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ABSTRACT OF THE DISSERTATION

Application of Quasi-Random Sequences to Monte Carlo Methods

by

Bradley Scott Moskowitz
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1993

Professor Russel Caflisch, Chair

I have examined the reasons that quasi-random sequences sometimes fail to im-
prove Monte Carlo estimates, which include discontinuities in the integrand and
high numbers of dimensions. With these factors in mind, I have found ways to
successfully apply quasi-random sequences to several model problems for which
initial attempts to apply them were met with failure. In doing so, I have obtained
accelerated convergence rates for these examples and improved accuracy 1 a given
amount of cpu time. These model problems can serve as a guide to the successful
application of quasi-random sequences to a variety of practical problems in order
to obtain similar improvements.

Unlike pseudorandom sequences, quasi-random sequences are deliberately not

intended to behave like independent random uniformly distributed points. Instead,

xiv



points in a quasi-random sequences are allowed to be correlated in such a way as
to improve the accuracy of Monte Carlo estimates. Such estimates have been suc-
cessfully applied to several problems in physics, chemistry, and reliability analysis,
among others.

For a much larger set of problems though, quasi-random sequences have not
been as successful, and their use has not become widespread. However, there
are a great many problems for which quasi-random Monte Carlo estimates could
indeed provide significant improvements over pseudorandom estimates, as long
as one is careful about the particular algorithms used and the way in which the
quasi-random sequences are applied.

In the case of variance reduction, I found that the use of weighted uniform
sampling instead of importance sampling can improve quasi-random results signif-
icantly.

For applications involving iterations or successive time steps, such as Diffusion
Monte Carlo, which also involves very high dimensional integrals, continuation
methods for combining pseudorandom and quasi-random sequences were devised
and successfully applied to a few simple quantum mechanical systems.

Both of these cases, and a few similar examples, provide evidence that quasi-
random sequences could be useful for a far wider range of applications than perhaps

previously believed.
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Part I

Monte Carlo Integration and Quasi-Random Sequences



CHAPTER 1

Introduction

Monte Carlo methods are statistically based methods in which solutions are
obtained by accumulating a large number of samples or trial runs and then averag-
ing the results. Although the theory is based on using purely independent random
points to generate samples, in practice sequences of points called psendorandom are
used. These are designed to perform as closely as possible to uniformly distributed
independent random points while also being repeatable and quickly produced on a
computer. There are several tests for randomness which pseudorandom sequences
are designed to pass, including Chi-Square Tests, the Kolmogorov-Smirnov Test,
and the Spectral Test. Good pseudorandom generators, such as ULTRA by Za-
man and Marsaglia, are readily available. Monte Carlo methods using sequences
of random or pseudorandom points have an inherent statistical convergence rate of
order O(N-1/2}, where N is the number of points used, or equivalently the length
of the sequence of points.

In stark contrast with pseudorandom sequences are another variety of se-
quences commonly known as quasi-random. Unlike pseudorandom sequences,
quasi-random sequences are not intended to act like independent random points.

They badly fail most statistical tests for randomness since there are large corre-



lations between the points in a quasi-random sequence. These correlations are a
result of the design of quasi-random sequences, and they force the points of these
sequences to spread out more uniformly than pseudorandom or random points
over the region of interest by eliminating the “clumping” which is characteristic of
pseudorandom and random points. On the other hand, quasi-random sequences
are designed to be distributed according to the same uniform distribution as pseu-
dorandom points. This allows them to be used in place of pseudorandom points
for several Monte Carlo methods, without introducing any systematic error and in
some cases improving the convergence to rates unobtainable using pseudorandom
or random points.

Using quasi-random sequences, one can theoretically improve convergence rates
to as much as order Q(N-1(log N)¢), in d dimensions. This can be a substantial
improvement. For simple low dimensional integrations, such improvements are
clearly observed on the computer. However, in many more complicated prob-
lems, if one simply substitutes quasi-random points for pseudorandom points in
a particular Monte Carlo simulation, the results often show no improvement or
worse. There are several reasons for this, which will be a major topic of this paper.
The result of such difficulties has been a general lack of faith in the usefulness of
quasi-random sequences, and a reluctance to use them in many situations where
a few minor alterations to existing algorithms would allow for significant gains in
convergence rates and hence reduced computer time usage.

For this thesis, | have studied quasi-random sequences and identified the reasons



for their failure to improve convergence rates in various applications. Subsequently,
I have used this knowledge to modify traditional Monte Carlo algorithms in subtle
yet _important ways so that with quasi-random sequences the kind of improvement
in convergence rate that is hoped for is attained. In many cases, the resulting
acceleration of convergence rates and reduced computer time more than makes up
for the small cost of the modifications involved and a faster method is the end

product.



CHAPTER 2

Monte Carlo Integration

Integration, and especially multidimensional integration, is often the setting
in which Monte Carlo methods are employed. In fact, a great many Monte Carlo
methods can be accurately thought of as being nothing more or less than estimating
integrals. The underlying theory of such estimates is straightforward and will be

briefly reviewed.

2.1 Statistical Basics

Given random vector & € R¢ with probability density function g(x) over region
D ¢ R and scalar function f(z) defined on D, we define the following statistical

properties of f:

Expected Value: E,f(z) = /D fla)g(z)de (2.1)
Variance: var,(f(z)) = ]D (f(z) - E,f(x))2g(z)dz (2.2)
= E[(f(=) - E,f(2))*]
= E[(f(2))* —2f(z)E, f(x) + (B f(x))’]
= E[(f(z))®] — (B f(=))? (2.3)

o



Standard Deviation: o,(f(z)) = (/var(f(=x)) (2.4)

Say A is some quantity estimated by fi(y), a function of a set of N random
samiples, y = (21, 2,,...,%y), with joint probability density function g(y). Let J
denote the domain of y in RV4. Then, the following quantities characterize the

statistical quality of the estimate;

Mean Square Error: mse(A) = E((A— A))
= [I(A(y) — A)?g(y)dy (2.5)
Bias: bias(A) = ngl —A (2.6)

Variance: var(A) = E,((A- E,A))

= [(Aw) - BArgw)ay ()

These quantities are simply related as demonstrated below:

mse(A) = [ (Al) - AVg(y)dy
= fJ(fi(y) ~ EA~ A+ EA)g(y)dy
= [ [(Aw) - EAP +(4- BAY ~ 2(Aly) - EA)(A - BA)] g(y)dy
= var(A) + (bias(A))? - 2 / )(A — EA)g(y)dy
= wvar(A) + (bias(A))? — 2 ]J (AA - AEA — AEA + (EA))g(y)dy
= war(A)+ (bias(A))? — 2JAEA — (EA)? — AEA + (EA)?

mse(A) = var(A) + (bias(A))? (2.8)

We will be concerned with estimators of the form A, where as N increases



Ay — A, or more precisely limy_,. mse(Ay) = 0. Such estimates are called

consistent.

2.2 Statistical Error Measures and Convergence Rates

In comparisons with deterministic error, two useful measures of the statistical

error of an estimator are as follows:

Root Mean Square Error: r:rn.se(;l) = mse(fl)

\/ [ (Aw) = Ayetn)ay  (29)

P

Mean Absclute Error: mae(A) = E(I/i — A])

[1Aw) - Ay (210)

If the error is a fixed non-random amount, €, then we have rmse = ve? = |¢|
and mae = |¢|. On the other hand, when the error is a random quantity, either of
the above quantities serves as a measure of its average magnitude over repeated
trials, and lience a measure of the quality of the estimator in general. The root
mean square error is generally preferred because of some nice statistical properties
that it has. Also, the mean absolute error is always smaller, by Jensen’s Inequality
which states: E{|z|) < y/E(2?) for any random variable. 1 will use root mean
square error throughout this dissertation. Note that for unbiased estimators, the
root mean square error is exactly equal to the standard deviation of the estimator.

In the case of an estimator of the form Ay with N increasing, one says that



the estimator has a statistical convergence rate of order O(N-2) if the following is

satisfied:

rmse(Ayn)
m ——— = const < oo
N—oo Ne

2.2.1 Expectation and Variance of Sums

Before going on to consider Monte Carlo estimation, it is useful to derive the ex-
pectation and variance of sums of random variables. Let 2, and x, be random vari-
ables over D, x D, with joint probability density function g(«,, z,}, and marginal

density functions g,(z4) = [p, g(@1, 22 )de, and gy(2,) = fp, g(®q, @;)dz;. Then,

E(ax, + bx,) = /D /D (amy + bmy)g(zy, ) )do, dx,
2 1

= /Dl @y (/;)2 .9‘(517;1:’-’2)@32) dz, + /D-.a, bz, (/Dl 9{=y, mz)dmz) dz,
= / azyg:(2q )dz, +f baygy (@, )dix,
D] D2

= ab, x4+ bE, >, (2.11)

: 2
var (ax; + bxy) = /D ]D ((fmzj + bzy) — (aE,z, + bEgmg)) gz, xy)de da,
? H
2
- /D fD (a(a:1 - Egasl) + by — Egmz)) g(xy, z,)dze,dz,
= g2 /D;(:c1 — Ex,)? (sz g(m],mQ)dmg) dz,
+ 52] (x; ~ Eg3’2)2 (f g(wlaw2)dm1) dx,
I D,
+ ‘Zab/D fD (2 ~ B,z )(2y — E,my)g(x,, 2y)dx, d,
2 1

= a2/D (@1 — Ey2q)’ (2 )dy
1

oo



+8 [ (@2 = Eymaa(e)des
+ 2ab/DQ D!(‘IH - ng1)($2 - Egmz)ﬂ(mu x,)dx, dx,

= a?var, (x,) + b*var, (@,;) + 2ab cov,(x,, T;) (2.12)

Note: cov,(®,,%,) = [p, [p, (21 — Egzy)(22 — Egx,) g(zy, 25)dT dT, .

2.3 Crude Monte Carlo Estimation

Let A = [, f(z) ¢(x) dz be an unknown quantity to be estimated, with D C R,
g strictly positive, and n = [, g(z) dz, the known normalization constant for g(z).
(Note: Often D = [0,1]¢ which is denoted I4, and g(z) = 1 for all z, which is
represented by z € U([0,1]?). Then 5 = 1.)

Take z, to be distributed according to g(x), i.e. —;—g(m) is the probability
density function for z;. Let fll =g f(xy). Then,

E(4,) = fl)?rf(w)?—ig(m)dm = A

~

var(A;) = nlvar(f)

Therefore A, is an unbiased estimator for A, with o*(fil) =no(f).

For simplicity, I will assume for the rest of this section that g{x) is normalized
so that 7 = 1. There is no loss in generality since 5 could easily be reinserted.
This gives us A, = f(x,) with zero bias and standard deviation a,(f).

This estimate is improved by using an independent and identically distributed

(i.i.d.) sample of points @y, x,,...,zyN each from g(x).



Let, the Crude Monte Carlo estimate be defined as follows:

1N
= l‘:zlf(m )
Then,
. 1 &
B = B2 1) (2.13)
i=1
1 N
= — ) E(f(®;)) , wusingEqn2.11
Ni':l
1
. 1
var(Ay) = (NZ]' )
=1
N
= Z var,(f(x;)) , using Eqn 2,12, cov(a;,2;) = 0,Vi # 3
1 1
= 7 cvar,(f) = Nvarg(f) (2.15)

We see then that Ay is an unbiased estimator of A with o(Ay) = —Jl—ﬁffg(f).
Therefore rsme(Ay) = \/Lfv* o,(f). Then, as long as var,(f) is finite, which we will
assumne, the Crude Monte Carlo estimate is consistent, with a convergence rate
of order O(N-1/2). If the variance is infinite, it is often possible to use variance
reduction methods such as those discussed in Cllai)ter 4 to makeit finite. The above
result is the basis for the statement that Monte Carlo methods have a statistical

convergence rate of order O(N~—1/2),

10



2.4 Simple Integration Example

Before studying quasi-random sequences in de.pth in the next chapter, here is
an eight dimensional integration example which will demonstrate the significant
gains which are made possible by utilizing a quasi-random sequence of points in
place of a pseudorandom sequence. This example will also introduce the methods
of data analysis which will be used throughout this study. The pseudorandom
points are taken from a non-linear additive feedback generator in the standard C
library, which is known to pass many of the standard statistical tests for random-
like behavior, while the quasi-random points are from a particular quasi-random

sequence known as the Halton Sequence, which will be introduced in Chapter 3.

2.4.1 Discussion of Computations

Let @; = (24, 7y,...,74) € N represent a single d-dimensional pseudorandom
or quasi-random point. Alsolet y = (zq,xy,...,2y) € RV represent a full sample
of N points (i.e. a particular subsequence of length N from either a pseudorandom
or quasi-random sequence. ). Then, the Crude Monte Carlo estimate of the integral
of a function f(z) can written as follows: AN('y) =% Zfi] f(=;).

In the example, this estimate is recomputed M times using a new sample each

time in order to approximate the root mean square error (rmse) of the estimate

11



as follows:

r'mse(fiN) = \/E((AN(Q)“A)Z)

1 M.
d M E(AN('yk) - A)2

&

k=1

where A is the exact value of the integral being estimated, {‘yk}f‘;l 1s a set of M
pseudorandom or quasi-random samples, and Ay(y,) are the associated estimates.

Notice that knowledge of the exact solution is used here. In general, the exact
solution is (obviously) unknown. Therefore, another way to approximate the rmse
is needed. To do this it is assumed that each estimate is independent. This
is a falr assumption when using pseudorandom sequences. However, it could be
questionable when using quasi-random sequences. For the examples I have studied
this assumption has not given me any problems, but it certainly is a matter which
could be studied further, Another assumption is that the estimate A n is unbiased,
or at least that the bias is an order of magnitude lower than any statistical errors.
This will be true for all of the examples. The rmse is then estimated by computing
the sample variance of the M values of A ~{y) and then taking the square root.

This can be written as follows:

-5 (Awtv) - Aw)’

k:l

rmse(Ay) ~ J

where Ay = % Zfii Anl(yg)-
This sample variance will be a good estimate as long as M is sufficiently high

and the assumptions above hold.

12



Once rmse(/i ~) has been approximated for several different values of N using
either method above, the convergence rate can then be approximated by using the

following linear relationship:

-~

rmse(Ay) = eN® (2.16)

~

= log(rsme(Ay)) = log(eN®)

~

= log(rmse(Ay)) = log(c)+ alog(N) (2.17)

Now we can find the approximate convergence rate by computing the least
squares line for log(rmse(Ay)) against log(N) and taking its slope a. The con-
vergence rate is then of order O(N¢), where « should be less than zero. For
pseudorandom sequences, we expect ¢ to be near —31, while for quasi-random se-
quences the expectation is that a lower value of a, near —1, will be observed. The
same computations using Iog(rmse(/iN)) against the logarithm of {5, the average
cpu time to compute A ~, allow estimates of convergence relative to cpu time to

be made, This is done to provide a more fair comparison by taking into account

any extra computation time needed when using quasi-random sequences.

Example 1 The following integral:
I = /1.8 sin{zy + x4 -+ zg)dzy .. . drg
is approzimated using crude Monte Carlo estimates of the form AN = % Eil f(=z;)

where each x; = (z4,...,zg) 1s an 8 dimensional point from either a pseudorandom

13



or Halton quasi-random sequence, and f(x) = sin{x; + x5 + + - + z5). Defining
y=(2,...,2x) € RV as a full sample of N points and An(y) as the associated

estimate, the root mean square error of /—iN is approzimated by the following:

\ 1 M.
rmse(Ay) = \j W > (An(ys) — A)?

k=1
using the exact solution A= 7%, and M =75 trials.

Some numerical results are given in Table 2.1, which shows the computed rmse
and average cpu times for selected values of N, as well as the convergence rate
estimates. Figure 2.1 contains plots of log(rsme) versus log(N) end log(rsme)
versus log(ty) on which one can graphically observe differences in convergence rates

by comparing slopes. As expected, the quasi-random sequences provide a significant

improvement for this ezample, as is evident from both the table and plots.

An examination of the results for Example 1 in Table 2.1 and Figure 2.1 in-
dicates that while the quasi-random points take longer to compute, the improved
convergence more than makes up for the difference. This is typical of a success-
ful application of quasi-random points to a Monte Carlo method. There is some
overhead and extra computation time involved, but the gains in convergence will
more than make up for it. Of course, this is not always the case, especially when
dealing with Monte Carlo methods which produce discontinuous or very high di-
mensional integrands, as will be discussed in Chapters 5 and 6. However, I intend
to demonstrate that in several important a,pplicationé improved convergence rates

using quasi-random sequences are possible and allow one to obtain more accurate

14
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Figure 2.1: Log-Log Plots for Example 1.
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Integration Example, Crude Monte Carlo

Pseudorandom Halton Quasi-Random

N rmse(Ay) ty rmse(fiN) iy
200 0.037070 | 0.00400 0.010109 0.00920
800 0.016191 | 0.01600 0.003970 0.03933
3200 0.008167 § 0.06400 0.000806 0.16560
12800 0.004000 | 0.25773 0.000226 0.70733
51200 0.001907 | 1.03853 0.000059 3.02893

Root Mean Square Error, rmse, Convergence Rates

Pseudorandom Halton Quasi-Random
vs IV vs iy vs N vs iy
-0.505 | -0.504 -0.925 -0.884

Table 2.1: Results for Example 1.

results in a shorter amount of time, as they do here in this simple example.
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CHAPTER 2

Quasi-Random Sequences for Monte Carlo Integration

3.1 Disérepancy

Quasi-random sequences are specifically designed to spread out more evenly
than random or pseudorandom sequences. A measure of this property, developed
by number theorists is known as discrepancy (see Niederreiter [42]). In fact,
an alternate name for quasi-random sequences is low-discrepancy sequences. In
general terms, the lower the discrepancy of a sequence, the closer it is to being
perfectly uniformly distributed.

One might think that independent random points from a uniform distribution
would be ideal, but while they are not bad, there are better sequences in terms of
discrepancy. The problem with random or pseudorandom sequences is that they
are ‘random,’ so while one expects them to spread out uniformly, they will not
always do so in an efficient way. One might next think that points on an equally
spaced grid would obviously be best. In one dimension this is correct, but in more
than one dimension, and increasingly so as the number of dimensions increases,

such grid points are actually quite poor. A simple argument is that, for example

17



in three dimensions, among N grid points only N/3 unique values along each
coordinate are used.

As discrepancy measurements will show, for a moderate number of dimensjons,
d, points from quasi-random sequences spread out more uniformly than either
pseudorandom points or equally spaced grid points. This will turn out to allow
Monte Carlo methods using quasi-random sequences to achieve faster convergence

rtates.

Definition 1 (Local Discrepancy) Given a sequence of points, {a;}N | in I¢,

=1

and a subset J = Hfzi[O,j,-) C I, the local diserepancy over J is defined by

D(J) = '% - vol(J),

where A(J) = # of points contained in J

Definition 2 (Discrepancy) Given a sequence of points, {z;}N, , in 19, the

discrepancy, D, is given by the mazimum local discrepancy:

D= sup D(J)
JIH[U).Z;{)

A classical result of Roth gives a lower bound on D as D > O(N-1(log N)/2)
for any sequence in /? as N — oc. However, the best quasi-random sequences
found to date have discrepancies of order O{N—1(log N)?). This is an area of active

research (see for example Niederreiter [44]). On the other hand, for pseudorandom
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sequence type | asymptotic discrepancy | observation

pscudo-random O{N-1/2} independent of dimension

quasi-random O{N-1(log N)?) weak dimensional dependence
grid-based O{N-V/d) strong dimensional dependence

Table 3.1: Discrepancy Comparison, d = dimensions.

sequences the discrepancy is of order O(N-1/2), while for grid-based points (e.g.
XN, = (TVL,’ NLx)) the discrepancy is of order O(N-1/4). Table 3.1 summarizes
these results.

For more information about the computation of discrepancies, see Halton [21]
for the Halton sequence, Niederreiter [42, pg.1018] for a typical pseudorandom

sequence calculation, and Fox [13] for the equally spaced grid.

3.2 Koksma-Hlawka Inequality and Convergence

The usefulness of discrepancy comes from the following theorem which states
that whenever a sequence of points is used to approximate a definite integral by
averaging function values {such as in Crude Monte Carlo}, the absolute value of the
error can be bounded from above by a product of the discrepancy of the sequence
and a constant depending on the integrand known as its variation. This theorem

along with the discrepancy results from the previous section provide proof that
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Monte Carlo integration using a quasi-random sequence of points does in fact
converge to the correct result, and importantly that the convergence rate is of the
order O(N~1(log N)4) for large N.

First we must define the variation of a function. There are several different
measures of variation which are useful for various purposes. The one we require is

known as the Hardy-Krause variation. It is defined as follows:

Definition 3 (Hardy-Krause Variation) For function f on I and subinterval

J = [ad) al)] x [a{®, af? Nx-ox [al?, af {91 ¢ 14, let,

2 2 2
= Z Z Z(~1)c1+---+cd f(ag),ag),___,agf))
ey=1 =1 eq=1

In order to define o partition P of 14, first select a set of d finite sequences with

points in [0,1]:
Omyéj)<u§j)<---<u1(7{} =1 ,G=12...,d)

Then, the partition consists of the following subintervals:

d
[1 ‘f} )! Vz(l-%-]} X [Vtg 7”12-}“1] X - [V‘o‘.d b V‘l(dil]

over all sets of i; with 0 <¢; <m,, (7=1,2,...,d).

Now, define the Vitali variation of a function, f, in d-dimensions as follows:

I/;(‘” sup Z IA(f;J

Jer

Let VIR(fi4y,...,4;) denote the Vitali variation in k-dimensions of the function

[ restricted to the k-dimensional subspace (z;,z,,,... } with all the unused

» Lip
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components set equal to 1. For example, if f is five dimensional we might have
VE)(f;2,4,5), which would equal VI f(1,2,,1, 24, 25)).

Finally, the Hardy-Krause Variation is defined as follows:

d
V(f):Z . Z K,(k)(f;ihim'“:ik)

k=1 1<) < <ap <d

Functions for which the Hardy-Krause variation is finite are said to be of
bounded variation (in the Hardy-Krause sense).

Now the Koksma-Hlawka Inequality can be stated as follows:

Theorem 1 (Koksma-Hlawka Inequality) For any sequence, {x;}r. , in I°

and any function, f, of bounded variation (in the Hardy-Krause sense), over I¢,

SV(D

L3 s [, fepts

s
where V(f) is the Hardy-Krause variation of f.
The proof of this theorem is omitted but can be found for example in Kuipers
and Niederreiter {35] or Keng [39)].
Using the Koksma-Hlawka inequality and the asymptotic discrepancy results

in Table 3.1, one gets the following error bounds:

pseudorandom : |err| < O(N~1/2) (3.1)
grid : |err| < O(N-V4) (3.2)
quasi-random : |err] < O(N-1'log(N)?) (3.3)

Note that the errors considered here are definite errors of deterministic se-

quences rather than statistical errors, although the bounds are only asymptotic
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in nature. Therefore, in computational studies, I will be using repeated trial runs
with new quasi-random or pseudorandom sequences for each trial to estimate the
roo? mean square errors of Monte Carlo estimates, which encompasses both de-
terministic errors and statistical errors. This is discussed further in Example 1.
The convergence rate for pseudorandom sequences here corresponds well with the
expected statistical convergence rate. In the case of truly random sequences of
points, the discrepancy is itself a random quantity, but its expected value is near
order O(N-1/2}, which is what one would expect (Niederreiter [42]).

The results above provide evidence of the relative merits of pseudorandom,
quasi-random, and grid-based sequences for integration. For very high dimen-
sional problems, pseudorandom sequences appear to be the best choice, while for
low dimensional problems, grid-based points ~ in the traditional form of finite dif-
ference methods or Newton-Cotes integration formulas are best. However, in the
intermediate range of roughly 4 to 30 dimensions, quasi-random sequences, when
used properly, are often the best choice, which is of course one of the things which
I am setting out to demonstrate,

One should not however place too much importance on the actual bounds
themselves, since they are not sharp and are also ‘ou]y asymptotically correct. In
many cases there is no good rule as to how high N must be before the asymp-
totic results dominate, and often it is simply a matter of observing computational
results to decide whether or not N is high enough. For example, William Mo-

rokoff (Morokoff [41]) found evidence that as d becomes higher, the value of N at
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which quasi-random sequences start to exhibit their asymptotic behavior becomes
exponentially higher.

On the other hand, discrepancy is important in that it does provide a theo-
retical justification for the application of quasi-random sequences to Monte Carlo
methods through the Koksma-Hlawka Inequality. In addition, the Koksma-Hlawka
Inequality provides clues to the most important factors affecting the success of
guasi-random sequences. As will be discussed, these are the continuity of the
integrand and the dimensionality of the integrand.

