hence, it
cannot accurately represent f(x) in this interval. The second primitive of f(a) will have a
discontinuous derivative at x4, thus if there is enough resolution on the k-th grid, we expect
Lt (2) = I j_i(; H*) and I gle) = Iy j4a(2; HY) to intersect at a point, &,, in {af_,;,z}].
Moreover

‘%d —Xg = O(hp+2).

where p is the order of the reconstruction.
Thus, if we replace (77) by

L(z; H*) for o & [z}_,,25]
(146) IEMa; HY) =< I p(v) fora e (af_y, &4
I, g(z)  for z € [£4,2}]
and (79) by
R e T
(147) Rift(ey=1(2)+ > sté(e—af)+356(c — &)

=1
15— 1,j
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with

& = [‘lfm(m)— dfu(m)] N

dz -5,
and
~8R . di:ﬁfk(w; H*) Aor z ¢ [«} Ti-1,% ;Ivh]
(148) Iy (x; %)= %jfk.‘g(m) forz ¢ [wj_l,wd]

-C%Ikﬁ(a:) forz e {E:d,wf]

we get a subcell resolution technique which is exact when P(z) is a polynomial function of
lesser or equal degree than the reconstructing procedure.

We remark again that, for non linear reconstruction procedures, in order to ensure the
numerical stability of the data compression algorithm, one must use an encoding algorithm
that implements an error-control policy of the type described in the last paragraph,

8, Numerical Experiments. In this section, we carry out several experiments to test
the performance of the different compression algorithms, as well as to compare their perfor-
mances

In all our experiments the finest grid X% is a uniform grid of J; = 1024 points.

In the figures

e tol is the tolerance on the finest level, ¢;. The scale coeflicients are truncated
according to the following choice of tolerance levels:

point-values € = €41 vk
cell-averages €, = ¢41/2 VE
hat-averages €, = €,,,/2 Yk

¢ nz is the number of non-zero elements in the compressed representation.
e 11 is the L, norm of the difference (126).
e sup is the L, norm of the difference (126).

The figures show the reconstructed signal and the error., The error is shifted down for
displaying purposes. We also display the position of the scale coefficients that are above the
specified tolerances in the truncation operation, at each level of resolution. It is interesting
to observe the refinement pattern of the scale coefficient for various values of €.

8.1. Linear reconstruction Operators. We compare the performance of the algo-
rithms derived from symmetric centered piecewise polynomial interpolation. The degree of
the reconstruction procedure is » = 4 for the hat and interpolatory multi-resolution and
r = 3 for the cell-average multi-resolution.

8,1.1. Smooth Functions. We consider the functions

(149) fi(®) = sin{2r2)

(150) fala) = emo0E= 5"

The discrete set to which we apply the compression algorithm is { f(«F)}/%,

Tables 1 and 2 compare the performances of the three compression algorithms for differ-
ent tolerances. For smooth functions, the three algorithms behave approximately alike. The
algorithm based on point values, as expected, gives the best relation between the quality of
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the recovered signal and the compression rate obtained.

8.1.2. Discontinuous, Plecewise Smooth Functions, Consider the functions

dz 0<a<1/4
2-4dz 1/d<a<1/2
—1 1/2<e<3/4
dz~4 B/d<az<l

(151) falz) =

o sin{re) 0<2<1/2
(152) O { —sin(mz) 1/2<a2<1

Table 3 and 4 compare the performances of the three compression algorithms for different
tolerances. The cell-averaged algorithm gives now (as expected) the best relation between
quality and compression rate. The hat-averaged algorithm seems to be the less efficient for

fa(z) than for fy(z).

8.1.3. Piecewise Smooth Distributions. Next, we carry out several experiments
with distributions of the type

(153) g(z) = filz) + ab(z — B) + ab(z - 7)

In our experiments we have taken o = 1.9+ 107%, 8 == .125 and v = .5 or v = .625. f;(z)
t =1, ++,4 arve the functions described before.