Most discontinuities will have an adverse effect on the success of quasi-random
sequences. This is suggested by the Koksma-Hlawka Inequality since its hypothesis
of bounded variation fails for discontinuous integrands in more than one dimension
except in special cases.

High dimensions will also adversely affect the success of quasi-random se-
quences, as is snggested by the (log N)¢ factor in their discrepancy bounds. Com-
putational results in Chapters 5 and 6 will confirmn the importance of these two
factors, and this knowledge will serve as a guide to obtaining improved results with

quasi-random sequences throughout this thesis.

3.3 The Halton Sequence

The Halton sequence is a particular quasi-random sequence with a relatively

simple construction. I will be using the Halton sequence whenever a quasi-random
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sequence is needed. For the Halton sequence, as for other quasi-random sequences,
in d dimensions the discrepancy is of the order O(N-1(log N)4).
The Halton sequence is constructed as follows :

To compute the particular Halton point, @, in d dimensions,

1. Expand k in powers of each of the first d primes,

i.e. find ag’j) yt=1,...,d,j=0,...such that

(]O)+G(1 1))+(l(1 2)22+ _k

t’t,(km)-l- (21)3+ 22)32+ o=k
(ngz,n)_*_agcd,l)pd_+~ (d2)pi_|_...: L

where p, 1s the dth lowest prime.,

2. Invert the expansions, defining the components of z, by

1 1
1 1,0 1,1

. 1
-'Ei-z) (20) + (21}32+ .

2 = {*p=1 4 aVpo7 4

Thus for example in the 3D case,

Ty = (}/271/3:1/5) y Ly = (1/4?2/3:2/5) y Ly = (3/431/9)3/5) 3
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2, = (1/8,4/9,4/5) , 5 = (5/8,7/9,1/25) , T = (3/8,2/9,6/25) , ...

Normally one starts with £ >> 1 to avoid the initial closeness of the high dimen-

sional components to zero.

3.4 Other Quasi-Random Sequences

I have used the Halton sequence as a representative of all the various quasi-
random sequences since it is the most straightforward to understand and program.
Theoretical results indicate that some of the other quasi-random sequences have
lower proportionality constants for large N and d (they all have the same asymp-
totic order with respect to N), which has led some to prefer these sequences (see
for example Fox [13]). However, I have found in most of my work that the Halton
sequence performed just as well, if not better, than some of the other quasi-random
sequences. Others have reported similar findings (Morokoff [41], Harrison [24]).

For the sake of completeness, [ have done some computations using another par-
ticular quasi-random sequence known as the Sobol sequence (Sobol” [55]). These
results were comparable to those found using the Halton sequence and will not be
reported here.

Other important quasi-random sequences include the Faure sequence and a
collection of sequences developed by Niederreiter {Niederreiter [43]) which he terms

(t, s)-nets.



CHAPTER 4

Variance Reduction Using Importance Functions

Variance reduction refers to a number of techniques which have been developed
to improve Monte Carlo methods. Recalling the result from Section 2.3, for Crude
Monte Carlo integration of A = [, f() g(2) de using @ distributed according to

g(), which is assumed normalized, we have the following:

A 1 X
Ay = i Z:f(cci) ,  x; € g(z) (4.1)
rmse(Ay) = LNJg(f) | (4.2)

Variance reduction methods have the effect of lowering the constant factor
a,(f). While this does not affect the underlying convergence rate, it can greatly
improve the resuits when the constant factor is significantly reduced. These meth-
ods are widespread, and indeed Monte Carlo would probably be worthless in most
practical applications without some use of variance reduction.

Some of the more common variance reduction techniques include Importance
Sampling, Control Variates, Antithetic Variates, and Stratified Sampling. For
many of these methods, the use of quasi-random sequences in p]ace of pseudoran-
dom sequences is straightforward. However, in some instances there are significant

issues that arise when quasi-random sequences are used which are not present
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when pseudorandom sequences are used. An example, which will be studied in
some detail is the case of Importance Sampling using the Rejection Method. I will
show that a similar, but less well-known method known as Weighted Uniform Sam-
pling is often significantly better than Importance Sampling when quasi-random
sequences are used even though both methods are often about equal when pseu-
dorandom sequences are used.

In this Chapter, I will introduce Importance Sampling, the Rejection Method,
and Weighted Uniform Sampling from a purely statistical point of view. Later, in

Chapter 5, the application of quasi-random sequences will be examined.

4.1 Importance Sampling

Say one wishes to estimate A = [, f(x)g(x)dz, where ¢ is normalized as
mentioned above, and also ¢ is strictly positive. Then, when [ is single-signed,
or nearly single-signed, or the domain, D, can be easily divided up into regions
where f is single-signed, importance sampling provides a way to greatly reduce the
variance,

Importance Sampling involves finding a positive definite “importance function,”
h{z), which mimics the behavior of |fg| over D but is also either integrable ana-
lytically or easily integrated numerically to a high degree of accuracy (for example
it could be a product of one-dimensional functions). The sampling procedure is

then altered to generate points distributed according to h{a), which is normalized,
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instead of g(x). Then instead of evaluating f(x) at each sample point, one eval-
uates W) The effect is one of sampling more often where |fg| is high and
less often where it is low. This improves the efficiency of the sampling. Also if

h mimics |fg| well, then i;f will be nearly constant modulo sign changes, which

reduces the variance significantly when fg is mostly single-signed over D.

The Importance Sampled Monte Carlo estimate can be written as follows:

Ay = %; fm%i%ﬂ . 2 ¢ h(e) (4.3)

Now consider the following computations:

N x. T.
R

1 ¥ ‘ i .
= N ZEh (%—Q) , using Eqn 2.11

_ 1 fo\ _ 1 f(=)g(=x) :
- jV‘NEh (z—) = o k) h{z)de | using Eqn 2.1
= A
U & A I CATCH AN (fa
var(Ay) = var (”ﬁgww) = W'N-vmh (7{)
= L e (19
=y U (T)

x) g(x (z) g{z)\ >
- (5 (15 o

This shows that the estimate is unbiased, and that its variance would be zero if
h were exactly proportional to |fg| and fg were strictly single-signed. In practice
these conditions cannot be met exactly, especially the first, but when they are

nearly satisfied the variance is very small.
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4.1.1 The Rejection Method

The process of generating sample points distributed according to h(x) can be
difficult. In some special cases a direct transformation can be used to convert
uniformly distributed points to those distributed like A, or if ¢ is the natural
distribution of sample points a direct transformation from points distributed like
g to points distributed like » may be possible. However, it is often the case
that neither of these transformations is readily available. It can also happen that
an exact transformation is known but it is extremely costly to execute on the
computer.

A general technique for transforming sample points from g(z) to hA{z) where
both are normalized is the Rejection Method. Here is the basic algorithm for
the Rejection Method:

Repeat until N points have been accepted:
1. Sample z, € g(z) and y € U(]0, 1]).

R, hi{D
2. fy< % T;"(L%% , where ¥ > supgep o) 20 E(L:E%’ then accept x,.

3. Otherwise, reject x,.
The justification of this method is demonstrated as follows:

Denote the probability density of points selected in step (1) as f,.p.(2) and

the probability of accepted points produced by the Rejection Method as f,cepi(2).



Then,

Fsetecs (&) Prob{accept x}

fD fscIect(&) Pv'ob{accept g}dg
g(@) - Prob{y < 1 M3}

v (T}

I |9(8) - Probly < 2481} ] ag

g

faccept (CL‘ )

5k
fp M8 4
faccept(m) = h(.‘l’))

This shows that the Rejection Method correctly samples the probability density
h(z). (Note: When the original samples are uniformly distributed over ¢, the unit

cube in d dimensions, then g(x) = 1.)

4,2 Weighted Uniform Sampling

Weighted sampling refers to methods which involve assigning each sample point
an associated weight, and then using weighted averages to compute Monte Carlo
estimates. These methods can be used in cases with any initial sample distribution
g(=x), but I will be dealing primarily with the case where the original sample is
uniform, in particular with sequences of pseudorandom or quasi-random points,
hence the name Weighted Uniform Sampling. This type of method is described in
Powell and Swann [46]. They present a convergence proof, but without providing
estimates of the bias and variance as I do here. My treatment is based on material

in Hansen, Hurwitz, and Madow {23, in which they discuss properties of ‘ratios
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of estimators’ in general. However, I believe that my use of their results to obtain
bias and variance estimates for Weighted Uniform Sampling is new.

Weighted sampling can be used in place of Importance Sampling by using the
importance function A{z) to assign weights instead of transforming the sampling
distribution. For example one could obtain such a method from the Rejection
Method by replacing the acceptance-rejection step with the simple assignment of a
weight, }y—;i{(g—::)l, according to the acceptance probability. This eliminates the need

for an additional random variable y. The resultant estimate can be written as

follows:

N f(m 1 M&Ty)
fi _ Z,_] (wyﬂl‘)) z. € ( )
N - N 1 3 J

=7, ,,,J—%
N
= f(mi)
= SElEg o ®mEgx) (44)
Lim a{&y)

In the next section I will show that this method is biased, but that the bias is
smaller than statistical error levels. Later in Chapter 5, we will see that this method
is comparable to Importance Sampling when using pseudorandom sequences, as one
might expect given the similarities. However, when quasi-random sequences are

used Weighted Uniform Sampling is often significantly better.
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4.3 Statistical Convergence Results

We have found three Monte Carlo estimates for integral 4 = [, f(z) g(x) dz

)

with g(z) normalized, as follows:

Crude MC: Ay = —-zf , x; € g(x) (4.5)

t-..l

N
Importance Sample MC: Ay = izwﬁ , x; € h(z) (4.6)
N =1 h(mt)
: y Ty f(=i)
Weighted Sample MC: Ay = =l Mag 0 T € g(x) (4.7)
21—1 9(T:)

In the simple case where D = [0,1]¢ and ¢ = 1, uniform, we have:

X 1 Y
Crude MC: A4, = _ﬁ Zf(ae,—) , zelU(D) (4.8)
Importance Sample MC: Ay = - 5~ /() z; € h(z) (4.9)
N = h(z;) T T
. 1 zml f(a:,)
Weighted Sample MC: Ay = N Wz x; € U(D) (4.10)
1*1 Wy .

rmse(Ay) = —=a,(f) (4.11)

Also, the importance sampling estimate is unbiased, as shown in Section 4.1,

and has a variance given by % var, ({f) Therefore it satisfies the following:

rmse(Ay) = %oh (i;-fn) (4.12)

The computation for A n will require a bit more work. I will consider only the

simple case where D = [0,1]? and ¢ = 1, uniform, but the general case is similar. 1
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will assume that the absolute value of the solution, [A}, is bounded away from zero
by € > 0. Recall that an importance function is only useful when the integrand
is nearly always the same sign. 1 will also assume that |f| is bounded by some
constant, M,;, and that the importance function, h, is normalized, positive-definite,
and bounded by constant M,. These assumption are not all necessary, but they

will make the analysis simpler, and cover the examples I will study.

Let,
N ' N
F o= Sf) , H =Yk
i=1 =1
F—-EF H—-EH
AF = P , AH = —H
Then,
EF = NA
EH =
F—EF EF —EF
E(AF} = E'( P )_T_O
EAH-“EHEH”EH*EH—O
(AH) = EH B EH B
. (F — E'F var( F') var{F)
E((aF)y) = E( ) T (EBFRE T NTA
, H EH var(H var(H
E(AHY) = E( ) = (EH)z) -
F - EF H - EH cov(F, H)
E(aF-AH) = E( EF EH ):W

Now consider the following:

E(Ay) = E(g—)
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_ p(BFO+AR)\ _ BEF . (13AF\ (14+AF
- "\EH(+AH)) T EHT\144AH) ~ 1+AH

= AE[(1+AF) (1= AH+ (AH)? — (AHY + (AHY +--)]
= AE(1+AF—AH —AFAH + (AH? + AF(AH)? +-..)

= A(l-EAFAH)+ E((AH))+ E(AF(AH)?) +--)

cov(F, H) N Avar(H) N

= A- N2 N2

If the points are independent identically distributed (i.i.d.) random points,

then we have the following:

var(H) = Nwvar(h) , by Eqn 2.12
cov(F,G) = E{((F-EF)-(H-EH))

= B|(Sstw) - N 87) (L hten - )

N N
— B (LU - BN D) - 1)
N N
= 23 conlf(ei) hlz)

= Ecov(f(mi)?g(wi)) ] COU(f(:B{),g(ﬂL‘j)) =0 vz :féj

cov(F,G) = N-cov(f,g)
It is also shown in the appendix that the following are true:

E((AHY) = O(NT?)

E(AF(AH)Y) = O(N-+1/2)
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This leads to the following result:

. Avar(h) 3 cov(f,g) +0

E{(Ay)=A+ N N (N-3/2)

Therefore the weighted uniform sampling estimate is biased, but the bias de-
creases like 1/N.

The bias can be expressed as follows:

Avar(H)  cov(F, H)

bias(Ay) = e E + .-, in general (4.13)
y Avar(} :
bias(Ay) = ”j’\’,( ) Cov% 9) L O(N-42) . iid. samples (4.14)

For the variance, consider the following first:

E(A%) = E(—}F};)
B (EFR(1+AF2\ . ((+AF)?
a E((EH)2(1+AH)2) =4 E((I+AH)2)

= A?E[1+AF)?(1-2AH+3(AH)? +--4)]

= A?E[l+2AF + (AF)? —2AH —40F AH + 3(AH)? 4 -]

var(F) 4Acov(F,H) 3A%var(H)
I R ' R

= A?+

Then we use the basic rule var{z) = E(z?) — (Ez)?, and a similar argument

to the one above to obtain the results:

var(F) A?var(H) 2Acov(F,H)

var(Ay) = e + g +-+- , in general (4.15)
. () Avar(h) 2 Acov(f,h
var(Ay) = ”“;\f‘f )4 v;’(”)—» co;r(f ) L o(N-51) | iid (4.16)

Finally, using Equation 2.8, we have the following results:

w

mse(Ay) = var(Ay) + (bias(Ap))?



var(f) A?var(h) 2Acov(f,h)
N TN TN
» 2 _
rmse(Ay) = \/U(l (f1+A varl(’i:) 2Acov(f,h)

+ O(N-32)

+ O(N-3/1)  (4.17)

Recalling Equations 4.11 and 4.12, we see then that all three methods have a
convergence rate of order O(N~1/2) with random points, which is to be expected.

Variance reduction as a result of using Weighted Uniform Sampling is not im-
mediately apparent. However, it is present in a way which is similar to Importance
Sampling though not identical. Consider the following hypothetical situation:

Say f were strictly positive over D and we already knew the exact solution,
A. Then we could use h(z) = L(AEL as the importance function. In the case of
importance sampling, this would give us %%» = A with zero variance. On the other
hand, in the case of weighted uniform sampling, we would have var(h) = B%%Q and
cov(f,h) = l’ﬂl}'iiii which by Equation 4.14 leads again to a zero variance condition
(in fact all of the higher order terms would cancel as well).

In practical applications A is, of course, unknown and f may not be single-
signed. But if & is a good importance function which is nearly proportional to f,
and f is single-signed or nearly so, then the positive correlation between f and h

will tend to reduce the variance of the weighted estimate to much smaller values

than the crude estimate.
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Part 11

Applying Quasi-Random Sequences
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CHAPTER 5

Discontinuity Avoidance

5.1 Reduction of Convergence Rate with a Discontinuous Integrand

The use of quasi-random sequences to accelerate the convergence of Monte
Carlo estimates is, in general, significantly more successful when the computed es-
timates vary continuously as a function of the quasi-random points used to compute
them. This means in particular that when estimating an integral, the integrand
should be continuous and any transformations or other operations involved in the
process of evaluating the integrand should be continuous as well.

The sensitivity of quasi-random sequences to discontinuities is suggested by the
Koksma-Hlawka Inequality, which fails whenever discontinuities cause the variation
of the integrand to become infinite. Computational results, some of which will be
presented here, also support the conclusion that discontinuities should be avoided
when using quasi-random sequences.

We can therefore greatly improve the effectiveness of quasi-random sequences
in cases where traditional Monte Carlo methods inherently produce discontinuous

integrands by modifying these methods so that they instead produce continuous

P,



integrands. It is important to realize that in complex situations the integrand is
often not given explicitly but depends on the entire process of generating samples
and evaluating functions. The term effective integrand will refer to this entire
process acting on the initial samples of pseudorandom or quasi-random points. A
discontinuity anywhere in the process can hurt the performance of quasi-random
sequences. Thus, when one is able to successfully eliminate all the discontinuities,
the acceleration of convergence is often significantly improved, revealing the full
benefits of quasi-random sequences. In the subsequent sections we shall examine
the integration of characteristic functions and the use of the Rejection Method in
this respect.

First, let us examine the relationship between continuity and quasi-random con-
vergence more closely. The Koksma-Hlawka Inequality provides an upper bound
on convergence as |err] < V(f)D, where D is the discrepancy of the sequence
and V(f) is the Hardy-Krause variation of the integrand. Consider the following
integrand on [? = [0,1]2 C R?:

0 Hx<y

fla,y) =

1 otherwise

The Hardy-Krause variation of this function is unbounded because for any
partition of the domain, at each wx; of the partition, (i = 1,...,m,), there must be
at Jeast one subinterval, J = [z;_y, 2] % [y;_1,v;], for which A(f; J) is equal to one.
(Note: See Section 3.2 for definitions of these terms.) Therefore, as the partition

becomes finer and m; — oo, the Hardy-Krause variation also must become infinite.
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An infinite variation (in the Hardy-Krause sense) means that the Koksma-
Hlawka Inequality fails to hold for this function. This suggests that an attempt
to integrate the above function using quasi-random sequences might not even con-
verée, and it puts into doubt the accelerated convergence expected when using
quasi-random sequences. By a similar argument one can show that the variation is
always infinite when a discontinuity occurs along any direction which is not parallel
to a coordinate axes. It may seem strange that the direction should matter, but
quasi-random sequences are designed to minimize the discrepancy which is itself
tied to the cartesian coordinate system. Therefore, one should not be surprised
to find that the directions can be a factor. Of course in the case above one could
simply rotate the coordinates to get the discontinuity along an axial direction, but
in more general cases the discontinuities are seldom strictly along straight lines.

The Koksma-Hlawka Inequality suggests an all or nothing situation with re-
gard to convergence using quasi-random sequences. However, computational re-
sults suggest a more graduated situation. When there are no discontinuities at
all, convergence rates are of order O(N-1(log N)?¢), and when there are numerous
large discontinuities in non-coordinate directions, convergence rates are actually
very near to order O(N-1/2). With fewer or smaller discontinuities, the results
are typically between these two extremes. A heuristic argument for this is that
near jumps, the positioning of a particular point just to one side or the other is
basically ‘random’ at such an infinitesimal scale. Hence, convergence rates of order

O(N-1/2) associated with random points are observed, more so the more jumps
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there are and the larger they are. Unfortunately, aside from the Koksma-Hlawka
Inequality, there is little theory with regards to this issue since it is such a rela-
tively young topic. However, the computational results found by myself and others
Lave been quite clear and consistent (see for example Press and Teukolsky [47] and
Morokoff [41]). In computational studies it is most interesting to notice how elimi-
nating the discontinuities in an integrand has almost no effect on convergence with
pseudorandom sequences while it greatly improves convergence with quasi-random

sequences.

5.2 Example: Integration of Characteristic Functions

In order to explore the effectiveness of avoiding discontinuities when applying
quasi-random sequences to Monte Carlo integration, I have studied the integration
of characteristic functions. Such functions, denoted by the symbol y, are defined

as having the value 1 over a specified set, and the value 0 over its complement.

1 fezeEC R
xe(z) =
0 otherwise

Such a function is clearly discontinuous along the set’s boundary, where its value
jumps from 0 to 1, and unless the boundary is completely parallel to coordinate
axes the variation is infinite. However, since the integral is simply the volume of
the set, £, in d dimensions, it is often possible to replace the characteristic function

with a continuous function which has its edges ‘smoothed out’ without changing
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the value of the integral (see Figure 5.1). In such a case, the crude Monte Carlo
estimates of each of the above equal integrals have nearly the same error levels
when pseudorandom points are used, but when quasi-random points are used, the
smoothed version converges more rapidly and the estimates for it are more accurate
than those for the original integral. This is to be expected based on the discussion

in the preceding section.

B
Example 2 Comparison of crude Monte Carlo estimates using pseudorandom and

quasi-random (Halton) sequences of points for the following two 8 dimensional

integrands over I3:

Let,
\/E(E]“I‘iﬂ-z‘l‘ws 1 [ } 1]

€
242 2.
V2(1 =2+ 2y +a; 1 { 1 1]
Uy = S

24+ /2 9
11
2’9

311 iful <2

falzy, 2y, 25) = H<

k=1

—&y + &3
9

4

0 otherwise

»

3

falzy,zs,2s) = JI9 0 if gl > 246
k=1

Sleal=2)  o4permise

28

\

Then f, is the characteristic function of a rotated cube, while fg is a continuous
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Original, discontinuous function :

d, continuous function :

Revise

Example 2.

Figure 5.1: 2D Versions of Functions used in
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function which has the same integral over I3:

171 g1 5 5 g5 d
LI [ tatorznas) dosdasday, = [° 7 [° gy |Gt )] g g g,
g Jo Jo —5J—-5J=5

d(zy, $2a933)

.2 2 2
= o
- j‘-2 ];-2 -/:-.2 1.0 duyduydu; = (4)° = .064
1 1 g1 5 g5 p5 d(tey, Uy, Us)
LU fmam it = [ [ 22225
26 246§ (g — 9

= 7 Lo [T

—2+5 os 5%

246§ — (u~.2) ®
+ -/.2-6 246 du}

= (4—26+6+6)3 =.064

The results of crude Monte Carlo estimation in three different cases are com-
pared: First, the discontinuous case; second, the continuous case with weak smooth-
ing (6 = .025); and third, the continuous case with strong smoothing (6 = .1). See
Ezample 1 in Section 2.3 for further explanation of the results. Here, as in Exam-
ple 1, 75 repetitions are used to obtain estimates. Results for selected values of N
are shown in Table 5.1 along with convergence estimates. Full results are plotted

e Figure 5.2.

The results for this example show that the quasi-random sequences are much
more sensitive to the continuity of the integrand than pseudorandom sequences.
The slight decreases in the error seen with pseudorandom sequences are explained
by a slight variance reduction as a result of the smoothing. However, the much
larger decreases for quasi-random sequences cannot be explained by this alone.

It should be obvious by now that significant reductions of error are possible
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Figure 5.3: Log-Log Plot vs t(sec) for Example 2.
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Pseudorandom Sequences

Discontinuous Continuous, § = .025 | Continuous, § = .1

N rmse(Ay) in rmse(Ay) in rmse( Ay) iy
200 0.015541 | 0.00293 0.013824 | 0.00347 $.010166 | 0.00360
800 0.008365 | 0.01200 0.008272 | 0.01387 0.006334 | 0.01413
3200 0.004185 | 0.04800 0.003935 | 0.05507 0.003230 | 0.05813
12800 0.002366 | 0.19227 0.002341 | 0.22133 0.001831 | 0.23227
51200 0.001110 | 0.76613 0.001022 | 0.87520 0.000775 | 0.93227

Halton Quasi-Random Sequences

Discontinuous Continuous, § = .025 || Continuous, § = .1

N rmse(Ay) iy rmse(Ay) iy rmse(Ay) tn
200 0.009324 | 0.00587 0.008139 | 0.00653 0.002381 | 0.00667
800 0.003800 | 0.02507 0.002522 | 0.02720 0.000704 | 0.28000
3200 0.001710 | 0.10933 0.001003 | 0.11440 0.000252 | 0.11787
12800 0.000789 | 0.45440 0.000456 | 0.48187 0.000096 | 0.49467
51200 0.000275 | 1.93453 0.000117 | 2.03747 0.000027 | 2.09507

Root Mean Square Error, rmse, Convergence Rates

Discontinuous Continuous, § = .025 || Continuous, § = .1
SeqType vs N vs iy vs N vs iy vs N vs ty
pseudo -0.481 | -0.479 -0.488 -0.489 -0.490 | -0.491
Halton -0.618 | -0.593 -0.713 | -0.690 -0.802 | -0.772

Table 5.1: Results for Example 2, 75 trials.
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when quasi-random sequences are used in place of pseudorandom. In this ex-
ample, even in the discontinuous case, the quasi-random sequences outperformed
psegdorandom. However, in more complex situations, this is not always the case.
It sometimes appears that quasi-random sequences will not be useful because there
is no appreciable gain in convergence when they are first plugged into an exist-
ing method which is inherently discontinuous. However, in many of these cases,
if one finds a way to modify the method so that the estimates are a continuous
function of the sample points, then quasi-random sequences will indeed improve

the convergence, thereby justifying their use.

5.3 Application to Variance Reduction with Importance Functions

The concept of avoiding discontinuities becomes a practical consideration when
quasi-random sequences are applied to Monte Carlo methods which are inherently
discontinuous. There are many instances of this, and when quasi-random sequences
are directly substituted for pseudorandom sequences in such cases, the results are
often, not surprisingly, quite poor. This has led some, I believe, to prematurely
decide that quasi-random sequences are ineffective for such situations. However, I
have found that when one is able to modify such methods so as to avoid disconti-
nuities, dramatic improvements are possible and convergence rates can indeed be
improved using quasi-random sequences.

One such instance, which will now be examined, is when an importance function
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is used as a variance reduction technique. This is very common. Often, an Impor-
tance Sampled Monte Carlo estimate is computed using the Rejection Method to
transform a sequence of uniformly distributed points to the required distribution
for i'mportance sampling. There 1s another, less widely used alternative, perhaps
because it is biased, which is Weighted Uniform Sampling. It involves assigning
weights to the sample points instead of accepting or rejecting them. Both of these
methods are discussed and analyzed from a statistical point of view in Chapter
4. In the next few sections I will show that the Rejection Method leads to dis-
continuous integrands and therefore should be avoided when one intends to use
quasi-random points, while Weighted Uniform Sampling is well-suited for quasi-
random points. For cases in which the Rejection Method is strongly preferred, I
present a smootlhied version which will work better than the Rejection Method with
quasi-random points, but usually not quite as well as Weighted Uniform Sampling.

Finally, some computational results will be presented.

5.3.1 Discontinuous Nature of the Rejection Method

The Rejection Method is a method for transforming samples from an initial
distribution g{=x) to a desired new distribution A(z). The algorithm is presented
and justified in Section 4.1.1. Here, | will treat the case when the initial distribution
is uniform over the unit d-dimensional cube, 14 = [0, 1]¢. The simplified algorithm

1s then as follows for the Rejection Method:
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Repeat gntil N points have been accepted:

1. Sample {@,,y;) from U([0, 1]¢+1).

2. If Yy < ﬂ%l , where v > sup_c;« h(x), then accept z,.
3. Otherwise, reject x,.

The discontinuous nature of the Rejection Method is apparent when one ex-
presses an Importance Sampled Monte Carlo estimate obtained using the Rejection
Method explicitly in terms of the original uniform sample. This is done by using

a characteristic function to represent the acceptance/rejection step as follows:

Wz, y) = x {y < h(mt)}
"

where @(x,,t) 1s the acceptance weight of the trial point z,, given the value of y.
This only takes on the values 0 or 1.

Then we have the following:

N* x x
i = g tedafu < 5 (e e v, )
where N* is the number of trial points needed to get N acceptances, and (z},y;)
represents the ¢’th sample point from the original uniform sample.

Written in this form, it is apparent that the effective integrand given by fﬁr,
with a weight of W, over 14+ is discontinuous, even when f and h are them-

selves continuous functions. The discontinuity comes along the boundary between

acceptance and rejection, which in general is not parallel to any coordinate axis.
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Therefore, the quasi-random convergence limits from the Koksma-Hlawka fail to
hold, and as discussed earlier, one should not expect significantly improved con-
vergence rates, This appears to be exactly the case in computational studies. An

example will be presented shortly.

5.3.2 Weighted Uniform Sampling as a Continuous Alternative

The Rejection Method is discontinuous as a result of the inherently discontin-
uous nature of the binary decision: accept or reject. Therefore to eliminate the
discontinuity, this decision process must be either smoothed out or eliminated en-
tirely. This can be accomplished by allowing for a weighted sample and associating
with each point a weight according to its acceptance rate. Weighted Uniform Sam-
pling is the result when one eliminates the acceptance/rejection step completely

. . ' . . hE;
and simply assigns each sample point, @, a weight according to —2=-.

The new estimate is ohtained as {ollows:

N = Z}\i M y 3316[]({0,1] )
i=1
T, A
T, A
N
—-——-————g:NZ ';:Ezj , Equ 4.10

Therefore, there is a very close connection between importance sampling using
the Rejection Method and Weighted Uniform Sampling. However, in the latter case

we now have what is essentially the ratio of two Crude Monte Carlo integration



estimates. An estimate of the original function, f, in the numerator, and an
estimate of the importance function, h, in the denominator. It may seem odd
to do this, and the resulting estimate is biased. But, as explained in Section
4.3, the bias is extremely small, while the correlations between numerator and
denominator can significantly reduce the variance. Importantly, as long as both
f and h are continuous, the weighted uniform sampling estimate is continuous,
unlike the Rejection Method. This leads to much better quasi-random results. In
addition, the extra variable y is eliminated, so the number of dimensions is d instead
of d+ 1. This saves some computation time, and, as discussed in Chapter 6, also
helps the performance of quasi-random sequences. Therefore, Weighted Uniform
Sampling should produce significantly better results with quasi-random sequences

than the Rejection Method. The computational examples will demonstrate this.

5.3.3 The Smoothed Rejection Method

Although Weiglxﬁed Uniform Sampling discussed above is an excellent alterna-
tive to the Rejection Method, there are cases when one would still rather use the
Rejection Method. An example would be a situation in which the integrand has
regions of very low importance weight and evaluation of the function f is costly.
In this case the Rejection Method allows one to reject most of the points in such
regions, saving time and effort. On the other hand, Weighted Uniform Sampling

requires one to evaluate [ at all of the sample points, but simply count some of
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them less than others using weights. This can lead to extra work being expended
on relatively unimportant data points, and is usually reflected in higher variance
using Weighted Uniform Sampling than using Importance Sampling with the Re-
jection Method (recall that though both methods reduce variance, the reduction is
not identical). For such occasions, an alternative is the following slightly modified
version of the Rejection Method, dubbed “Smoothed Rejection.” The algorithm
for Smoothed Rejection follows:

Repeat until weight of accepted points exceeds V:
1. Sample (z,,y,) from U([0,1]41).
2. Hy, < M%l — 36 , where v > sup,eje i(x) and § < 1, then w = 1.

3. Else if y, > ﬂ?l + 36, then w = 0.

(ﬂ%ﬁl+%5 —Ye
4. Else, accept @&, with its weight given by w= 5

Representing the acceptance weight given @ and y by w(z,y), one can show

that this method generates samples from the correct distribution as follows:

fectear(z) E{w(z))
7 Futea(€) B(w(€))d€

1- [y wz,y)dy
S [ w(€, y)dy)dé

M

fuccept (:’L‘ )

>
dh
I_.(ﬁldg

~

h(z)/v
1/~

faccept(m) = h(ﬂf})




There is an additional amount of work required by Smoothed Rejection as
compared to ordinary Rejection for two reasons. First, there is the extra work
associated with assigning each sample point a weight and using those weights later
on. This is often a very small amount of extra work. Second, although points with
weight 0 can be thrown out completely, those points with non-zero weights less
than 1 require just as much work as points with weight 1. Therefore, for a sample
of total acceptance weight N, there will likely be more than N points with which
subsequen.‘t computations must be performed. This can be significant. However, in
most cases by setting the fixed constant é to be sufficiently small one can ensure
that the vast majority of points will be assigned weights of 0 or 1. This minimizes
the amount of extra work required. On the other hand, if § is taken too small, one
is effectively back to the original Rejection Method.

The continuous nature of the Smoothed Rejection Method is apparent when one
expresses the estimate obtained using the Smoothed Rejection Method in terms of
the original uniform sample points. Let w(x,,y) represent the acceptance weight.

Then, we have the following:

N T
Ay = }%;ﬁa{k; w(m?,yf) ) (mf,yi)EU([{),l]dH)

where N* is the number of trial points needed to get a total acceptance weight of
at least N, and (x7,y;) represents the <’th sample point from a pseudorandom or
quasi-random sequence of d + 1 dimensions,

Since w{x,y) is a continuous function, the estimate is continuous as long as f
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and h are continuous functions. {Note: This is not precisely true since a slight
weight increase in one point may put the total weight over N a point earlier or
later, however this slight discontinuity is cieariy insignificant.)

With Smoothed Rejection, as with the Rejection Method, many of the points
in ‘low importance regions’ will be rejected, so f will not have to be evaluated as
often in these regions as when Weighted Uniform Sampling is used. That is why
Smoothed Rejection could sometimes be preferable to Weighted Uniform Sampling.

However, my experience has been that with quasi-random sequences, Smoothed
Rejection, while better than the Rejection Method, is usually not as effective as
Weighted Uniform Sampling. Although it is basically continuous, there is still a
relatively sharp slope in acceptance weights in the transition from acceptance to
rejection regions. This leads to higher variation and poorer quasi-random per-
formance, in general, than for Weighted Uniform Sampling, where this boundary
is completely eliminated. Also, Smoothed Rejection requires d + 1 dimensional

sample points, while Weighted Uniform Sampling only requires d dimensions.

5.4 Computational Examples and Results

In order to compare Crude Monte Carlo, Weighted Uniform Sampling, Im-
portance Sampling using the Rejection Method, and Importance Sampling using
Smoothed Rejection, I have considered several multidimensional integration prob-

lems. They have been chosen to be somewhat representative of the kinds of inte-
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grals for which Monte Carlo methods might be applied. As we will see, the results
support the claim that Weighted Uniform Sampling can produce results which are
far guperior to those possible using the Rejection Method or Smoothed Rejection
when quasi-random sequences are used. Also, the results confirm that Smoothed
Rejection is better than the Rejection Method with quasi-random sequences.

As discussed in the first example in Chapter 2, when the exact solution is un-
known, an effective estimate of the error can often be obtained by using repeated
samples of size N and then computing the sample variance of the estimates com-
puted. This depends on an assumption that the error in each successive estimate
is essentially independent of the others, which should clearly be true of pseudoran-
dom estimates, but may be questionable for quasi-random estimates. This is an
open area for future study.

For the examples here, I computed direct estimates of the root mean square
error, as well as the estimates discussed above in order to compare them and get
a sense of the validity of the assumption above. In all of these examples, I found
few differences between these two estimates of the root mean square error.

To check the formulas for the bias and variance of Weighted Uniform Sampling
derived in Chapter 4, I compared estimates based on those formulas with direct
estim;tes of the bias and variance over repeated trials. The formulas checked out
well since there were few differences, except when the bias became too small to

meastre beneath the statistical errors.



5.4.1 Computations for Variance Reduction Examples

We are, in general, estimating the following integral:
A= - flz)dx

where [¢ is the unit cube in d dimensions.

The estimates are as follows:

. 1 X
Crude MC: Ay = ﬁZf(:cl) ,  x; e U(IY)
i=1
N
- b oy f=)
W.US. MC: Ay = =2 2, e U
Z?;l h(mi)
. 1 X .
Rej Meth MC: Ay = — /(@) , x,; an accepted point.
N = k(=)
g 1 ¥ f(=y) :
Smooth Rej MC: Ay = — ) w; w; = acceptance weight, N* > N

where for the last estimate, N* is chosen so that the sum of the acceptance weighté
is within one unit of N.

We will be examining the root mean square error as a function of N for each
of these estimators and either pseudorandom or quasi-random sequences, which is

approximated directly as follows:

1 &
rmse(N) ~ JTZ Z(A%) — A)? (5.1)

k=1

where A%) represents the k-th computed estimate out of R total trials using new

samples of size N for each trial and one of the above estimators.

This can be compared with the standard deviation of the set of R estimates
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which is given as follows:

sdr(N) =~ J o f(/{ﬁ\’;‘) ~ Ay)? (5.2)
R— k=1
where a 15 the average of the R estimates.

In the examples, the values of rmse are computed using the best available
estimates of the exact solutions, A, in Equation 5.1. These were obtained either
using (GGaussian cubature methods or Monte Carlo estimates using extremely high
values of N. On the other hand, the values of sdr computed using Equation 5.2
do not require any prior knowledge of the solution, but they also estimate the root
mean square error {Under the assumption that the errors from repeated trials are
nearly independent, as discussed above and in Example 1).

One can also compare the computed estimates of the root mean square error
above with the expected root mean square error for independent random points
given by the product of N-1/2 and the standard deviation of f {or the reduced
standard deviation when variance reduction is used). For Crude Monte Carlo and

the Rejection Method, this can be estimated using the average sample variance as

follows:

1 1 & N 1 X AR
sd(N)zﬁ EEH{WZ}:JM(%) _(—Ngf(mt))]

where f* is either f for Crude Monte Carlo, or % for the Rejection Method.

Similarly, for smoothed rejection, with the weight included, as follows:

=1

N = i 1 R N 1 Nt X , 1 N+ . 2
sd( )Nﬁ }—%kﬁj\;‘_—l W;wif(mi) _('N—Zwif(mi))



where f* is again equal to {;
For weighted uniform sampling, The root mean square error for random points

is given by Equation 4.17, which gives us the following estimate:

11 & NV [1 ¥ i
sd(N)* &~ ﬁ_ﬁ;{f\f—l v & /@) ( ,Z;f )
—_ [ N 2:
+ (Apn)? N]\_’} %Zh (x:)* — (%}};h(mi))
—_—— ; N - N
—- 2Ay Njil [%; 2 f(m;)h(a:f)—%;f(w;)';—gh(w;):l}

We expect sd(N), in general, to be close to rmse(N) and sdr(N) whenever
pseudorandom sequences are used, but when quasi-random sequences are used we
expect rmse(N) and sdr(N) to be significantly lower than sd(N), indicating the
improvement obtained from quasi-random sequences.

Finally for Weighted Uniform Sampling, the bias and variance are estimated
using Equations 4.13 and 4.15, derived in Chapter 4 (ignoring the higher terms),
which gives us estimates that should be valid for both pseudorandom and quasi-
gandom sequences. In the examples, the computations using the formulas from

Chapter 4 are given as follows:

yirm 1 E g e
»(N) = V- TRo1 2 Z(Fz(vk) HY) - FyHy)?
Bk e (A0} L *® _
0 —— E(FN ~ )+ ( x) T Z(H Hy)?
R =
—_ 1 e
— 24y Z(F“‘) HY —FyHy)?

R-15

where F f(\;k), Hy ) are the averages of f and h respectively over the k-th trial, and

bars indicate averages over all the trials.



We expect sdr*(N) to be close to sdr(N), and consequently rmse(N), since
these all estimate the same quantity.

The value of 0*(N) can be checked by computing ;1; over enough trials so
that". the statistical error in ;E is small compared to the bias. Then the bias is
approximated by Zr; — A, when the exact solution is known. However, this often
requires an extremely large number of trials because the bias decreases so rapidly
as N increases. A close examination of a few selected cases, which will not be
presented here, has confirmed that b*(NV) is indeed a good estimate of the bias in
these examples.

(Technical note: The plots for this example and most of those throughout the
rest of this thesis have the y-axis labeled log(rmse) which means “the logarithm
base e of the root mean square error.” However, in order to be more realistic, 1
have actually used the sample variance, referred to above as sdr, instead of the
direct estimate of the rms error, referred to above as rmse, when drawing up the
plots. Therefore, a more precise label for the y-axis might be log(sdr), but 1 felt
that using the notation log(rmse) would make it more immediately obvious that
the y-axes were showing a measurement of the accuracy of the estimates. In fact,
since sdr is itself an estimate of the root mean square error, the notation may be
justified in that sense. In most cases, as the tables indicate, the computed values of
sdr and rmse were very close, as expected, so the distinction is largely a notational
one.)

Orne final observation is that in the examples, the bias of Weighted Uniform
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Sampling is significantly smaller when using quasi-random sequences than pseudo-
random sequences. The reason goes back to the difference between Equations 4.13
and 4.14. As a result, it appears to be safe to ignore the bias for most moderate

or higher values of N, even when quasi-random sequences are used.
5.4.2 Description of Examples, Computational Results

Example 3 Monte Carlo integration over I = [0,1]° of the function:

> 24sin (0 . .. T,
f(z)=-exp (z @ ;L? ( 23_1,3;&, J))
=1

Using the positive definite importance function:

1 5
hiz) = ?—]exp (E a; xf)
i=1

where @ = (1,1,1,1,3) and 7 = fis exp (Zf‘zl a; ;r:?) dx so that h is normalized
(i.e. its integral is one). (Note: 7 is easily computed with high accuracy as the

product of five one-dimensional integrals, using for ezample Gaussian quadrature.)

The results are presented in Tables 5.2-5.5 and graphically in Figure 5.3,

Example 4 Monte Carlo integration over 13 = [0,1]3 of the function:

f(z,y,z) = sin

(w(a: + \/Z'Q?—F yz))
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Using the positive definite importance function:

54
hiz,y,z) = 61 (z + Veyz + y?)

where h is again normalized so that [s h{z,y, z) dzdydz = 1.

The results are presented in Tables 5.6-5.9 and graphically in Figure 5.4.

Example 5 Monte Carlo integration over I7 = [0,1]7 of the function:

$1+...+$7

[(@1r..y27) = el G G 52) asin(ein1) + 215 E 0

Using the positive definite importance function:

}1((1'31, e, "1"7') — lei—(sinz(%ml)+siuz(ga:2)+sin2(%m3))

n

where i is computed by expressing h as follows:

h(.’L‘I, o m'?) ~ee” sin® (Zz1) e~ sin*($22) e sin?(Zx3)

Then,

1 H TR 3
77:/ h(:nl,...,w7)d:r1...da:7me-(/ e‘s‘“(if)dm)
b 0

which is easily approrimated to high accuracy as a one-dimensional integral.

The results are presented in Table 5.10-5.13 and graphically in Figure 5.5.



Crude Monte Carlo (variance= 3.16 E -2)

Pseudorandom, 75 trials
N sd(N) sdr(N} | rmse(N) | (&)
1600 || 4.44 E -3 | 4538 E-3 | 4.571 E-3 | 0.044
6400 || 2.22 E-3 | 2064 E-3 | 2.0656 E-3 | 0.174
25600 || 111 E-3] 1.189 E-3 | 1.190 E -3 | 0.697
102400 || 556 E -4 | 5. 723 E-4 | 5,775 E-4 | 2.791
409600 || 278 E -4 1 2873 E -4 | 2.876 E -4 | 11.161
convergence || sdr vs. N: -0.480 , sdr vs. . -0.481
Halton Quasi-Random, 75 trials
N sd(N) sdr(N) | rmse(N) | t(N)
1600 || 445 E-3 | 1727 E-4 | 1.72T E -4 | 0.08]
6400 || 2.22 E -3 | 4142 E-5 | 4.144 E-5 | 0.342
25600 || 1.11 E-3 | 1.220 E-5 | 1.229 E-5 | 1.439
1062400 | 5.56 E -4 | 2977 E-6 | 2977 E-6 | 6.002
409600 || 2.78 £ -4 | 8.086 E -7 | 8.086 E -7 | 25.168
convergence || sdr vs. N: -0.980 , sdr vs. t: -0.946

Table 5.2: Example 3, Crude Monte Carlo.

Weighted Uniform Sampling,

(variance= 2.61 E -3)

Pseudorandom, 75 trials

N sd{N) sdr(N) sdr*(N) b*(N) rmse(N) | H{(N)
1600 1 128 E-3 (1344 E-3 | 1343 E-3| 911 E-6| 1363 E-3| 0.056
6400 | 63TE -4 |7050E -4 {7050 E -4 -185E-6]7.063 E-3 | 0.223
25600 || 3.19E -4 [ 3625 E-4 {3623 E-4| -611E-7 3625 E-4| 0.891
102400 | 160 E -4 | 1755 E-4 | 1754 E-4 | -1.42E -7 | 1.756 E -4 | 3.566
409600 || 798 E -5 | 8624 E-5 | 8624 E-5 | -3.35 E-8|8.624 E -5 | 14.268
convergence sdr vs. N: -0.484 | sdr vs, t: -0.484
Halton Quasi-Random, 75 trials

N sd(N) sdr{N) sdr*(N) b*(N} rmse(N) | t{N)
1600 || 1.28 E-3 [ 7259 E-5 | 7.29 E-5} -9.72E-917.259 E-5| 0.094
6400 | 6.38 E-4 [ 2106 E-5 | 2106 E-5{-5.76 E-10 | 2106 E-5 1 0.391
25600 || 3.19E -4 |4.525 E-6 | 4525 E-6 | -437TE-11 | 4520 E-6 | 1.633
102400 || 1.60 E -4 | 1207 E-6 11297 £E-6 |-293 E-12 | 1297 E-6 | 6.777
409600 || 7.98 E-5 | 3.491 E-7 {3492 E-7 | -2.35 E-13 | 3.492 E -7 | 28,272

convergence sdr vs. N: -0.970 ,

sdr vs. t: -0.939

Table 5.3: Example 3, Weighted Uniform Sampling.
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Importance Sampling / Rej Meth,

(variance= 2.57 E -3)

Pseudorandom, 75 trials

N sd(N) sdr(N) | rmse(N) | t{N)
1600 | 12T E-3 | 1378 E-3 | 1.378 E-3 | 0.085
6400 | 634 E-4 | 6.788 E-4 | 6.899 E -4 | 0.340
25600 || 3.18E-4 | 3.112E -4 3175 E -4 1.358
102460 || 1.59 E-4 | 1.503 E -4 | 1.510 E-4 | 5.433
409600 || 7.93 E-5 | 7.995 E -5 | 8.090 E -5 | 21.728
convergence || sdr vs. N: -0.498 | sdr vs, t: -0.499
Halton Quasi-Random, 75 trials
N sd(N) sdr(N) | rmse(N) | H{N)
1600 | 1.27T E-3 | 3675 E-4 | 3.692 E -4 0.167
6400 | 634 E-4 | 1.695E -4 | 1.695 E -4 | 0.705
25600 | 317TE-4 1134 E-4 | 1134 E-4 | 2972
102400 || 1.59 E-4 | 1.963 E -5 | 1.968 £ -5 | 12.446
409600 | 793 E-5 | 1176 E -5 | 1.176 E -5 | 52.157
convergence || sdr vs. N: -0.645 , sdr vs, £ -0.622

Impo Samp! / Smooth Rej, § = .2,

Table 5.4: Example 3, Importance Sampling with the Rejection Method.

{variance= 2.57 E -3)

Pseudorandom, 75 trials

N sd(N) sdr(N) | rmse(N) | H{N)
1600 | 1.27TE-3 | 1.282 E -3 | 1.282 E -3 0.100
6400 | 6.34 E -4 | 6.482 E -4 | 6.459 E -4 0.400
25600 | 3.1TE-4|2842E 4| 2913 E 4 1.597
102400 || 1.58 E -4 | 1.495 E -4 | 1.502 E -4 6.397
409600 || 793 E-5 | 7732 E -5 | 7.876 E -5 | 25.583
convergence || sdr vs. N: -0.504 , sdr vs. t: -0.504
Halton Quasi-Random, 75 trials
N sd(N) sdr(N) | rmse(N) | t(N)
1600 || 1.27E-3 { 2552 E -4 { 2.552 E 4 0.184
6400 | 6.34 E-4 | 5,810 E -5 | 5.811 E -5 0.781
25600 } 3.17TE -4 1875 E-5| 1.876 E -5 3.247
102400 | 1.59 E-4 | 5668 E -6 | 5.669 E -6 | 13.479
409600 | 793 E-5 | 2.396 E -6 | 2.396 E -6 | 56.286
convergence || sdr vs. N: -0.852 , sdr vs. t: -0.826
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Crude Monte Carlo,

(variance= 5.41 E -2}

Pseudorandom, 75 trials

N sd(N) sdr(N) || rmse(N) | t(N)

1600 || 5.82 E -3 | 5.553 E -3 | 5.561 E-3 | 0.021

6400 | 290 E-3 | 3.260 E -3 { 3.263 E-3 | 0.083

25600 || 146 E-3 | 1526 E-3 | 1.534 E-3 | 0.327

102400 | 72T E-4 | 7536 E-4 | T673 E-4 | 1317

409600 | 3.63 E-4 | 4121 E -4 | 4.150 E -4 | 5.274
convergence || sdr vs. N: -0.492 | sdr vs. t: -0.494

Halton Quasi-Random, 75 trials

N sd(N) sdr(N) | rmse(N) | t(N)

1600 || 5.82 E-3 | 2.206 E-4 | 2.2060 E-5| 0.049

6400 || 291 E-3 | 5,097 E-5 | 5.101 E-5 | 0.205

25600 | 145 E-3 11662 E-5|1.662E -5 0.892

102400 || 7.27E -4 | 4154 E-6 | 4154 E-6{ 3.731

409600 || 3.63 E-4 | 9937TE-7]9.939 E -7 | 15.792
convergence || sdr vs. N: -0.971 | sdr vs. t: -0.927

Table 5.6: Example 4, Crude Monte Carlo.