Tables 5 to 10 compare the performances of the compression algorithms based on cell-
averages and hat-averages, for different tolerances. Observe that point-values of the function
lack now meaning. For fi(2) and fo{2), both algorithms are comparable, with a slight advan-
tage for the hat-averaged one. For fa(z) and f,(z), and probably due to the discontinuous
nature of the function, the cell-averaged algorithm comes slightly ahead again. The behav-
ior observed in tables 9 and 10 seems to indicate that it is more efficient to compress with
cell-averages when dealing with discontinuous functions.

8.2. Non Linear Reconstruction Operators. When we use a data-dependent inter-
polatory technique, the reconstruction operators thus obtained are non-linear. As we have
mentioned before, we then need an error-controlled compression mechanism to guarantee
numerical stability. In tables 11 to 13, we compile the results of two sets of experiments, one
with the error-controlled algorithm of section 7.2 (labeled EC2) and the other with the orig-
inal algorithm (114),(115). Algorithin FC2 always keeps the error below ¢, even though the
theoretical bound we found is larger. When the error in the unmodified algorithm is below
€z, the error-control mechanism does not have a significant effect. Again, we observe that
the cell-average and the hat-average algorithms give similar results, although the cell-average
algorithm is slightly more efficient.

In both cases, we have chosen nonlinear ENO reconstructions with order of accuracy
r=4



method

tol nonzeros | || - |l —error | || || —error
point 1 3 4,7730F — 02 | 8.2140F — 02
05 7 3.0300F — 03 | 7.8261F—03
.01 7 3.0309E — 03 | 7.8261F — 03
.005 11 1.0763F — 03 | 3.2417TE — 03
.001 15 1.8040F — 04 | 5.3969F — 04
cell 1/2% 25 5.0856E — 04 | 2,1660E — 03
.05/2" 27 3.3909F — 04 | 8.1390F — 04
01/2° 39 1.4941F — 04 | 4.3417TE - 04
.005/2% 55 4.3022E - 05 | 1.4423F — 04
001/2% 63 2.8228F — 05 | 6.1482F — 05
hat 1728 15 8.3538E — 04 | 3.1567EK — 03
.05/2* 19 5.2233FE — 04 | 2.1846E — 03
01/2% 31 5.3635E — 05 | 1.9626F — 04
.005/2% 31 5.3635F — 05 | 1.9626F — 04
.001/2% 51 1.1419F — 05 | 7.3257E — 05
TABLE 1

fi(z) = sin(2xx)
method | tol | nonzeros | || -l —error | || - |lc —error
point .1 8 3.0217TE— 02 | 6.25208 02
.05 12 6.8698F — 03 | 4.5750F — 02
.01 20 8.7457E — 04 | 9.6547E — 03
005 24 3.0540£ — 04 | 1.5793F — 03
.001 30 1.8165F — 04 { 8.75919F — 04
cell /2% 24 6.7285E — 04 | 4.5457E — 03
.05/2% 32 2.8498FE — 04 | 2.4714E - 03
.01/2* 46 8.4476F — 05 | 6.0450F — 04
.005/2% 50 5.9384F — 05 | 6.0450F — 04
001 /2% 68 2.1614E — 05 | 1.6485FE ~ 04
hat /2% 28 7.1022E — 04 | 6.9823E — 03
.05/2% 30 4.8223F ~ 04 | 6.4685FK — 03
.01/2* 44 7.9450F — 05 | 8.3080F — 04
005/2F 46 6.6042F — 05 | 7.4236E — 04
001/2% 60 2.3336F — 05 | 2.6943F - 04

TABLE 2
folz) = £ —300(z—5)
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method | tol nonzeros | || - |ly —error | || - ||c —error
point .05 27 1.0159FE ~ 02 | 6.4920F — 02
.01 36 5.20578E — 04 | 8.5144F — 03
.005 40 1.2916FE — 04 | 4.2672E — 03
.001 48 6.9141F — 06 | 9.7656F — 04
0005 52 §.5367EF — (7 | 4.8828E — 04
cell /2% 36 2.0188E — 04 | 1.0254E — 02
.05/2% 38 1.0014F - 04 | 9.8877F — 03
01/2% 42 2.4319F — 05 | 4.3945E - 03
005/2% 44 1.1921F — 05 | 2.1973E — 03
001/2% 48 1.4305E — 06 | 4.8828F — 04
hat 1/2% 47 5.2200F — 04 | 2.3346F — 02
05/2% 51 2.8175L — 04 | 2.3346E — 02
01/2% 60 5.6258F — 05 | 2.9765F — 03
.005/2F 64 2.6232F — 05 | 1.4882FE —~ 03
.001/2* 72 5.7146E — 06 | 5.5308FE — 04