Weighted Uniform Sampling, (variance= 2.55 E -3)

Pseudorandom

N sd(N) sdr(N) sdr*(N) b*(N) rmse(N) | t(N)
1600 | 1.26 E-3 [ 1233 E-3 (1231 E-3| 111 E-5|1.233 E-3| 0.029
6400 || 631 E-4 [ 7.186 -4 | 7.188E-4| 383E-6{7214E-4| 0.115
25600 || .16 E-4 [311TE-4|3.11TE-4| T41E-7T]3.123E-4 | 0.463
102400 | 158 E -4 | L7733 E-4 | 1.775 E-4 | 250E-7|1.784 E-4 | 1.892
409600 | 789 E -5 | 8.1656 E-5 | 8164 E-5 | 528 E -8 | 8248 E -5 7.546

convergence sdr vs. N: -0.502 , sdr vs. t: -0.501

Halton Quasi-Random

N sd(N) sdr(N) sdr*(N) b (N) rmse(N) | t(N)
1600 || 1.26 E-3 | 5. 733 E-5|5.753 E-5| 1.58E-8 |5 73 E-5| 0.059
6400 §) 6.32 E-4 | 9936 E-6 | 9936 E-6 | 1.50E-10 | 9938 E-6 | 0.244
25600 || 3.16 E -4 | 4896 E-6 | 4836 E-611.41E-10|4.896 E-6| 1.055
102400 || 158 E-4 | 1076 E-6 | 1.0T6 E-6 ; T34 E-12 | 1.076 E -6 | 4.339
409600 || 789 E -5 | 2530 E-7 12535 E-7{3.75 E-13 | 2.531 E -7 | 18.138

convergence sdr vs. N: -0.978 , adr vs. t: -0.947

Table 5.7: Example 4, Weighted Uniform Sampling.
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Importance Sampling / Rej Meth,

(variance= 1.65 E -3)

Pseudorandom
N sd(N) sdr(N) | rmse(N) | t(N)
1600 || 1.02E -3 | 9828 E-4 | 9843 E-4 | 0.064
6400 || 508 E-4 | 5384 E-4 | 541TE -4 | 0.277
25600 | 254 E-4 | 2108 E-4 | 2192 E 4| 1.077
102400 || 1.27TE-4 11239 E-4 ] 1.250 E -4 | 4.348
409600 || 6.35 E -5 | 6.366 E -5 | 6.387 E -5 | 17.251
convergence || sdr vs. N: -0.500 , sdr vs. t: -0.498
Halton Quasi-Random
N sd(N) sdr(N} | rmse(N) | t(N)
1600 || 1.02E-3 2194 E -4 | 2194 E-4 | 0.163
6400 | 5.08 E-4 | 9337 E-5|9.342E-5| 0.701
25600 || 204 E-4 | 3774 E-5 [ 3791 E-5 | 2.959
102400 | 1.27 E-4 | 1.882 E-5 | 1.891 E -5 | 12.259
409600 || 6.35 E-516.72T E -6 | 6.730 E -6 | 52.028
convergence | sdr vs. N: -0.622 , sdr vs. t: -0.597

Impo Samp! / Smooth Rej, § = .2,

Table 5.8: Example 4, Importance Sampling with the Rejection Method.

(variance= 1.65 E -3)

Pseudorandom
N sd{N) sdr{N) rmse(N) | t{N)
1600 || 1.02E-3 | 9377TE -4 | 9394 E 4 0.082
6400 | 5.08E -4 | 4.87T9E -4 | 4.894 E 4 0.338
25600 |1 254 E-4 | 2.000 E -4 | 2076 E -4 1.321
102400 | 1.27 E-4 | 1.188 E -4 | 1.201 E -4 5.276
409600 || 6.30 E-5 1 6.152 E -5 | 6.166 E -5 | 21.058
convergence || sdr vs. N: -0.495 , sdr vs. t: -0.496
Halton Quasi-Random
N sd{N) sdr(N) | rmse(N) | t(N)
1600 || 1.02 E-3 | 9.518 E-5 | 9.520 E -5 0.181
6400 || 5.08 E-4 | 2558 E -5 | 2.558 E -5 0.761
25600 || 254 E-4 | 7.863 E -6 | 7.869 E -6 3.190
102400 1 1.27E -4 | 2094 E-6 | 2094 E -6 | 13.282
409600 | 6.30 E-5 | 6.282 E -7 | 6.284 E -7 | 56.037
convergence || sdr vs. N: -0.906 , sdr vs. t: -0.871
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Crude Monte Carlo,

(variance= 2.24 E -1)

Pseudorandom, 75 trials
N sd(N) sdr(N) | rmse(N) | t{(N)
1600 || 1,18 B -2 | 1.251 E -2 | 1.251 E -2 | 0.049
6400 || 592 E-3 | 5873 E-3 | 5.876 E-3 | 0.200
25600 | 296 E-3 12944 E-3 | 2951 E-3| 0.774
102400 || 148 E-3 | 1.344 E-3 | 1.348 E-3 | 3.107
409600 || 739 E-4 | 6.851 E -4 | 6.885 E -4 | 11.496
convergence || sdr vs. N: -0.518 , sdr vs. t: -0.518
Halton Quasi-Random, 75 trials
N sd(N) sdr(N) | rmse(N) | i(N)
1600 | 118 E-2 [ 5274 E-4 | 5274 E-4 | 0.092
6400 || 592 E-3 {1428 E-4 | 1.428 E-4 | 0.397
25600 || 296 E-313.190 E-5 | 3.190 E-5 | 1.673
102400 | 148 E-31 9729 E-6 | 9.730 E -6 | 6.981
409600 || 739 E -4 | 2.236 E -6 | 2.236 E -6 | 29.317
convergence || sdr vs. N: -0.981 , sdr vs. t: -0.937

Table 5.10: Example 5, Crude Monte Carlo.

Weighted Uniform Sampling,

(variance= 4.06 E -5)

Pseudorandom

N sd(N) sdr(N) sdr*(N) b*(N) rmse(N)} | t(N)
1600 ] 1.58 E-4 | 1763 E-4 | 1.758 E-4| 221 E-6{ 1773 E -4 | 0.063
6400 §| 798 E -5 | 8202 E-5 | 8203 E -5 444 E-718203E-5| 0.253
25600 | 3.99 E -5 4308 E-5 {4308 E-5; 1.10E-7|4311 E-5| 1.001
102400 { 199 E-5 | 1.988 E-5 | 1988 E-5 | 240E -8 | 2.015 E-5 | 4.042
409600 || 9.96 E -6 | 9879 E-6 | 98T9E -6 449E-9 9912 E -6 | 16.091

convergence adr vs. N: -0.489 | sdr vs. t: -0.490

Halton Quasi-Random

N sd(N) sdr(N) sdr*(N) b*(N) rmse(N) | t(N)
1600 | 1.59 E-4 | 1292 E-5 | 1201 E-5| 448E-9|1.292 E-5| 0.094
6400 || 79T E-5 |3.747TE-6 | 3.7T4TE-6 [3.02E-10 | 3.748 E-6 | 0.392
25600 | 398 E-5 1084 E-6 | 1.084 E-6 | 221 E-11 |1.084 E-6| 1.614
102400 [ 1.99E -5 {2740 E-7T | 2724 E-7T | 146 E-12 | 2733 E-T | 6.744
409600 || 9.96 E -6 | 6.855 E-8 | 6.673 E -8 | 6.59 E -14 | 6.603 E -8 | 27.962

convergence sdr vs. N: -0.971 , sdr vs. 1: -0.944

Table 5.11: Example 5, Weighted Uniform Sampling.
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Importance Sampling / Rej Meth, (variance= 2.86 E -5)
Pseudorandom
N sd(N) sdr(N) | rmse(N) | ¢(N)
1600 || 1.34 E-4 {1183 E-4 | 1.185 FE 4 0.186
6400 | 6.65 E-5 | 7.520 E -5 | 7.526 E -5 0.754
25600 || 3.33 E-5 | 351 E-5 {3574 E-5 2.993
102400 | 1.66 E-5 | 1.608 E-5 | 1.619 E-5 | 12.052
409600 || 8.32 E -6 | 8697 E -6 | 8.740 E-6 | 48.217
convergence || sdr vs. N: -0.502 , sdr vs, 1 -0.497
Halton Quasi-Random
N sd(N) sdr(N) rmse(N) t(N)
1600 ) 1.33 E-4 | 6711 E-5 | 6.TI12E -5 0.386
6400 || 6.66 k2 -5 | 1.859 E -5 | 1.861 E -5 1.642
25600 || 3.33 E-5 | 6.063 E-6|6.134 E-6 6.877
102400 || 1.66 £ -5 | 2.766 E -6 | 2.766 E -6 | 28.805
409600 || 8.32 E -6 | 1.105 E -6 | 1.107 E -6 | 119.906
convergence | sdr vs. N: -0.705 , sdr vs. £ -0.679

Table 5.12: Example 5, Importance Sampling with the Rejection Method.

“Impo Sampl / Smooth Rej, § = .2 (variance= 2.84 E -5)
Pseudorandom
N sd(N) sdr(N) | rmse(N} | ¢(N)
1600 || 1.34 E-4 | 1.178 E-4 | 1.180 E -4 0.211
6400 || 6.65 E -5 | 6.524 E -5 [ 6.543 E -5 0.853
25600 | 3.33 E-5 | 3172 E-5 | 3.17T3 E-5 3.416
102400 || 1.66 E -5 | 1454 E-5 | 1.457 E -5 | 13.677
409600 || 832 E -6 | 8.031 E -6 | 8.036 E -6 | 54.727

convergence || sdr vs. N: -0.503 , sdr vs. t: -0.505
Halton Quasi-Random
N sd(N) sdr(N) | rmse(N) | t(N)

1600 133 -4 1 3416 E-5 | 3417 E-5 0.417

6400 || 6.66 E -5 | 8.008 E -6 | 8.009 E -6 1.759

25600 || 3.33 E-5 | 1.754 E-6 | 1.754 E -6 7.279

102400 || 1.66 E -5 | 8.315 E -7 | 8.317T E -7 | 30.470

409600 || 8.32 E-6 | 1.593 E -7 | 1.600 E -7 | 126.505
convergence || sdr vs. N: -0.883 , sdr vs. £ -0.854

Table 5.13: Example 5, Importance Sampling with Smoothed Rejection.
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5.5 Discussion of Results, Conclusions

The computational results are not surprising. For the most part the estimators
all perform as predicted in the discussions earlier in this chapter. The use of quasi-
random (Halton) sequences clearly improves virtually every estimate, even when
the extra time needed to generate the Halton sequence points is factored in.

The Rejection Method is clearly the worst option when quasi-random sequences
are used.

On the other hand, with regard to Smoothed Rejection, this is always better
than the ordinary Rejection Method with quasi-random points, but it is not too
unusual to find that Crude Monte Carlo with quasi-random points actually works
better when the amount of variance reduction is not very large. This happens
because Crude Monte Carlo is often ‘smoother’ than Smoothed Rejection (less
variation), also Crude Monte Carlo involves one less dimension than Smoothed
Rejection. Both of these things can overcome the variance reduction, unless it
is very large. Example 5 shows a case in which the variance reduction is large
enough so that Smoothed Rejection outperforms Crude Monte Carlo at the levels
of N considered.

Finally, Weighted Uniform Sampling is clearly the best choice in every example.
It preserves most of the variance reduction of the Rejection Methods, but without
adding any dimensions nor any significant increases in the variation.

My conclusion is the following: Use Weighted Uniform Sampling whenever



possible with quasi-random Monte Carlo estimates, unless for some reason Impor-
tance Sampling reduces the variance significantly more, in which case Smoothed
Rejection may be preferred.

Although Weighted Uniform Sampling is biased, it is clear in the éxarnples
that, as expected, this bias goes to zero far more quickly than the mean square
error, so it does not become a problem, even when quasi-random sequences are
used. The theoretical justification for this comes from Equation 4.13.

The results here should make it clear that significant gains can be made by con-
sidering the discontinuities introduced by methods such as the Rejection Method.
When these discontinuities are avoided, Monte Carlo estimates using quasi-random
sequences often show a marked improvement in accuracy, thereby justifying the
use of quasi-random sequences in many situations where preliminary results may

have been disappointing precisely because of the discontinuities present,
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CHAPTER 6

Reduction of Dimensions

6.1 Ineffectiveness of Quasi-Random Sequences for High Dimensions

Another factor besides continuity which strongly affects the success of quasi-
random sequences when they are applied to Monte Carlo methods is the number
of dimensions. As the number of dimensions increases, the effectiveness of quasi-
random sequences is diminished. There is no specific number of dimensions above
which quasi-random sequences are not recommended, since this also depends on
the continuity of the integrand and the number of points, N, in the sequences that
are used. However, it appears that at practical values of N, say up to the millions,
the cutoff is somewhere around 30 dimensions. In other words, for Monte Carlo
methods which involve approximation of higher than 30 dimensional integrands,
quasi-random sequences will often not provide any improvement over pseudoran-
dom sequences, and in some cases will actually give less accurate results,

The reasons for this have been studied by others in some depth. (See for
example Morokoff [41].) They can be summarized by saying that for a high number

of dimensions, it takes a very large value of N for the quasi-random points to fully
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cover the entire integration region. This leads to the existence of large subregions
containing no quasi-random points when N is not sufficiently high, and, as a result,
large integration errors. When the number of dimensions is above 30, the values
of N at which such problems disappear are beyond the millions. Note that this
does not imply that the method fails to converge to the correct solution when
quasi-random sequences are used in such cases. It simply means that at realistic
values of N the errors obtained using quasi-random sequences can be higher than
those obtained using pseudorandom sequences.

Another way to examine this is in terms of the Koksma-Hlawka Inequality
from Chapter 3. A comparison of the asymptotic discrepancies of pseudorandom
and quasi-random sequences (see Table 3.1) indicates that while the discrepancy
of pseudorandom sequences is largely independent of the number of dimensions,
for quasi-random sequences there is a factor (log N)4. At moderate dimensions,
this factor does not seem to play a large role, but as the number of dimensions
increases, the impact of this factor becomes more apparent and destructive. In this
way, the Koksma-Hlawka Inequality provides some theoretical justification for the
idea of reducing the dimensions when applying quasi-random sequences to Monte
Carlo methods,

The emphasis of my work has been on finding ways to reduce the effective
nuinber of dimensions in applications, so that, as discussed above, quasi-random
sequences will be hetter able to accelerate convergence rates. In doing so, I have

found three approaches to be effective.
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A first approach which has proven useful, and is usually trivial to apply, in-
volves reordering the dimensions so the dimensions involving the greatest amount
of variation or variance in the integrand are the lowest dimensions. When such a
switch is made, there is virtually no change in the performance of pseudorandom
sequences, but often a significant improvement in the performance of quasi-random
sequences. In the examples in Chapter 5, I was careful to follow this principle. In
the next section, I will look at the negative effects of ignoring it.

A second approach is to seek new or modified algorithms which have the effect
of concentrating as much of the variance or variation as possible in the lowest
dimensions. This approach is similar to the first approach, but can involve a great
deal more work. To study such an approach, I have examined its usefulness with the
Feynman-Kac Formula, and obtained significant improvements with quasi-random
sequences. This is covered in Section 6.3.

Finally, a third alternative is to combine pseudorandom and quasi-random se-
quences, taking advantage of each of their benefits. This approach offers the pos-
sibility- of applying quasi-random sequences to improve the accuracy of some very
high dimensional problems. In Chapter 7, the effectiveness of this approach will
be demonstrated for the case of Diffusion Monte Carlo.

An important note is that it not clear whether variance or variation, or some-
thing else entirely, is the proper measure of the ‘variations of the integrand’ when
using quasi-random sequences. This is an open question in the field of quasi-

random sequences. However, in practice, it is often fairly clear that one dimension
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is accounting for more of the variability than another. Since variance is often

easiest to estimate I have tended to use that, with successful results.

6.2 Computational Examples: Reordered Dimensions

Here, I will present a few examples in which the effects of increasipg the num-
ber of dimensions {or equivalently, making the higher dimensions account for a
greater amount of variation) are studied. In all the examples, it will be observed
that increasing the dimensions has relatively little impact when pseudorandom
sequences are used, but has a negative impact when quasi-random sequences are
used. The flip side of this is that by reducing the dimensions (or concentrating
more of the variations in the lower dimensions}, one can improve the performance

of quasi-random sequences with Monte Carlo methods.

Example 6 Compare the results of approzimating these two equal integrals using

pseudorandom and Halton points:

A:/--‘/Id.’icos(4(x4+$5+$6)+(x1+?+$3))d$1---d$6
B=/---f ‘5c08(4($1+$2+353)+(:v4+$5+$6))d$1---d$5
I 5

These are of course equivalent, but the first has more of its variation contained

in the higher dimensions. Therefore we should expect that using Halton points will



be more effective when estimating B than when estimating A. On the other hand,
if we use pseudorandom points both cases should be roughly the same. The results

are shown in Figure 6.1.

Example 7 In Ezample 3 of Chapter 5, we computed Monte Carlo estimates of

the integral over I® of the following function:

5 Q4sin (S5 .,
flx) = exp (2 ; 1,12 (E';J—LJ?‘" J))
=1

where @ = (1,1,1,1.1).

Now, I will compare this with the case where a = (1,1,1,1,1), reversing the
dimensions. By symmelry, the integral of this function is equal to the integral of the
function above. However, more of the variation of this new function is contained
in the higher dimensions. As o result, the Monte Carlo estimates involving quasi-

random sequences should not be as accurate for the new function as they were for

the original function in Example 3. Results are shown in Table 6.1 and Figure 6.2.

Example 8 Consider the Monte Carlo integration of the following two equivalent

functions in 15 dimensions:

o = (B2

jm=]
15 3
) = (L)
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Crude Monte Carlo, sdr (approximating rmse)

Original Function Reversed Dimensions

N Pseudorand Halton Pseudorand Halton
1600 4538 E-3| 1.727T E 4 4504 E-3 | 3969 E -4
6400 2064 E-3 4142 E -5 2,150 E-3 { 8B.603 E -5
25600 LIS E-3 | 1.220 E -5 LL15TE-3 | 2928 E -5
102400 5723 E -4 | 2977 E -6 4692 E -4 | 5413 E -6
409600 2873 E-4[8.08 E -7 3082 E-4]|1.918E -6
conv rates -0.480 -0.980 -0.505 -0.972

Table 6.1: Results for Example 7, 75 trials
over the domain D = [—.5, .5]15,

The integral of each of these functions is ezactly zero, since both functions
are odd. Monte Carlo estimates are computed by simply subtracting 1 from each
component of the pseudorandom or quasi-random points to move them into the
required domain, and then using a Crude Monte Carlo estimate.

By symmetry, the two functions ebove are clearly equivalent and pseudorandom
estimates of the two integrals should be similar. However, the first one has more of
its variations in the lower dimensions, while the second is the reverse. Therefore,
as in the previous examples, we expect quasi-random sequences to produce more

accurate Monte Carlo estimates for the integral of the first function, f;, than for

the second, fy. The results are presented in Table 6.2 and Figure 6.3.

Examining the results for these examples, the quasi-random Monte Carlo es-
timates are consistently worse in the “higher dimensional” cases. It is somewhat

surprising that the drop in convergence is so small in Example 7. I would at-
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Figure 6.1: Convergence Results and Log-Log Plot for Example 6, 100 trials.
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Figure 6.2: Log-Log Plot for Example 7

Crude Monte Carlo, sdr (approximating rmse)

fu(z) fu(z)

N Pseudorand Halton Pseudorand Halton
50 1.684 E -1 | 1.062 E -1 1514 E-1 | 1.825 E -1
200 8725 E-2 14024 E -2 7.87T E-2|7.201 E-2
800 3900 E-2 | 1.611 E -2 3.842 E -2 | 3452 E -2
3200 1.895 E -2 | 5,573 E -3 211TE-2 | 1.588 E -2
12800 1.010 E-2| 1.309 E -3 1.08 E-2 | 7314 E -3
51200 4776 E-3 | 3.139E -4 4796 E-3| 1429 FE -3
conv rates -0.511 -0.821 -0.502 -0.628

Table 6.2: Results for Example 8, 75 trials
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tribute this to a number of factors including the relatively low number, 5, of total
dimensions, the smoothness and flatness of the functions being integrated, and the
relatively high values of N used. The results for Example 8 are more extreme
because a much higher number of dimensions are involved and the functions are
not nearly as flat as in Example 7.

One can see in Example 8 a typical feature of quasi-random sequences in high
dimensions (see Morokoff [41]), which is that they initially do not converge any
better than pseudorandom until they reach some threshold of N, above which they
start to exhibit accelerated convergence. The higher the number of dimensions, in
general, the higher is the threshold for N. At greater than roughly 30 dimensions,
this threshold becomes unreachable in most practical examples. This could also
explain the results in Example 7 — where the threshold is apparently a very low
value of N.

The important point for my purposes is that in all of the examples, the quasi-
random Monte Carlo estimates are more accurate when the dimensions are shifted
so that the lowest dimensions account for the largest share of the variations in the
functions being integrated. This is the key property which will be used to improve
the quasi-random Monte Carlo estimates for the Feynman-Kac Formula in the next

section.



6.3 Stochastic Process Simulation: Feynman-Kac Formula

The Feynman-Kac Formula provides a connection between the solution of linear
parabolic differential equations and stochastic paths which is similar t.o the method
of characteristics for solving hyperbolic differential equations. In this section, I will
deal with the case when the stochastic paths are simple Wiener processes, which are
mathematical idealizations of Brownian motion. For such cases, a reformulation
of standard methods for simulating the sample paths allows for a larger amount of
the variance of the paths to be concentrated in the lower dimensional components
of the psendorandom or quasi-random points used to generate them. As discussed
in Section 6.1, this should improve the associated Monte Carlo estimates when
quasi-random sequences of points are used, while having little effect in the case
of pseudorandom sequences. This has in fact been observed, and a computational

example will be examined in Section 6.4.

6.3.1 Stochastic Basics, Wiener Process

A stochastic process is a family of random variables, { X (t}}, defined on proba-
bility space (2, F, P), where (1 is the domain for X (t), F is the o-algebra of prob-
ability measurable subsets, and P is the probability measure. The parameter ¢ is
typically interpreted as time and varies continuously over the set of non-negative

real numbers. In this chapter, £ will be the real line. Later on in Chapter 7, it
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will be £¢, d > 1.

Stochastic processes with the Markov property are defined by the following:

1. an exact initial state, X(t,), or probability distribution, n(z,1,), of starting

positions at time 2,.

2. a transition density function, p(z, s,y,t) = p(X(¢) = y| X (s) = z), indicating

the conditional probability density of X (¢) given X (s}, £ > s.

The Markov property allows for this simple form of the transition density by
requiring that the probability density of X({) given X(s), ¢ > s, be independent
of any earlier values X (r}, » < s. In other words, the process has no memory, so
only its current state affects later states. All of the stochastic processes discussed
here will satisfy the Markov property unless specifically stated otherwise.

The following quantities are used to characterize stochastic processes:

mean:  puft) E(X(t))
variance: o%(1) = waer{X(f)) = E({(X(t) - p(t))*)

covariance: ¢(s,t) = cov(X(s),X(t)) = E((X(s)— p(s)){X({)— p(t)

p(t) = p , constant
o%(t) = ¢(0) , constant

c(s,t) = ¢t —s)



For wide sense stationary processes, the frequency distribution is defined by

assigning the v-frequency component, for any v > 0, the following value:

S(v) = /oo c(t) cos(2muvt)dt

—o0

Note that c is real-valued and even. By standard Fourier methods we then have

the following:

var(X(1) = e(0) = [ S(v)dv

An important case is White Noise. In this unusual case ¢(t) = S, 46(¢) and

©(t) = 0, where 6(1) is the Dirac-delta function. We then have the following:
S(v) = /w So 6{(t) cos(2ruvt)dt = Sy , Vv

Therefore, this is known as “white noise” because of the analogy to white
light with a uniform frequency spectrum. This (generalized) process has infinite

variance. It will be denoted by Y(¢). Its properties are surnmarized as follows:

E(Y(t)) = 0 (6.1)
var(T{t)) = oo (6.2)
cov{T(s), T(t})) = &(s—1) (6.3)

This is not really a process in the usual sense, because of the delta function, but
it can be interpreted in terms of generalized functions and distribution theory. (See
for example Kloeden and Platen {32, pg.44].) It will prove useful as the limiting

case of Wiener intervals which will be described below.
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The Wiener Process, denoted by W(t), is an important stochastic process
which is not wide sense stationary. It has initial condition W(0) = 0, and is defined

by the following transition density function:

1 oer
pw(l‘ssayat) = = € 20 (6'4)
27 (t — s)

This is a Normal (Gaussian) distribution in terms of y and ¢ with = and s fixed,
with mean z and variance (t — s), which is denoted by A(z,t — s). Successive
increments of the Wiener process are therefore Gaussian and independent (by the
Markov property). The mean, variance, and covariance for the Wiener process are

computed as follows:

p(t) = EW()) = E(y,yeN(0t) = 0 (6.5)
) = var(W(t)) = var(y,ye N(O,Y) = (6.6)
c(s,1) = E((W(s) — nu(s)) (W(t) — u(t)))

= E(W(s)W(t))

= E(W(t)— W(s)+ W(s))-W(s)) , assumet> s.