TABLE 3

fa(2)

method | tol | nonzeros | || - |l —error | || - [lc —error
point g 27 1.2392E — 02 | 8.0562E — 02
.05 28 5.3386E - 04 | 3.2432E - 03
01 28 5.9263F — 05 | 3.2432F - 03
.001 29 9.0928F — 05 | 4.5756FK — 04
cell 1/2% 28 2.2198F - 04 | 4.9411F - 04
.05/2% 28 2.2198FE — 04 | 4.9411E - 04
.01/2% 40 3.9263E - 05 | 1.4447E - 04
.001/2% 58 1.0612E — 05 | 4.1444E — 05
hat 1728 35 3.3525F — 04 | 4.6874FE — 02
.05/2% 38 7.3384FE — 05 | 3.6074L — 04
.01/2% 40 3.35008 — 05 | 1.6687FE — 04
.001/2% 50 3.3684F — 06 | 1.1659FK — 05

TABLE 4

fi(z), discontinuous sine

method tol nonzeros | || - ||y —error | || -l —error
cell 1/2% 36 6.999F — 04 | 2.4458F — 02
.05/2% 37 G.1519F — 04 | 2.4458F — (02
03/2% 43 4,76341 — 04 | 2.3733E - 02
.01/2* 67 1.2239FE - 04 | 4.3417TFE — 04
.005/2" 80 3.9614F — 05 | 1.4423F ~ 04
hat 1/2¢ 37 1.1733FE — 03 | 1.0476F — 02
.05/2% 45 7.3826F — 04 | 2.5341E — 02
.03/2% 49 5.0460F — 04 | 8.4232F ~ 03
.01/2F 72 4.4683F — 05 | 1.9626F — 04
.005/2" 72 4.4682F — 05 | 1.9626F — 04

TABLE B

Sine function + delta(z..185) + delta(z-.5)




method | tol | nonzeros | || - ||y —error | || - || —€rTOr
cell 1/2F 35 0.2362F — 04 | 2.4585E — 02
.05/2% 42 5.7921F — 04 | 2.4586E — 02
0279F G4 1.0417F — 04 1 1.2856E - 03
01/2% 73 9.2170F — 05 | 6.0450F — 04
.001/2% 96 2.0344F — 05 | 1.6486F — 04
hat /2% 47 1.1279E — 03 | 2.0708EF — 02
05/2F 51 8.1026F — 04 | 8.4330E — 03
02/2% 60 5.1580E — 04 | 8.4247E — 03
01/2F 82 6.8672F — 05 | 8.3087FE — 04
001/2* 95 1.7740FE — 05 | 2.5297E — 04

TABLE 6

Baponential + deltafz-.125) + delta{z-.5)

method | tol nonzeros | || - ||y —error | || - {| —error
cell 1/2% 43 5.5871E — 04 | 2.4533E — 02
.05/2% 45 4.5697FL — 04 | 2.4532F — 02
.01/2* 68 2.4319E — 05 | 4.3945F — 03
.001/2% 74 1.4305FE — 06 | 4.8828FE — 04
hat /2% 57 7.3806E — 04 | 1.4190FE — 02
.05/2% 61 4,9782E — 04 | 1.4190F — 02
01/2% 81 6.2399F — 05 | 3.1433F - 03
.001/2% 94 5.7145E — 06 | 5.5308EF — 04