= E((W(t) - W(s)) W(s)) + E(W(s)?)

= E(W(s)?) = s , fort>s.

c(s,t) = min{s,t} , in general. (6.7)

Therefore its sample paths do not tend to favor any particular direction, but

do tend to spread out from their starting point, in the following root mean square
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sense.

VE((W() - W(0)?) = Vi
The sample paths are continuous in many senses. {See for example Kloeden

and Platen [32, pg.38-39].) In the root mean square sense, we have the following:

lim E(W(t+ k) -WOF) = Jimvh = 0

However, they are not differentiable in any traditional sense (Kloeden and
Platen [32, pg.42], using the Law of Iterated Logarithms). In the root mean square

sense we have the following:

lim ! \/E (Wir+r) -WH]?) = limh? = o

h—0 h h—0
On the other hand, recent advances in the theory of stochastic processes have
led to the development of the Ito Calculus (and also the Stratanovich Calculus)
which provides a way to define a stochastic derivative of the Wiener process and
use it to define stochastic differential equations (SDE’s), which will be introduced
in the next section.
In order to motivate such concepts, we now cousider a new set of processes

given by the following:

W(t+h) - W)

Wh(t) = 7

The mean, variance, and covariance are computed as follows:
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= E(I’Vh(‘s) Wh(t))

= h2 E(W(t+h)— W) (W(s+h)—W(s))

= 0, ift> s+ h, by the Markov property.
= o [B(W(s+ h) - W)
+E(W({Ht+h)—W(s+h)(W(s+h)—W(s)))

—E(WE)-W(s))(W(E+Rh)-W()))] , s<t<s+h

1 sS4 h—t
= EEWs+n-wy) = o
_ 1(1 t—s) < ;
= 7 h , sst<s+n.

1 |t — s| _
e (s,t) = maz 0,]— 1- . , in general.
2

1
R = altt) = ;

These new processes are therefore wide sense stationary.

Consider the frequency distribution for W), (Kloeden and Platen [32, pg.44,558]) :

Sy(v) = /00 cy(t) cos(2wrt) dt

= / z ( —-w) cos(2ryv t) di
2
h
2,
h

/U ' (1 - U) cos(2rv t) dt

1 — cos(27v h)
472 1/2 h

sin(wv h)\?
T h

Therefore, as b — 0, S{v) — 1, for every frequency, v. This recalls white noise

which was described earlier.
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One can then formally write the stochastic derivative of the Wiener process as

follows:

This of course makes 1o sense in ordinary calculus since the Wiener paths are
not. differentiable. However, within the scope of distribution theory and the Ito
Calculus {which will be briefly discussed in the next section) the above equalities
can be rigorously defined and justified. (See Gard [15].)

If one lets A, W(t) = W(t + k) — W(h) denote the finite Wiener interval, then
the limiting case as h — 0 is written dW(t), in similar fashion to the relationship
between At and dt. The limiting case, dW(t), is known as the (Ito) stochas-
tic differential. It is a fundamental quantity in the Ito Calculus, along with the

deterministic differential df. Two important properties of A, W(t) are as follows:

Il
o

E(A W) (6.8)

VE(AW(®)) = Vi (6.9)

These suggest that dW also has an expected value of zero and a ‘magnitude’
of size (dt)1/2 in a generalized root mean square sense. In Section 7.5 I will look

at this in more detail.
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6.3.2 Stochastic Differential Equations, and the Ito Formula

Based on the discussion in the last section, we now write the following to

describe a process starting at x, with Gaussian intervals like the Wiener process:

X0} = =z

dX(t) = dW

This is an example of a very simple stochastic differential equation (SDE). It

is interpreted to mean the following:
i
X(t) = 24 +f AW = 24+ W(t) — W(0) = zo + W(2)
0

Therefore this is simply a Wiener process with a shifted starting point.
Less trivial cases require a definition for the integral with respect to dW above,
which is not well-defined in ordinary calculus.

The Ito definition is as follows:

1560 = [ S aw = Ji |37 76 W ter) - Wit

where {t;}2  is a partition of the interval [0,t]. This definition of stochastic in-
tegrals is the basis for the Ito Calculus. (See Gard [15] for a full description.) A
different definition leads to the alternative Stratanovich Calculus, which in some
ways Is more like ordinary calculus (the chain rule is the same), but it does not
have as many useful statistical properties as the Ito calculus does (Gard [15]). I

will be working solely within the Ito Calculus. Note that since W is a stochastic
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process above, the integral is itself a stochastic process with no definite value, but
rather a probability distribution of possible values at any particular time, t.
With this definition, a more general stochastic differential equation could take

the following form:

X(0) = a

dX(t) = a(X(t),t)dt+b(X(t),t)dW

This defines a stochastic process with initial condition X (0} = x, and evolution

governed by the following expression:
1 t
X(t):;vo»{«/ (X (1),1) dt+] B(X (),1) dW
0 0

where the first integral is an ordinary integral and the second is defined above as
an Ito integral. This equation allows one to compute the probability densities for
X in terms of the functions @ and b, the initial condition, z,, and the transition
densities of the Wiener process.

When the functions ¢ and b are measurable and satisfy a Lipschitz condition and
linear growth condition, then the above SDE has a solution known as a diffusion
process with local drift ¢ and local diffusion rate ¢ = b2. This will be discussed
further in Chapter 7.

Here, and later in Chapter 7, we will be dealing with stochastic processes which
are the result of applying a function to a known stochastic process. Ito’s formula
provides a way to find the stochastic differential equation governing such a process

as follows:



Let X (t) satisfy the following SDE:

X(0) = x4

dX(t) = a(X(t),t)dt +b(X(t),t)dW
Then, Y () = f(X(t),t) satisfies the following SDE:

Y(0) = f(z0,0)

af af 1., O af

dY (1)

This fundamental result is often referred to as the Chain Rule for the Ito Calculus.
(Proofs of the Ito Formula are given by Kloeden and Platen [32], Gard [15], and

Iriedman [14].)

6.3.3 Proof of Feynman-Kac Formula, Conversion to Backwards Time

The Feynman-Kac Formula, to be proven here, allows one to express the solu-
tions to linear parabolic differential equations as the expectations of functions of
stochastic processes. This enables one to numerically solve such differential equa-
tions by simulating the associated stochastic processes, and then taking Monte
Carlo estimates of their expectations.

1 will not deal here with the most general case, but a simpler case involving

only the Wiener process which will be sufficient for the examples in this chapter.
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Theorem 2 (Feynman-Kac Formula) Let ., represent a stochastic process
with initial condition £(t) = z and stochastic differential d§ = dW. This is simply
the Wiener process shifted to a new initial position and time.

Let u(z,t) be the solution to the following linear parabolic differential equation:

du 1 0%

with FINAL condition u(z,T) = f(z).
Then, the solution to the differential equation is given by the following formula,

forallz and all t < T:
T
u(e,) = B [f(6 (1)) el et ] (6.11)

where the expectation is taken over all possible realizations of the stochastic process

fr,t'

Proof:
Let u(z,t) be given by Equation 6.11, and let E,, denote expectation with

respect to ¢, ;. Then,

u(z, = k) = By [J(E(T)) %)
= Ey {E«E(t}.t [f({(T)) ST u(E(s)) ds] Jn(E)e) ds}
using the Markov property.
= Epun [u(&(t), £) eJemn 2 (E0) ‘*”] . by substitution.

u(z,t) = E,[u(é(t),t)] , trivially.
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Next,

Ou
ot

e gy T T ul@, = )
b
1 1
= ,111_51'[}) '}: {Em,t [u(ﬁ(t)} t)] — Ex,t—h [u(&'(t), t) eL--h v{€(s),s) d,,] }
1 t
= lim > {Ex,g [u(é®),t)] - E,, [u(g(t +h), 1) el V€A d,]}

Let g(z) = u(z,t), with ¢ fixed. Then,

lim 1 {Em,t [g(f(t)) — g(&(t + 1)) ef:,h v(é(s+h),5) ds]}

h~+0 h

lim % {Ex,t {g(f(t)) — g(E(t+h)) (1 + /:_h”(f(”h)’ s)ds + O(hz))]} :

—0 N1

after expanding the exponential.

B i 9E®) = 9(6@+R)) — g(€(t+h)) [, 0(E(s+R), s)ds + O(hz)}
it h—0Q h
i dg . e
E,., —E(m) — v(z,t) g(:z,)} , taking the limit.
[ 52 / 7
E,, _%g;%(x) - % r)%g— —v(x,1) g(:c)} , applying Ito’s Formula.
1 9%
~55.2(®) ~v(@t)g(z) , (Note: B () = E(T) = 0.)
1 0%u
mgw(&f,t) - U(:B, t) ”U.(:B,t)

Therefore, u(i,t) satisfies the differential equation, Equation 6.10. In addition,

the final condition u(z,T) = f(z) is trivially true. o

The Feynman-Kae Formula as stated above is difficult to use directly because

it refers to a differential equation with final conditions instead of initial conditions.

This is rectified as follows:

Let 7

=T —t and then define 4(x,7) = u(z,t) , 9(z,7) = v(z,t). This results
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in the following differential equation in place of Equation 6.10:

5'&_ 1@
At~ 2 8z?

(z,7) 4+ O{z,7)0(z,7) , 720
with initial condition @(z,0) = f(z).
The solution is given as follows, using Equation 6.11:
i(z,7) = ulz,t) = E,, [f({(T)) el ”(E(S):S)ds]
= Boro, [(E(T)) eJrr €09
= Ep [f(e(r) el 60T-0%]

Now let £(r) be defined by the following;

£(r) = €(s)
where r = s — (T~ 7).
This is a shift back of the local time of the stochastic process so that £(0) = =,
in place of (T — 7) = z for the original.

Then, we have the following:
Uz, 7) = By | [(E(r)) el "€

Eliminating all of the tildes and renaming 7 as #, we now have shown that the

solution to the following initial value problem:

: 52
%’? N %%i-(m +o(z,t)u(z,t) , 120 (6.12)

with initial condition u(z,0) = f(x), is given by the following formula:

(e, ) = B [ F(E(0)) s €0 (6.13)
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6.3.4 Time Discretization, Monte Carlo Estimates

From the last section, we have the following Feynman-Kac Formula:

u(a,0) = By [1(6)) e ve0i1%]

where the expectation is taken over Wiener paths starting at £(0) = = and pro-
gressing until time ¢.

In practice, the solution is computed by discretizing time, generating Wiener
process sample paths, and averaging approximate values of the quantity within
the brackets above over several paths to obtain Monte Carlo estimates of the
expectation.

For generating the Wiener process sample paths, the most cdlnm011ly used
method, which T will refer to as the Standard Discretization, can be defined as
follows:

For the solution at a particular point (z,t), choose m to be the number of
equally spaced time steps. Let At =L ¢, =i At (¢ =0,...,m).

The Wiener paths can be exactly simulated at the discrete times ¢; by summing

up Gaussian random variables AW € A(0, At) as follows:

6(0) =

£ = o+ 3 AW | (i=1,...,m) (6.14)

—1

where £ = £(t;).

100



This produces independent Gaussian intervals as required. The Gaussian ran-
dom variables are generated by transforming uniform random variables, or in prac-
tice pseudorandom or quasi-random sequences of points. The method of transfor-
mation is itself important, especially when one is using quasi-random sequences,
as will be discussed shortly.

The sample paths generated in this way are exact at the discrete times #,, but an
approximation is involved when the path integral of v is computed. For example,

one could use the left endpoint rule as follows:

] m—1
f o(€(r), 4 —r)dr m AL Y w60, ¢ — )
0 i=0
One might expect a discretization error of order O(At). However, the nondif-

ferentiability of the paths actually leads to an order O(+/At) error term in addition

to an order O(At) error term. Consider the following purely heuristic argument:

v dE du
dv(€(r),t —r) = 5‘_§ 7 dr — o dr
v S v dv
- 8—£d§—a—dv = a_gdw_"é?d?
= ¢ (dt)/? 4 c,dt

This will be considered in greater detail in Chapter 7. For this Chapter, I will
deal with examples for which At is sufficiently small so that any such discretization
errors, which act as biases, are insignificant relative to the statistical convergence
errors of the Monte Carlo estimates which will be presented next. The main
concern in this Chapter is to use quasi-random sequences to reduce the statistical

erTors.
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Having approximated the integral as above, one can compute the following

Monte Carlo estimate:
N
Z (m)
where,

O = 243 awWd | (k=1,...,N)
i=1

AWP € N©,AL) , (G=1,....,m; k=1,...,N)

I, = At Z Wit—t), (k=1,...,N)
One then has the following:

E(ly(z,t)) = u(z,t) + bias error

where we will assume, for this chapter, that the bias error is trivial.

Next, define the following functions:

f(mla"n%"':a:m) = f({(m))
m—1

f(:EI,"I’:Q,...,.TﬂL) — At Z 5(") f_t

(6.15)

where £0) = x + Z;zl G(z;), and G represents the transformation of peints, z;,

which are uniformly distributed, e.g. pseudorandom or quasi-random points, into

points which are normally distributed according to N (0, At).

This explicit representation allows us to write out the expectation of the Monte

Carlo estimate in Equation 6.15 as the following integral:

1 1. -
Blin(z,0)= [ [ flor,...,zp)elmsm) de, .. da,
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It is this integral which the Monte Carlo estimate is in effect estimating using
pseudorandom or quasi-random sequences of points. Note that the transformation
method is important because, for example, if it is discontinuous it can hurt the ef-
fectiveness of quasi-random sequences. Therefore, I have used a method derived by
George Marsaglia (Marsaglia [40]) which is continuous and monotonic as a function
of the original sample points. Other methods without such properties, for example
Box-Muller, were found to give poorer results with quasi-random sequences. (See

Morokoff [41] for some further study of the Box-Muller case.)

6.3.5 Application of Quasi-Random Sequences, Reformulation

The Monte Carlo estimate described in the last section, Equation 6.15, can be
improved by directly substituting quasi-random points for pseudorandom, as long
as the function v is of bounded variation and the number of dimensions, m, is not
too large. This will be the case in the example which I will consider in Section 6.4.
In general, the direct use of quasi-random sequences in this way is limited to short
times, {, since otherwise the reduction of time discretization errors to acceptable
levels usually will require m to be rather large. In such cases when m is very
large (e.g. > 100), then an entirely new approach is needed, such as some of the
methods in Chapter 7.

When the number of dimensions is not large enough to require more advanced

techniques, but large enough to start having a negative impact on the use of quasi-
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Contributions to Variance

Unif. Seq. Steps of Wiener Path Component
Components || £(¢y) | E(t4) | £(t) | -+ 1 E(¢,,) totals
&y 0 |t/mijt/mi{---| t/m t
z, 0 0 | t/m i | t/m |(m-1)t/m
Z,, 0 0 ¢ |- ] t/m t/m
Path totals 0 |t/mi2tfm|---} ¢t

Table 6.3: Importance of Dimensions, Standard discretization

random sequences, then a reformulation of the Standard discretization method
can lead to significant improvements in the quasi-random Monte Carlo estimates
by concentrating more of the variance into the lowest dimensions. Such a refor-
mulation, which 1 will refer to as the Alternate Discretization, is presented
next,

First, consider Table 6.3, which shows the contribution of each dimension to
the variance of the Wiener sample paths when the Standard discretization, given
by Equation 6.14, is used. {Note that the variances add for independent random
points by Equation 2.12.)

The values in the table indicate that the lower dimensions account for more
of the variance in the Wiener paths than do the higher dimensions. This is a
desirable feature if one intends to use quasi-random sequences. However, as we
will see next, it is possible to make the lower dimensions account for an even

larger share of the variance by reformulating the discretization method so that the
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lower dimensions represent large steps, while the higher dimensions simply fill in
intermediate positions. This will lead to more accurate quasi-random Monte Carlo
estimates.

Now the Alternate Discretization will be defined. For convenience, we will
assume that m is a power of two, This is optimal for the new discretization method,
but a modification to handle any value of m is easily obtained.

Let,

c‘(’”‘) = E(O) + W, , W] EN(O:t)
m 6(0) + 6(?71)

eI W, W, € N(0,t/4)
(1 = Mq-wg , Wi e N(0,1/8)
() = wjum , W, e N(0,1/8)
(B - &%@4_% , Wi € N(0,1/16)
£ = w+ws , Wy e N(0,t/16)
R M+W7 , W, e N(0,1/16)
e = '&n)zﬂ*"ws , W € N(0,1/16)
(R = MJFWQ , Wy e N(0,1/32)

-

For this discretization method, the first step is directly from 0 to ¢. Then

the intermediate steps are filled in by taking successive subdivisions of the time
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mtervals into halves. Each new intermediate path position is determined using the
following general rule:

t.

{71} (d2) t. -
A LA W e N(0, 2 (6.16)

£6) .
where jq,j, are the indices of the nearest prior and later time steps, respectively,
for which the positions have already been determined.

This is based on the following conditional probability result, for a process re-

ferred to as a Brownian bridge or tied-down Wiener process. (Note: p(z,s,y,1) =

p{W(t) = y|W(s) = x} is the transition density function of the Wiener process.):

p{e (1) = ot = oo, e0) = =)

B (a"avtm ¥, ta;-tb) P (y: ta;—tb'.\xbatb)

fl

p(mmtmmb:\tb)
1 _(y—za)? _(%—;)2
g € T e 2 _
= 2xT - where T = 4zta
1 (zp—za) ) 2
e~ 47
;;27r-2T
1

_ o~ Tr[2(v-2a)2 4225 — (25-wa)?]

e 'i]_T [4y2—4y{a:u -§-.’L‘b)+2m§+2az‘§ —w§+2xamb-m§]

2
- Z_J,T [4(y_ @) —(matwy)+z2 +m§+2xax,,}

2

(s-224%)

Therefore,

$a+mb tb_ta)

Note that it is the Markov property which allows each successive path location

to be determined by a distribution which is dependent only on the nearest locations
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already assigned.

The resultant scheme can be rewritten in a more convenient form which gives

each of the path locations directly in terms of the normally distributed variables

W, (i =1,...,m) as follows:

£(0) z (6.18)
€ = 24 Wy, W eN(@©,) (6.19)
eF) z + }% +W, , W,eN(0,t/4) (6.20)
¢0s) z + LZ—* + E;—z + W, , W;eN(0,1/8) (6.21)

¢GF) w+3—?+ﬂfz—"’-+m , W, e N(0,t/8) (6.22)
(%) x4 VZI + —‘1@ + % +W, , W,eN(0,1/16) (6.23)

R = o4 32/1 + % + I—/g‘i + W, , WeeN(0,/16)  (6.24)

Now, we can compare the variance contributed by each dimension to the Wiener
sample paths using the Alternate discretization, with the contributions under the
Standard discretization. Table 6.4 shows the results for the specific case, m = 8.

Clearly, the Alternate scheme concentrates much more of the variance in the
lower dimensions.

Figure 6.4 is intended to be a graphical comparison of the Standard and Alter-
nate discretization methods, It shows how more of the variance is concentrated in

the lower dimensions for the Alternate method. The two plots show a simple case
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Contributions to Variance,m = §

Steps of Wiener Path Alt Std
Dim || &1 & |6 |6 || & [ Eet & | & Tot Tot
a0 &Gl Z L B8 4% 4 31875¢ || 1.0000
x, | O 6—‘4 ”1"% -g-;- -‘% ;39—; —1-‘6 é%'i 0 | 0.6875¢ || 0.8750¢
zg | 0 355 é 3‘—2 0|0 [0} 0 |0]0.1875t | 0.7500t
zg 1O[0]010]0]%] 4 5‘5 0 {0.1875t || 0.6250¢
x5 || O ;% 0100|1010 0| 0]0.0625¢ | 0.5000t
zg 101010 T% 0] 0[]0} 0000625t 0.3750¢
z; O[0;01040 1th 0| 0|0 ]0.0625¢ | 0.2500t
zg O[O [0O]O|0O]| 00 :f‘g 0 | 0.0625¢ || 0.1250¢
I NRRERBEREE

Table 6.4: Importance of Dimensions, Comparison for m = 8.

where the number of steps, m, is just 4. The dotted lines show one standard devi-
ation ranges. The solid lines show the actual discretized stochastic paths. In the
upper figure, the dash/dot line shows the additive nature of the successive steps.
In the lower figure, the dashed line shows the effects of the large first step on all of
the intermediate positions, while the dash/dot lines show the effects of the second
step on intermediate positions. Note that the two plots show the same resultant
paths for convenience only. There is no connection between the particular path
generated by the same pseudorandom or quasi-random point using each of the two

different methods. There is only an equivalence in terms of the expectations over

all such paths.
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Standard Scheme, 4 Steps

161

10F

16 -

141

12f

+~ Bt

Figure 6.4: Graphical Comparison of Discretization Schemes.
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6.4 Computational Example for the Feynman-Kac Formula

This example will test the accuracy of Monte Carlo estimates of the solution of a
simple linear parabolic differential equation using Equation 6.15 at selected values
of z and a fixed (small) time ¢. A comparison will be made of pseudorandom and
quasi-random sequences with either the Standard discretization, Equation 6.14,
or the Alternate discretization, Equation 6.16, being employed to generate the

necessary Wiener paths.

Example 9 Consider the following linear parabolic differential equation:

af 1 0% 1 1 472 af
Si@ =555 (@) + (t_“ o (x2+1)2) L (z,1)
with inttial condition f(x,0) = x2]+1'

1t has the following analytical solution: f(z,t) = mi;%
This ezact solution is compared with the following Monte Carlo estimates using
the Feynman-Kac formula at a fized (small) time, T > 0, and a set of fized points

in Space, &y,...,Lp!

~

. 1 X ” 7o)
Inley Ty =5 3 f(gR,00 e, (p=1,...,P)
k=1

where for the Standard discretization,

0 — + AW@”, i=0,...,mik=1,...,N;p=1,...,P
P ‘ k

v,k

moe1

L. = Atz € t—t), (k=1,...,N; p=1,...,P)
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AW]SJ) S N(Os/—\‘t) 3 (le'.\’m’k;l”N)

At = — , t; = 1At , m= # of equal time steps, or dimensions.

while for the Alternate discretization, the random paths, 5 v, are obtained using

P
the method described explicitly by Equations 6.18-6.24.

The Gaussian variables are obtained using Marsaglia’s transformation on either
pseudorandom or quasi-random points (see Section 6.3.4).

The estimates are then compared with the ezact solution using the following

L2 _sense distance calculation:

P ~ 2
1&:J%2Umﬁrmm%ﬂ

=1
Note: In the example P is 8 and z, ranges from +8 lo -3, equally spaced.
This can also be compared with a purely empirical estimate of the L? error using

the sample variance for each estimate as follows (results not shown):
L2sd =

where
N
Shio0) = s (3 2 R 00 ] e TP
Notice that the same Wiener increments are used for each of the estimates
above at a different point in space. This saves a great deal of computer time and is
acceptable since each different x,’s estimate is computed separately from the others.
T is selected to be very small so that any discretization errors are insignificant

relative to the Monte Carlo errors at the values of N and m considered.
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In Table 6.5, the calculated values of L2e are compared at selected values of N
and m using pseudorandom and quasi-random sequences and either the Standard
or Alternate discretization. T' is taken to be .02 when m = 8, .04 when m = 16,
and‘ .08 when m = 32 (constant time step size). Figures 6.5-6,10 show plots for
each of the T, M pairs above. (Note: cpu times are not listed in the table, but plots
of the error measurement, L2e, versus cpu time are included for completeness in

the figures.)

The results indicate that, as predicted, the Alternate discretization method
allows for significantly more accurate results when using quasi-random sequences
with the Feynman-Kac formula. In contrast with this is the fact that virtually
no improvement is seen when using pseudorandom sequences. This shows that
there is nothing inherently better or special about the new discretization method
in general. It is only when it is combined with quasi-random sequences that the
positive effect of concentrating more of the variance in the first few dimensions

becomes apparent.