TABLE 7

fa(z) + delta(x-.125) + delta(z-.5)

method tol nonzeros i ||« |l —error | I - {], —errvor
cell 1/2% 34 4,6299E — 04 | 2.4807F — 02
02728 52 1.3724F — 04 | 4.3398E — 04
01/2% 60 2.9082F — 05 § 1.4447E — 04
.001/2* 75 1.0198F — 05 | 4.1444E — 05
hat 1728 47 5.3402E — 04 | 3.7719E — 02
.02/2% 52 2.5593F — 04 | 8.4170F — 03
01/2% 63 3.0284F — 05 | 1.6695F — 04
.001/2% 71 2.9414F - 06 | 1.3103E — 05

TABLE 8

Discontinuous sine + delta(r-.185} + delta(z-.5)
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method

tol

MNONZETGS

|-l —error

|+ ||cc —error

cell

1/2*

40

4.9675F — 04

2.4808F — 02

02/2F

64

1.0880F — 04

4.3398E — 04

01/

70

2.8784F ~ 05

1.4305F — 04

001/2F

85

9.0541E - 05

4.1444F — 05

hat

1/2F

58

7.3280F — 04

4.6875F — 02

.02/2"

63

4.6797E — 04

4.4171FE — 03

01/2F

85

2.1512E — 05

1.6491F — 04

[001/2

91

2.3b17E — 06

1.3103F — 05

TABLE 9
Dscontinuous sine + delta(s-.125) + delta(x-.625)

method

tol

nonzeros

“ : “1 - ETTOT

I ||e —€rror

cell

A/2k

49

5.9388E — (04

2.4532F - 02

{052

51

4.9222F — 04

2.4532F — 02

01/2F

79

2.4318E — 05

4.3945E — 03

.001/2°

85

1.4305F — 06

4.8828F — 04

hat

/2%

68

9.3350F — 04

2.3346FE — 02

05/2F

72

7.1390F — 04

2.3346F — 02

01/2F

102

5.6258E — 05

2.9764F — 03

.001/2%

114

5.7145E — 06

5.5308E — 04

TABLE 10

fs(z) + delta(s-.125) + delta(z-.625)

method

tol

NONZETOS

” ' ”1 —Eerror

[l - low —error

Eno — eell

2]2F

22

8.4749F — (04

0.1922

02/2%

40

1.9817F — 04

7.6120F — 03

01/2F

50

4.3982F — 05

4.5452F8 — 04

001/2F

65

8.6319E — 06

4.4052E — 05

Eno — cell( EC'2)

2/2F

22

8.1710E — 04

0.1922

02]%F

40

1.8255 K — 04

7.4825F — 03

01/2%

50

4.4133F — 05

4.5452F — 04

.001/2F

65

8.6312F — 06

4.4052F — 05

Fno — hat

1]

22

1.6593F — 03

0.1635

02/

43

4.1202F — 04

1.8132F - 02

01/2F

53

4.8946F — 05

1.2067FE — 03

.001/2F

70

9.0360F — 06

2.1094F — 04

Eno — hat( EC?2)

172

24

1.5607F — 03

7.2526F - 02

02/2%

45

3.8820F — 04

1.4114E — 02

01/2°

53

4.8939F — 05

1.2067F — 03

001/2F

70

9.0289F — 06

2.1004F — 04

TABLE 11

Sine function + delta(z-.125)+deltafs-.5), ENO, r=4
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method tol nonzeros | ||« |1 —ervor | ||+ ||o —error
Eno — cell 4/2* 15 2.4835E — 03 0.1942
2]2F 26 1.3644F — 03 0.1880

1/2% 31 9.1660F — 04 | 6.0221E — 02

.01/2% 50 3.4917F—04 | 1.5271F — 02

.004/2° 63 3.7137FE — 04 | 6.0973FE — 02

.001/2* 68 3.5856E — 04 | 6.0973F — 02
Eno — cell(EC2) | 4] 15 | 2.3011E—03 |  0.1939

2/2F 29 9.8476E — 04 | 1.8417TE — 02

/2% 31 6.6734F — 04 | 1.0997E - 02

.01/2% 51 1.2198E — 04 | 3.6628D — 03

.004/2F 63 24720k — 05 | 7.6680E — 04

.001/2% 68 1.1865F — 05 | 2.3074E — 04
Eno —~ hat A [2k 18 5.1711E - 03 0.4270
.2/2% 22 2.6853L — 03 0.1461
1/2% 24 1.9445F — 03 0.1120

.01/2% 53 1.9243E — 04 | 1.1169F —~ 02

.004/2* 57 6.3767E ~ 05 | 1.6320F — 03

.001/2* 63 5.0695E — 056 | 9.0668F — 04
Eno — hat(EC2) | .4/2F 22 3.4424F - 03 0.1985
272" 23 2.0050F — 03 0.1142

1/2% 26 1.6906F — 03 | 7.5666F — 02

01/2% GO 1.4432F — 04 | 6.6214F ~ 03

004 /2% 57 5.9641F — 05 | 1.6189F — 03

001/2°F 78 4.0542F — 05 | 6.4321F — 04

TABLE 12
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method tol nonzeros | ||« |l —error | || - lloo —error
Eno — cell 4/2F 19 1.3522F — 03 0.1944
2/2F 26 9.9031E — 04 0.1890

1/2% 35 4.0810FE — 04 | 1.0214F - 02

04/2% 38 2.0221F — 04 | 1.0214F — 02

01/2F 49 5.3793E ~ 05 | 3.3377F — 03

.001/2F 53 8.9406F — 07 | 3.05617F — 04
Eno — cell(EC2) | 4/2* 19 1.3522F — 03 0.1944
2/2F 26 9.7679E — 04 0.1890

1/2F 35 3.7304E — 04 | 1.0214F — 02

04/2% 38 1.8059E — 04 | 1.0214F — 02

01/2F 49 2.4163E - 05 | 3.3377E — 03

001/2% 53 8.9406E — 07 | 3.0517F — 04
Eno— hat 4/2¢ 29 3.0716E — 03 0.3930
2/2F 34 1.0038E - 03 0.1950

/2% 36 5.8534F — 04 | 9.1972E — 02

04/2% 41 3.2235F ~ 04 | 4.6238E — 02

01/2% 49 4.2495FE — 05 | 1.0245F — (2

.001/2* 55 2.5033F — 06 | 4.2724F — 04
Eno— hat(EC2) | 4/2% 31 3.2741E — 03 0.1893

2/2F 36 1.1155E - 03 | 9.1972F — 02

1/2% 38 6.0777TE — 04 | 6.6395E — 02

.04/2% 42 3.2724FE — 04 | 2.0851E — 02

01/2% 51 4,0581E - 05 | 5.2556E — 03

001/2 55 2.5033E — 06 | 4.2724E - 04

TABLE 13

fa{z) + deltafz-.125) rdelta(s-.5), ENO r=4
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method

tol | nonzeros | || - |l ~error | || - ||l —error
Eno — cell AJ2F 7 1.2758E — 03 0.1944
2/2F 21 8.2500F — 04 | 1.1051E — 02
.1/2F 24 4.5058 F — 04 | 9.0340F — 03
04/2% 29 2.5545F — 05 | 7.5659F — 03
01/2% 38 4,8189E — 05 | 1.0596F — 03
.001/2F 49 2.0243E — 06 | 2.0464E — 05
Eno — cell( EC2) | .4/2° 6 1.0488E — 03 0.1945
2/2F 21 7.3934F — 04 | 9.9057E — 03
1/2F 24 3.9804F — 04 | 8.4899K — 03
.04/2% 29 2.3187F — 04 | 7.4425E — 03
01727 38 4.8155E — 05 | 1.0596 F — 03
.001/2% 49 2.0243E — 06 | 2.0464F — 05
Eno — hat 4/2F 21 1.5399F — 03 0.1936
2/2F 28 1.0135E — 03 0.1599
1/2F 31 9.2890 F — 04 0.1233
.04/2F 43 27176 E ~ 04 | 1.8225F — 02
01/2° 51 3.2673E — 05 | 1.1349F — 03
.001/2% 60 2.8879F — 06 | 7.4028F - 05
Eno — hat(EC2) | .4/2" 21 1.5399E — 03 0.1936
2/2F 23 1.1502E — 03 0.1889
1/2F 31 7.8246F — 04 | 4.3128EF — 02
04/2% 44 3.1718E— 04 | 1.0132F — 02
01/2F 51 3.2505E ~ 05 | 1.1837E — 03
00172 60 2.8134F — 06 | 8.2333E — 05
TABLE 14