Feynman-Kac Formula, L2e Comparisons

T =0.02, m = 8 (dimensions)

Standard Discr

Alternate Discr

N Pseudorand Halton Pseudorand Halton
100 4810 E 3217 E-3 4823 E-3|6.671 E-4
400 3.006 E-3 4877 E -4 3.00 E-3}11.903E-4
1600 1.380 E-3 | 1.941 E 4 1.276 £ -3 | 5,599 E -5
6400 6.116 E -4 | 4729 E -5 7.736 E-4 ] 1.396 E -5
25600 3248 E -4 | 1350 E -5 3932 E-4|4.307TE -6
conv rates -0.502 -0.876 -0.460 -0.901

T = 0.04, m = 16 (dimensions)

Standard Discr

Alternate Discr

N Pseudorand Halton Psendorand Halton
100 7.490 E -3 | 4.529 E -3 6.991 E-3 | 9779 E -4
400 3.352 E-3|2.032E-3 3.743 E-3 | 2.698 E -4
1600 1.61TE-3|4.946 E -4 2210 E-3 | 7.684 E -5
6400 9457TE -4 1455 E 4 9.090 E-4 | 1870 E -5
25600 4.307E -4 | 4530 E -5 4416 £ -4 5.695 E -6
conv rates -0.493 -0.819 -0.493 -0.921

T = 0.08, m = 32 (dimensions)

Standard Discr

Alternate Discr

N Pseudorand Halton Pseudorand Halton
100 1214 E-2; 1.032 E -2 1.092 E-2 11484 E-3
400 5.642 £ -314.051 E -3 5621 E-3|3.87TE 4
1600 2474 E-3 | 1.626 E -3 2568 E-3 | 1.062 E -4
6400 1.504 E-3 | 5.859 E -4 1371 E-3 | 2468 E -5
25600 7008 F -4 1771 E -4 5889 FE -4 | 7.355 E -6
conv rates -0.506 -0.774 -0.500 -0.951
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Figure 6.5: Log-Log Plot for Example 9, T = 0.02, m = 8.
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Figure 6.6: Log-Log Plot vs. #(sec) for Example 9, T = 0.02, m = 8.
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Figure 6.7: Log-Log Plot for Example 9, T' = 0.04, m = 16.
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Figure 6.8: Log-Log Plot vs i(sec) for Example 9, T' = 0.04, m = 16.
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Figure 6.9: Log-Log Plot for Example 9, T' = 0.08, m = 32.
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Figure 6.10: Log-Log Plot vs {{sec) for Example 9, T = 0.08, m = 32.
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Part III

Advanced Applications : Stochastic Processes
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CHAPTER 7

Quantum Monte Carlo Methods

One major application of Monte Carlo methods is in the area of quantum
mechanics, Such techniques, known collectively as Quantum Monte Carlo, are
regularly used by theoretical physicists and chemists. There are several varieties
of Quantum Monte Carlo including Green’s Function Monte Carlo, Path Integral
Monte Carlo, and Diffusion Monte Carlo, but they are all similar in terms of
tleir usage and basic theory. To my knowledge, the application of quasi-random
sequences to the Quantum Monte Carlo methods discussed here has not been
pursued previously, or if it has, the lack of success has led to few published results.
Notwithstanding the difficulties involved, I have obtained encouraging results on
the examples which I have studied.

Green’s Function Monte Carlo (GFMC) refers to a class of Monte Carlo tech-
niques for approximating the exact ground state characteristics of quantum me-
chanical systems with a fixed potential function in time. When these methods are
based on the time-independent form of Schrédinger’s Equation, they lead to what
may be regarded as the iterative solution of an eigenvalue equation using Monte
Carlo integration to perform the iterations.

An alternative approach is based on the time-dependent Schrédinger Equation
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and involves an additional approximation for finite time steps. These methods are
sometimes also referred to as Green’s Function Monte Carlo, but they are more
commonly known as Diffusion Monte Carlo (DMC), which is the term I will use
for them. In contrast with the GFMC methods above, DMC methods may be
regarded as the approximate solution of an evolution equation by transforming it
into a stochastic diffusion process, and then using time-discretization and Monte
Carlo simulation to approximate the process.

Although quasi-random sequences can be successfully applied to either of the
above classes of methods, I have had more success dealing with the latter, so that
1s what I have chosen to concentrate on here. There is certainly a great deal more
work which can be done with regards to the application of quasi-random sequences
to either GFMC or DMC.

In the discussion of Diffusion Monte Carlo to follow, ground state energy will
be treated as the unknown quantity whose value is to be estimated using Monte

Carlo methods,
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7.1 Diffusion Monte Carlo - Underlying Theory, Convergence Result

Consider the time-dependent Schrédinger Equation for a quantum system of
M bodies, with a fixed (in time) potential function:

Mh2

>

 Gome Vip(my, ... &p, )+ 0(Ty, . Ep) (20, B, ) (7.1)

., 0
= h -a-;’(!)(ﬂ:l,.. .,CCM,t)

In the above equation,

my is the mass of the &’th body,

T, = (1:£ ),ng), .BL ) is the position of the &’th body,

Vi = 35)2 + 2 (2 %+ 3 (3)2 is the Laplacian operator on the k’th body,
v{@y,...,xy) is the fixed potential energy function,
P(zq, ..., &pr, t) is the wavefunction or probability amplitude.
Note: boundary conditions may be specified, or implied by the physics.

The wavefunction’s connection to physical reality is that the probability density
at location (@q,...,2p) at time t is equal to [h(xq,. .., zp,1){%

Let y = (z,..., %) € N3M represent the locations of all the bodies. Then,

define Hamiltonian operator, H, as follows :

M ﬁZ

H=-3

= 2my,

VE 4+ w(y) (7.2)
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Then Equation 7.1 can be rewritten compactly as follows:
L0
H(w,1) = ih(y, 1) (1.3

If one assumes that v{@) is continuous, which I will do, then it can be proven
using Sturm-Liouville theory that a complete set of orthonormal eigenfunctions

with distinct eigenvalues satisfying the following equations exists:
Hipi(y) = E;;(y) , (G=01,..), Eg< By <--- (7.4)

It can be trivially shown that adding a fixed constant to the potential function
will shift each eigenvalue by the same amount, without affecting the eigenfunctions.
This allows one to set F, near zero by subtracting E, a rough estimate of E,,

from the potential.

A formal solution to Equation 7.3 can now be derived using superposition since
H is a linear operator:
Consider initial condition, 9(y,0) = a;;(y), for any :.

As an Ansatz, assume that (y,t) = T(¢)v;(y). Then we have:
Hiy(y,t) = ‘TE/;( t
vy, ) - zl(‘)t‘l Y, )
T(t) Hy(y) = ihy(y) (1)

T Exi(y) = hp(y) T'()

Tt '
() - ! E,
T(t)
= T(t) = a,-e“"f!;”E"t
Therefore,
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Ply,t) = ae w By (y)

Now, applying superposition, one obtains the formal solution to Equation 7.3:

(.0 = 3 aly)

=0

Then $lyt) = Y are iBhy(y) (7.5)

i=0

where by the orthonormality of the eigenfunctions, we have the following:

a; = ¥(y,0) vi(y) dy (7.6)

Next, we consider a transformation of Equation 7.3 to imaginary time, 7 = ¢f.
Let ¢{y,7) = (y,it) , then by using the chain rule an evolution equation for ¢

can he derived as follows:

d
Hqﬁ(y,‘r) = ik ._¢(ya T)

= zh-(?-tiqb( ,T)

8t or
= ¢hy Eqﬁ(y,r)

HY(,7) = —ha-g(y,7) &

By using the same argument as above, we obtain a formal solution to Equa-
tion 7.7 (Note that the eigenfunctions and eigenvalues are unchanged because H

is a purely spatial operator.) :

¢y, 7) Zae B () (7.8)

1z=(
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with initial condition ¢(y,0) = ¥(y,0) = X2 a;1;(y). Where again, using or-

thonormality, one obtains the following:

a; = $(y,0) ¥ (y) dy (7.9)

RIM

The advantage of Equation 7.8 over Equation 7.5 is that as the system evolves
forward in imaginary time, it will tend to approach its ground state, 1y, which has
the lowest energy eigenvalue. This will be examined next. First, however, a brief
discussion of normalization is appropriate.

Wavefunctions should be normalized so that the L? norm over R3M is equal
to one, i.e. fyom ¢2(y,7)dy = 1, Y7, whenever the wavefunctions are to be un-
derstood physically. This is related to the probability amplitude interpretation of
them. In real time, this is automatic, but in imaginary time one must normal-
ize the wavefunctions explicitly to treat them physically. Let qg(y,r) denote the

normalized wavefunction. We then require the condition :

Lo Sty =1 (7.10)

Consider the expansion of the wavefunction ¢(y,7) as follows:

Hy.r) = Y adr) i)

Also, the expansion of its normalized version,¢(y, 7), as follows:

o0

$(y,m) =3 a(r) vily)

=0
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Then the normalization condition above can be restated using the orthonor-

mality of the eigenfunctions as follows:

This can be satisfied by dividing ¢(y,7) by /2272, a;(7)?.

Thus, we have in imaginary time evolution, using Equation 7.8:

oo ~LiEr

- a; ek

qS(y,"r) = § : - b
S oo —£FEr
=0 \/ g age

Pi(y)

(7.11)

This equation describes the evolution of the system in imaginary time in a way

which is compatible with the usual normalization requirements of wavefunctions.

Note however that Equation 7.8 remains the only true mathematical solution to

Equation 7.7, while Equation 7.11 provides a way to relate that solution back to

the physics.

Now it will be possible to show that as the system evolves forward in imaginary

time, it approaches the ground state. This is done as follows:

g -2
N 5 ate mEor 1
Gof7)* = ( o 2 —%EJT) T e @ —2(Ej—Eo)r
. 3 -N%  — 40
i=0 % € Ejm{mge »
1

(12 .
14+ 5%, ;%.e—%(EJ-Eo)r

= 1-a3? Y ate hEE) 4 Oe)

i=1

Then since E; > Ey , Vj > 0, we have the following result (assuming aq # 0):

dg(ty?=140(e”7) , as T — oo.
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Also, since 3272 &;(7)? = 1, this implies the following:
(T =0("), Ve >0, as 7 — oo.

Therefore in the L2-norm there is exponentially fast convergence to the ground

state in imaginary time {(assuming agy # 0), which can be written as follows:

16y, 7) = do(¥)ll2 = Oe™™) , as 7 — oo (7.12)

A weaker expression of this convergence will sometimes be written as follows:

lim @y, 7) £ po(y) (7.13)

The assumption that the initial wavefunction is not exactly orthogonal to 1,
(ag # 0), is easily satisfied by taking the initial wavefunction to be a crude ap-
proximation to the ground state using other methods. This also helps shorten the
amount of imaginary time before the wavefunction has ‘converged.” However, even
for an arbitrary initial wavefunction, it is virtually impossible to have no ground
state component, given roundoff errors on the computer.

The basic convergence result, Equation 7.13, is what enables Diffusion Monte

Carlo to estimate ground state properties of quantum systems.
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7.2 Trial Function Reformulation

The evolution equation in imaginary time, Equation 7.7, can be rewritten in

explicit form as follows:

G, B Mo p w2 1 1
g;qﬁ(y,r)ugﬁ W, 7) - o) by, 7) (7.14)

This is a partial differential equation over 3™ x R, and methods using time
and space discretization to solve this kind of equation such as finite differences are
well known. However, they are difficult to apply here in general because of the
high number of dimensions involved. Diffusion Monte Carlo i1s an alternative based
on the close relationship between the equation above, and an associated stochastic
process involving diffusion and local sources and sinks, As will be shown in Section
7.4, the last term of Equation 7.14 corresponds to a source or sink at each location
y according to the sign and magnitude of v(y), while the summation of terms
corresponds to a diffusion of the probability amplitude of each body in the system
according to its mass.

When v(y) has a high amount of variation, or is singular at certain values of
y, this can lead to large variations in the results of simulations of the system and
potentially explosive growth near singularity points of v. This can cause Monte
Carlo estimates of the ground state energy to have very high varianceserefore
require very large sample sizes to obtain good accuracy. This is important because
in particular, the CoulomD potential, v(y) = ;1:, where r,, is the distance between

like-charged particles, is singular as this distance approaches zero.
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A common method for avoiding such problems, and hence reducing the vari-
ance, involves a reformulation of Equation 7.14 using a trial function, é7(y), which
18 a’crude approximation to the ground state, 1(y). For practical reasons, ¢r(y)
should be a function which is relatively easy to compute at any specified value of
y, and to which it is also relatively easy to apply operator H.

Now, to obtain the trial function reformulation of Equation 7.14, define the

following function:

fly,7) = ¢r(y) ¢y, 1) (7.15)

Then, Equation 7.14 can be rewritten as follows:

(1) - £ (i) ()
S ) = fjmqu() (222 - v )

2my,

This can be further simplified by considering the following:

v (L) v (qsmfmqu»)

br ¢2.
_ %% Vi(¢r Vif = [ Vidr) = (87 Vif — fVidr) Vi(42)
s
Vif fVi¢gr 2ViérV,.f + 2f(Vigr)?
br $2, ¢ @3

Let the following quantities be defined:

bly) = h;i’]("(?;) , trial energy function. (7.17)
a.(y) ﬁ VMT( ) , (k=1,...,M) , local drift functions. (7.18)
m’k ¢T( )
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Then Equation 7.16 can be rewritten as follows:

K, M M
7/ 07) = 2 5 V1) = L Ve (@ulv) S(0,7) = 0w S(w,7) - (7.19)

r‘I‘his is the governing equation for the trial function reformulation of the system
in imaginary time. It converges not to 1, but rather to ¢4 1, which will actually
turn out to be beneficial. The equation is similar to Equation 7.14, but with an
additional set of terms involving lst derivatives of f. As will be shown, these extra
terms correspond to a drift in the associated diffusion process with the drift of
the k'th body given by the vector valued function, a;. Hence the name “local
drift functions.” The most important change is that in the final term, v(y) has
been replaced with b(y), the trial energy function. If the trial function has been
well chosen, then b(y) will have a significantly lower variance than v(y) and the
singularities of v(y) will also not be present in b(y). In particular, if one were to
hypothetically use exactly 1 as the trial function, then b(y) would be a constant
valued function with zero variance. In reality one uses a trial function which is as
close as possible to unknown ¥, in order to reduce the variance of b(y) as much
as possible, The next section will indicate how the ground state energy can be

estimated from the values of b(y).
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7.3 Theoretical Ground State Energy Approximations

The solutions to the evolution equations, Equations 7.14 and 7.19, can be
used in several ways to approximate the ground state energy, E,, of the physical
system. Monte Carlo estimates, described in Section 7.5, will be based on such
approximations. In this section references to convergence are meant to be in terms
of imaginary time, 7, as it increases to infinity.

One such approximation is known as the growth estimate. It is used pri-
marily with the solution of Equation 7.14, which does not involve a trial func-
tion. Consider that if the solution has converged to the exact ground state, i.e.

¢(y,7) = ¥y(y), then by Equation 7.8 the following would be true:
By, 7+ A7) = e KA gy, 7)

Integrate over y and solve for Ej; to obtain the following equation:

h (f ¢y, + Ar)dy

b= - g tog (LHETESH) i gy, ) = vt

AT
Then, by Equation 7.13, as 7 increases ¢(y, 7) approaches ¢o(y). Therefore, in

general, assuming that a; # 0, we have the following useful result:

E, = lim {__ﬁ_log (fé(y,'rJrA’r)dy)}

e AT [y, 7)dy

In practice, the integrals in the above equation are estimated using Monte
Carlo methods and stochastic simulations similar to those which are discussed in
the later sections of this chapter. However, I will focus primarily on the second

type of estimate below because it is generally much more accurate.

132



Note that since Ey is, by definition, the lowest energy state of the system, the
approximations should tend to converge to Ej from above. This allows one to
deci_de how high 7 has to be for convergence by waiting until the energy estimates
cease to steadily decline and instead simply fluctuate around the exact value of E;
due to statistical errors in the Monte Carlo estimates.

A second way to approximate E, is called the variational energy estimate. It
is particularly well suited to the solution of Equation 7.19, with a trial function,
though it can also be used when no trial function is involved in the evolution of
the system. It is based on the orthonormality conditions of the eigenfunctions of
the Hamiltonian operator H. Cousider the following:

Let ¢.(y) be an arbitrary wavefunction with a non-zero ground state compo-

nent. By Equation 7.9, we then have the following:

fSPSM . (y) voly)dy = ay # 0

Next use Equation 7.4 and orthonormality to obtain the equation:

[y o) hely) dy = By g

Therefore, solving for E,, we have the following exact formula:

i Do H4.(y) ho(y) dy
¥ Jsom 0.(y) Yoly) dy

This is approximated for large 7 by defining the quantity:

o HY(3) (. 7) dy
) = ey 9y, ) 4y

(7.20)
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Then, using Equation 7.13, one can show the following:

i A = Em f?R-"M HqS*(y) ¢(ya T) d'y
Jim E(r) = 'rl—’m{ Joom 6.(y) $(y, 7} dy }
Juom H(y) ho(y) dy
Jaom 6.(y) oly) dy
= Eo (7.2])

This becomes especially convenient for the system governed by Equation 7.19
with trial function, ¢z, if one uses @7 as ¢, in the expressions above. Then,

Equation 7.20 can be rewritten as follows:

Jwne Hor(y) ¢y, 1) dy
Swon é7(y) ¢y, 7) dy
s (B2 () By, 7) dy
Jxore d7(y) 8(y. 7) dy

fuose () (w7 dy

Jsam fly,7) dy
Jwom 8(y) fy,7)dy
Joors fly,7)dy

E(r)

E(r) (7.22)

Thus, in this case, E{7) is equal to the expected value of b(y) with respect
to f(y,7) as a normalized probability density, where b(y) is the local trial energy
which was defined by Equation 7.17. This expectation is estimated using the
stochastic simulation and Monte Carlo methods of the next several sections. As
discussed in the last section, b(y) is nearly constant when ¢1(y) is close to ¥y(y).
As a result Monte Carlo estimates based on the variational energy often have a
significantly lower variance than growth energy estimates, and are therefore usually

preferred.
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There is an important assumption being made in the paragraph above, which
is that f(y,7) is strictly positive. Otherwise, it would not make sense to use f
as a probability density function. In fact, in certain physical systems, f(y,7) can
become negative, and this leads to difficult problems with regards to all types of
Monte Carlo estimates. This is an area of a great deal of active research (see
for example Anderson and Traynor [4], Ceperly and Alder [9], and Zhang and
Kalos [63]). However, in the examples which I have considered the value of f(y, )
is strictly positive. Also, in all of the discussion to follow, I will assume that f(y,7)
is strictly positive. I anticipate that the methods I develop here will also be useful
in cases where [ does become negative, but that will have to remain an area of

possible future research.

7.4 Connections to Stochastic Differential Equations

Corresponding to the partial differential equations, Equations 7.14 and 7.19,
are diffusion processes which can be described by systems of stochastic differential
equations (SDE’s} such as those introduced in Section 6.3.2.

Physicists and Chemists often describe the diffusion processes in terms other
than the stochastic differential framework, using such terms as transfer matrices,
commutators, and averaging over ensembles of particles, but their resultant simu-
lations are generally equivalent to those which I will obtain using the mathematical

formalities of stochastic differential equation theory.



Recall Equation 7.19:

Fé) M 3 M
—fYy,7) =3 s Vif(y,7) = D Vi (ar(y) f(y,7)) — b(y) f(y,7)
or = 2my, =

This is rewritten explicitly in 3M dimensions, with ¢ replacing 7 for simplicity,

as follows:
0 M1, 2 Mo
5/ 0= L 507 55000 = 3G (@) S0, = M) S ) (129

where o; = \/% , ;= ai,j) , k= Trunc (3:‘323) sand y =14 (z~1)mod 3 so
that z refers to the j’th component of the &’th body (see Equation 7.1).

Now we define a related stochastic process. First, a note about normalization.
Earlier, in Section 7.1, wavefunction were normalized so that [y (y,¢)2dy = 1
(see Equation 7.10). Here, however, a wavefunction, f(y,0), will act as an initial
probability density function (pdf). Therefore, its appropriate normalization is
given as follows: fyam f(y,0) dy = 1. This is often a source of confusion. However,
since H is a linear operator for which we are seeking an eigenvalue, namely E,,
multiplication by constants doesn’t really affect the results.

Consider the vector-valued stochastic process:

Z0) € f0) , Y(0) = 0 (7.24)

dZ(t) = a(Z(t)dt+o;dW , (i=1,...,3M) (7.25)

dY(t) = W(Z(t)dt (7.26)

where Z(1) = (Z,(t), ..., Zyp(1)).
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This is a system of stochastic differential equations {SDE’s). See Section 6.3.2
for more details. As will be explained in Section 7.5, the coeflicients o; are the
component-wise diffusion constants, while a,{Z{#}} arc the component-wise local
drif£ functions. The function b(Z(t)) acts as a local growth/decay rate for the
extra stochastic variable Y which is interpreted as a ‘weight’ factor in terms of
total growth/decay along the stochastic path of Z.

The following theorem, which is closely related to the Feynman-Kac Formula
(see Section 6.3.3), expresses the connection between the solution of Equation 7.23
and the stochastic process defined by the SDE’s of Equations 7.24-7.26. We will
need the vector version of Ito’s Formula (see Gard {15] for derivation) which can
be stated as follows (Note: each o; is a constant) :

If

dX;(t) = a( X)) dt + o, dW | (i=1,...,d)
Then
=1 1

a1 02 d a
HX0) = (3 goigm (X W)+ L e [(X(0) )

+ (?; a,-?)%t—_ (.X(t))) dW

Theorem 3 Let (Z(t),Y(t)) be defined by the SDE’s of Equations 7.24-7.26, and
let p,(y,t) = fpom p.(2,0,9y,t) f(2,0) dx be the probability density for Z(t) =y.
(Note: p,(z,0,y,t) is the transition density function for process Z(t), and

f(x,0) is acting as its initial position distribution. See Section 6.5.1 for details.)
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Define the following:
9(y,t) = E{eV0|Z(t) = y} p.(y,1) (7.27)

Then, for any test function, v(y), which is square integrable and twice differen-

tiable, we have the following two results:

(2)

fgew v(y) (-gz (y,t)) dy =

@) (X2 ) - 3 L) oy ) - b oy, 1)) dy (728
® =12 Oy = v

(i.e. g{y,t) satisfics Equation 7.23 in a weak or variational sense.), and
(i)
[ 2 ) 9(9,8) dy = B [o(2(2)) ¥ )] (7.29)
where the expectation is taken over all possible realizations of the stochastic pro-

CeSSES.

Proof:
Let V(t) = E[v(Z(t))e~Y)]. Then, using the definition of expectation and

conditional probabilities, we have the following:

iy = [ o) B(eY012() = y) p.v,0) dy

N fw v(y) gy, 1) dy

This immediately proves part (ii).



Now consider,

(n;it) _ %( ]& mv(y)g(y,f)d'y)

= [ o) oy, iy (7.30)

On the other hand, by definition,

dv(t) - bim (v(t + h})b - v(t))

dt h~s0

E[o(Z(t + h))e~Y (+9] = Bo(Z(1)e¥ ]

= hm
h—0 )
= FE {113}(1} (v(Z(t + h))e—}'(t-::) _ v(Z(t))e-)’(t))}
- {}S}, ((v(z(t +h)) —;Lv(Z(t))e—Y(t))
L (PZ0AR) (6 e
T ( ; )}

~ d(Z(t)) _,, aY(t) .
- E{T ”—”(Z(”)—dr””}

Apply Ito’s Formula:

M az a
= p{(3 5 gtz + X a(z(0) 5olz0)

3M 6
+ ;WE&ZU(Z(‘&))%:—[-) Yty _ b(Z(t))v(Z(t))e—Y(t)}

The ‘stochastic’ terms in this expectation containing %, which is the White
Noise Process, all drop out since the expected value of each of them is zero. (See
Sections 6.3.1-6.3.3 for details.)

Define the following linear operators:

M 2 M
(X 397 5+ L l20) - HZ0) w(2(0)

M 1 32 SM a

Ll(2(1) = (22 7 oy Ty a(zu»—b(zu))) v(Z(1)) , adjoint.

o] =1
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Then we can continue as follows:

MO~ Blpzwyere

AU = LSM L[v](y) E (ﬂ IZ(t) = y) pz(yat) dy
= [, Lolw) g, 1) dy

Finally, using integration by parts, we have:

dV(t)
dt

= [ v L[o](w, 1) dy (7.31)

Therefore, combining Equations 7.30 and 7.31 gives us the following:

fwM v(y) “g%g(yat)dy = fyw v(y) L*[g](v,t) dy

This is the desired equality for part (i),

Note aiso that g(y,0) = f(y,0) trivially satisfies the initial conditions for
Equation 7.23. Thus, g(y,t) is a weak solution of Equation 7.23. e

The same sort of argument can be made for the solution of the quantum system
without a trial function, Equation 7.14. The appropriate stochastic processes are
governed by SDE’s which are like Equations 7.24-7.26, but without any drift terms
and with b replaced by v, which can be much more poorly behaved (higher varia-
tions and singular). I will not deal with this case because of the strong similarities
with the trial function case and because the trial function reformulation seems to
be much more commonly used.