Discontinuous sine + delta(v-.125)+delta(z-.625), ENO r=4
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Fiq. 18. Hat-ENO.

tol=.01, nz=53, 11=1.92E-04, sup=1.11E-02
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Fia. 20. Hat-ENO EC. tol=.01, nz=60, l1=1.44E-04, sup=6.62E-03
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Fra. 22, Hat-ENO. tol=.1, ns=36, 11=5.85E-04, sup=9.195-02
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Fia. 25, Hat-ENO tol=.1, nz=381, 11=9.28E-04, sup=0.123

-
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Fi1G. 26. Hal-ENO EC. tol=.1, nz=51, li=7.82E-04, sup=4.31E-02
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Appendix A

Both when we have to obtain the coefficients of the spline interpolation in section (6.2)
and when we have to calculate the elements e;, 1 < ¢ < 2n, from d;, 1 < ¢ < n, in the decoding
algorithm of the orthogonal case in 5.2, we need to solve a linear system of equations Az =— b,
where A is a n X n matrix of the form

e b 0 ... ... 0 b7
b a & 0 ... ... 0
0 b 0 :
(154)
0
0 e
L b 0 ... 0 b a]

If A were tridiagonal, we know we can solve the system with O(n) operations. Our goal,
in this appendix, is to show that we can solve the systems (93) and (123), where 4 is a
tridiagonal ”periodic” matrix, also in @(n) operations.

Let us denote by A, the £ x &k submatrix formed by the first & rows and columns in A.
If we assume that |a| > 2[b|, which is the case in (93) and (123), we have that each A; is
strictly diagonally dominant, hence invertible and

(155) det(4,) # 0.

This guarantees that the LU decomposition of A exists. Moreover, all the eigenvalues of
A are positive, hence A is positive definite. Therefore Gaussian elimination without row or
column interchanges is stable and it can be used to compute the matrices L and U.

Due to the structure of A, the matrices L and U have the following form:

m 1 o ... ce 0 07
ml’z 1 0 - PPN 0
0 Mg,z . :
(156) L=+ 0 ;
0 1] e 0 m,L_lln_z 1 0
L mn,l My ... mn,n——2 mn,n-—i 1 .

1
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and

i Uy,1 Uin 0 e 0 U1,
0 uyy s 0 0 Ugn
. 0 .
(157) U= 0
0 . Un—in—1 Un_inm
| 0 a6 ... 0 Upp |

We can calculate L and U, in OQ(n) operations, with the following algorithm:

U1, =@
Doi=1,n—2
ui,i+1mb

Miy1,: = b/ui,i
ut+ i+ l=a-—myp;%b
My1 ~ b/'ﬂm

u’l,n =
(158) ) Doi=2,n—-2
Mpi = —Mp i1 % b/ui,i
Ui = — My 31 ¥ U1

My g = b/unml,ﬂml —Mpn.z¥ b/unml,ﬂwl
Unein = b— Mp_in-2*Un.an
sum = 0
Doi=1,n-1
SUWIN = SUML + Ty § * Uy
Up,p = @ = SUM.

.

The system Az ==
systems

b is equivalent to LUz = b, which decompose into two triangular

Ly=b andUzx=y

which can be solved in O(n) operations, from

Y= b
(159) y,:zb,- — M1, ¥ Wil z=2,...,n—1
Yo = by — Mp 1 *¥Yr—Mya*Yp— . — My 1 ¥ Yna
and
En = yn/ul,l
(160) Tp_1= (yn—-i — &y K un—l,n/un,n

Ty = (y, — &y * u,r,n — Ti4a * u‘-,,-_,_l)/ua-,,- =1 — 2,. . .,1
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Appendix B

In this appendix, we use the interpolatory results of [6] and [8] to prove convergence of
the limiting process (121) under appropriate smoothness assumptions.

The symmetric interpolatory procedures (and corresponding reconstructions) arve both
translation invariant and the same for each level of resolution, these two facts, together with
120, allow us to study the limiting process by considering the case of infinite grids in the
real line. Hence, we consider the decimation and prediction operators to be infinite Toeplitz

matrices (see [13]), and the same for each level of resolution. Thus AJ = [[iy PF+! = Pm
Let us study the convergence properties of the sequence P™6° as m — +oco, where
1 j=0
0
(161) 63“{03'750

Denote by P the prediction matrix for the interpolatory procedure. Deslauries and
Duboc ([6]) and Dyn, Gregory and Levin [8] have studied this limiting process. They have
shown that the sequence P™8° converges in the following sense:

+e0
Lm D (P8 X 4 = ()
j=—oo

uniformly in @. The limit is a continuous function of compact support that satisfies the
dilation relation

ii(z) =Y erfi(22 ~ 1), ar = (P6%),

and also j(27%5) = (P*8°);. We refer to [12] for a proof of these particular facts and to [13]
for general statements concerning the limiting functions.
Let us consider the sequence

m_) 0 J<m
% _{j iz m.

The limiting process corresponding to P™Z? is also convergent and we denote its limit by
f(z). Since

8 =z"1-22+7*
we get that
(162) f(z) = 0(z + 1) — 20(2) + 8(2 — 1)

If the interpolatory procedure is at least first order, we must have a closed interval I = [i;, i5]
such that

z)=0 2<i; BHz)y=a =>4

Let us assume that #(z) is a C* function. We turn now to express the limiting process
P*6° for the reconstruction from hat-averages in terms of 8(x).
Notice that 8(2-%5) = (P¥Z°); (this is a consequence of the binary subdivision process
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in the interpolatory framework). The relation

60 = Zﬂl s QZD e ZI = Z;?—}-l - Q»Z_.? -+ Z_’,?—l
implies that {Z]} are the values of the second primitive of §° on the grid {j}13, thus (82)
implies
1

(163) (P8°); = 55 {(P2%)41 — 2(P2°); +(PZ");_1}

i.e., {(P2Z%);} are the values of the second primitive of P6° on the grid {j/2}*%. It is easy
to see then, that

(PH0%); = g (P20 — 2((P*2°), + (P*2%);4)

= o5 {076+ 1) - 2002746 + 027G - 1))
Since #"(z) is a continuous function with compact support, we get that
+oo
p(z)= T > (P"6")Xpm g = 6"(2).
j=—00
uniformly in 2. Notice that, (162) implies that
n(z) = i'(x + 1) = 27" (2) + 7'(z - 1)

and that supp n € I.
The limit function satisfies the following relation (see {13])

n(e) = am(2e - 1), oy = (P§");.

In particular for the algorithms (114),(115), we have

ne) = (2= Bon(2e)+ 32 Bin(2e — 2 + 1) = 5B+ By (2 - 20)

{=1

In Figures 27, 28, 20, 30, 31 and 32 we plot g® and 95 for p = 2,4, 6 in the orthogonal
and non-orthogonal cases of section 5, The circles denote the hat-averages of these functions.
in the intervals of X®. Here by = 1/8.
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Fia. 27, Left o3®, Right ¥3* , p = 2, non-orthogonal

.8 06 04 02 0 02 04 08 08 A

Fra. 28, Left g—og’a, Right 1&3’8 , p = 2, orthogonal
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Fi1G, 29, Left <p3’8, Right 1;53'8 , p =4, non-orthogonal
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FI1G. 30. Left o3, Right ¥3° , p = 4, orthogonal

59



1.5

0.5

0.5¢

-0.5

1 i i 1 1

02 04 06 08 ¢ “1 0.5 0 05 1

Fi1a. 31, Left (pg’s, Right ¢§-5 , p =6, non-orthogonal
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F1G. 32. Left o3°, Right v3* , p = 6, orthogonal
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