Using the above theorem, the variational energy estimate, E(t), with ¢ replacing

7, for convenience as in Equation 7.23, can now be computed using the stochastic
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processes as follows:

S Oy fy, t) dy
B = o Twndy
E[b(Z(t))e=Y®)]

= B[] , over stochastic paths (Z,Y). (7.32)

This expectation will be estimated using Monte Carlo estimates (Section 7.6)
over repeated simulations of the stochastic system using finite time steps (Section
7.5). Finally, the application of quasi-random sequences to these Monte Carlo

estimates and simulation will be discussed (Section 7.7).
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7.5 RMS Convergence, Time Discrete Stochastic Simulations

Let |[X - Y||,,ns = /E((X = Y)?) define the root mean square norm of the
difference X — Y, where X and Y are random variables. For our purposes X and
Y could be the values of two different stochastic processes at the same time or the
values of a single stochastic process at two different times.

Then we define the following properties of a family of stochastic processes

X ™(t) intended to approximate X (t):
£ I fIX) = X ()]s =0, at ¢,
then XM@Y X(t) , at .

This is called rms-convergence.

XM(t) - X(t
If ’},illg H ( )ha ( )HT”LS < 00 , a,t t,

then XW)y— X(t) = 0,,..,(h%) , att.

This is called rms-convergence of order «, or order « local accuracy.
One can also measure the magnitude of a stochastic quantity in terms of the

corresponding rms-norm defined as follows:
”XHrms = E(X2)
In particular, a few important results are as follows:

IW()lms = VEW(#)?2) = 12
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H /(:W(s)ds = \JE[( /;W(s)ds)z]

= 1/E [/t/t Wi(s)W(r) drd.s]

- \/ff s)W(r)) dr ds
\/ fo ]0 min{s, r} dr ds
- \/:zfotfosrdrds

= —1—t3 — __Lt3/2

3 V3

This can be continued in the same fashion to show the following:

h
[aw, = W) = 0.7 (7.33)
)
h rs h
f f AW, ds = / W(s)ds = O,,.(h3?) (7.34)
) 1] 4]

h ps pr h ps
] f / AW, drds = f / W(r)drds = O, (h5/?)  (7.35)
0 o Jo 0 4]

It can similarly be shown that the following are also true {Gard [15, pg.42]):

h ps h
j f AW, dW, = ] W(s)dW, = O,..(h) (7.36)
O 1 0

hops pr h rs
4 — I g 7 < — 2 .
fo fo fo dW,dW, ds /ﬂ /U W(r) dW,ds Orms(h?) (7.37)

h5+5) when there are a stochastic differentials, dW,

In general, we have order O,,,,,(

and b ordinary differentials, dt. (See Kloeden and Platen {32].)
The quantities on the left hand sides of the equations above are known as
“Wiener iterates” and are important in deriving high order time discrete stochastic

approximations, as we shall see.
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Now, a stochastic analogue to the Taylor Expansion is derived using the Ito
Formula. Its truncation errors can be interpreted in the rms sense as above. This
will be for one dimension, but the same concept works in higher dimensions. Also
for simplicity, but without loss of generality, I will assume that the starting time
ist=40.

Stochastic (Ito) Taylor Ezpansion:

Consider stochastic process X(t) given by the following SDE:
dX(t) = a(z(t)) dt + o dW
Then, given X (t) at any ¢, one can express X(t + h) as follows:
t+h
X(t+n) = X0+ [ a(X(s))ds + o(W(t+h) - W()

(Note: refer to Section 6.3.2 for further explanation.) Assuming, without loss of

generality, that £ = 0 and X (0) = 0, this becomes:
h
X(h) = / a(X(s))ds + oW (h) (7.38)
0
Recall the Ito Formula:
1
G (X(#) = LI XEDa(X()) + 5o /(X)) dt + o f1(X (7)) dW
Therefore, in general, f(X(h)} can be expanded as follows:
3 1 h
X)) = JXO) + [ (Fa+ 502X ())ds + [ o (X(s))aW,

Now expand a(X(s)) according to the expansion above:

a(X(s)) = a{0) + j:(a’a + %Jza”)(X(r))dr -+ /Os oa'(X(r))dW,

144



Insert this formula for a into Equation 7.38:

X(h) = f ( O+ [ exear+ [ oax dW)ds+ch(h)
= oW(h)+a(0 h-{-f]oa des+//g )) drds
where ((X(r)) = (a'a + Lo2a”)(X(r)).
Next, expand ((X(r)) and o a/(X(r) in similar fashion:
ca'(X(r)) = oa'(0) +f o{aa + 20 2a"{( X (q dq—i—f 20" X(q))
(X)) = 0+ [ (Cat 5o )X (@) da + [ oC(X(a)) dW,

Inserting these expansion into the expression for X(h), integrating, and using

Equations 7.33-7.37, we obtain the following:

X(h) = cW({h)+a(0)R
h T
+ /0 / [cm.’ —l-f a{ X (q)) dy +] a2a”(X(q))qu] dW, ds
h
+ f j [c +/ B(X(q dq+f o (X (g )dwq}drds
0
— GW(h) + a(0) h + oa(0) f W(s)ds + 5g(O) B2
e
+02(L” / / dVV ds + Orms(h )
where o = ga"a + Jo%a and § = ('a + 0",
This Stochastic Taylor Series is similar to the ordinary (deterministic) Taylor

Series. However, the terms increase by half orders of & instead of whole orders. In

particular, we have the following:

Orms(hl/z) : JW(h)
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Opms(h) © a(0)} R
h
O,ms(h3/2) arz’(U)f W(s)ds
0

1 h s
Orms(B2) & 5¢(0) B2 + 52a(0) /0 jﬂ W(r) dW, ds

This process of successive expansions can be continued as far as needed to obtain
higher order terms of the Stochastic Taylor Series. This series is the basis for
a wide variety of time discretization methods for approximating the solutions of
SDE’s. See Kloeden and Platen [32] for numerous examples.

Now we can define a time discrete approximation for the system (Z{(t}, Y(¢))
at any arbitrary time ¢ as follows:

Select the number of equal time steps m, and let & = -+ be the size of the time
steps, and ¢; = jh, (j = 0,...,m) be the discrete times at which the process will
be approximated. A should be small for low discretization errors.

Then, the Fuler-Maruyama approximation scheme is defined as follows:

A= $2(y) , YO = ¢ (7.39)
2! = ZF 4 o AWS 4 hay(Z67Y) (7.40)
VU = YU 4 (201 (7.41)

with i=1,...,3M |, j=1,....,m , AWM e N(0,h).

Note that ¢Z(y), normalized as a pdf, is used for f(y,0). This is intended to
be the best available approximation to ¢(y)1Po{y), which is the function to which
the solution of Equation 7.23 converges. The better this approximation is, the less

time (fewer steps) needed to reach this ground state, ¢7 1.
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This approximation scheme has local truncation error of order O,,,,(h%/2) by
the Stochastic Taylor Series. However, the errors at each step add up to give a

global error at time t of order O,,,,(h1/2) as follows:

m OTTTlS(h3/2) = mh' O‘l"ms(hlfz) = tOT?nS(hI/.Z)

It should now be clear from Equation 7.40 why the coefficients a; are referred
to as the local drift functions, and o; are the diffusion constants. Also since Y'(#) is
interpreted physically as an exponential growth or decay factor in the term e~ (),
we see that b in Equation 7.41 acts as the local growth/decay factor.

Most simulation methods for diffusion processes, including those used by physi-
cists and chemists, are roughly equivalent to the above Euler-Maruyama scheme.
Typically an “ensemble of random walkers” in 3M dimensional space are followed
through time as they are drifted by % a;, componentwise, and diffused by adding
a sample o; AW € N(0,0? L), a Wiener increment, componentwise. Growth or
decay is modeled by either weighting or branching. For branching, walkers are
killed with probability & when b is locally positive, or split in multiple branches
if b is negative so that the expected number of branching walks is 1 + |b| k. For
weighting, the weight associated with each walk is multiplied by 1 — bk, or by
e~bh . at each step. In either case, the effect is an estimation of e~Y{!) over each
walker’s path. As they progress in time, the walkers' positions produce a weighted
sample from f(y,t) which approaches ¢+(y)¢¥,(y) exponentially fast (except for

finite time step discretization error).
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Although this simulation is only order O,,,,(h!/?) accurate in terms of the
paths, it is actually of order O(h) in a weaker sense in terms of estimating the
correct expectation. This is related to the fact that F ( f(‘:‘ Wsds) = (. So when
expéctations are taken, this error term drops out. (See Kloeden and Platen [32] for
details of this weak convergence.) The result can be stated without explanation
as follows:

Define the expected finite time step approximation as,

E [b(z{m)) e_y(m)]
EW(1) = = [ y(m)] , where h = £ (7.42)
-

Recall the expression given by Equation 7.32 for the the variational energy esti-

mate;
Eb(Z(t)) e ¥ )]
E e ]

E(t) =

Then, based on the results proven by Kloeden and Platen [32], one could write the
following;:
EtNtYy = E(t) + O(h) (7.43)

where O(h) is a simple deterministic order of convergence.

Computational results have confirmed this order of convergence for the expec-
tations using the Euler-Maruyama Scheme on the examples I have examined.

Higher order accurate methods are possible by using further terms in the
Stochastic Taylor Series. The quantity foh W (s) ds can be shown to be a Gaussian
distributed according to A0, %?-) which is correlated with W (k) with the follow-

ing covariance: cov(W(R), foh Wi(s)ds) = L‘; These two quantities can in fact be
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sampled exactly in terms of two normally distributed variables, ¢;,9, € N(0,1),

as follows:
W(h) = hil?g

h 1 1
4 = —p3/2 S
/0 M (3) dS 2h (gl + \/§g2)

(Note: The details of the above results are derived and discussed in depth by
Kloeden and Platen in [32].)

Thus, higher order methods typically require more than one Gaussian variablé
per time step. However, this is made up for by allowing for larger time steps. Also
Runge-Kutta type approximations can be used for derivatives such as o’ appearing
in higher order terms.

For the examples at the end of this Chapter, | have used a method derived by
Helfand and Greenside (see [26] and {18]) which s third order accurate in terms
of the expected finite time step error, as in Equation 7.43. The method requires
the use of two Gaussian variables per time step, but allows for significantly larger
time steps without large discretization errors.

In order to avoid the details of this discretization method, which are not directly
relevant to the rest of this thesis, | will use the following symbolic notation to

represent the method, which will be referred to as Helfand /Greenside 3;

29 < () (1:4)
YO = @ (7.45)
29 = 291D, (0,0, AW, AW}, 267) (7.46)
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YO = Y64, (bo,a, AW, .., AWS), 26-1) (7.47)

withj=1,...,m, AWE) eN(,h)fork=1,...,6M , a=(ay,...,a37), and
o= {0oy,...,031)-

As it was for the Euler-Maruyama Scheme, ¢2(y) is used for f(y,0) here.

This scheme involves more work than the Euler-Maruyama scheme for each
time step, and also twice as many Gaussians per time step. However, much larger
time steps can be taken using Helfand/Greenside 3 for a given discretization error
level. As we will see, the size of the time steps is important {they need to be as
large as possible), when attempting to apply quasi-random sequences to Diffusion

Monte Carlo estimates, which are discussed next.

7.6 Diffusion Monte Carlo Estimates

Monte Carlo estimates of the ground state energy, Ey, are obtained by averaging
over repeated samples of the stochastic process (Z(1),Y({)) generated using the

time discretization methods of the last section. First, a review of some notation:

E, = unknown ground state energy, to be estimated.

ant b iy d _
E(t) = Jue Uy) 1y, 0) dy , trial energy estimate.

Jwers fly, 1) dy
EbZ () e Y |

= [é‘[e(—))"{t)] } ) by Equa.tlon 7.32.
E [o(2™) e-rt™)]

E [e‘l'(’"}J

E(h}(t) —

, m = £, the # of time steps.



Now, given a sample of stochastic results, (ng),Y,}m)), k=1,...,N, define

the following Monte Carlo estimate:

>N b(zZ™) S

N _yim)
2ker € i

B = (7.48)

This is simply a ratio of two Crude Monte Carlo estimates. It is the Diffusion

Monte Carlo Estimate, and it estimates Fy as follows:

BN = Bo = (ER) — BO(8) + (EW(t) - E(1)) + (E(t) - B)
= e + €discr + €distr | (749)

= O(N-U3) 4+ O(he) + Ofe~{BEr-Bo}ty | ast N o0, h—0

where o is the order of accuracy of the time discretization method, €, is the
“Monte Carlo error,” €4, 18 the “discretization error,” and ey, is the “distribu-
tion error.”

The value of & is determined according to accuracy requirements, while N is
typically as high as time constraints will ailpw. The value of ¢ required to reduce
the distribution error to acceptable levels depends on how close the system is
initially to its ground state. For the trial function reformulated system with ¢2.
used as the initial distribution (see Equation 7.39), this convergence is from ¢2 to
&1 1y, and the size of ¢ required depends on how well ¢, approximates 1),

Even for a well chosen trial function, ¢p, though, the size of t needed is typically
¢

much larger than the time step size 2. Therefore, the number of time steps m = ;

can be quite high, even up to the hundreds.
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However, as we will see next, when m is large, there is little hope of using quasi-
random sequences directly to improve the estimates. Therefore, we will need to use
a different approach involving the combination of pseudorandom and quasi-random
sequences, which will be discussed in Section 7.7.

Consider the following representation of Diffusion Monte Carlo:
E [b(z(m)) G_Y(m)]
E [e—}’(m)]

E {b (Z(O) + AZ(I) 4ot AZ(m)) e*y(l)—AY(z)—..._Ay(m)}
B {e—Yﬂ)—Ar(z)ﬁ..._ay(m)}

E(EJ) =

where AZY) represents the jth (vector) step along the stochastic path of Z, and
similarly for AY (),

The quantities AZY and AV are computed according to the discretization
scheme being used. In the case of Euler-Maruyama, 3M Gaussian variables are
used in determining each AZY) AY() pair, while for Helfand/Greenside 3, twice
as many, 6M, are needed for each step. The Gaussians are obtained by applying
a transformation method to the uniformly distributed points of a pseudorandom
or quasi-random sequence. As discussed in Section 6.3.4, the choice of this trans-
formation method can be an important factor, since it can add unwanted discon-
tinuities. I will be using Marsaglia’s method (Marsaglia [40]), which is continuous
and monotonic. Let M represent the Marsaglia transformation method, so that if
z; € U[0, 1}, then M(z;) € A(0,1).

The initial location Z) for each stochastic path also must be determined. Re-

call that these starting locations should be distributed like ¢2.(y). This is generally
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done using a method known as the Metropolis algorithm, which will not be dealt
with here. Generally however, one can think of this as requiring an additional
3M uniformly distributed components, which will be transformed to the correct
distribution, for each new path. Let this be represented symbolically by M, so
that if (zy,...,z3pm) € U([O,-]PM), then Mg(zy,...,Zan) € 42

Now, referring back to the symbolic notation for the Helfand/Greenside 3

method, one can write the following, for § =1 to m:

AZY) = D,

(
(

AYO = D, (bo,a,AW,,,..., AW, Z9)
(b,,a, M(z{"),..., M(2l)), 29)

Also, represent the initial locations as follows:

z29 = My,...,a5))

Yo = 0

Then suppressing all of the arguments of each function except for the z’s, we can

express:
E(BY) = .g.
A = | (bMo(@r, s zsm) + De(M(@spia)s - M(@om)) + )
B“Dz(M($3M+1),-..,M(EQM))"'Dz(M(mgM.'.l),...,M[sz))—-—...}dml-”dmd
B = /}d{e—vz{M(mml),...,M{xQM))—Dz(M(ng“},...,M(r{l";)M))_...}dxlmdxd



where d = 3M + 6 Mm and the z's have all been renumbered in order as follows:

o0

I
8

)
£y = TaMiyeM{j—-1)+i

with j = 1,...,m the time steps, and 7 = 1,...,6M the components needed for
each time step.

Thus, the Diffusion Monte Carlo estimate is essentially a pair of very large
dimensional integration estimates. It could even be thought of as a kind of weighted
uniform sampling estimate (but I won’t attempt any in depth analysis for this).
The number of dimensions is 3M + 6Mm, where M is the number of bodies in
the quantum system and m is the number of time steps. This is assuming that
two Gaussians are needed per time step, as for Helfand/Greenside 3. For Euler-
Maruyama, the dimensions are only 3M +3Mm, but m will need to be significantly
larger for the same discretization error level. Therefore, Helfand/Greenside 3 is
preferred (at least for my purposes here). However, even with a higher order
accurate approximation scheme, there are, in general, still too many dimensions
for the direct application of quasi-random sequences to be effective.

For example, if M = 2 (two body system), then at most only about m = 3 or 4
time steps are possible before the number of dimensions is out of the optimal range
for quasi-random sequences. This is well below the number of time steps typically
required to reduce the distribution error, €4, to acceptable levels, which could

be in the hundreds, as mentioned before. Therefore, an entirely new approach is



needed, if quasi-random sequences are to be applied to Diffusion Monte Carlo.
The next section will describe two new methods for dealing with the prob-
lem of high dimensions by combining pseudorandom and quasi-random sequences.
These will prove effective for Diffusion Monte Carlo when the number of bodies,
M, is relatively small (possibly up to 3 or 4 at most), which includes a great many
interesting systems nonetheless. If M is large (many body systems), purely pseu-
dorandom sequences appear to remain the best option, at least so far, but when

M is small, the methods discussed next can provide more accurate results.

7.7 Continuation and Empirical Transformation Methods

It is possible to combine pseudorandom and quasi-random sequences for Dif-
fusion Monte Carlo in such a way as to obtain higher convergence rates than
O(N-1/2), at reasonable values of N. This is in contrast with the direct use of
quasi-random sequences which would require astronomically high values of N to
have any hope of improving the results because the number of dimensions neces-
sary for good accuracy is typically so high. As discussed above, this is a result of
the need for ¢ to be relatively high in order to allow the distribution to converge
to ground state (reducing €g,,, }, combined with the need for the size of the time
steps, h, to be relatively small in order to control the discretization errors (€450 )-

The underlying concept of continuation is to first use a high dimensional pseu-

dorandom sequence to generate stochastic path simulations (or “realizations of the



stochastic process”) for the process (Z(t),Y(t)) up to some large time, t,. Since
we are using a pseudorandom sequence, the number of iterations can be as large as
necessary. The value of ¢, should be chosen large enough so that e, is insignifi-
cant relative to the statistical, or Monte Carlo, error ¢,,,. One says then that the
distribution has converged in time. Also, h should be small enough so that any
discretization errors are also insignificant relative to the Monte Carlo error. (Note:
The size of the Monte Carlo error depends, of course, on the sample size, N, so t,
and h should be selected accordingly.)

Next, these paths generated using pseudorandom sequences are “continued” for
just a few additional time steps using quasi-random sequences. If done properly,
this has the effect of reducing the Monte Carlo error, thereby producing more
accurate results for a relatively small amount of extra work. The quasi-random
sequences are able to work because with a low number of time steps only a moderate
number of dimensions are needed.

The key point which allows this to work is that the set of endpoints of the

N
pseudorandomly generated paths, { VA E”)}k_1, m = tf, weighted by their integrated

A(m) . .
Vi, provides a highly accurate sample from the ground

growth or decay factors, e™
state of the trial function transformed system, Equation 7.19, given exactly by
¢ %o In fact this sample can be made arbitrarily close by raising £, lowering &,
and increasing N. The only practical limitation is cpu time.,

Whereas, using quasi-random sequences directly with an initial transformation,

such as Mg, to ¢Z requires many subsequent time steps depending on the quality
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of ¢p, on the contrary the number of time steps required in the “continuation” part
of the method above becomes very small as N increases (assuming that £, and 2
havg been set appropriately}. This is because the paths have already converged
to the ground state distribution, so only Monte Carlo errors remain, which are
immediately reduced by taking a few steps using quasi-random sequences.

" since if 1t is not done

The main difficulty lies in setting up the “continuation,’
properly, most of the benefits of the quasi-random sequences are lost, or if new
approximation errors are introduced at this stage, more iterations will be required
subsequently to eliminate them. I will explain what 1 mean by this shortly.

(Note: In the case that ¢4 is itself an extremely accurate approximation to
g, then Diffusion Monte Carlo may not be needed at all, since one could simply
use F(0), the variational energy over ¢2 (see Equation 7.22), as an accurate ap-
proximation to E,. This can be evaluated as a simple 3M dimensional integral by
ordinary Monte Carlo methods, to obtain what is known as a variational Monte
Carlo estimate of E,. Such estimates are often used to obtain upper bounds on
Ey.)

I have found two effective ways of using the endpoints of the pseudorandom
paths to determine the starting points of the “continued” quasi-random paths.
One involves creating a transformation function and will be called the Empirical
Transformation Method, while the other uses the endpoints directly and will

be called Correlated Continuation.

First, we examine an obvious method which is not recommended. This will be
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referred to as Straight Continuation. In Straight Continuation the endpoint of
each pseudorandom path is taken in any arbitrary order to be the starting point for
a new quasi-random path. For example, one might use Z im) as the starting point
for the k’th quasi-random walk, which is weighted by e Y™, Each path is then
followed for a few additional steps using a single Halton point, with each set of 3M
or 6M components corresponding to a time step. With a small number of steps,
the dimensions can be moderate. This seems to be easiest and most sensible way
to proceed, and indeed its simplicity and “naturalness” have probably led others
to try it in some form or another. (I have not, however, found any evidence of
such attempts, probably because of their lack of success.)

As hinted above, such a method does not work well. The problem is that
this type of continuation essentially randomizes the starting points of each of the
quasi-random paths. This has the effect of destroying the correlations between
successive quasi-random points that enable quasi-random Monte Carlo estimates
to converge quickly. As a result, without these correlations (since the starting
points are arbitrarily randomized), the Monte Carlo estimates are just marginally
better than pseudorandom.

The main problemn is, again, that the starting location of each of the continued
paths is uncorrelated with the subsequent steps, which use quasi-random compo-
nents. The situation i1s analogous to taking a neatly spread out pattern of dots
and then adding a random offset to each one. This has the effect, in most cases,

of destroying the original pattern as well as most of its distinctive features. In the



case of quasi-random points, the “distinctive feature” is that they are more evenly
spread out than purely random points, in general. This feature is lost for quasi-
randomly generated paths, when a random (or pseudorandom) offset is arbitrarily
added to each one, which is essentially what is happening in Straight Coentinuation.

Consider the following simple example:

Example 10 The following three-dimensional integral:

I = folfolfolsin(m—i-y-i-z)d:vdydz

is approzimated in three different ways. The first is by e Crude Monte Carlo esti-
mate using a three dimensional pseudorandom sequence of points. The second is a
Crude Monte Carlo estimate using a three dimensional Halton sequence. Finally,
the third way is a Crude Monte Carlo estimate using a combination of pseudoran-
dom and Halton where each x; is pseudorandom, while each y;, z; pair is from a
two dimensional Halton sequence.

For each 1,1 =1,..., N, this can be though of as an exiremely simple process
which starts at x; and then takes two jumps given by y; and z;, before finally
having the sine function applied to its position to obtain a function value. Results

are shown in Figure 7.1.

The results for Example 10 show that the estimates using combined pseudo-
random and Halton sequences of points are just slightly better than the purely

pseudorandom estimates and significantly worse than the purely Halton estimates.
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Halton -0.992 | dash-dot line
pseudo/Halton | -0.480 solid line

Figure 7.1: Results for Example 10, 100 trials.
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This is to be expected given the discussion above. The reason that the com-
bined sequence estimate has an even lower convergence rate than pseudorandom
in this example is not clear, bul the important result is that this convergence rate
is nowhere near O(N-1). Thus, virtually all of the advantages to using quasi-
random sequences are lost. For the Straight Continuation method, the observed
results have been similar, though perhaps not as extreme, as will be seen in the
examples in Section 7.8.

However, there are better ways to proceed, two of which will be discussed next.
For both of the methods to follow, an extra set of components is required for each of
the Halton points in order to determine a starting location for the path generated
by the remaining components of that point. In one case (Empirical Transfor-
mation), the extra components are transformed into a starting location, using a
transformation which is built up using the full set of pseudorandom paths. In the
other case (Correlated Continuation), the extra components of each Halton point
are used to pick out which particular pseudorandom path is to be continued using
the remaining components of that same Halton point. Both of the above meth-
ods have the effect of reintroducing correlations which allow for faster convergence

using quasi-random sequences.
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7.7.1 Empirical Transformation Method

The Empirical Transformation Method involves using the weighted sample of
endpoints of pseudorandom paths to construct a transformation function which will
take points distributed according to U([0,1]®™) into points which are distributed
like the pseudorandom endpoints in order to get very near to the ground state
¢ Yo

This transformation is applied to the first 3M components of each quasi-random
point to obtain a starting point for a path, which is then continued for just a few
time steps using the remaining components of that quasi-random point. The di-
mensions are moderate because only a few time steps are taken. Since the starting
points are based on quasi-random components, none of the correlations are dis-
turbed and faster quasi-random convergence is achieved than with Straight Con-
tinuation.

For simplicity, I will consider an unweighted sample of pseudorandom endpoints
{Z k}iv=1 generated using the branching method of simulation, in which paths are
killed or split into multiple branches instead of assigning them weights. (See Sec-
tion 7.5 for further details.) In the examples, this is the type of method which I
will use for the pseudorandom stochastic paths.

The empirical transformation can be described as follows:

Partition the 3M dimensional domain of the Z,’s by first selecting a set of 3M
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finite sequences of points in the domain as follows:
BI,‘ = I/§J) < ng) < o< V'r(rij)-+1 = B2_,- ] (.7 = 1," . 73M)

where Hjﬁ [B1j, BZJ.] bounds the domain of Z. If the domain is unbounded, choose
By, B, so that the probability of any stochastic path wandering out to beyond
H?g [Blp sz] is insignificant relative to the Monte Carlo errors and then restrict
all the paths to stay within these bounds. Often the physics will provide a guide
to selecting appropriate bounds.

Then, the partition consists of the following subregions:

1 1 2 2 3M 3M
P‘i],‘ig,...,iaM = ['UZ-(] )7 V’t'(lil} x {’}1‘(2)7 Vl.(zl-l] X e x [yt.(gM )5 V‘ll(ngl]

over all sets of 1; with 1 <z; <my, (j =1,2,...,3M).

The number of subintervals is equal to Hj__h_"; m;, which could be large. This can
cause memory size problems if it is too large, as will be discussed below.

Now, generate pseudorandom paths {Z k}le, and then count the number of
endpoints falling within each region of the partition.

Let N; i, be the number of points in subregion P, .. .

Normalize the point counts, in order to take account of the fact that some

subregions may be larger volurne-wise than others, as follows:

V { : fraud . , . ’UOI(Pﬁ,...,i;;M)
1} ,eesta s 1,0t M ?ﬁ(B% — Blj)

Now, compute the following sets of marginal and conditional sums:
ma M3 pt

NI‘JL = Z o Z Mluv--ﬂ:aM , t1=1tom

ip=1 igp=1
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N23i2|:1 = Z Z Nil,...,z'sM , y=1tomy, 1, =1tom,
ia=1 dapm=1
. My Mam
Nijialiviy, = Z o Z Nipiong » =1t0my ..., 43 =1to mg
l'4=1 i3M=1
Nartiiglivoians—s = Niypiong > i1 =110 my oy dgp =110 myy

Next, add up the accumulations of each of the sums above, normalized to fall

between zero and one as follows:

11 ]

C . —_ .__Lt_““ml_,_]}jlﬁ 2: — 1 tO m
1 my A s 1 1
=1 1,7
1:2 v of

i E,‘=1 N?;lhl

itz ma  Aj

=1 N;Z;il‘tll
i3 ¥ I
fo] NS;zln.tz

HE) }ii Ha ma
Zim] NS;i!i] iz

(CTVENY o
z:1'=‘1 NSM;:[:;,...,th_l

= Sim By o,

y i}zltom] N i2:1t0m2

y i3=1t0m3

CaMiiyprlin iangmy = ,y u=1tomy ,

Maps A . )
ey | N3M;2|11,...,13M_1

The transformation can then be explicitly defined.

Given & = (®y,...,2ap7) € U([0,1}3™), we can produce a transformed 3M

dimensional point, T(x) = (7 (x,),..., Tap(2aps)), with a probability distribution

with is nearly like the distribution of the set of points {Z k}le as follows:

Ly~ Cl;z'l

Ti(zy) = v +

i1

where 1, is selected such that C); <z; <Cy; 4.
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where 1, is selected such that Cpy;, < 2y < Cpyipqayi, » Biven 4y above.

This transformation has the nice property that it is (nearly) continuous, which
is important because as observed in Chapter 5, any large discontinuities would
have a negative impact on the quasi-random convergence rate. (There are slight
discontinuities where jumps between adjacent partition regions cause different con-
ditional densities to be used in the higher dimensions.)

The number of partitions should be small enough relative to N so that the
majority of the partition regions are non-empty. However, on the other hand, if
the number of partitions is too small, large approximation errors will result because
information is lost when the set of pseudorandom endpoints is reduced to a set
of counts in the partition regions. A careful and informed choice of the number
and location of partitions, based on knowledge of the physics, can make a big
difference in the success of this method. If a very large number of partitions are
needed to avoid approximation errors, memory size problems can arise, which is a
system-dependent limitation of this method. However, with memory sizes rapidly
increasing, this should become less of a problem in the future. For one of the
examples in Section 7.8, the harmonic oscillator in three dimensions, this method
worked quite well without memory size problems. For the other example, the
hydrogen atom, the memory size did become a concern when [ ignored the obvious

symmetries of the system. In general, if one takes advantage of any symmetries
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(by combining symmetrical partitions) and also uses unequally sized partitions,
this method could be made to work for a large number of interesting systems.
However, if memory problems persist, the empirical transformation can instead be

incorporated into Correlated Continuation which is discussed next.

7.7.2 Correlated Correlaticn

An alternative to the Empirical Transformation Method is Correlated Con-
I
tinuation. As mentioned earlier, straight continuation is ineffective because it
3

destroys the correlations between successive quasi-random paths by randomizing

the starting locations. However, a nice feature of such direct continuation is that
g )

there is no new approximation error introduced as there was for the Empirical

P P

Transformation Method above. This is trivially true because the exact pseudoran-

dom path endpoints are reused.

The idea of correlated continuation is to use a direct continuation such as
straight continuation so that no approximation error is involved, but with the im-
portant distinction that an “informed” choice is made in selecting which particular
pseudorandom path endpoint to use as the start of each new quasi-random path.
This is done by using the first 3M components of each gquasi-random point to select

Y q P
the pseudorandom path to be continued using the remaining components of that
same quasi-random point, as follows:

These first 3M components are transformed, using a rough empirical transfor-

166



mation (no great accuracy is needed so the number of partitions can be small), into
the same general domain and distribution as the pseudorandom path endpoints.
Then, an exact pseudorandom endpoint which is “nearby” to this transformed
point is used as the starting position for the path generated using the remaining
components of that particular quasi-random point. This allows a lot of the neces-
sary correlations to be reintroduced, since the particular starting point is “near”
to where the first 3M quasi-random components suggest that it should be.

Ideally one might wish to use a nearest neighbor approach, where the pseu-
dorandom endpoint which is closest to the transformed point above is selected.
However, unfortunately, such an approach is computationally too costly since it in-
volves O(N?) work when done naively, or at best O(N log N) work using a method
known as tesselation (see Bowyer [6]), while everything else involves only order
O(N) work.

Instead, I have found it to be sufficient to simply choose a starting point which
1 at least in the same general area as the transformed point above. This appears
to produce enough correlation to be effective in the examples which I have studied.
In practice one stores the pseudorandom endpoint locations according to the region
of space in which they lie (using memory stacks). Then, for the transformed quasi-
random components, any pseudorandom endpoint within the same region of space
is used as the starting point for the path continued using the remaining components
of that particular quasi-random point. If no pseudorandom endpoints are left in

the region, then the nearby regions are searched until a pseudorandom endpoint is
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found.

Importantly, each pseudorandom path endpoint is used once and only once
as a new starting point. This ensures that the new set of quasi-random starting
positions is is distributed exactly like the old set of pseudorandom endpoints.
Hence no new approximation error is introduced.

This method seems to hold the most promise because unlike the Empirical
Transformation Method, there are no memory storage problems.

The examples below will provide some more details about these methods for
combining pseudorandom and quasi-random sequences. As will be shown in the
examples, for systems in which the number of bodies, M, is small, both the Empir-
ical Transformation Method and Correlated Continuation provide the opportunity
to combine pseudorandom and quasi-random sequences of points in order to obtain

more accurate results than those computed using pseudorandom sequences alone.

7.8 Diffusion Monte Carlo Examples

In this section I will examine the computational results when the two methods
described in the last section are applied to two pérticular quantum systems, and
compare these results with those obtained using ordinary pseudorandom simulation
and straight continuation.

The four methods to be considered, all of which are based on the trial func-

tion transformed system, Equation 7.19, and variational energy estimates, Equa-
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tion 7.32, are the following:

1. Standard Pseudorandom

An ‘ensemble’ of N} < N random walkers is initially distributed according
to ¢2. They are advanced by finite time steps, A, using branched walks as
described in Section 7.5 and the Helfand/Greenside 3 third order accurate
discretization method. This is continued up to a large time ¢,. The proper
sizes of h and {1, are determined empirically by observing the resultant root

mean square errors in estimating Ej.

Then, starting at time step m = %‘f, a sample of “endpoints” is accumulated
by taking the set of walk locations at every s’th step after the m’th, where s
1s determined empirically to be large enough so that the new set of endpoints
is (nearly) independent of the previous set, This continues until a total of
N “endpoints” has been accumulated. (Note: This is a very common time
saving technique, which is equivalent to the more straightforward method of

generating N independent paths, as long as s 1s sufficiently high. I have used

it in order to make my comparisons in terms of cpu time more realistic.)

Given accumulated set of endpoints, {Z k}ﬁ__l, we then have the following

Monte Carlo estimate of Ey:

mem) _ 1
ENY = -]-\,"Zb(Zk)
k=1

Note: There are no weight factors because branched walks are used.
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2. Straight Continuation

The sample of pseudorandom endpoints {Z k}kN=1 is accumulated as in case
(1) above. Then, Z, is taken as the starting point, Z}cﬁ), for the &'th quasi-

random (Halton) path. (Note: Y}fo) = 0). This path is followed for m addi-

tional steps, where m is small, using the components of the k’th Halton point

N

with Helfand/Greenside 3 to obtain the weighted sample, { (Z{™, y;}’“))}k_l,
where each Z i’") represents a spatial location and the associated weights are

R (1)
given by e "5 |

Then, the following Monte Carlo estimate is computed:

m _ylm)
Ty W(ZE™) e

R
k=1 €k

B =

3. Empirical Transformation Method

The sample of pseudorandom endpoints {Z k}fﬂ 1s again accumulated as in
case (1) above. Then an empirical transformation function, 7, is constructed
as described in Section 7.7.1 using P equally sized cubes as partition regions
with bounds B, , By, Vj. Note: I have ignored any symmetries in the
examples in order to get an idea of the performance of this method in a more

general setting.

Next, use the empirical transformation function to obtain starting points,
setting Ziﬂ) = ’T(hg), hi.z), hf.f)) and Yl.m) = 0 where hfcl), hf), hf) are the first

three components of each point in a (3 4+ 6m)-dimensional Halton sequence.
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As in case (1) above, the path is then continued for m time steps to obtain

N

the weighted sample, {(chm)’ Yk(m))}kzi.

Finally, the following Monte Carlo estimate is computed:

£ U
N
fon

fo(etf) _
EN - _y(m)
1€ 7k

. Correlated Continuation

The sample of pseudorandom endpoints {Z k}f';l is again accumulated as in
the previous cases. Then an empirical transformation function, 7, is con-
structed as in case (3) above, but with a much smaller number of partitions,
P. In addition, S memory stacks are created, each corresponding to a par-
ticular region in 3M dimensional space. Fach Z)’s coordinates are then

“pushed” on to the stack associated with the spatial region in which it lies.

Next, set Z] = T D 1) where BN B3 1Y are again the first three
components of each (3 4+ 6m)-dimensional Halton point. Determine which
spatial region Z lies in, and then “pop” the coordinates of a point Z; off
of the stack associated with that particular region. If this stack is empty,
search the other stacks from nearest to furthest {according to a fixed table
of search orders), until a non-empty stack is found and a point is “popped”

of that stack.

Now, set Zﬁo) =Z;, Yk(ﬂ) = (0 and proceed as in cases (2) and (3) above to

N

obtain the sample {(Zi-m)s Yk(m})}k__l‘
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Finally, compute the following Monte Carlo estimate of E:

m ~ylm)
Sy Y(ZY) e

N _yim)
Ek:l € i

B =

Example 11 The ground state energy, E,, of a three dimensional harmonic os-
cillator is estimated using Diffusion Monte Carlo. This quantity is known ezactly,
which allows for exact computation of root mean square errors for comparison

purposes. The governing potential energy function is the following:

1
U(‘TJyaZ) = 5167‘2

where k > 0 is the oscillator strength, and r? = x2+ y2 + 22 is the squared distance
from the oscillator’s center, which is taken to be the origin.

Setting the strength to be k = 1 and the mass to m = 1 for the sake of simplicity,
and working with atomic units (in which h = 1), the ezact ground state wave

function given by the following:

T/)O(‘T) Y, Z) =T 6_1‘2/2

where ng s simply a normalization constant.

The ezact ground state energy is then,
Ey =15 atomic units

The trial function used is the following:

¢T($1 Y, 2’) =T7r 6“'5”2
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which is intended to simulate a typical situation in which the trial function is well
chosen, but not exactly correct.
The resullant trial energy funclion is then the following:

H
b(y) = HorY) _ | 53— 0.20202

$r(y)

While the vector drift function is the following:
a(y) = (—-1.02z,—-1.02y, —1.02z)

The results of all four methods described above are shown in Table 7.1 and
Figures 7.2-7.8. For the pscudorandom paths, the parameters are ensemble size,
Ny = 50; startup time, 1, = 12sec; time step size, h = 0.12; and steps between
saves, s = 15. For all the quasi-random methods the number of quasi-random steps
is m = 4. For the Empirical Transformation there are P = 100° partitions with
bounds -5 to +5 in each component. For Correlated Continuation there are only

P = 303 partitions, § = 83 storage stacks, and bounds -5 to +35.

Example 12 The ground state energy, E,, of a hydrogen atom is is estimated
using Diffusion Monte Carlo. Using atomic units, as in the last ezample, the exact
solution is known to be Ey, = ~0.5. Therefore this can be used to compute the root
mean square errors of the estimates.

The governing potential energy function is the following:

’U(.‘E, Y, Z) = _;
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where v = /2?7 + y% + 27 is the distance from the nucleus, which is taken to be the
origin.

The ezact ground state wave function given by the following:

Yolz,y,2)=me™

where 1, is a normalizalion constant,

The trial function used is the following:
¢r(w,y,2) = ype M’

which is specifically selected so that it eliminates the singularity at v = 0, but is
also not quite exactly correct.

The resultant trial energy function is then the following:

1
bly) = =5 (1~ 22r)? + 3A

While the vector drift function is the following:

a(y) = (2hz — 3_:,2,\9, _ E,‘Z)\z— f)
r r r

The results of all four methods described above are shown in Table 7.2 and
Figures 7.4-7.5 with A = 0.01. For the pseudorandom paths, the parameters are
ensemble size, N, = 50, startup time, t, = 16.8 éec,‘ time step size, h = 0.21;
and steps between saves, s = 20. For all the quasi-random methods the number
of quasi-random steps is m = 4. For the Empirical Transformation there are
P = 100% partitions and bounds -5 to +5. For Correlated Continuation there are

only P = 303 partitions, S = 83 storage stacks, and bounds -10 to +10.
Y 7
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The results for these two examples indicate that the Empirical Transformation
Method and Correlated Continuation can each produce more accurate results than
the usual pseudorandom method, even when the extra time needed to implement
these new methods is added in.

The Empirical Transformation Method has the advantage of using fully quasi-
random starting points, but a great deal of memory storage is needed and there
is a long initial start-up time to set up the transformation, which is evident in
the time plots. From the plots, it is seen, though, that this start-up time is not a
major factor as N gets large.

Correlated Continuation has the advantage of avoiding any new approximation
errors from the transformation, and therefore allowing for a smaller number of
partitions. I believe that for more complex systems with M equal to two or three
bodies, this method holds the best promise, because it avoids new approximation
errors.

Straight Continuation actually does slightly better than I might have expected,
but it is clearly not as good as the two methods above. Also, it is more erratic
in its results, sometimes coming close to the two methods above and other times
giving results close to pseudorandom.

The convergence rates for the Empirical Transformation Method and Corre-
lated Continuation Method are faster than the pseudorandom convergence rate,
thus giving improved accuracy for a given amount of c¢pu time. The rates are not

quite as high as in some of the earlier examples in Chapters 5 and 6, because in



the few quasi-random steps, the pseudorandom Monte Carlo errors cannot be to-
tally eliminated. (Note: The rates against time for the Empirical Transformation
Method are misleading because the large start-up time makes them look better
than they actually are.)

In general then, although huge improvements such as seen in some of the earlier
examples are not present, these combination methods do in fact work, and even
when the extra time involved in these methods is factored in, the results are still

better than the original pseudorandom estimates.
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3D Harmonic Oscillator, Comparison of Results

Method 1 Method 2

(Pseudorandom Paths) | (Straight Continuation)
N rrnse(N) iy rmse(N) ty
200 1.888°E -3 1.06 1.735 E -3 1.16
800 8.083 E -4 2.29 8.542 E -4 2.73
3200 4228 F -4 7.12 4408 E -4 9.01
12800 2392 E -4 26.52 1.558 E -4 34.12
51200 1.058 E -4 | 105.08 8.506 E-5| 134.36
Convergence of rmse Convergence of rmse

vs N -0.504 vs N : -0.566

vs iy ¢ -0.619 vs iy -0.675

Method 3 Method 4

(Empirical Transf.) (Correlated Contin.)
N rmse(N) iy rmse(N) ty
200 1.442 E -3 2.20 1.554 E -3 1.21
800 6.834 E -4 3.91 7.061 E -4 2.85
3200 2.791 E -4 10.59 2.664 E -4 9.40
12800 1234 E -4 | 37.07 1.254 E 4 35.74
51200 4971 E -5 | 142.76 5120 E-5 | 141.72
Convergence of rmase Convergence of rmse

vs N : -0.649 vs N -0.631

vs iy -0.881 vs fy ! -0.748

177

Table 7.1: Results for Example 11, 70 trials.
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Hydrogen Atom, Comparison of Results

Method 1 Method 2

(Pseudorandom Paths) | (Straight Continuation)
N rmse(N) ty | rmse(N) iy
200 1.396 E -3 1.33 1.238 E -3 1.47
800 6972 FE -4 3.21 5.604 E -4 3.76
3200 3116 E 4 10.77 2.960 E -4 12.91
12800 1.534 E -4 | 40.94 1.329 E -4 49.65
51200 9193 E-5| 163.22 8780 E-5| 196.49
Convergence of rmse Convergence of rmse

vs N : -0.512 vs N . -0.519

vs ity : -0.602 vs iy : -0.598

Method 3 Method 4

(Empirical Transf.) (Correlated Contin.)
N rmse{N) iy rmse(N) ty
200 1.163 E -3 2.47 1.172 E-3 1.54
800 5382 F -4 4.82 5.651 E -4 3.87
3200 2509E -4 14.23 2.386 E -4 13.35
12800 1.250 E -4 | 51.64 1.214 E 4 51.40
51200 6178 E -5 | 201.14 6.143 E-5 | 204.59
Convergence of rmse Convergence of rmse

vs N : -0.550 vs N : -0.554

vs iy ~0.704 vs iy : -0.636
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Table 7.2: Results for Example 12, 60 trials.
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CHAPTER 8

Conclusion

QQuasi-random sequences are certainly much more versatile than many people
may believe. In fact, they can be successfully applied to a wide variety of Monte
Carlo methods in order to obtain faster convergence rates and higher accuracy in
a given amount of computation time on the computer.

However, one must be careful in selecting the specific algorithms used and the
ways in which quasi-random sequences are applied. In particular, it is important
to avoid any unnecessary discontinuities which are produced by the algorithms. It
is also important to try to concentrate as much of the variance or variation into
the lowest dimensions, or to reduce the number of dimensions whenever possible.

In the case of variance reduction using an importance function, we found that
the Rejection Method introduces large discontinuities which have a strong negative
impact on the success of quasi-random sequences. When one avoids these disconti-
nuities by using a smoothed version of the Rejection Method, or Weighted Uniform
Sampling, the results are significantly improved, as was observed computationally.
In particular, I believe that Weighted Uniform Sampling holds great promise as a
variance reduction method with quasi-random sequences to compute Monte Carlo

estimates of integrals of moderate dimensions (roughly 4 to 30).
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With another example, the Feynman-Kac formula, it is clearly demonstrated
that reformulating an algorithin to concentrate the variance in the lower dimensions
can have a huge impact on quasi-random Monte Carlo estimates, while having
virtually no effect on pseudorandom Monte Carlo estimates. This is a striking
example of the new issues which arise when quasi-random sequences are applied,
and of the improvements possible when one pays attention to these issues.

Quasi-random sequences can also be used for Monte Carlo methods involving
iterations or successive time steps, as 1 have done in the case of Diffusion Monte
Carlo to obtain improved estimates of the ground state energy of few-body quan-
tum mechanical systems. In these cases, because of the large number of dimensions
involved, quasi-random sequences are used in combination with pseudorandom se-
quences. Continuation methods such as the Empirical Transformation Method and
Correlated Continuation, allow one to use pseudorandom sequences to converge to
some equilibrium state or ground state and then use quasi-random sequences to
reduce the remaining statistical or Monte Carlo errors.

In conclusion, quast-random sequences can be successfully applied to many
problems in physics, chemistry, reliability analysis, and other fields in which Monte
Carlo methods are commonly utilized. This dissertation should serve as a guide

to some ways in which this can be done.
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APPENDIX A
Moments of Sums of Random Variables
Assume |f| < M, and 0 < h < M, over domain I = [0,1]¢ C 4. Also assume
that |[Ef] > ¢ > 0. (Note: These conditions are sufficient, but not necessary for

the results that follow.)

Let,

wi(fy = E[f—Ef)] , ©'th central moment of f.
pi{h) = E[(h— ER)] , ¢’th central moment of &.

wo (foh) = E[f—Efy(h—Ehy] , 4 7'th mixed central moment.
Then,

|Ef] < M, = if-Eff<2M,

O<|ER<M, = |h-Ehl<M,
Therefore,

Wi < [2M]f < oo
()] < IMyf < oo

i (B < [2M ] [ My < oo
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Also,

W(f) = B(f-Ef) = Ef-Ef = 0
wi(hy = E(h—FEh) = Eh—Eh = 0
Now, define the following quantities:
N N
Fo= Zf(ivi) H = Y h(=)
i=1 i=1
F—EF H—-FEH
AF = EF AH = —=5

where the 2;’s are an i.i.d. random sample from U{([0, 1}4).

Using Equation 2.11, we find the following immediate results:

EF = NEf

E(AF) = 0

Now, consider the following:

E(AH)

E?;l h{z;)— EH

EH N Eh

0

)

E[(AHY] = E([ (=)
- o)

= (Eh)jE ([;(h
1 N

- Nf'(Eh)J‘E(E“'
1 N N

= NiEwy Y (2 ;
1 N N

= Ni(Ehy ,.12 ,.22__;,



For each term in this sum, let m be the number of distinct ¢;’s contained in
that term, so that 1 < m < j. Given m for each term, we then assume that the
first m factors of the term are in fact unique, while the remaining factors are by
necessity repetitions of these. This involves a lumping together of 2m-1 equivalent
terms, by commutation, since there may be up to m — 1 switches of position to
create the situation described above.

This allows the sum to be rewritten as follows:

I N N N
E AH i — gm— )] e
(AHY] Eh) mE—l ilzzl ; -'mz=:1
EoFiy fme{iis--'lim—]}
N N
S Y Eayeag)
Ty 1 =4 =t
ity €01 tm} "jE{ii ----- im}
1 ; N j-m N j-m4l-j
— 2171-—1
Ni (Eh)'j mz 112—1 312—1 ’{:1 Jg::
iggi]
N i- Z =1 j‘"
¥ >, Blal---aln)
im=l ,Zim—1
i"‘&f‘]»---:"m—']}

N j-m N Jj-m+1-j;

P3PPI

t1=171=1 ig=l Jz=1

L\U

7
- Eh 2

ia#i)
N =y i )
> >, E(al)---E(aln)
im=1 Jm=1
"'me{'.]s“'t'.m—]}

where the last step uses the independence of the different a,’s.

Now, all of the terms in the sum above in which any 7; equals 1 will disappear
since F(a) = E(h — Eh) = Eh — Eh = 0. Therefore, we have for all of the

remaining terms: j; > 2, ¥Y¢. This implies that m < £ for all the remaining terms
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as Tollows:

i

1 z N j—-m N j-m+l-4
BUARY) = frogmy 227
NJ (Eh)J mm1 1; Ji=1 '22:1 J2=1
ipFiy
N :f—Zf;lljf , :
SRR I IR
fin=1 Jm=1
L Z O PR S Ry
1 J 2ol Y 7
S Nmny s N

Thus, we have proven the following result:
E[(AH)]=O0(N-/%)

This result can in fact be improved for odd values of 7, but the present result
1s sufficient for our purposes.

An argument which 1s virtually identical to the one above leads to similar

results for £ [AF (AH)] as follows:
EIAF(AHY] = d(j, My, My) N-G+0/2

where d(j, M, M,) = > 42571 4 M, M3,

Therefore we have the following:

E[AF(AH)] = O(N-U+1)/2)
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